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Figure 1: The objective is to drive scissors to accurately cut curves drawn on the paper, which is
hung with the top edge fixed. Our execution follows an action primitive sequence, namely Rotate,
Close, Open, Push. The meticulous action, visualized as scissors before (orange) and after (green)
each action, ensures accurate cutting in the real world. During execution, large deformation of paper
and severe occlusion between scissors and target curves occasionally occurs.

Abstract:

This paper tackles the challenging robotic task of generalizable paper cutting us-
ing scissors. In this task, scissors attached to a robot arm are driven to accurately
cut curves drawn on the paper, which is hung with the top edge fixed. Due to the
frequent paper-scissor contact and consequent fracture, the paper features contin-
ual deformation and changing topology, which is diffult for accurate modeling.
To deal with such versatile scenarios, we propose ScissorBot, the first learning-
based system for robotic paper cutting with scissors via simulation, imitation
learning and sim2real. Given the lack of sufficient data for this task, we build
PaperCutting-Sim, a paper simulator supporting interactive fracture coupling with
scissors, enabling demonstration generation with a heuristic-based oracle policy.
To ensure effective execution, we customize an action primitive sequence for im-
itation learning to constrain its action space, thus alleviating potential compound-
ing errors. Finally, by integrating sim-to-real techniques to bridge the gap between
simulation and reality, our policy can be effectively deployed on the real robot.
Experimental results demonstrate that our method surpasses all baselines in both
simulation and real-world benchmarks and achieves performance comparable to
human operation with a single hand under the same conditions.
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1 Introduction

Paper cutting, an ancient craft dating back to at least the 6th century [1], has evolved alongside
human civilization, serving as a medium for emotional and symbolic expression [2]. In modern
society, it has applications in decorative art [3], education, and advanced manufacturing [4, 5]. Hu-
mans exhibit dexterity using scissors for this task, but robots have yet to master this skill, largely due
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Figure 2: An overview of the learning system. The system first generates expert demonstrations in
our built simulation which supports interactive fracture of the paper. These demonstrations are then
used to train a vision-based imitation learning policy that inputs multi-frame point clouds (Blade
point cloud is highlighted in green only for visualization) and outputs parameters of action primi-
tive. Meanwhile, Deviation Correction and Visual Artifact Mimicry provide data augmentation to
imitation learning which ensures a robust transfer from simulation to real world.

Simulation Imitation Learning

A

to the intricate interaction between paper and scissors, characterized by continual deformation and
changing topology. Accurately modeling these dynamics using traditional control methods poses
significant challenges. In contrast, learning-based methods offer a promising alternative, leveraging
data-driven approaches to achieve generalization across diverse cutting tasks.

We introduce ScissorBot, the first learning-based robotic system for paper cutting with scissors,
employing a combination of simulation, imitation learning, and sim-to-real techniques. To miti-
gate data scarcity, we develop PaperCutting-Sim, a paper-cutting simulator that supports interactive
fracture coupling with scissors, facilitating large-scale demonstration generation through a heuristic-
based oracle policy. For real-world deployment, we further train a student policy with multi-frame
point clouds to capture occluded and underlying dynamics. To bridge the physical and visual gaps
between simulation and reality, we propose data augmentation techniques for deviation correction
and artifact mimicry. The former adaptively corrects errors using out-of-distribution data, while the
latter simulates edge bleeding artifacts to align visuals with reality.

Through extensive experiments in both simulation and real world, we evaluate the efficacy and
generalizability of our learning policy. Our method improves cutting accuracy by at least fivefold
compared to the best alternative methods, measured by Chamfer distance. Notably, our approach
to achieve a Chamfer distance of 2mm for curves in real-world scenarios, comparable to human
performance with single-hand operation. Our research opens new opportunities for contact-rich and
fine manipulation of deformable objects.

