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Abstract

The accurate prediction of geometric state evolution in complex systems is critical
for advancing scientific domains such as quantum chemistry and material modeling.
Traditional experimental and computational methods face challenges in terms of
environmental constraints and computational demands, while current deep learning
approaches still fall short in terms of precision and generality. In this work, we in-
troduce the Geometric Diffusion Bridge (GDB), a novel generative modeling frame-
work that accurately bridges initial and target geometric states. GDB leverages a
probabilistic approach to evolve geometric state distributions, employing an equiv-
ariant diffusion bridge derived by a modified version of Doob’s h-transform for con-
necting geometric states. This tailored diffusion process is anchored by initial and
target geometric states as fixed endpoints and governed by equivariant transition ker-
nels. Moreover, trajectory data can be seamlessly leveraged in our GDB framework
by using a chain of equivariant diffusion bridges, providing a more detailed and
accurate characterization of evolution dynamics. Theoretically, we conduct a thor-
ough examination to confirm our framework’s ability to preserve joint distributions
of geometric states and capability to completely model the underlying dynamics
inducing trajectory distributions with negligible error. Experimental evaluations
across various real-world scenarios show that GDB surpasses existing state-of-the-
art approaches, opening up a new pathway for accurately bridging geometric states
and tackling crucial scientific challenges with improved accuracy and applicability.

1 Introduction

Predicting the evolution of the geometric state of a system is essential across various scientific
domains [46, 88, 55, 17, 20, 101], offering valuable insights into difficult tasks such as drug discov-
ery [25, 29], reaction modeling [9, 24], and catalyst analysis [13, 105]. Despite its critical importance,
accurately predicting future geometric states of interest is challenging. Experimental approaches often
face obstacles due to strict environmental requirements and physical limits of instruments [102, 3, 69].
Computational approaches seek to solve the problem by simulating the dynamics based on underlying
equations [81, 88]. Though providing greater flexibility, such calculations are typically driven by
first-principle methods or empirical laws, either requiring extensive computational costs [68] or
sacrificing accuracy [40].
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In recent years, deep learning has emerged as a pivotal tool in scientific discovery for many fields [43,
23, 69, 107], offering new avenues for tackling this problem. One line of approach aims to train models
to predict target geometric states (e.g., equilibrium states) from initial states directly and develop neu-
ral network architectures that respect inherent symmetries of geometric states, such as the equivariance
of rotation and translation [104, 31, 8, 87, 89, 103]. However, this paradigm requires encoding the iter-
ative evolution into a single-step prediction model, which lacks the ability to fully capture the system’s
underlying dynamics and potentially leading to reduced accuracy. Another line of research trains
machine learning force fields (MLFFs) to simulate the trajectory of geometric states over time [32, 34,
6, 70, 5, 58], showing a better efficiency-accuracy balance [15, 13, 105, 84]. Nevertheless, MLFFs are
typically trained to predict intermediate labels, such as the force of the (local) current state. During
inference, states are iteratively updated step by step. Since small local errors can accumulate, reliable
predictions over long trajectories highly depend on the quality of intermediate labels, which cannot
be guaranteed [7, 106, 30]. Therefore, an ideal solution that can precisely bridge initial and target
geometric states and effectively leverage trajectory data (if available) as guidance is in great demand.

In this work, we introduce Geometric Diffusion Bridge (GDB), a general framework for bridging
geometric states through generative modeling. From a probabilistic perspective, predicting target
geometric states from initial states requires modeling the joint state distribution across different
time steps. The diffusion models [37, 99] are standard choices to achieve this goal. However, these
methods ideally generate data by denoising samples drawn from a Gaussian prior distribution, which
makes it challenging to bridge pre-given geometric states or leverage trajectories in a unified manner.
To address the issue, we establish a novel equivariant diffusion bridge by developing a modified
version of Doob’s h-transform [82, 81, 16]. The proposed stochastic differential equation (SDE) is
anchored by initial and target geometric states to simultaneously model the joint state distribution and
is governed by equivariant transition kernels to satisfy symmetry constraints. Intriguingly, we further
demonstrate that this framework can seamlessly leverage trajectory data to improve prediction. With
available trajectory data, we can construct chains of equivariant diffusion bridges, each modeling
one segment in the trajectory. The segments are interconnected by properly setting the boundary
conditions, allowing complete modeling of trajectory data. For model training, we derive a scalable
and simulation-free matching objective similar to [59, 61, 77], which requires no computational
overhead when trajectory data is leveraged.

Overall, our GDB framework offers a unified solution that precisely bridges geometric states by
modeling the joint state distribution and comprehensively leverages available trajectories as fine-
grained depiction of dynamics for enhanced performance. Mathematically, we prove that the joint
distribution of geometric states across different time steps can be completely preserved by our (chains
of) equivariant diffusion bridge technique, confirming its expressiveness in bridging geometric
states and underscoring the necessity of design choices in our framework. Furthermore, under mild
and practical assumptions, we prove that our framework can approximate the underlying dynamics
governing the evolution of geometric state trajectories with negligible error in convergence, remarking
on the completeness and usefulness of our framework in different scenarios. These advantages show
the superiority of our framework over existing approaches.

Practically, we provide a comprehensive guidance for implementing our GDB framework in real-
world applications. To verify its effectiveness and generality, we conduct extensive experiments
covering diverse data modalities (simple molecules & adsorbate-catalyst complex), scales (small,
medium and large scales) and scenarios (with & without trajectory guidance). Numerical results
show that our GDB framework consistently outperforms existing state-of-the-art machine learning
approaches by a large margin. In particular, our method even surpasses strong MLFF baselines that
are trained on 10× more data in the challenging structure relaxation task of OC22 [105], and trajectory
guidance can further enhance our performance. The significantly superior performance demonstrates
the high capacity of our framework to capture the complex evolution dynamics of geometric states
and determine valuable and crucial geometric states of interest in critical real-world challenges.

2 Background

2.1 Problem Definition

Our task of interest is to capture the evolution of geometric states, i.e., predicting future states
from initial states. Formally, let S denote a system consisting of a set of objects located in the
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three-dimensional Euclidean space. We use H ∈ Rn×d to denote the objects with features, where n
is the number of objects, and d is the feature dimension. For object i, let ri ∈ R3 denote its Cartesian
coordinate. We define the system as S = (H, R), where R = {r1, ..., rn}. This data structure
ubiquitously corresponds to various real-world systems such as molecules and proteins [17, 20, 101].
In practice, the geometric state is governed by physical laws and evolves over time, and we denote
the geometric state at a given time t as Rt = {rt1, ..., rtn}. Given a system St0 = (H, Rt0) at time
t0, our goal is to predict St1 = (H, Rt1) at a future time t1. As an example, in a molecular system,
Rt1 can be the equilibrium state of interest evolved from the initial state Rt0 .

