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ABSTRACT

This paper presents a unified framework for simulating and visualizing dynamic
fracture phenomena in extreme mechanical collisions using multi-view image in-
puts. While existing methods primarily address elastic deformations at contact
surfaces, they fail to capture the complex physics of extreme collisions, often
producing non-physical artifacts and material adhesion at fracture interfaces. Our
approach integrates two key innovations: (1) an enhanced Collision Material Point
Method (Collision-MPM) with momentum-conserving interface forces derived
from normalized mass distributions, which effectively eliminates unphysical ad-
hesion in fractured solids; and (2) a fracture-aware 3D Gaussian continuum repre-
sentation that enables physically plausible rendering without post-processing. The
framework operates through three main stages: First, performing implicit recon-
struction of collision objects from multi-view images while sampling both surface
and internal particles and simultaneously learning surface particle Gaussian prop-
erties via splatting; Second, high-fidelity collision resolution using our improved
Collision-MPM formulation; Third, dynamic fracture tracking with Gaussian at-
tribute optimization for fracture surfaces rendering. Through comprehensive test-
ing, our framework demonstrates significant improvements over existing methods
in handling diverse scenarios, including homogeneous materials, heterogeneous
composites, and complex multi-body collisions. The results confirm superior
physical accuracy, while maintaining computational efficiency for rendering.

1 INTRODUCTION

Dynamic fracture simulation stands at the intersection of computational physics and computer
graphics, enabling realistic modeling of material failure across diverse applications. While physics-
based methods like the Material Point Method (MPM) have advanced significantly since their in-
troduction (Stomakhin et al., 2013), critical gaps remain in handling extreme mechanical collisions
and achieving seamless simulation-to-rendering pipelines.
Recent advances in explicit scene representation, particularly 3D Gaussian splatting (Kerbl et al.,
2023), have revolutionized real-time rendering capabilities. Building upon this foundation, several
studies have successfully integrated physical simulation with Gaussian representations, including
(Borycki et al., 2024; Cai et al., 2024; Feng et al., 2024; Xie et al., 2024; Zhang et al., 2025). Among
these, (Xie et al., 2024) established a significant milestone by coupling 3D Gaussians with MPM
simulations, demonstrating remarkable adaptability across various material types. Parallel develop-
ments include (Cai et al., 2024)’s physics parameter estimation through Gaussian differentiability
and (Borycki et al., 2024)’s GASP framework for point-wise physical attribute embedding. While
these approaches have made substantial progress in bridging the simulation-rendering gap, their
applicability remains constrained to moderate mechanical conditions and specific material classes.
A critical limitation emerges when addressing extreme mechanical collisions, such as the high-
energy fragmentation observed in brittle materials (Wolper et al., 2019). Current methodologies
face two fundamental challenges in these scenarios: (1) unphysical adhesion artifacts in MPM sim-
ulations , and (2) inadequate fracture surface representation for rendering. These challenges become
particularly apparent in high-energy impact scenarios like brittle material fragmentation or multi-
body collisions.
To address these limitations, we introduce Fracture-GS, a unified framework for simulating and vi-
sualizing dynamic fracture phenomena in extreme mechanical collisions using multi-view image
inputs. First, the Signed Distance Function (SDF) of the object is constructed from multi-view im-
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Figure 1: Two extreme mechanical collision scenarios are simulated using our proposed framework:
(1) single-object impacts against wind, and (2) multi-object collision interactions with complex
fracture dynamics. Notably, the flowerpot object comprises heterogeneous materials (with distinct
properties for leaves, stems, and the pot itself), and the table object consists of legs and tabletop,
while other teapot is modeled as homogeneous materials.

ages to implicitly represent the volumetric geometry of the object, followed by sampling both surface
and internal particles within the SDF-constrained domain to ensure spatial coherence; Meanwhile,
surface particles learn Gaussian attributes using isotropic kernels. Subsequently, we proposed an
enhanced collision-MPM, which is used to perform extreme collisions between multiple objects
with dynamic fracture. It can effectively alleviate the non-physical adhesion phenomenon caused
by MLS-MPM. Then, all fracture particles are tracked through a hardening-aware tracking criterion
defined by (Wolper et al., 2019). Finally, based on the tracking fracture particles, we can efffciently
regenerate their Gaussian attributes through the proposed fracture particles Gaussian optimization
strategy, enabling high-quality rendering, as shown in Figure 1.
In summary, our key contributions are:

• A unified physics-rendering framework that combines our enhanced Collision-MPM with
fracture-aware 3D Gaussian representations, enabling high-fidelity simulation and visual-
ization of extreme mechanical collisions across diverse materials.

• An improved Collision-MPM formulation that introduces momentum-conserving interface
forces derived from normalized mass distributions, effectively eliminating the non-physical
adhesion artifacts prevalent in conventional MPM simulations.

• A dynamic fracture tracking and rendering pipeline that identifies fracture surfaces through
hardening parameter and reconstructs Gaussian attributes via minimal-volume enclosing
ellipsoid (MVEE) optimization.