2 Method

2.1 PaperCutting-Sim

We build a paper-cutting simulator, PaperCutting-Sim, to support the modeling of both paper and
scissors, as well as their contacts and the consequent fracture. The simulator is implemented in
Python and Taichi [6], which supports parallel computation on GPUs. For deformable dynamics,
we compute the elastic energy of the paper as the sum of stretching elastic energy and bending
elastic energy. To model the contact between the paper and the scissors, we represent the scissors
using a signed distance field, utilize the cubic of the signed distance to calculate collision energy,
and apply Coulomb friction. We perform spatial discretization using the Finite Element Method [7],
and update positions and velocities through implicit time integration [8].

Interactive Fracture. Different from cutting simulation with predefined fracture surfaces [9], in-
teractively handling fracture coupled with contact is a non-trivial problem. To address this, we
design a two-phase geometry-based approach, as illustrated in Fig. 3. First, during the closing
process of the scissors, we propose using edge-edge detection and vertex-face detection to detect
the intersection points between the cutting trajectory and the paper mesh. Then these intersection
points are added to the paper mesh and related edges are connected and split according to the vertex
position relationship inside triangles. We refer the reader to Appendix E for more details.
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Figure 3: Interactive Fracture in our PaperCutting-Sim. (1): As the scissors close, the fracture
occurs along the cutting direction. Intersection points (red star) can be computed from edge-edge
detection and vertex-face detection between the cutting direction ( ) and the paper
mesh. (2): (a) The original paper mesh (blue triangles). (b) Intersection point (red star) and
cutting direction ( ). (c) According to the intersection points, new vertices are added
on the existing edges and the endpoint is inserted inside the triangle. The new edges (green solid)
are connected between the new inserted vertex and the opposite vertex in the triangle. (d) The edges
between these newly added vertices are split into two pieces (black solid).

2.2 Demonstration Generation

We devise an action primitive sequence and a heuristic-based Oracle policy for large-scale demon-
stration generation. For distillation, we preserve high-quality demonstrations measured by chamfer
distance. The four action primitives, namely Open, Push, Rotate, and Close are elaborated in detail
in the supplementary. The oracle policy initially discretizes the target smooth curve into several line
segments, with this approximation scarcely impacting visual appearance. Subsequently, the entire
curve can be cut by multiple action sequences for line segments iteratively.

2.3 Vision-based Imitation Learning

Our learning framework use multi-frame point clouds as input and action parameters as ouput, which
is depicted in Fig. 2. We first pre-process raw single-view point cloud using bounding-box cropping
and FPS sampling. Then sequential L-frame point clouds {Pt—i—l}iL:p along with a binary mask
indicating whether a visible point originates from the target curve, are fed into a shared PointNet++
encoder [10] to obtain features and then concatenated and passed through a shallow MLP to regress
actions parameters. The output action parameters are associated with the designed action primitives
mentioned in Sec. 2.2. These actions are recurrently executed for each stage which keeps the order
of Push, Rotate, Close, Open repeatedly. We employ Mean Squared Error loss for the Push and
Close terms, and 9D L1 Loss [11] for Rotate. The overall loss is formulated as:

L=X0p—p)"+Alc—8)’+Ir Y [Rij — Ry (1)

1,
where A\, A, AR are respective weights, and p, ¢, R are ground truth action values.

2.4 Sim-to-Real Transfer

Deviation Correction. We introduce deviation correc-
tion to enhance the robustness for drifting scenarios
which somestimes occurs in the real world. In this ap-
proach, we fine-tune the trained model using correction
data, which comprises out-of-distribution states paired
with corrective actions. These data are generated by intro-
ducing random rotation perturbances to the action during
oracle policy execution.

Figure 4: Point cloud in simulation with
Visual Artifact Mimicry. We propose a simple yet effec-  scissors blade highlighted w/o (a) and

tive method to mimic edge bleeding artifact in the simu- with (b) our proposed visual artifact
lation. To create continuous value at the edge between mimicry. (c) Real-world point cloud.
foreground and background in simulated depth image, we preprocess the depth with an average
pooling kernel and add random noise perpendicular to the surface of the paper to the point cloud of
the blade.
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Figure 5: Visualization of Cutting Results on UV plane of the paper. Target curves are in red
while cropped lines by scissors are in green.