In this problem, inherent symmetries in geometric states should be considered. For example, a
rotation that is applied to the coordinate system at time t0 should also be applied to subsequent time
steps. These symmetries are related to the concept of equivariance in group theory [19, 18, 91].
Formally, let ϕ : X → Y denote a function mapping between two spaces. Given a group G, let
ρX and ρY denote its group representations, which describe how the group elements act on these
spaces. A function ϕ : X → Y is said to be equivariant if it satisfies the following condition:
ρY(g)[ϕ(x)] = ϕ

(
ρX (g)[x]

)
,∀g ∈ G, x ∈ X . When ρY = IY (identity transformation), it is also

known as invariance. SE(3) group, which pertains to translations (T(3)) and rotations (SO(3)) in 3D
Euclidean space, is one of the most widely used groups and is employed in our framework.

2.2 Diffusion Models

Diffusion models [95, 37, 99] have emerged as the state-of-the-art generative modeling approaches
across various domains [83, 85, 47, 115, 113, 117]. The main idea of this method is to construct
a diffusion process that maps data to noise, and train models to reverse such process by using a
tractable objective.

Formally, to model the data distribution qdata(X), where X ∈ Rd, we construct a diffusion process
(Xt)t∈[0,T ], which is represented as a sequence of random variables indexed by time steps. We
set X0 ∼ qdata(X) and XT ∼ pprior(X), where pprior(X) has a tractable form to generate samples
efficiently, e.g. standard Gaussian distribution. Mathematically, we model (Xt)t∈[0,T ] as the solution
to the following stochastic differential equation (SDE):

dXt = f(Xt, t)dt+ σ(t)dBt, (1)

where f(·, ·) : Rd×[0, T ] → Rd is a vector-valued function called the drift coefficient, σ(·) : [0, T ] →
R is a scalar function known as the diffusion coefficient, and (Bt)t∈[0,T ] is the standard Wiener
process (a.k.a., Brownian motion) [26]. We hereafter denote by pt(X) the marginal distribution
of Xt. Let p(x′, t′|x, t) denote the transition density function such that P (Xt′ ∈ A|Xt = x) =∫
A
p(x′, t′|x, t)dx′ for any Borel set A. By simulating this diffusion process forward in time, the

distribution of Xt will become pprior(X) at the final time T . In the literature, there exist various
design choices of the SDE formulation in Eqn. (1) such that it transports the data distribution into the
fixed prior distribution [98, 37, 99, 72, 97, 47].

In order to sample X0 ∼ p0(X) := qdata(X), an intriguing fact can be leveraged: the reverse of a
diffusion process is also a diffusion process [2]. This reverse process runs backward in time and can
be formulated by the following time-reversal SDE:

dXt =
[
f(Xt, t)− σ2(t)∇Xt log pt(Xt)

]
dt+ σ(t)dBt, (2)

where ∇X log pt(X) denote the score of the marginal distribution at time t. If the score is known for
all time, then we can derive the reverse diffusion process from Eqn. (2), sample from pprior(X), and
simulate this process to generate samples from the data distribution qdata(X). In particular, the score
∇X log pt(X) can be estimated by training a parameterized model sθ(X, t) with a denoising score
matching objective [98, 97]. In theory, the minimizer of this objective approximates the ground-truth
score [99] and this objective is tractable.

3 Geometric Diffusion Bridge

As discussed in the introduction, effectively capturing the evolution of geometric states is crucial, for
which three desiderata should be carefully considered:
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• Coupling Preservation: From a probabilistic perspective, the evolution of geometric states
transports their distribution from qdata(S

t0) to qdata(S
t1), and we are interested in modeling

the distribution of target geometric states given the initial states, i.e., qdata(S
t1 |St0) :=

qdata(R
t1 |H, Rt0), which can be achieved by preserving the coupling of geometric states,

i.e., qdata(R
t0 , Rt1 |H). For brevity, we hereafter omit the condition of H because it keeps

the same along the evolution and can be easily incorporated into the models.

• Symmetry Constraints: Since the law governing the evolution is unchanged regardless of
how the system is rotated or translated, the distribution of the geometric states should
satisfy symmetry constraints, i.e., qdata(ρ

R(g)[Rt1 ]|ρR(g)[Rt0 ]) = qdata(R
t1 |Rt0) and

qdata(ρ
R(g)[Rt0 ], ρR(g)[Rt1 ]) = qdata(R

t0 , Rt1) for all g ∈ SE(3), Rt ∈ R.

• Trajectory Guidance: Trajectories of geometric states are sometimes accessible and provide
fine-grained descriptions of the evolution dynamics. For completeness, it is crucial to
develop a unified framework that can characterize and leverage trajectory data as guidance
for better bridging geometric states and capturing the evolution.

However, existing approaches typically have their limitations for this task, which we thoroughly
discuss in Sec. 5 and summarize into Table 1. In this section, we introduce Geometric Diffusion
Bridge (GDB), a general framework for bridging geometric states through generative modeling. We
will elaborate on key techniques for completely preserving couping under symmetry constraints
(Sec. 3.1), and demonstrate how our framework can be seamlessly extended to leverage trajectory data
(Sec. 3.2). Theoretically, we conduct a thorough analysis on the capability of our unified framework,
showing its completeness and superiority. All proofs of theorems are presented in Appendix B. A
detailed guidance of practical implementing our framework is further provided (Sec. 3.3).

Table 1: Comparisons of different candidates for bridging geometric states

Methods Symmetry Constraints Coupling Preservation Trajectory guidance
Direct Prediction [104, 31, 87, 89, 8] ✓ ✓ ✗

MLFFs [90, 33, 6, 34, 58] ✓ ✗ ✓

Geometric Diffusion Model [115, 38, 114] ✓ ✗ ✗

Geometric Diffusion Bridge (ours) ✓ ✓ ✓

3.1 Equivariant Diffusion Bridge

Our key design lies in the construction of equivariant diffusion bridge, a tailored diffusion process
(Rt)t∈[0,T ] for bridging initial states R0∼qdata(R

t0) and target states RT∼qdata(R
t1 |Rt0), completely

preserving coupling of geometric states and satisfying symmetry constraints. Firstly, we investigate
necessary conditions for a diffusion process on geometric states to meet the symmetric constraints:

Proposition 3.1. Let R denote the space of geometric states and fR(·, ·) : R× [0, T ] → R denote the
drift coefficient on R. Let (Wt)t∈[0,T ] denote the Wiener process on R. Given an SDE on geometric
states dRt = fR(Rt, t)dt+ σ(t)dWt, R0 ∼ q(R0), its transition density pR(z′, t′|z, t), z, z′ ∈ R
is SE(3)-equivariant, i.e., pR(Rt′ , t′|Rt, t) = pR(ρR(g)[Rt′ ], t′|ρR(g)[Rt], t),∀g ∈ SE(3), 0 ≤
t, t′ ≤ T, if these conditions are satisfied: (1) q(R0) is SE(3)-invariant; (2) fR(·, t) is SO(3)-
equivariant and T(3)-invariant; (3) the transition density of (Wt)t∈[0,T ] is SE(3)-equivariant.