2 PRELIMINARY AND RELATED WORK

2.1 3D GAUSSIAN SPLATTING AND DYNAMIC SCENE RECONSTRUCTION

3D Gaussian Splatting (3DGS) is a fast neural rendering method that primarily represents volumetric
scenes using a collection of anisotropic 3D Gaussian kernels. Each Gaussian kernel is defined by a
set of differentiable parameters {xp, σp, Ap, cp}, where xp denotes the spatial position, σp represents
opacity, Ap is the covariance matrix, and cp is the view-dependent color function. The covariance
matrix Ap can be further decomposed into scale sp and rotation rp components, which control
the spatial distribution and orientation of the Gaussian kernel, respectively. The color function cp
achieves view-dependent characteristics through spherical harmonics, capturing complex lighting
and material effects. The rendering process involves projecting (splatting) the 3D Gaussian kernels
onto a 2D image plane, incorporating viewpoint transformation, opacity blending, and depth sorting.
The final color of the i-th pixel is computed using the following formula:

Ci =
∑
k∈I

σkck (di)

k−1∏
j=1

(1− σj) (1)
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Here, I stands for the set of Gaussian kernels, σk and σj represent the opacity of the k-th and j-th
Gaussian kernels, respectively. di means the viewing direction from the camera to the i-th pixel, and
ck(di) indicates the color of the Gaussian kernels in the viewing direction di. Since 3D Gaussian
explicitly represents the scene, its learning and rendering speeds are generally faster than those of
3D reconstruction methods based on NeRF. As a result, a wide range of applications based on 3D
Gaussian have emerged.
Dynamic 3D scene reconstruction has long been a challenging problem, aiming to reconstruct dy-
namic scenes from various representations such as videos and images. The introduction of Neural
Radiance Fields (NeRF) has significantly advanced this field, leading to a series of dynamic scene
reconstruction methods that build upon NeRF’s framework. These methods focus on addressing
challenges such as non-ideal input conditions, including sparse views and motion blur, to enhance
reconstruction quality. Notable works in this domain include (Pumarola et al., 2021), which handles
dynamic scenes by incorporating temporal information, and (Fang et al., 2022), which improves ef-
ficiency through time-aware neural voxels. More recently, (Song et al., 2023) proposed a streamable
dynamic scene representation that decomposes neural radiance fields for efficient reconstruction and
rendering.
Another approach to scene representation is based on 3D Gaussian Splats (3DGS), which explicitly
represents 3D scenes using a set of Gaussian kernels and achieves fast rendering through Gaussian
splatting. Due to its high efficiency and interpretability, several dynamic scene reconstruction meth-
ods based on 3DGS have been proposed, such as (Lin et al., 2024; Huang et al., 2024; Wu et al.,
2024; Yang et al., 2024; Sun et al., 2024; Zhang et al., 2024; Dahmani et al., 2024). Among these,
(Lin et al., 2024) incorporates DDDM (Deformable Dynamic Model) into the optimization pro-
cess of Gaussians, eliminating the need to reconstruct Gaussian for each frame and directly guiding
Gaussian deformation using DDDM. On the other hand, (Huang et al., 2024) learns control points
for Gaussian and uses a small number of control points to govern the motion of the entire Gaussian
set, achieving efficient reconstruction of dynamic motion processes. (Dahmani et al., 2024) divides
the dynamic sequence into different windows based on the motion number, and train dynamic Gaus-
sian models for different windows, together with different canonical spaces and deformation fields.

2.2 MATERIAL POINT METHOD AND PHYSICS-BASED GAUSSIAN APPROACHES

The Material Point Method (MPM) is a numerical approach based on a hybrid Eulerian-Lagrangian
framework, used to solve governing equations in continuum mechanics and facilitate bidirectional
information transfer between particles and grids. Let p ∈ {Pa, Pb} denote the classification criterion
for distinguishing particle subsets. Following established methodologies, the process adheres to the
MLS-MPM framework (Hu et al., 2018), which is divided into the following three stages:

• Particle-to-Grid (P2G) Stage: The particle mass mp and velocity vp are interpolated to
neighboring grid nodes through a weighted projection scheme governed by basis functions:

mn
i =

∑
p

wnipmp, (2)

mn
i v

n
i =

∑
p

wnipmp

(
vnp + Cnp (xi − xnp )

)
, (3)

where wnip represents the interpolation kernel (e.g., quadratic B-spline) evaluated at particle
position xp for grid node i, P is the set of active particles, andmi and vi are the aggregated
mass and velocity at grid node i, respectively.

• Grid Update Stage: Grid velocities are advanced by solving the discrete momentum con-
servation equations through an explicit forward Euler integration scheme:

mn
i (v

n+1
i − vni ) = −∆t · f∗i +∆t · fexti , (4)

f∗i =
∑
p

4

∆x2
Vpw

n
ipσ

n
p (x

n
i − xnp ), (5)

where ∆x denotes the grid size, f∗i is the grid force calculated from the particle volume
Vp, Cauchy stress σnp , and positions xni and xnp , and fexti is the external force (typically
gravity).
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• Grid-to-Particle (G2P) Stage: The updated grid velocities vn+1
i are mapped back to La-

grangian particles to update their kinematic states for the next time step n+1. This transfer
is achieved through interpolation:

vn+1
p =

∑
i

wnipv
n+1
i , (6)

Cn+1
p =

4

∆x2

∑
i

wnipv
n+1
i (xni − xnp )

T . (7)

After obtaining the updated particle velocities, the particle positions are advanced through an explicit
time integration scheme:

xn+1
p = xnp +∆tvn+1

p . (8)