Methods \ Easy \ Middle \ Hard
Finished Rate T | Einiched Rate “P3™HT | Finished Rate  ToU
(mm) (mm)
Human ‘ 10/10 2+1 ‘ 10/10 2+1 ‘ 10/10 92+3
Ours w/o Visual Artifact Mimicry 0/10 - 0/10 - 0/10 -
Ours w/o Deviation Correction 7/10 2+1 7/10 3+1 7/10 84+8
Ours 9/10 2+1 8/10 2+1 8/10 89+5

Table 1: Quantitative results in the real world.
3 Experiments

3.1 Policy Evaluation in Simulation

Our method significantly outperforms non-learning based approaches in cutting accuracy. As shown
in Fig. 5, the cutting trajectories of Open-loop Planning deviate considerably from the target curve
due to its inability to adapt to environmental changes, leading to accumulated errors during the
complex scissors-paper interaction. Although Online Fitting adapts its actions based on current ob-
servations, it struggles with optimal decision-making, especially during occlusions. In contrast, our
learning policy exhibits remarkable adaptability to dynamic conditions, achieving a chamfer dis-
tance of 1.1 mm, significantly better than 10.8 mm for Open-loop Planning and 5.5 mm for Online
Fitting. Additionally, our policy demonstrates strong generalization to novel curves and patterns,
effectively handling the more complex deformations and fractures presented by Middle and Hard
targets, despite being trained only on Easy curves. This success highlights the robustness of our
design, allowing performance comparable to the oracle policy.

3.2 Policy Evaluation in the Real World

We evaluate the performance of our sim2real model on a real-world platform. As evidenced in Table
1, our policy consistently fails without any sim2real, as a result of confused perception with the
interactions between blades and paper. Our mimicry strategy mitigates the visual gap and minimize
erratic action prediction, thereby achieve successful deployment. However, the performance is still
still unsatisfactory. As illustrated in Fig. 9, policies sometimes experience drifting failures (Fig.
9a) or persistently exhibit errors (Fig. 9b). To this end, the correction mechanism addaptively
corrects the deviation and enhances the stability and accuracy of the deployed policy. For example,
it enhances the finished rate from 7/10 to 9/10 in the “Easy” track and reducing deviation by 1 mm
in the Middle track. Combining the above sim2real techniques, our system achieves comparable
performance to human single-hand manipulation under same condition, which has only 2 mm error
from the target curve. Furthermore, it achieves an IoU of 89 on the Hard track, which is particularly
challenging due to more drastic bending.

4 Conclusion

We introduce ScissorBot, the first learning-based robotic system for generalizable paper cutting
using scissors. The system utilizes demonstrations collected in our newly developed paper-cutting
simulator to train a primitive-based imitation learning policy and combines sim2real techniques to
achieve robust deployment in the real world. Extensive experiments exhibit the generalizability and
accuracy of our system on simple smooth curves which cover most of cutting scenarios.
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Figure 7: Example curves for Easy, Middle and
Hard tracks.

Figure 6: Hardware System

A Related Works

A.1 Deformable Object Manipulation

The manipulation of deformable objects, such as dough [12, 13], cloth [14, 15, 16] and rope [17, 18]
has been extensively studied in the in the scentific and engineering disciplines. Zhao et al. [19]
train robots in the real world to learn paper-flipping skills, and Namiki et al. [20] explore paper
folding using motion primitives. Other studies focus on kirigami [21, 22], the traditional art of
folding and cutting paper to create intricate designs. For paper cutting, these studies typically use
desktop cutting plotters rather than fully automated robotic systems. Additionally, various robotic
systems have been developed for cutting deformable objects in different domains, such as vegetables
[23, 24], dough [12, 13], and soft objects with rigid cores [25]. However, these systems generally
employ tabletop knife cutting, which differs from our approach of using scissors for cutting.