Using Proposition 3.1, we can obtain a diffusion process that respect symmetry constraints by properly
considering conditions for key components. Next, we modify a useful tool in probability theory called
Doob’s h-transform [82, 81, 16], which plays an essential role in the construction of our equivariant
diffusion bridge for preserving coupling of geometric states:

Proposition 3.2. Let pR(z′, t′|z, t) be the transition density of the SDE in Proposition 3.1. Let
hR(·, ·) : R× [0, T ] → R>0 be a smooth function satisfying: (1) hR(·, t) is SE(3)-invariant; (2)
hR(z, t) =

∫
pR(z′, t′|z, t)hR(z′, t′)dz′. Then we can derive the following hR-transformed SDE

on geometric states:

dRt =
[
fR(Rt, t) + σ2(t)∇Rt log hR(Rt, t)

]
dt+ σ(t)dWt, (3)

with SE(3)-equivariant transition density phR(z′, t′|z, t) equals to pR(z′, t′|z, t)hR(z′,t′)
hR(z,t) .
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Proposition 3.2 provides an equivariant version of Doob’s h-transform, which can be used to guide
a free SDE on geometric states to hit an event almost surely. For example, if we set hR(·, t) =
pR(z, T |·, t), z ∈ R, i.e., the transition density of the original SDE evaluated at RT = z, then the
hR-transformed SDE in Eqn. (3) arrives at the specific geometric state z almost surely at the final
time (see Proposition B.7 in the appendix for more details). Therefore, if we derive a proper hR(·, ·)
function under the symmetry constraints, our target process (Rt)t∈[0,T ] can be constructed:

Theorem 3.3 (Equivariant Diffusion Bridge). Let dRt = fR(Rt, t)dt + σ(t)dWt be an SDE
on geometric states with transition density pR(z′, t′|z, t), z, z′ ∈ R satisfying the conditions in
Proposition 3.1. Let hR(z, t; z0) =

∫
pR(z′, T |z, t) qdata(z

′|z0)
pR(z′,T |z0,0)dz

′. By using Proposition 3.2, we
can derive the following hR-transformed SDE:

dRt =
[
fR(Rt, t) + σ2(t)EqR(RT ,T |Rt,t;R0,0)[∇Rt log pR(RT , T |Rt, t)|R0,Rt]

]
dt+σ(t)dWt,

(4)
which corresponds to a process (Rt)t∈[0,T ],R

0 ∼ qdata(R
t0) satisfying the following properties:

• let q(·, ·) : R × R → R≥0 denote the joint distribution induced by (Rt)t∈[0,T ], then
q(R0,RT ) equals to qdata(R

t0 , Rt1);

• its transition density qR(Rt′ , t′|Rt, t;R0, 0)=qR(ρR(g)[Rt′ ], t′|ρR(g)[Rt], t; ρR(g)[R0], 0),
∀0≤t,t′≤T, g∈SE(3),R0∼qdata(R

t0).

We call the tailored diffusion process (Rt)t∈[0,T ] an equivariant diffusion bridge.

According to Theorem 3.3, given an initial geometric state Rt0 , we can predict target geometric states
Rt1 by simulating the equivariant diffusion bridge (Rt)t∈[0,T ] from R0 = Rt0 , which arrives at
RT ∼ qdata(R

t1 |Rt0). However, the score EqR(RT ,T |Rt,t;R0,0)[∇Rt log pR(RT , T |Rt, t)|R0,Rt]
in Eqn. (4) is not tractable in general. Inspired by the score matching objective in diffusion mod-
els [99], we use a parameterized model vθ(R

t, t;R0) to estimate the score by using the following
training objective:
L(θ) = E(z0,z1)∼qdata(Rt0 ,Rt1 ),Rt∼qR(Rt,t|z1,T ;z0,0)λ(t)∥vθ(R

t, t; z0)−∇Rt log pR(z1, T |Rt, t)∥2,
(5)

where t ∼ U(0, T ) (the uniform distribution on [0, T ]), and λ(·) : [0, T ] → R≥0 is a positive
weighting function. Theoretically, we prove that the minimizer of Eqn. (5) approximates the ground-
truth score (see Appendix B.5 for more details). Moreover, this objective is tractable because the
transition density pR and qR can be designed to have simple and explicit forms such as Gaussian,
which we will elaborate on in Sec. 3.3.

3.2 Chain of Equivariant Diffusion Bridges for Leveraging Trajectory Guidance

In this subsection, we elaborate on how to leverage trajectories of geometric states as a fine-grained
guidance in our framework. Let (R̃i)i∈[N ] denote a trajectory of N + 1 geometric states and
qtraj(R̃

0, ..., R̃N ) denote the joint probability density function of geometric states in a trajectory.
In practice, the markov property of trajectories typically holds [109, 78]. Under this assumption,
qtraj(R̃

0, ..., R̃N ) can be equivalently reformulated into q0traj(R̃
0)
∏N

i=1 q
i
traj(R̃

i|R̃i−1) by the chain
rule of probability. If qitraj(R̃

i|R̃i−1) can be well modeled, we can capture the distribution of
trajectories of geometric states completely.

According to Theorem 3.3, given R0 ∼ q0traj(R̃
0), an equivariant diffusion bridge (Rt)t∈[0,T ] can

be constructed to model the joint distribution qtraj(R̃
0, R̃1) and hence q1traj(R̃

1|R̃0) is preserved.
Therefore, if we construct a series of interconnected equivariant diffusion bridges, the distribution of
trajectories can be modeled:
Theorem 3.4 (Chain of Equivariant Diffusion Bridges). Let {(Rt

i)t∈[0,T ]}i∈[N−1] denote a series of
N equivaraint diffusion bridges defined in Theorem 3.3. For the i-th bridge (Rt

i)t∈[0,T ], if we set

(1) hi
R(z, t; z0) =

∫
pR(z′, T |z, t) qi+1

traj (z′|z0)
pR(z′,T |z0,0)dz

′; (2) R0
0 ∼ q0traj(R̃

0),R0
i = RT

i−1,∀0 < i < N ,
then the joint distribution qR(R0

0,R
T
0 ,R

T
1 , · · · ,RT

N−1) induced by {(Rt
i)t∈[0,T ]}i∈[N−1] equals to

qtraj(R̃
0, ..., R̃N ). We call this process a chain of equivariant diffusion bridges.