The Material Point Method (MPM) has emerged as a powerful tool for simulating complex physical
phenomena, combining the advantages of both Lagrangian and Eulerian approaches. Recent ad-
vancements in MPM simulations have significantly expanded its applications and performance opti-
mization. (Hu et al., 2018) introduces a variant of the MPM based on Moving Least Squares (MLS),
referred to as MLS-MPM, for simulating complex physical phenomena involving displacement dis-
continuities and bidirectional rigid-body coupling. By incorporating the Compatible Particle-In-Cell
(CPIC) algorithm, this method enables the handling of discontinuities in material points, infinitely
thin boundaries, and bidirectional coupling with rigid bodies. As a result, it is capable of simulating
material cutting, dynamic open boundaries, and interactions between rigid and deformable bodies.
(Wolper et al., 2019) integrates a phase field into the MPM to develop a crack-tracking approach
known as PFF-MPM. Additionally, it proposes an incompressible plastic flow rule that maintains
constant volume during plastic stress projection. Meanwhile, (Fang et al., 2020) proposed a novel
framework for fluid-solid coupling using IQ-MPM. This method combines a ”ghost matrix” operator
splitting scheme with weak-form governing equations to achieve stable and efficient coupling un-
der the CFL time step constraint. It supports discrete consistency with hybrid Lagrangian-Eulerian
solvers and uses an interface quadrature (IQ) technique to handle free-slip boundaries, avoiding the
”stickiness” issues in traditional MPM implementations. Moreover, the effectiveness of employing
GPUs to enhance the computational efficiency of MPM implementations has been well-documented
in several studies, such as (Gao et al., 2018; Hu et al., 2019; Qiu et al., 2023). However, these meth-
ods all require post-processing of the simulation results to achieve high-quality rendering effects.
The integration of Gaussian-based techniques into physical simulations leverages the rendering ef-
ficiency of Gaussian, thereby eliminating the need for post-processing with dedicated rendering
engines such as Houdini after the completion of the physical simulation, and directly yielding re-
sults with Gaussian splatting. Specifically, (Xie et al., 2024) incorporates Gaussian kernels into
the dynamic simulation process of MPM, enabling continuum mechanics simulations based on 3D
Gaussian kernels and achieving real-time rendering in simple scene simulations. (Zhang et al., 2025)
uses diffusion on images to obtain prior motion videos of objects, simulates the motion process based
on MPM, leverages the differentiability of MPM to learn the material field in specified regions, and
completes the forward simulation process to generate dynamic videos. (Cai et al., 2024) aims to
guide the learning of physical properties of objects using 3D Gaussian splats (3DGS). It first recon-
structs the static Gaussians in the initial state and learns the deformation models of Gaussians based
on dynamic inputs, optimizing the initial velocities and physical parameters (Young’s modulus and
Poisson’s ratio) of the static Gaussians through differentiable MPM. (Tan et al., 2024) generates
high-quality, physics-based videos from a single image. However, none of these methods address
the extreme cases where objects undergo fragmentation, which is the primary focus of this work.

3 METHOD

In this section, we introduce Fracture-GS, a unified framework for simulating and visualizing dy-
namic fracture phenomena in extreme mechanical collisions using multi-view image inputs. As
illustrated in Figure 2, we first reconstruct the geometry of colliding objects using multi-view im-
ages combined with existing implicit 3D reconstruction algorithms (Xiao et al., 2024), followed by
sampling both surface and internal particles within the SDF-constrained domain to ensure spatial
coherence; Subsequently, surface particles Gaussian kernels are trained using 3D Gaussian Splat-
ting from input images. Then, we proposed an enhanced collision-MPM, which is used to perform
extreme collisions between multiple objects with dynamic fracture. It can effectively alleviate the
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Figure 2: Pipeline. The object is implicitly reconstructed from multi-view images, followed by sam-
pling both surface and internal particles. Surface particles learn Gaussian attributes using isotropic
kernels. Next, the sampled particles undergo extreme mechanical collision simulation with dy-
namic fracture using our enhanced Collision-MPM. Finally, fracture particles are tracked and their
Gaussian attributes are optimized through our proposed Fracture Particle Gaussian Optimization
strategy, enabling high-quality rendering of the simulation results. For Collision-MPM, the key
parameters are highlighted in red. The yield surface determines whether a particle enters the plastic
region, triggering a return mapping procedure to project stress back to the yield surface and up-
date the particle’s deformation gradient. Parameters in the blue bottom plate are computed in the
Lagrangian coordinate system, while those in the gray bottom plate are computed in the Eulerian
coordinate system.

non-physical adhesion phenomenon caused by MLS-MPM. Finally, to enhance the visual realism
of the mechanical simulation, all fracture particles are tracked through a hardening-aware tracking
criterion defined by (Wolper et al., 2019), based on the tracking fracture particles (as shown in Fig-
ure 3 (right)), we can efffciently regenerate their Gaussian attributes through the proposed fracture
particles Gaussian optimization strategy, enabling high-quality rendering.
The all particle attributes of the colliding objects Pa : {ma, Va, Ca, Fa, va, xa, θa} and Pb :
{mb, Vb, Cb, Fb, vb, xb, θb} include mass (m), volume (V ), deformation gradient (F ), velocity gra-
dient (C), velocity (v), position (x), and elastoplastic parameters (θ), where θ comprises Young’s
modulus (E), Poisson’s ratio (γ), hardening tracking parameters (α), cohesion coefficient (β), and
hardening factor (ξ).