A.2 Simulation Environments for Paper Cutting

One line of works build simulators to boost robotic skill learning for thin-shell materials [18, 26,
27, 28, 29], however they couldn’t simulate the fracture during the scissors cutting. Some works
focus on simulating the cutting process of soft materials [9, 25]. Other works studies paper fracture
process either from the theoretical analysis [30, 31], re-meshing algorithm [7, 32] or its application
in kirigami [33, 34]. Overall, none of the existing works implements the paper cutting simulation
for robot learning, which combines dynamic modeling of paper and interactive fracture interweaving
paper remeshing according to scissor motion.

A.3 Imitation Learning

Imitation Learning (IL) [35, 36, 37, 38] is a supervised learning methodology for training embod-
ied agents using expert demonstrations. The commonly used Behavior Cloning (BC) [35] strategy
directly trains the policy to imitate expert actions. Despite its simplicity, this approach has demon-
strated remarkable effectiveness in robotic manipulation [39, 40]. In this paper, we adopt imitation
learning and ultilze action primitive sequence to ensure robustness during execution.

B Hardware System Design

We design a hardware system for the paper-cutting task, as Fig. 6 shown. The setup includes a
Realman robot equipped with a scissor extension for manipulation and a single Kinect DK camera to
capture RGBD observations. To secure the paper, we use plastic clips to fix the top edge, leaving the
lower edge free. The target curves are drawn in red on white paper, with corresponding binary masks
obtained through simple RGB-based segmentation. We use A4 printer paper (210 mm x 297 mm,
75 g/m?) as the material for the following experiments.



C Benchmark

C.1 Task Datasets

We focus on simple smooth curve cutting and split it into three distinct tracks, illustrated in Fig.
7. In each track, curves are generated using Bézier curves parameterized by four control points.
By manipulating the positional relationship of these control points, we can control the second-order
derivative of the curve, which in turn determines the complexity of the scissors’ motion. The dis-
cussion on non-smooth and non-simple curves can be found in the Sec. 4.

* Easy: In this track, the second-order derivatives of curves are consistently positive or negative.

* Middle: Curves in this track exhibit varying positive and negative second-order derivatives.

* Hard: This track comprises several patterns, each composed of two curves from the Easy track.
In real-world settings, this track can be further required to cut the origami sheet to obtain an
axisymmetric closed-shape pattern.

Considering the robotic arm workspace, scissors cannot undergo significant rotations, i.e., exceeding
90°, relative to the initial orientation along the moving trajectory. Empirically, we constrain the
gradient of the first line to be within [— tan(40°), tan(40°)] and the gradient of the last line within
[— tan(60°), tan(60°)]. To demonstrate the generalization capability of our policy, our training set
consists of approximately 5k trajectories solely from the Easy track. There are 100 curves of each
track for testing.

C.2 Evaluation Metrics

In our evaluation process, we utilize various metrics to gauge the quality of our results across dif-
ferent difficulty levels. For the all three tracks, we employ the chamfer distance as a measure of
deviation between the cropped curve and the target curve. Additionally, we report the Recall metric
under different thresholds of chamfer distance, indicating the proportion of well-cut instances. For
trials completing closed shapes in the Hard track, we further assess the quality by calculating the
mean Intersection over Union (mloU) between the cropped pattern and the target pattern, providing
a comprehensive measure of similarity and accuracy.

C.3 Baselines

Non-learning Baselines

* Open-loop Planning detects the target goal curve prior to cutting. Then it discretizes the detected
curve into isometric line segments and plans the scissor translation and rotation at each step.

* Online Fitting employs an step-by-step line fitting utilizing RANSAC. The fitted line target from
the captured point cloud determines the movement distance and scissor rotation at each step.

Learning based Baselines

* Direct Pose Regression. This methodology directly regresses the 7 Degrees of Freedom (DoF)
scissor pose (6D Pose and 1D joint angle) .

* Action Chunking [37]. In this policy, actions for the next k& timesteps are predicted. The current
action to execute is determined from weighted averages across the previous overlapping action
chunk. We adopt the implementation from [37].