5



In this way, a chain of equivariant diffusion bridge can be used to model prior trajectory data, and
simulating this chain not only bridges initial and target geometric states but also yields intermediate
evolving states. Similarly, we can also use a parameterized model to estimate the scores of bridges
in this chain. Instead of having only one objective in all time steps, we now have N bridges in total,
which categorize the time span into N groups with different time-dependent objectives. Therefore,
by properly specifying time steps and initial conditions, the objective in Eqn. (5) can be seamlessly
extended (see Appendix B.7 for more details on its provable guarantee):

L′(θ) = E(z0,...,zN )∼qtraj(R̃0,...,R̃N ),t,Rt′
i
λ(t)∥vθ(R

t′

i , t; zi)−∇Rt′
i
log piR(zi+1, T |Rt′

i , t
′)∥2, (6)

where t ∼ U(0, N × T ), i = ⌊ t
T ⌋, t

′ = t− i× T,Rt′

i ∼ qiR(Rt′

i , t
′|zi+1, T ; zi, 0).

Lastly, we provide the following theoretical result, which further characterizes our framework’s
expressiveness to completely model the underlying dynamics that induce the trajectory distributions:

Theorem 3.5. Assume (R̃i)i∈[N ] is sampled by simulating a prior SDE on geometric states dR̃t =

−∇H∗
R(R̃t)dt+ σdW̃t. Let µ∗

i denote the path measure of this prior SDE when t ∈ [iT, (i+ 1)T ].
Building upon (R̃i)i∈[N ], let {µi

R}i∈[N−1] denote the path measure of our chain of equivariant
diffusion bridges. Under mild assumptions, we have lim

N→∞
max

i
KL(µ∗

i ||µi
R) = 0.

It is noteworthy that the assumption of the prior SDE existence holds in various real-world
applications. For example, in geometry optimization, we can formulate the iterative updating process
of a molecular system as dRt = −α∇RtV (Rt)dt + βdWt, where V (Rt) denotes the potential
energy at Rt and α, β are step sizes [88]. From Theorem 3.5, such prior SDE serves as the underlying
law governing the evolution dynamic, and our chain of equivariant diffusion bridges constructed
from empirical trajectory data can well approximate it, showing the completeness of our framework.

3.3 Practical Implementation

In this subsection, we elaborate on how to practically implement our framework. According to
Eqn. (5), it is necessary to carefully design (1) tractable distribution qR(Rt, t|z1, T ; z0, 0) for sam-
pling Rt; (2) closed-form matching objective ∇Rt log pR(z1, T |Rt, t).

Matching objective. Inspired by diffusion models that use Gaussian transition kernels for tractable
computation, we design the SDE on geometric states in Proposition 3.1 to be:

dRt = σdWt, with transition density pR(z′, t′|z, t) = N (z0, σ
2(t′ − t)I) (7)

The explicit form of the objective can be directly calculated, i.e., ∇Rt log pR(z1, T |Rt, t) = z1−Rt

σ2(T−t) .

Sampling distribution. According to Theorem 3.3, the transition density qR(Rt, t|z1, T ; z0, 0)
can be calculated by using the Doob’s h-transform in Proposition 3.2, i.e., qR(Rt, t|z1, T ; z0, 0) =
pR(Rt, t|z1, T ) hR(Rt,t;z0)

hR(z1,T ;z0)
. Moreover, hR is determined by qdata and pR, which is already specified

in Eqn. (7). Therefore, we can also calculate qR(Rt, t|z1, T ; z0, 0) = N ( t
T z1 +

T−t
T z0, σ

2 t(T−t)
T 2 I).

Symmetry constraints. In proposition 3.1, we have several conditions that should be satisfied to
meet the symmetry constraints. Firstly, since a parameterized model vθ(R

t, t;R0) is used to estimate
the score of our equivariant diffusion bridge, it should be SO(3)-equivariant and T(3)-invariant.
Besides, we follow [50, 115] to consider CoM-free systems: given R = {r1, ..., rn}, we define
r̄ = 1

n

∑n
i=1 ri and the CoM-free version of R = {r1 − r̄, ..., rn − r̄}. To sample from N (z0, σ

2I)
with z0 ∈ R consisting of n objects, we (1) sample ϵ = {ϵi}ni=1 by i.i.d. drawing ϵi ∼ N (0, I3); (2)
calculate the CoM-free ϵ′ of ϵ; (3) obtain z0 + σϵ′.

Trajectory guidance. According to Eqn. (6), both piR and qiR for all i∈[N−1] should be
determined. Similarly, we set piR(zi+1, T |Rt′ , t′)=N (Rt′ , σ2

i (T−t′)I), which further induces
qiR(Rt′ , t′|zi+1, T ; zi, 0) = N ( t

′

T zi+1 +
T−t′

T zi, σ
2
i
t′(T−t′)

T 2 I).

Combining all the above design choices, we have the following algorithms for training our Geometric
Diffusion Bridge (Alg. 3) and leveraging trajectory guidance if available (Alg. 4). After the model

6



is well trained, we leverage ODE numerical solvers [12] to simulate the bridge process by using its
equivalent probability flow ODE [99]. In this way, we can effectively and deterministically predict
future geometric states of interest from initial states in an efficient iterative process. Lastly, it is
also noteworthy that our framework is general to be implemented by using other advanced design
strategies [99, 47, 48], which we leave as future work.

Algorithm 1 Training

1: repeat
2: (z0, z1) ∼ qdata(R

t0 , Rt1)
3: t ∼ U [0, T ]
4: ϵ ∼ N (0, I)

5: Rt = t
T
z1 +

T−t
T

z0 +

√
t(T−t)

T
σϵ

6: Take gradient descent step on

∇θλ(t)
∥∥∥ z1−Rt

σ2(T−t)
− vθ(R

t, t; z0)
∥∥∥2

7: until converged

Algorithm 2 Training with trajectory guidance
1: repeat
2: (z0, . . . , zN ) ∼ qtraj(R̃

0, . . . , R̃N )
3: t ∼ U (0, N × T ), i = ⌊ t

T
⌋, t′ = t− i× T

4: ϵ ∼ N (0, I)

5: Rt′
i = t′

T
zi+1 +

T−t′

T
zi +

√
t′(T−t′)

T
σiϵ

6: Take gradient descent step on

∇θλ(t)

∥∥∥∥ zi+1−Rt′
i

σ2
i (T−t′)

− vθ(R
t′
i , t; zi)

∥∥∥∥2

7: until converged

4 Experiments

In this section, we empirically study the effectiveness of our Geometric Diffusion Bridge on crucial
real-world challenges requiring bridging geometric states. In particular, we carefully design several
experiments covering different types of data, scales and scenarios, as shown in Table 2. Due to space
limits, we present more details in Appendix D.