Figure 3: (left) Illustration of the mass distributions of particles Pa and Pb at grid node Gi. (right)
Tracking fracture particles through hardening factor α.
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3.1 COLLISION-MPM

Although the Material Point Method (MPM) itself can solve the problem of collisions between
objects, its performance has limitations. For instance, in fluid-solid coupling simulations, fluid
particles may unnaturally adhere to solid surfaces—a phenomenon similarly observed in multi-body
fracture simulations, where fragmented solids exhibit unphysical adhesion to neighboring objects.
To mitigate these artifacts, we propose a Collision-MPM framework, integrating the collision force
(Yan et al., 2018) into the MPM framework. This method, originally designed to prevent fluid-solid
interpenetration, ensures collision realism across material interfaces.
In our Collision-MPM framework, the particle information of two objects is independently trans-
ferred to the grid. First, after completing the P2G and Grid Update processes, the mass distributions
n̂ia and n̂ib of object particles Pa and Pb on grid node Gi are calculated. Simultaneously, the grid
velocities vn+1

i are replaced with vtempi . Subsequently, the interface direction tendencies nia and
nib at grid node Gi for object particles Pa and Pb are determined:

n̂ia =

∑
pa
ma∇ωia(xi − xna)∥∥∥∑pa
ma∇ωia(xi − xna)

∥∥∥ (9)

n̂ib =

∑
pb
mb∇ωib(xi − xnb )∥∥∥∑pb
mb∇ωib(xi − xnb )

∥∥∥ (10)

As shown in Figure 3 (left), n̂ia and n̂ib illustrate the mass distributions of particles Pa and Pb on
grid node Gi. We utilize these distributions to compute the interface direction tendency, which can
also be interpreted as the tendency of the contact surface’s normal direction:

nia = −nib =
n̂ia − n̂ib

∥n̂ia − n̂ib∥
(11)

The computation of collision forces is conditionally activated based on relative velocity analysis at
material interfaces. Specifically, collision forces are generated at grid node Gi only if the inequality
(vtempia − vtempib ) · nia > 0 is satisfied, where vtempia and vtempib denote the velocities of Pa and Pb
particles on grid node Gi after the grid update. The collision forces are derived from the momentum
conservation principle during the collision process:

f ci =
ptempia mn

ia − ptempib mn
ib

(m
n
ia +mn

ib)∆t
(12)

f cia = −f cib = µ(f ci · nib)nib (13)

Here, f ci represents the collision force on grid node i, mn
ia and mn

ib denote the mass contributions of
Pa and Pb particles on grid node Gi, respectively. ptempia = mn

iav
temp
ia and ptempib = mn

ibv
temp
ib rep-

resent the momenta of Pa and Pb particles on grid node Gi, respectively. µ is a constant controlling
the magnitude of the collision force. fia, collision and fib, collision denote the collision forces acting
on Pa and Pb particles on grid node Gi. After computing the collision forces, they are integrated
into the grid velocity update:

vn+1
ia = vtempia +

f cia
mn
ia

∆t, vn+1
ib = vtempib +

f cib
mn
ib

∆t (14)

where vn+1
ia and vn+1

ib represent the updated velocities of Pa and Pb particles at grid node Gi,
respectively.

3.2 FRACTURE PARTICLES GAUSSIAN OPTIMIZATION (FPGO).

3.2.1 CONTINUUM MECHANICS AND CONSTITUTIVE MODEL.

To simulate the dynamic behavior of an elastic-plastic object, it is essential to solve the conservation
equations for momentum and mass:

ρ
Dv

Dt
= ∇ · σ + f,

Dρ

Dt
+ ρ∇ · v = 0 (15)
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Here, ρ denotes density, v represents the velocity field, and f is an external force. The Cauchy
stress tensor, denoted by σ, is given by: σ = 1

det(F )
∂ψ(FE)
∂F FE

T

, where ψ(F ) is the strain energy
density function (or constitutive model), which describes the relationship between stress and strain
in a material. The total deformation gradient, F , is decomposed into elastic and plastic components:
F = FEFP , enabling the simulation of plastic deformation. In this work, we use the NACC model
in (Wolper et al., 2019). It extends CCC (Coherent Cam Clay) model with non-associated flow
rules to better simulate plastic deformation while maintaining volume during plastic projection, and
it introduced four plastic parameters α, β, ξ,M to control the simulation effect of the plastic model.

Figure 4: Illustration of Fracture Particles Gaussian Optimization

3.2.2 FRACTURE TRACKING AND RENDERING

The enhanced Collision-MPM framework successfully simulates extreme mechanical collisions
with dynamic fracture phenomena. While one might intuitively consider directly rendering using
the initially learned Gaussian attributes of each surface particles, this naive approach leads to signif-
icant non-physical artifacts at fracture interfaces (highlighted by red boxes in Figure 5).
The underlying mechanism of these artifacts can be explained as follows: As shown in Figure 4, con-
sider three Gaussian particles {gi, gm, gn} in initial configuration. When fracture occurs at particle
gi, causing displacement relative to gm (Figure 4(b)), the increased interparticle distance reduces or
eliminates the Gaussian overlap region between gi and gm, thereby disrupting the continuity of the
rendering field and generating visual artifacts (As demonstrated in Figure 4(a) and (b)).
To address this challenge, we propose a novel fracture-aware Gaussian attribute optimization strat-
egy consisting of four key components. First, leveraging the hardening parameter α from the NACC
constitutive model (Wolper et al., 2019), we dynamically identify fractured particles at each timestep
(visualized as green particles in Figure 4). Taking particle gi as an example (Figure 4), our tracking
begins when its hardening parameter exceeds the hardening parameter threshold α.
For each identified fractured particle gi, we perform neighborhood analysis within a radius dc to
locate adjacent intact particles {gm, gn}. This adaptive search range ensures proper coverage of
potential interaction zones while maintaining computational efficiency.
The core optimization involves Gaussian cloning and attribute reconstruction. We first compute the
minimal-volume enclosing ellipsoid (MVEE) for the overlap regions between gi and its neighbors
gm, gn, generating two new Gaussian particles gim and gin to replace the original gi. The attribute
assignment follows two principles: (1) optical properties including opacity α and color c are directly
inherited from gi to maintain visual consistency; (2) spatial parameters are recomputed through:

{µnew,Σnew} = MVEE(Ωcross(gi, gj)) (16)

where Ωcross denotes the original overlap region (Implementation details are provided in Appendix
A.4.).
During final rendering, we implement an occlusion-aware sampling scheme: if a pixel’s rendering
path contains multiple optimized particles (gim, gin), only the nearest particle contributes to shading.
This prevents overcounting while preserving physical correctness. As demonstrated in Fig 1, our
approach generates physically plausible transitional particles that maintain both visual continuity
across fracture surfaces and mechanical accuracy in collision regions.
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4 EXPERIMENTS

4.1 EXPERIMENTAL DATA AND PHYSICAL PARAMETER SETTINGS

To comprehensively validate the effectiveness of our experiments, we selected three objects for col-
lision (More experimental results are provided in the supplementary material): Ficus, Teapot and
Table. Among these, the Ficus plant and the table are heterogeneous material objects. Specifically,
the Ficus plant consists of leaves, branches, and a ceramic pot, each made of different materials,
while the table has a tabletop and legs constructed from distinct materials. The teapot is homoge-
neous in material composition. The physical parameters for all objects are detailed in Appendix
A.1. For specific implementation details, please refer to A.2. Additional experimental results are
provided in A.5 and Appendix A.6.

Method PSNR ↑ LPIPS ↓ FID ↓ FSF ↑

PhysGaussian 17.2 0.43 120.92 1.5
GIC 16.8 0.45 129.33 1.2

Ours (w/o FPGO) 17.0 0.45 123.63 1.5
Ours (w/o C-MPM) 20.6 0.35 93.05 3.1
Ours 21.1 0.29 90.75 3.5

Figure 5: Integrated comparison showing both qualitative visualizations (left) and quantitative met-
rics (right), with our method achieving the best results.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our method with two state-of-the-art Gaussian splatting based simulation frameworks.
First, PhysGaussian (Xie et al., 2024) is a physics-integrated Gaussian framework that simulates
and renders mechanical behaviors under external forces from multi-view inputs. Second, GIC (Cai
et al., 2024), originally designed for material property estimation from videos, is adapted for compar-
ison by utilizing only its forward simulation component with given material parameters, analogous
to PhysGaussian. All methods employ identical initialization conditions to ensure fair comparison:
the same static 3D Gaussian reconstruction pipeline following GIC’s methodology; the same NACC
constitutive model was adopted for physical simulation, but the above two comparison methods did
not include FPGO and used the MLS-MPM; and identical initial conditions and material parameters.
We use PSNR (Hore & Ziou, 2010), LPIPS (Zhang et al., 2018) , and FID (Heusel et al., 2017) as
primary metrics to evaluate reconstruction quality. Due to the absence of ground truth for dynamic
fracture sequences, we employ a self-referencing evaluation scheme using established image quality
metrics. The specific implementation details of our self-referencing metric calculation are provided
in Appendix A.3.

User Study. We also conducted a human evaluation to assess simulation fidelity, following meth-
ods from prior work (Liu et al., 2025; Wei et al., 2024). Ten participants with varying experience
in simulation and vision rated to Fracture Simulation Fidelity (FSF), checking if it was realistic
and as expected. Rendered videos of simulations were presented in random order, with participants
rating each on a five-point scale (1 = poor, 5 = excellent). Mean scores appear in Figure 5 (right).

Results. Quantitative and qualitative results in Figure 1 and 5. Our method significantly outper-
forms other methods in GS-based simulation. Competing methods often produce artifacts due to
inadequate or neglected handling of fracture surfaces and collision adhesion, which degrades simu-
lation quality. Although our approach excels in simulation, the object’s FID is high due to reliance
on relies on training view interpolation for Gaussian restoration and cannot perform Gaussian re-
construction on hidden areas. Future work will explore 3D AI-based texture generative inpainting
to improve this.

Effect of Collision-MPM (C-MPM) and Fracture Particles Gaussian Optimization (FPGO).
To validate C-MPM effectiveness, we conduct ablation studies comparing against the conven-
tional MLS-MPM approach. As demonstrated in Figure 6, the right column reveals significant
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Figure 6: Collision-MPM effectively resolves the non-physical adhesion artifacts in multi-body
collisions. As demonstrated in the red box regions, wood fragments from the fractured table exhibit
natural separation behavior rather than adhering unnaturally to the teapot surface.

non-physical adhesion artifacts (highlighted in red boxes) in MLS-MPM simulations, whereas our
method successfully eliminates these unrealistic phenomena through momentum-conserving inter-
face forces derived from normalized mass distributions. Regarding the FPGO module, quantitative
experiments in Figure 5 demonstrate its critical advantages. Both baseline methods - PhyGaussian
and GIC - directly render using initially learned Gaussian attributes, resulting in various visual ar-
tifacts at fracture interfaces. In contrast, our dynamic attribute optimization strategy significantly
enhances visual realism by reconstructing Gaussian properties through MVEE-based interpolation.

Figure 7: Momentum conservation during a collision between two objects. The total momentum
(black curve) remains constant throughout the simulation, demonstrating strict adherence to the
conservation law, while the individual momenta of the objects exchange during the impact.