C.4 Real-world Evaluation

To understand the capability of our system, we conduct a comprehensive user study to gather statis-
tics on human performance. Specifically, we invite 10 subjects aged between 10 and 60 years,
including both males and females. They are asked to cut paper using a daily scissor with one hand
while the paper was hanging under the same conditions as our robot system. Each subject complete
ten trials for each track. We define “finished” as the cut line having a chamfer distance of less than 3



Methods | Easy | Middle | Hard
Chamfer Chamfer
Recall@1.5 Recall@5.0 Recall@1.5 Recall@5.0 | Chamfer (mm) mloU
(mm) (mm)
Open-loop Planing 10.8 9.3 25.0 6.8 10.5 36.3 18.1 31.2
Online Fitting 5.5 314 73.6 53 21.0 53.1 10.3 63.0
Ours 1.1 85.1 98.6 1.5 79.6 96.6 1.9 91.3
Oracle |14 83.1 982 | 14 80.1 982 | 19 922
Table 2: Comparison with non-learning based baselines in simulation.
Time Final State

|
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Figure 8: Realworld cutting pr(;cess on Easy, Middle and Hard tracks.

cm from the target curve, with no tearing or folding of the paper. After each trial for both policy and
human, we capture the cropped paper using an RGBD camera and compute metrics such as chamfer
distance and IoU. We report the median and extremum of these metrics in the form of z + w.

D More Experiments and Results

alal

(a) Drifting Failure (b) Persistent Error (c) Deviation Correction
Figure 9: Qualitative result of our Deviation Correction. Without using Deviation Correction,
policy trained from simulation frequently falls into drifting failures (a) or keeps perisitent errors (b).
Our Deviation Correction (c) leads to a accurate and robust deployment.

D.1 Generalization to Different Materials

We highlight experiments that demonstrate the generalization to different materials. Specifically,
we select six different materials for evaluation: cardboard, A3 printer paper, rice paper, plastic
sheet, photo fabric, and aluminum foil. These materials exhibit varying physical properties, such as
thickness, density, stiffness, and their bending and stretching characteristics. For example, cardboard
is verythick and hardly bends during cutting, while rice paper is very thin and deforms significantly.
A3 printer paper is larger in size than the A4 paper used in our previous experiments, and foil has
an uneven surface. We conducted 10 trials for each material using the Easy track of curves.

By applying domain randomization to physical parameters of the paper including size, mass and
Young’s modulus, our policy successfully generalizes to these different materials without requiring
customized training. We exhibit that learning to cut papers with scissors is more generalizable to
different materials than specialized cutting machines. Videos can be found on our website.
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A3 printer paper Cardboard Rice paper Photo fabric Plastic sheet Aluminum foil

Figure 10: Test on unseen materials.

Metric | Cardboard A3 printer paper  Rice paper Photo fabric  Plastic sheet ~Aluminum foil
Finishrate |  7/10 9/10 9/10 8/10 8/10 8/10
Chamfer | 3+1 2+1 2+1 2+1 2+1 3+1

Table 3: Experiments on different materials.

D.2 More Qualatative Results

D.3 Ablation Studies

In this section, we conduct experiments to analyze the effects of critical parameters and design
choices.

Discretization Granularity. During the generation of expert data, smooth curves are discretized
into line segments as an approximation. We aim to study the impact of discretization granularity
on efficiency and quality, as reported in Table 4. It’s evident that as the length of each line segment
decreases, the number of execution steps increases while the quality improves. When the basic
length decreases from 15mm to 10 mm, the reduction in chamfer distance is marginal, merely
0.1mm. Thus, we opt for a trade-off choice of 15 mm, with a balance between efficiency and
quality.

Observation Horizon (). We analyze the effect of different observation horizons, as detailed in Ta-
ble 5. Policies with 4 or 6 frame horizons outperform that without temporal inputs by approximately
10 points on Recall@1.5. The superiority of our spatial-temporal encoding lies in its robustness to
occlusion and deformable dynamics. Although increasing the horizon from 4 to 6 yields marginal
improvements in cutting quality, e.g., 0.3 for Recall@1.5, we opt for a horizon of 4 in our system to
maintain a favorable balance between performance and efficiency.