Table 2: Summary of experimental setup.

Dataset Task Description Data Type Trajectory data Training set size
QM9 [79] Equilibrium State Prediction Simple molecule ✗ 110,000
Molecule3D [116] Equilibrium State Prediction Simple molecule ✗ 2,339,788
OC22, IS2RS [13] Structure Relaxation Adsorbate-Catalyst complex ✓ 45,890

4.1 Equilibrium State Prediction

Task. Equilibrium states typically represent local minima on the Born-Oppenheimer potential
energy surface of a molecular system [54], which correspond to its most stable geometric state and
play an essential role in determining its properties in various aspects [4, 21]. In this task, our goal
is to accurately predict the equilibrium state from the initial geometric state of a molecular system.

Dataset. Two popular datasets are used: (1) QM9 [79] is a medium-scale dataset that has been
widely used for molecular modeling, consisting of 1̃30,000 organic molecules. In convention, 110k,
10k, and 11k molecules are used for train/valid/test sets respectively; (2) Molecule3D [116] is a large-
scale dataset curated from the PubChemQC project [67, 71], consisting of 3,899,647 molecules in
total and its train/valid/test splitting ratio is 6 : 2 : 2. In particular, both random and scaffold splitting
methods are adopted to thoroughly evaluate the in-distribution and out-of-distribution performance.
For each molecule, an initial geometric state is generated by using fast and coarse force field [73, 52]
and geometry optimization is conducted to obtain DFT-calculated equilibrium geometric structure.

Setting. In this task, we parameterize vθ(R
t, t;R0) by extending a Graph-Transformer based

equivariant network [92, 63] to encode both time steps and initial geometric states as conditions. For
inference, we use 10 time steps with the Euler solver [12]. Following [111], we choose several strong
baselines for a comprehensive comparison, and use three metrics for measuring the error between
predicted target states and ground-truth states: C-RMSD, D-MAE and D-RMSE. The detailed
descriptions of the baselines, evaluation metrics and training settings are presented in Appendix D.1.

Results. Results on QM9 and Molecule3D are shown in Table 3 and 4 respectively. It can be easily
seen that our GDB framework consistently surpasses all baselines by a significantly large margin on
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Table 3: Results on the QM9 dataset (Å). We report the official results of baselines from [111]
Validation Test

D-MAE↓ D-RMSE↓ C-RMSD↓ D-MAE↓ D-RMSE↓ C-RMSD↓
RDKit DG 0.358 0.616 0.722 0.358 0.615 0.722
RDKit ETKDG 0.355 0.621 0.691 0.355 0.621 0.689
GINE [39] 0.357 0.673 0.685 0.357 0.669 0.693
GATv2 [10] 0.339 0.663 0.661 0.339 0.659 0.666
GPS [80] 0.326 0.644 0.662 0.326 0.640 0.666
GTMGC [111] 0.262 0.468 0.362 0.264 0.470 0.367
GDB (ours) 0.092 0.218 0.143 0.096 0.223 0.148

Table 4: Results on the Molecule3D dataset (Å). We report the official results of baselines from [111]
Validation Test

D-MAE↓ D-RMSE↓ C-RMSD↓ D-MAE↓ D-RMSE↓ C-RMSD↓
(a) Random Split
RDKit DG 0.581 0.930 1.054 0.582 0.932 1.055
RDKit ETKDG 0.575 0.941 0.998 0.576 0.942 0.999
DeeperGCN-DAGNN [116] 0.509 0.849 * 0.571 0.961 *
GINE [39] 0.590 1.014 1.116 0.592 1.018 1.116
GATv2 [10] 0.563 0.983 1.082 0.564 0.986 1.083
GPS [80] 0.528 0.909 1.036 0.529 0.911 1.038
GTMGC [111] 0.432 0.719 0.712 0.433 0.721 0.713
GDB (ours) 0.374 0.631 0.622 0.376 0.626 0.619
(b) Scaffold Split
RDKit DG 0.542 0.872 1.001 0.524 0.857 0.973
RDKit ETKDG 0.531 0.874 0.928 0.511 0.859 0.898
DeeperGCN-DAGNN [116] 0.617 0.930 * 0.763 1.176 *
GINE [39] 0.883 1.517 1.407 1.400 2.224 1.960
GATv2 [10] 0.778 1.385 1.254 1.238 2.069 1.752
GPS [80] 0.538 0.885 1.031 0.657 1.091 1.136
GTMGC [111] 0.406 0.675 0.678 0.400 0.679 0.693
GDB (ours) 0.335 0.587 0.592 0.341 0.608 0.603

QM9, e.g., 60.5%/59.7% relative C-RMSD reduction on valid/test sets respectively, establishing a new
state-of-the-art performance. Similar trends also can be observed in Molecule3D, i.e., 12.6%/13.2%
relative C-RMSD reduction for valid/test sets of the random split and 12.7%/13.0% reduction for
the scaffold split, largely outperforming the best baseline. These significant error reduction results
show the superiority of our GDB framework for bridging geometric states, and its generality on both
medium and large-scale challenges. Moreover, our framework performs consistently across valid and
tests of both random and scaffold splits, further verifying its robustness in challenging scenarios.

4.2 Structure Relaxation

Task. Catalyst discovery is crucial for various applications. Adsorbate candidates are placed on
catalyst surfaces and evolve through structure relaxation to adsorption states, in which the adsorption
structures can be determined for measuring catalyst activity and selectivity. Our goal is thus to
accurately predict adsorption states from initial states of adsorbate-catalyst complexes.

Dataset. We adopt Open Catalyst 2022 (OC22) dataset [105], which has great significance for the
development of Oxygen Evolution Reaction (OER) catalysts. Each data is in the form of the adsorbate-
catalyst complex. Both initial and adsorption states with trajectories connecting them are provided.
The training set consists of 45,890 catalyst-adsorbate complexes. To better evaluate the model’s perfor-
mance, the validation and test sets consider the in-distribution (ID) and out-of-distribution (OOD) set-
tings which use unseen catalysts, containing approximately 2,624 and 2,780 complexes respectively.