Momentum Conservation Validation. To rigorously validate that our simulation framework
strictly adheres to the law of momentum conservation, we designed a controlled experiment. This
experiment involves two objects—a teapot and a bowl—propelled towards each other with initial
velocities in a environment free from external influences such as gravity and friction. The figure 7
tracks the system’s evolution over time (t = 0 to t = 20). It visually demonstrates that while indi-
vidual momenta change during the collision interval (t ≈ 5 to t ≈ 15), the “Total Momentum” curve
remains constant in both magnitude and direction throughout the entire sequence. This constant to-
tal momentum can be clearly demonstrated from the figure that our simulation method accurately
maintains the total linear momentum of the system.

Energy Stability Analysis. To quantitatively validate the concern regarding non-physical energy
growth and numerical instability, we conduct a thorough energy evolution analysis throughout a
representative simulation involving the collision and fracture of a teapot on a table surface. As
illustrated in Figure 8, we track the kinetic, elastic, and gravitational potential energy components
for both the teapot and the table individually, as well as for the combined system over the first 50
frames. The results demonstrate that the total energy of the system remains strictly bounded and does
not exhibit any anomalous increase. Energy is transferred in a physically consistent manner: kinetic
energy converts into elastic deformation energy upon impact, and part of it is dissipated through
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fracture processes, while gravitational potential energy varies accordingly with object height. The
smooth transitions and the absence of energy blow-up confirm that our method inherently prevents
non-physical energy accumulation. This energy behavior serves as an effective unit test, validating
that our simulation not only captures complex dynamic and fracture phenomena but also maintains
numerical stability under severe contact and deformation conditions.

Figure 8: Energy evolution and qualitative visualization during the teapot-table collision and fracture
simulation. The top and middle rows plot the kinetic, elastic, and gravitational potential energy com-
ponents for the table surface, the teapot, and the combined system over the first 50 frames, showing
bounded total energy without non-physical growth. The bottom row provides corresponding qual-
itative visualizations at key frames (t=0,10,20,30,40,50), depicting the physical progression of the
collision and fracture process that correlates with the energy transitions observed in the graphs.

5 CONCLUSION

This paper presents a unified framework for simulating and rendering extreme mechanical collisions
with dynamic fracture effects. Our key contributions is the integration of two novel components: (1)
an enhanced Collision-MPM formulation that introduces momentum-conserving interface forces to
eliminate adhesion artifacts in multi-body collisions, and (2) a fracture-aware Gaussian optimization
strategy that maintains visual fidelity during fracture propagation by dynamically reconstructing par-
ticle attributes. The framework demonstrates robust performance across various scenarios, including
high-velocity impacts and heterogeneous material fractures. Qualitative and quantitative evaluations
show significant improvements over existing methods in both physical accuracy and rendering qual-
ity.
Current limitations include computational demands that prevent real-time performance for complex
scenes, and the need for manual parameter setting. Future directions will focus on two key as-
pects: (1) GPU optimization and adaptive time-stepping for faster computation, (2) development
of learning-based approaches for automatic parameter estimation. These improvements will further
enhance the framework’s practicality for industrial applications in virtual prototyping and visual
effects production.
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language for high-performance computation on spatially sparse data structures. ACM Transac-
tions on Graphics (TOG), 38(6):1–16, 2019.

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-
gs: Sparse-controlled gaussian splatting for editable dynamic scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4220–4230, 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. Gaussian-flow: 4d reconstruction with dy-
namic 3d gaussian particle. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 21136–21145, 2024.

Shaowei Liu, Zhongzheng Ren, Saurabh Gupta, and Shenlong Wang. Physgen: Rigid-body physics-
grounded image-to-video generation, 2025.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10318–10327, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuxing Qiu, Samuel Temple Reeve, Minchen Li, Yin Yang, Stuart Ryan Slattery, and Chenfanfu
Jiang. A sparse distributed gigascale resolution material point method. ACM Transactions on
Graphics, 42(2):1–21, 2023.

Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele Chen, Junsong Yuan, Yi Xu, and An-
dreas Geiger. Nerfplayer: A streamable dynamic scene representation with decomposed neural
radiance fields. IEEE Transactions on Visualization and Computer Graphics, 29(5):2732–2742,
2023.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. A material
point method for snow simulation. ACM Transactions on Graphics (TOG), 32(4):1–10, 2013.

Jiakai Sun, Han Jiao, Guangyuan Li, Zhanjie Zhang, Lei Zhao, and Wei Xing. 3dgstream: On-
the-fly training of 3d gaussians for efficient streaming of photo-realistic free-viewpoint videos.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
20675–20685, 2024.

Xiyang Tan, Ying Jiang, Xuan Li, Zeshun Zong, Tianyi Xie, Yin Yang, and Chenfanfu Jiang. Phys-
motion: Physics-grounded dynamics from a single image. arXiv preprint arXiv:2411.17189,
2024.

Yujie Wei, Shiwei Zhang, Zhiwu Qing, Hangjie Yuan, Zhiheng Liu, Yu Liu, Yingya Zhang, Jingren
Zhou, and Hongming Shan. Dreamvideo: Composing your dream videos with customized sub-
ject and motion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6537–6549, 2024.

Joshuah Wolper, Yu Fang, Minchen Li, Jiecong Lu, Ming Gao, and Chenfanfu Jiang. Cd-mpm:
continuum damage material point methods for dynamic fracture animation. ACM Transactions
on Graphics (TOG), 38(4):1–15, 2019.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20310–20320,
2024.