Filtering Threshold (7). We train our imitation policy using various demonstration filtering thresh-
olds ranging from 0.7 to 1.6, as well as no filtering, as summarized in Table 6. A stricter threshold
yields better performance and a lower data usage rate, necessitating the generation of more demon-
strations for distillation. In our system, we select 7 = 1.0 to strike a balance between data quality
and efficiency.

Effect f’f the .Prlmltllve Learning. The Method C?rﬁf)er Recall@1.5 Recall@5.0
comparison with learning-based baselines
) . sl Direct Pose Regression 11.2* 9.0* 24.4*
exhlplts the effectlver.less .of our primitive i Chunking [37] 114 3.9* 25.1*
learning. As shown in Fig. 5(c), the al-  Ours 1.1 85.1 98.6
Ours + Action Chunking [37] 1.2 84.2 98.5

ternative frequently causes separation be-
tween scissors and paper and thus fails to Table 7: Comparison with learning-based baselines in
perform the paper-cutting tasks to the end. Simulation. For Direct pose regression and its variance,
we only calculate its chamber distance with the first

We only report its chamber distance with .
one-third of the target curve (*).

the first one-third of the target curve in
Tab.7. Even incorporating Action Chunking, designed to mitigate compounding errors, there is no
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Figure 11: Realworld results on patterns from Hard tracks. The cropped pattern from our system
has a accurate overlap with the target pattern.

Time

Middle

Hard

Figure 12: Cutting process of our method in the simulation on Middle and Hard tracks.

substantial improvement in completing the target curves. This is due to the drastic state transitions
at each step, which complicate the accurate prediction of future actions. These results highlight the
highly nonlinear nature of the task. In contrast, our designed primitive constraints the action space
of scissors, which minimizes possible errors during execution.

E Details of PaperCutting-Sim

We consider the occurrence of paper fractures due to the intersection of the scissor blades. As the
scissors close, the intersection point of the two blades, denoted as P, moves along the paper surface.
The trajectory of this movement forms the fracture line on the paper. At each time step, we detect
this moving trajectory on the paper mesh and perform remeshing, which includes vertex insertion,
edge connection, and edge splitting.

New Vertex Insertion: For each time step ¢, the movement of P can be represented as a segment
E = (Py,P; — aVy), where « is the velocity and V is the cutting direction of the scissors. Per-
forming edge-edge detection between E and the paper mesh M will yield most intersection points.
For the endpoints of E, they may not be located at an existing edge, so we also perform vertex-face
detection to get the intersection points. We insert all the intersection points as new vertices in order.

New Edge Connection. With the insertion of vertices, we perform edge connection. For a newly
inserted vertex on an existing edge, we connect it to the opposite vertices in all triangles containing
that edge. For a newly inserted vertex inside a triangle but not on the edge, we connect it with three
vertices of the triangle.

Edge Splitting: For each newly connected edge, if its two endpoints are newly inserted vertices,
then this edge need to be splitter.
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Basic length (mm) \ Steps  Chamfer (mm)

20 ~ 29 1.9
15 ~ 37 14
10 ~ 53 1.3

Table 4: Effects of Discretization Granularity for curves, i.e, the basic length of line segments.

Horizon | Chamfer(mm) Recall@1.5 Recall@5.0
w/o multi-frame 1.5 74.4 94.2
L=2 1.6 70.4 93.1
L=4 1.1 85.1 98.6
L=6 1.1 854 98.9

Table 5: Ablation study of Temporal encoding and Observation Horizon.

F Details of Demonstration Generation

The action parameters are computed through relative pose between scissors (blade intersection P;

and cutting direction V) and target line segment (Tari€ = (sF, s" 1)) for each step t.