Setting. Following [105], we use the Average Distance within Threshold (ADwT) as the evaluation
metric, which reflects the percentage of structures with an atom position MAE below thresholds.
We parameterize vθ(R

t, t;R0) by using GemNet-OC [34], which also serves as a verification that
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Table 5: Results on the OC22 IS2RS Validation set. "OC20+OC22" denotes using both OC20 [13]
and OC22 data; "OC20→OC22" means pre-training on OC20 data then fine-tuning on OC22 data;
"OC22-only" means only using OC22 data. We report the official results of baselines from [105]

Model ADwT [%] ↑ (ID) ADwT [%] ↑ (OOD) Avg [%] ↑
OC20+OC22
SpinConv [94] 55.79 47.31 51.55
GemNet-OC [34] 60.99 53.85 57.42
OC20→OC22
SpinConv [94] 56.69 45.78 51.23
GemNet-OC [34] 58.03 48.33 53.18
GemNet-OC-Large [34] 59.69 51.66 55.67
OC22-only
IS baseline 44.77 42.59 43.68
SpinConv [94] 54.53 40.45 47.49
GemNet-dT [32] 59.68 51.25 55.46
GemNet-OC [34] 60.69 52.90 56.79
GDB (ours) 63.01 55.78 59.39
− trajectory guidance 62.14 54.94 58.54
− R0 condition 60.17 49.26 54.71

our framework is compatible with different backbone models. For inference, we also use 10 time
steps with the Euler solver. Following [105], we choose strong MLFF baselines trained on force field
data for a challenging comparison. The detailed descriptions of baselines and settings are presented
in Appendix D.2.

Results. In Table 5, our GDB significantly outperforms the best baseline, e.g., 3.3%/3.6%/3.4% rela-
tive improvement on the ADwT metric of ID, OOD and Avg respectively. It is noteworthy that the best
baseline is the GemNet-OC force field trained on both OC20 and OC22 data, which is 10 times more
than OC22 data only. Nevertheless, our framework still achieves better performance on predicting
the adsorption geometric states. Moreover, our framework without using any trajectory data still can
achieve better performance compared to the best baseline, e.g., 58.54 v.s. 57.42 Avg[%]. All the re-
sults on this challenging task further demonstrate the superiority and completeness of our framework.

Ablation study. Furthermore, we conduct ablation studies to examine key designs of our framework
in Table 5. Firstly, we can see that using trajectory guidance indeed improves the performance of our
framework, e.g., 1.4% relative improvement on Avg ADwT. Moreover, we also investigate the impact
of R0 condition in vθ(R

t, t;R0), which plays an essential role in preserving the joint distribution
of geometric states. Without this condition, we can see a significant drop, e.g., 6.5%/10.3% relative
ADwT drop on Avg/OOD respectively. Overall, these ablation studies serve as strong supports on the
necessity of developing a unified framework that can precisely bridge geometric states by preserving
their joint distributions and effectively leverage trajectory data as guidance for enhanced performance.

5 Related Works

Direct Prediction. One line of approach for bridging geometric states is direct prediction, i.e., train-
ing a model to directly predict target geometric states given initial states as input. Models that carefully
respect symmetry constraints such as the equivariance to 3D rotations and translations are typically
used, which are called Geometric Equivariant Networks [11, 36, 120, 27]. Different techniques have
been explored to encode such priors, which mainly include vector operations such as scalar and vector
product [35, 87, 89, 41, 103, 14], e.g., the scalar-vector product used in EGNN [87], and tensor product
based operations [104, 31, 8, 57, 64]. Despite its simplicity and efficiency, direct prediction requires
encoding the iterative evolution of geometric states into a single-step prediction model, which lacks
the ability to capture the underlying dynamics and cannot leverage trajectories of geometric states.

Machine Learning Force Field. Another line of approach is called machine learning force field
(MLFF) [106, 5, 6, 70, 75, 58], which are trained to predict intermediate labels, such as the potential
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energy or force of the (local) current geometric state instead. After training, MLFFs can be used
to simulate the trajectory of geometric states over time based on underlying equations. Using
Geometric Equivariant Networks as the backbone, MLFFs typically satisfy the symmetry constraints.
Besides, trajectory data with additional energy or force labels can directly be used for training MLFFs.
However, this paradigm highly depends on the existence and quality of intermediate labels since small
local errors in energy or force prediction can accumulate along the simulation process [7, 106, 30].
Moreover, there exists no guarantee that MLFFs can completely model joint state distributions, which
is another limitation for bridging geometric states.

Geometric Diffusion Models. In recent years, diffusion models [37, 99] have emerged with state-
of-the-art generative modeling performance across various domains [85, 108, 51, 56]. In geometric
domain, diffusion models are typically used for molecule conformation generation [115, 114, 38] and
protein design [108, 117]. By properly design the noising process and model architectures, symmetry
constraints on the transition kernel and prior distribution can be satisfied, which guarantees the
generated data is sampled from roto-translational invariant distributions [115, 38]. In addition to the
score-based formulation, recent advances further extend new techniques such as flow matching [59,
61, 1] to satisfy symmetry constraints for these generation tasks [49, 100]. Nevertheless, there exists
no guaratee that these approaches can model the joint distribution of geometric states [61, 96]. And
how to leverage trajectory data as guidance for bridging geometric states is also challenging.

Other techniques. MoreRed [45] trains a diffusion model on equilibrium molecule conformations
with a time step predictor, and directly use it for bridging any conformations to their equilibrium
states. GTMGC [111] instead develop a Graph Transformer to directly predict equilibrium
conformations from their 2D graph forms. Both of them are limited to the equilibrium conformation
prediction task, cannot preserve the joint state distribution and leverage trajectory data. EGNO [112]
is a concurrent work that develops a neural operator based approach to model dynamics of trajectories.
By carefully designing temporal convolution in fourier spaces, EGNO can learn from trajectory data.
However, this tailored approach cannot be directly used without trajectory guidance. To preserve joint
data distributions, [22, 121] coincide with us to leverage Doob’s h-transform to repurposing standard
diffusion processes, but they do not respect symmetry constraints and cannot leverage trajectories.
There also exist recent works that study the diffusion bridge framework [76, 93] and apply it to
various domains such as images and graphs [110, 62, 42]. Compared to all above approaches, our
GDB framework stands out as a unique and ideal solution that can precisely bridge geometric states
and effectively leverage trajectory data (if available) in a unified manner.