Yuting Xiao, Jingwei Xu, Zehao Yu, and Shenghua Gao. Debsdf: Delving into the details and
bias of neural indoor scene reconstruction. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
Physgaussian: Physics-integrated 3d gaussians for generative dynamics. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4389–4398, 2024.

Xiao Yan, C-F Li, X-S Chen, and S-M Hu. Mpm simulation of interacting fluids and solids. In
Computer Graphics Forum, volume 37, pp. 183–193. Wiley Online Library, 2018.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable
3d gaussians for high-fidelity monocular dynamic scene reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20331–20341, 2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Shuai Zhang, Huangxuan Zhao, Zhenghong Zhou, Guanjun Wu, Chuansheng Zheng, Xinggang
Wang, and Wenyu Liu. Togs: Gaussian splatting with temporal opacity offset for real-time 4d dsa
rendering. arXiv preprint arXiv:2403.19586, 2024.

Tianyuan Zhang, Hong-Xing Yu, Rundi Wu, Brandon Y Feng, Changxi Zheng, Noah Snavely, Jiajun
Wu, and William T Freeman. Physdreamer: Physics-based interaction with 3d objects via video
generation. In European Conference on Computer Vision, pp. 388–406. Springer, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 MATERIAL PARAMETERS

Table 1 summarizes the material parameters employed in our collision simulations, including
Young’s modulus (E), Poisson’s ratio (ν), density, and non-associated flow rule parameters
(α, β, ξ,M ). These physically-based values were assigned to each object component to validate
our framework’s capability in handling diverse material properties. The selected parameters reflect
realistic material contrasts, enabling quantitative analysis of how mechanical properties—such as
the stiffness variation between flexible leaves and rigid branches—influence fracture propagation
patterns across all experiments.

Table 1: Material Parameters

Scene E (MPa) ν Density NACC (α, β, ξ,M )

Bowl 5×104 0.46 2 0.98, 0.5, 1, 2.36
Ficus leaf 8×104 0.39 0.6 0.94, 2, 3, 2.36
Ficus branch 1×106 0.39 5 0.94, 2, 3, 2.36
Ficus pot 2×104 0.39 2 0.98, 0.5, 2, 2.36
Teapot 5×105 0.46 5 0.98, 0.5, 1, 2.36
Table top 1.5×104 0.39 1 0.99, 0.5, 1, 2.36
Table leg 1×108 0.39 1000 0.94, 2, 3, 2.36

A.2 EXPERIMENTS DETAIL

Here, we provide additional details regarding the experiments. These include collisions between
single object and rigid surface, collisions among multiple objects, as well as experiments on the
interactions between individual objects and rigid surface under varying physical parameters. We
also present an ablation study on the impact of fracture particle tracking.
Input Resolution & Sampling: The input resolution starts at 1024 × 1024. For each collision
object, we sample 200,000 surface points and 100,000 interior points.
Simulation Setup: Building upon Warp, the simulation is executed on an 18-core Intel Xeon Gold
5220 CPU and an NVIDIA GeForce RTX 3090 GPU, achieving 100-frame sequences for each
collisions scene.
Implementation Details. Following established practice in GIC (Cai et al., 2024), our simulation
pipeline begins with isotropic Gaussian reconstruction for visual surface representation. For phys-
ical discretization, we employ an SDF-based voxelization strategy: after constructing a volumetric
grid and identifying interior voxels via SDF filtering, we perform uniform random sampling inside
each interior voxel using a controllable density parameterNv (samples per voxel). This preprocess-
ing step decouples visual quality from simulation discretization while ensuring physically plausible
material sampling. To evaluate the influence of the particle sampling density Nvon the simulation
results, we set multiple sets of internal sampling parameters (Nv = 0, 5, 10, 15, 20, 50, 100, 200),
and the visualization results are shown in Figure 12.

A.3 METRIC COMPUTATION FOR FRACTURE ASSESSMENT

To quantitatively evaluate the visual plausibility of fracture propagation in the absence of ground
truth dynamic sequences, we designed a self-referencing assessment protocol using three estab-
lished image quality metrics: PSNR, LPIPS, and FID. Our evaluation strategy focuses on measuring
how faithfully each method maintains visual continuity during the fracture process. For each frac-
ture event, we identify the last frame before fracture initiation (detected via the hardening parameter
α) as the reference frame Iref, representing the intact object’s appearance. We then analyze the sub-
sequent 5 frames where fracture propagation becomes fully visible, ensuring this window captures
critical fracture dynamics while maintaining visual comparability to the reference. The core princi-
ple underlying our metric design is that high-quality fracture rendering should appear as a coherent
extension of the original material. Accordingly, we compute PSNR to measure pixel-level con-
sistency with the pre-fracture state, LPIPS to assess perceptual similarity to the intact appearance,
and FID to evaluate distributional similarity to pre-fracture rendering. Methods that produce visual
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artifacts or unnatural fracture surfaces consequently exhibit large deviations from Iref, resulting in
degraded metric scores that reflect their reduced visual plausibility.
It should be noted, however, that this represents a pragmatic compromise in the absence of more
principled evaluation methodologies. We regard the development of dedicated metrics for physics-
based rendering as an important direction for future work.

A.4 MINIMAL-VOLUME ENCLOSING ELLIPSOID (MVEE)

A.4.1 PROBLEM DEFINITION

Given two spheres in 3D space with centers C1,C2 and radii r1, r2, we aim to compute the minimal-
volume enclosing ellipsoid (MVEE) of their intersection region.
Step 1: Intersection Conditions and Geometric Parameters

Intersection Criteria. The spheres intersect if:

|r1 − r2| < d < r1 + r2, where d = ∥C1 −C2∥

If d ≥ r1 + r2, the spheres are disjoint; if d ≤ |r1 − r2|, one sphere is entirely contained within the
other.