When ¢ is the step for Push, the pushing distance p; is computed as :

(st —P)- Vi

pr=-—"3 Ve 2
[Vel[?
When t is the step for Rotate, the Rotation R, is computed using Rodrigues’ rotation formula:

w =V, x Tar} (3)
0 = cos™}(V, - Tar}) 4)

0 —wW, Wy
K= [ W, 0 wx] (5)

—Wy Wy 0
R; =I+sinfK + (1 — cos)K? (6)

where I is the identity matrix. When ¢ is the step for Close, the closed angle c; is computed as :
(ss™ = P) -V,
V2

where Distance2Angle is a function to map the cutting distance to the closed angle. The function
is depended on the mechanical structure of scissors and we obtain it via real-world calibration.

¢; = Distance2Angle( Vi) 7

G Implementation of Policy Learning

G.1 Point Cloud Pre-processing

We preprocess the visual input by cropping the global point cloud into a 3 x 3 x 3 cm? local patch
centered around the scissors. This means that the policy only ”sees” the local pattern rather than the
entire curve. Since the local structures are generally consistent across curves, this approach helps
the model generalize across different tracks.

G.2 Vision Encoder

The sequential point cloud features from the PointNet++ encoder are concatenated and fed into three
action heads. Each action head is a shallow MLP with the shape of [L x 512 — 256 — 64 — a], where
L is the length of the observation horizon and « is the dimension of the action parameter. We train
the model from scratch for 120,000 iterations. The learning rate is initialized at 1 x 10~% and decays
by a factor of 0.1 at 60,000 and 110,000 iterations, respectively.
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Filter \ Datausage Chamfer(mm) Recall@1.5 Recall@5.0

w/o filtering 100% 1.7 74.5 92.5
T=16 ~ 90% 1.4 81.8 97.8
7=1.0 ~ 70% 1.1 85.1 98.6
T7=07 ~ 30% 1.1 85.0 98.6

Table 6: Ablation study on the Filtering threshold 7.

G.3 Primitive Parameterization and Learning

The push primitive is parameterized by a 1D distance, indicating the amount of pushing along the
current direction. The rotate primitive is parameterized using a rotation matrix, indicating the delta
rotation in the scissors current frame. The close primitive is parameterized by a 1D distance, which
represents the length it aims to cut. The open primitive is not parameterized separately because it
shares a 1DoF with the close action. Essentially, we fix the open action to a predefined position
(e.g., maximum opening) and do not need separate parameterization.

The model outputs parameters for all three primitives (rotate, close, push) in a single forward pass,
but only selects one action to execute based on the predefined order and discards the other two
outputs. The sequence of four action primitives is repeated until the curve is completed, which is
referred to as Recurrent Execution in Fig. 2. For hyperparameter in the loss function, we simply
choose A, = A\. = Ar =1, and we find it is effective enough.

G.4 Action Chunking

For Action Chunking, we follow the implementation of [37], which predicts k future actions using
an exponential weighting scheme where w; = e~"*", with wy representing the weight for the most
recent action. In our experiments, we set £ = 4 and m = 0.01.

H Limitations

As we claim in the main paper, scissor cutting for non-simple or non-smooth curves is still an
open problem. We adopt the definitions from MathWorld (https://mathworld.wolfram.com/).
A curve is simple if it does not cross itself. A smooth curve is a continuous map from a one-
dimensional space to an n-dimensional space that has continuous derivatives up to a desired order
on its domain. Curves that do not meet these definitions are considered non-simple or non-smooth,
respectively.

The limitation arises from the relatively long length of the scissors compared to regular end effectors.
Due to the limited workspace, our small 6-DoF arm typically cannot rotate the scissors by more
than 90 degrees while maintaining their position unchanged. As a result, non-smooth curves with
significant turning angles are not achievable. Additionally, non-simple curves involve loops in the
scissors’ trajectory, which are also unattainable due to the constraints of the hardware setup, not the
learning method itself. Addressing these limitations might require designing a dexterous dual-arm
cooperation system, which could be a direction for future research.
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