6 Conclusion

In this work, we introduce Geometric Diffusion Bridge (GDB), a general framework for bridging
geometric states through generative modeling. We leverage a modified version of Doob’s h-transform
to constructe an equivariant diffusion bridge for bridging initial and target geometric states.
Trajectory data can further be seamlessly leveraged as guidance by using a chain of equivariant
diffusion bridges, allowing complete modeling of trajectory data. Mathematically, we conduct a
comprehensive theoretical analysis showing our framework’s ability to preserve joint distributions of
geometric states and capability to completely model the evolution dynamics. Empirical comparisons
on different settings show that our GDB significantly surpasses existing state-of-the-art approaches
and ablation studies further underscore the necessity of several key designs in our framework. In
the future, it is worth exploring better implementation strategies of our framework for enhanced
performance, and applying our GDB to other critical challenges involving bringing geometric states.

Broader Impacts and Limitations

This work newly proposes a general framework to bridge geometric states, which has great signifi-
cance in various scientific domains. Our experimental results have also demonstrated considerable pos-
itive potential for various applications, such as catalyst discovery and molecule optimization, which
can significantly contribute to the advancement of renewable energy processes and chemistry discov-
ery. However, it is essential to acknowledge the potential negative impacts including the development
of toxic drugs and materials. Thus, stringent measures should be implemented to mitigate these risks.
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There also exist some limitations to our work. For the sake of generality, we do not experiment with
advanced implementation strategies of training objectives and sampling algorithms, which leave room
for further improvement. Besides, the employment of Transformer-based architectures may also
limit the efficiency of our framework. This has also become a common issue in transformer-based
diffusion models, which we have earmarked for future research.
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A Organization of the Appendix

The supplementary material is organized as follows. In Appendix B, we first recall some definitions
and tools from stochastic calculus and then give the proofs of all theorems. In Appendix C, we
give the derivation of our practical objective function and our sampling algorithms. In Appendix
D, we give some details of our experiments, including a comprehensive introduction to the datasets,
baselines, metrics and settings.

B Proof of Theorems

B.1 Review of Stochastic Calculus

Let (Xt)t∈[0,T ] be a stochastic process. We use p(x′, t′|x1, t1;x2, t2; . . . ;xn, tn) to denote its condi-
tional density function satisfying

P (Xt′ ∈ A|Xt1 = x1,Xt2 = x2, . . . ,Xtn = xn) =

∫
A

p(x′, t′|x1, t1;x2, t2; . . . ;xn, tn)dx
′

for any Borel set A, where t1 < t2 < · · · < tn. If (Xt)t∈[0,T ] is a Markov process,
p(x′, t′|x1, t1;x2, t2; . . . ;xn, tn) = p(x′, t′|xn, tn), which is also called a transition density function.

One of the most important results of stochastic calculus is the Ito’s formula. The precise statements
are as follows.
Theorem B.1 (Ito’s formula for Brownian Motion). Let Bt be the d−dimensional Brownian Motion.
Assume f is a bounded real valued function with continuous second-order partial derivatives, i.e.
f ∈ C2

b (Rd). Then the Ito’s formula is given by

f(Bt) = f(B0) +

∫ T

0

∇f(Bt) · dBt +
1

2

∫ T

0

∇2f(Bt)dt. (8)

We follow [86] for the proof of Doob’s h-transform. The infinitesimal generator of the Markov
process plays an important role in the proof of the Doob’s h-transform. The precise definitions are as
follows.
Definition B.2. (Generator of a Process) The infinitesimal generator At of a stochastic process (Xt)
for a function ϕ(x) is

Atϕ(x) = lim
s→0+

E[ϕ(Xt+s)|Xt = x]− ϕ(x)

s
, (9)

where ϕ is a suitably regular function. For an Itô process defined as the solution to the SDE
dXt = f(Xt, t)dt+ σ(t)dBt, the generator is

At =

d∑
i=1

f i(x, t)
∂

∂xi
+

1

2

d∑
i=1

σ2(t)
∂2

∂x2
i

. (10)

The Fokker-Planck’s Equation is an useful tool to track the evolution of the transition density function
associated with an SDE. The precise statements are as follows.
Proposition B.3. (Fokker-Planck’s Equation) Let p(x′, t′|x, t) be the transition density function of
the SDE dXt = f(Xt, t)dt+ σ(t)dBt. Then p(x′, t′|x, t) satisfies the Fokker-Planck’s Equation

∂p(x, t|x0, 0)

∂t
= −

d∑
i=1

∂(f i(x, t)p(x, t|x0, 0))

∂xi
+

1

2

d∑
i=1

σ2(t)
∂2p(x, t|x0, 0)

∂x2
i

= 0, (11)

with the initial condition p(x, 0|x0, 0) = δ(x − x0). The Fokker-Planck’s Equation can also be
written in a compact form using the generator At:

∂

∂t
p(x, t|x0, 0) = A∗

t p(x, t|x0, 0), (12)

where A∗
t is the adjoint operator of A:

A∗
t = −

d∑
i=1

∂(f i(x, t)·)
∂xi

+
1

2

d∑
i=1

σ2(t)
∂2(·)
∂x2

i

. (13)
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When the terminal is fixed, the evolution of the transition density function can also given by a PDE,
which is called the Backward Kolmogorov Equation. We give the precise statement as follows.
Proposition B.4. (Backward Kolmogorov Equation) Let p(x′, t′|x, t) be the transition density func-
tion of the SDE dXt = f(Xt, t)dt+ σ(t)dBt. Then p(x′, t′|x, t) satisfies the Backward Kolmogorov
Equation

−∂p(xt, t|x, s)
∂s

=

d∑
i=1

f i(x, s)
∂p(xt, t|x, s)

∂xi
+

1

2

d∑
i=1

σ2(s)
∂2p(xt, t|x, s)

∂x2
i

= 0, (14)

with the initial condition p(xt, t|x, t) = δ(x− xt). The Backward Kolmogorov Equation can also be
written in a compact form using the generator As:(

∂

∂s
+As

)
p(xt, t|x, s) = 0. (15)

B.2 Proof of Proposition 3.1

Proposition B.5. Let R denote the space of geometric states and fR(·, ·) : R×[0, T ] → R denote the
drift coefficient on R. Let (Wt)t∈[0,T ] denote the Wiener process on R. Given an SDE on geometric
states dRt = fR(Rt, t)dt+ σ(t)dWt, R0 ∼ q(R0), its transition density pR(z′, t′|z, t), z, z′ ∈ R
is SE(3)-equivariant, i.e., pR(Rt′ , t′|Rt, t) = pR(ρR(g)[Rt′ ], t′|ρR(g)[Rt], t),∀g ∈ SE(3),∀0 ≤
t < t′ ≤ T, if the following conditions are satisfied: (1) q(R0) is SE(3)-invariant; (2) fR(·, t)
is SO(3)-equivariant and T(3)-invariant; (3) the transition density of (Wt)t∈[0,T ] is SE(3)-
equivariant.