Key Geometric Properties. The intersection region is a lens-shaped volume bounded by two
spherical caps. Its properties include:

• Symmetry axis: The line connecting C1 and C2 (unit vector u = C2−C1

d ).
• Maximal width: Perpendicular to u, determined by the radius of the circle of intersection.

Step 2: Analytical Estimation of the Enclosing Ellipsoid
Ellipsoid Center. The center c of the MVEE is approximated as a weighted midpoint along the

symmetry axis:

c = C1 +

(
r1

r1 + r2

)
(C2 −C1)

This heuristic prioritizes the larger sphere’s influence.
Ellipsoid Axes. The ellipsoid has three principal axes:

1. Major axis (aligned with u):
a = r1 + r2 − d

2. Minor axes (perpendicular to u): Lengths b = c, given by the radius of the intersection
circle:

b = c =

√
r21 −

(
d2 + r21 − r22

2d

)2

Orientation Matrix. The ellipsoid’s rotation matrix R is constructed from the orthonormal basis:

R = [u v w], where v ⊥ u, w = u× v

A.5 COMPUTATIONAL EFFICIENCY

We analyze the computational overhead of our fracture tracking mechanism by comparing the per-
frame rendering time for three core scenarios in main paper, with and without this feature enabled.
As detailed in Table 2, the incorporation of fracture tracking introduces a moderate and consistent
computational cost, increasing rendering time by approximately 20-80% across the scenes. This
overhead is attributed to the additional steps of dynamically updating the Gaussian splatting model
to reflect new fracture surfaces and collisions in each frame.

Table 2: Per-frame Gaussian rendering time.

Scene w/o fracture tracking w/ fracture tracking

Ficus 49.19 ms 62.78 ms
Teapot 6.13 ms 10.87 ms
Teapot & Table 27.15 ms 29.85 ms

14
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Figure 9: Collisions with three distinct initial hardening factors.

A.6 ABLATION STUDIES

Effect of Fracture Particle Tracking and Gaussian Generation. During the fracture process,
some internal particles become exposed and visible. To achieve higher visual realism, we need to
quickly locate these particles and generate corresponding Gaussian visual attributes. Based on the
hardening tracking parameters (α), we can efficiently track relevant internal particles on the fracture
surface and rapidly generate their Gaussian visual attributes through interpolation with neighboring
external surface particles, enabling high-quality rendering. Additionally, a large number of isolated
particles may be generated during collisions. We utilize the fracture particle tracking mechanism
to exclude these fine particles from Gaussian rendering. This selective exclusion ensures that
only particles meeting specific material integrity criteria participate in the final rendering, thereby
maintaining the physical accuracy while improving computational efficiency.

Single-Object Analysis. To systematically evaluate our method’s sensitivity to material properties,
we conduct extensive collision experiments on individual objects with varying plasticity parameters,
as shown in Figure 9. Our results demonstrate that increasing the initial hardening factor systemati-
cally enhances object fragmentation and promotes more extensive crack propagation, validating our
method’s ability to capture material-dependent fracture behaviors.
Multi-Object Interactions. To assess performance in complex scenarios, we execute multiple chal-
lenging multi-body interaction experiments, as shown in Figure 10. These include bowl-teapot col-
lisions, bowl-table impacts, and ficus-table interactions. These experiments demonstrate our frame-
work’s robustness in handling heterogeneous material compositions and complex contact dynamics
across diverse object categories.
Real-world Data Validation. To further validate the generalizability of our approach, we extend our
evaluation to real-world data from the DTU dataset. As shown in Figure 11 and 12, our pipeline suc-
cessfully performs Gaussian reconstruction and initialization from real images, followed by physi-
cally plausible fracture simulation. These results demonstrate our method’s robustness when applied
to real-world captured data, confirming its practical applicability beyond synthetic environments.

Analysis of sampling point density. To assess the influence of particle sampling density on
simulation outcomes, we conducted a systematic sweep of internal sampling parameters (Nv =
0, 5, 10, 15, 20, 50, 100, 200). Using the highest density configuration (Nv = 200) as a convergence
reference, we evaluated trajectory deviations across all sampling conditions (Figure 12 and Table 3).
The results reveal a fundamental characteristic of MPM simulations: particle sampling density in-
trinsically influences the resolved mechanical response. As shown in our quantitative analysis and
qualitative visualizations (Figure 12 and Table 3), variations in sampling density naturally lead to
differences in fracture patterns and collision dynamics—this is an inherent property of particle-based
methods where discretization density affects solution convergence.
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Figure 10: Collisions between different objects: ”Bowl & Teapot”, ”Bowl & Table”, ”Ficus &
Table”.

Figure 11: Real-world data validation of our method: results for three different real-world objects.

Interior Point Density X-coordinate Error Y-coordinate Error Z-coordinate Error
0 0.1998 0.1479 0.0535
5 0.1936 0.1433 0.0474
10 0.1884 0.1360 0.0445
15 0.1772 0.1279 0.0435
20 0.1786 0.1224 0.0412
50 0.1713 0.1191 0.0337

100 0.0935 0.0749 0.0315

Table 3: Coordinate errors at different interior point densities.
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Figure 12: Visual comparison of simulation and rendering results under different internal sampling
densities (Nv) across three representative timesteps.
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