Proof. In this section, we view R = {r1, ..., rn} ∈ R as r1 ⊕ r2 ⊕ · · · rn ∈ R3n, which is the
concatenation of ri. So from this perspective, the space R is isomorphic to the Euclidean space R3n.
Then (Wt)t∈[0,T ] is the Wiener process with dimension d = 3n.

For any g ∈ SE(3), ρR(g) can be characterized by an orthogonal matrix O(g) ∈ R3×3, satisfying
det(O(g)) = 1, and a translation vector t ∈ R3. Then the representation of SE(3) on R3n is given
by

ρR(g)[R] = OR(g)R+ tR, (16)
where OR(g) = diag{O(g),O(g), . . . ,O(g)}, tR = t⊕ t⊕ · · · t ∈ R3n. It’s obvious that OR(g)
is also an orthogonal matrix in R3n×3n, satisfying O−1

R (g) = OT
R(g).

According to Proposition B.3, the evolution of the transition density function is given by the
Fokker-Planck’s Equation

∂pR(x, t|x0, 0)

∂t
= −

d∑
i=1

∂
(
f i(x, t)pR(x, t|x0, 0)

)
∂xi

+
1

2

d∑
i=1

σ2(t)
∂2 (pR(x, t|x0, 0))

∂x2
i

, (17)

with the initial condition pR(x, 0|x0, 0) = δ(x− x0).

Let y = OR(g)x+ tR, y0 = OR(g)x0 + tR, then we have

pR(ρR(g)[x], t|ρR(g)[x0], 0) = pR(OR(g)x+ tR, t|OR(g)x0 + tR, 0) = pR(y, t|y0, 0). (18)

The evolution of the transition density function pR(y, t|y0, 0) is also given by the Fokker-Planck’s
Equation:

∂pR(y, t|y0, 0)
∂t

= −
d∑

i=1

∂
(
f i(y, t)pR(y, t|y0, 0)

)
∂yi

+
1

2

d∑
i=1

σ2(t)
∂2 (pR(y, t|y0, 0))

∂y2i
, (19)

with the boundary condition pR(y, 0|y0, 0) = δ(y− y0) = δ(x− x0). Since y = OR(g)x+ tR, we
have x = O−1

R (g)(y − tR). Then by the chain rule, we have

∂

∂yi
=

d∑
j=1

∂xj

∂yi

∂

∂xj
=

d∑
j=1

(O−1
R (g))ji

∂

∂xj
=

d∑
j=1

(OR(g))ij
∂

∂xj
. (20)
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Since fR(·, t) is a SO(3)-equivariant and T(3)-invariant function, we have

f iR(y, t) = f iR(OR(g)x+ tR, t) = (OR(g)fR(x, t))i =

d∑
k=1

(OR(g))ikf
k
R(x, t). (21)

Then the Fokker-Planck’s equation becomes

∂pR(y, t|y0, 0)
∂t

= −
d∑

i=1

∂
(
f i(y, t)pR(y, t|y0, 0)

)
∂yi

+
1

2
σ2(t)

d∑
i=1

∂2 (pR(y, t|y0, 0))
∂y2i

(22)

= −
d∑

i=1

d∑
j=1

d∑
k=1

(OR(g))ij
∂((OR(g))ikf

k
R(x, t)pR(y, t|y0, 0))
∂xj

(23)

+
1

2
σ2(t)

d∑
i=1

d∑
j=1

d∑
k=1

(OR(g))ik
∂

∂xk
(OR(g))ij

∂ (pR(y, t|y0, 0))
∂xj

(24)

= −
d∑

i=1

d∑
j=1

d∑
k=1

(OR(g))ij(OR(g))ik
∂(fkR(x, t)pR(y, t|y0, 0))

∂xj
(25)

+
1

2
σ2(t)

d∑
i=1

d∑
j=1

d∑
k=1

(OR(g))ik(OR(g))ij
∂

∂xk

∂ (pR(y, t|y0, 0))
∂xj

. (26)

Since OR(g) is an orthogonal matrix, the columns of OR(g) are orthogonal to each other, i.e.

d∑
i=1

(OR(g))ik(OR(g))ij = δjk =

{
0 j ̸= k,

1 j = k.
(27)

So the Fokker-Planck’s equation can be simplified to

∂pR(y, t|y0, 0)
∂t

= −
d∑

j=1

d∑
k=1

∂(fkR(x, t)pR(y, t|y0, 0))
∂xj

(28)

+
1

2
σ2(t)

d∑
j=1

d∑
k=1

δjk
∂

∂xk

∂ (pR(y, t|y0, 0))
∂xj

(29)

= −
d∑

j=1

∂(f jR(x, t)pR(y, t|y0, 0))
∂xj

+
1

2
σ2(t)

d∑
j=1

∂2 (pR(y, t|y0, 0))
∂(xj)2

, (30)

which is same as Eqn.(17). Since the boundary condition pR(y, 0|y0, t0) = δ(y − y0) = δ(x −
x0) = pR(x, 0|x0, 0), then pR(y, t|y0, t0) = pR(x, t|x0, t0),∀t ∈ [0, T ]. Thus we have proved that
pR(Rt′ , t′|Rt, t) = pR(ρR(g)[Rt′ ], t′|ρR(g)[Rt], t),∀g ∈ SE(3),∀0 ≤ t < t′ ≤ T .

B.3 Proof of Proposition 3.2

Proposition B.6 (Doob’s h-transform). Let pR(z′, t′|z, t) be the transition density of the SDE in
Proposition 3.1. Let hR(·, ·) : R × [0, T ] → R>0 be a smooth function satisfying: (1) hR(·, t)
is SE(3)-invariant; (2) hR(z, t) =

∫
pR(z′, t′|z, t)hR(z′, t′)dz′. We can derive the following hR-

transformed SDE on geometric states:

dRt =
[
fR(Rt, t) + σ2(t)∇Rt log hR(Rt, t)

]
dt+ σ(t)dWt, (31)

with transition density phR(z′, t′|z, t) = pR(z′, t′|z, t)hR(z′,t′)
hR(z,t) preserving the symmetry constraints.

Proof. We use the definition of the infinitesimal generator to prove the proposition. The infinitesimal
generator of phR(x′, t′|x, t) for a function ϕ(x) is given by

Ah
t ϕ(x) = lim

s→0+

Eh[ϕ(Rt+s)|Rt = x]− ϕ(x)

s
. (32)
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Since phR(z′, t′|z, t) = pR(z′, t′|z, t)hR(z′,t′)
hR(z,t) , so we have

Eh[ϕ(Rt+s)|Rt = x] =
E[ϕ(Rt+s)h(Rt+s, t+ s)|Rt = x]

h(x, t)
. (33)

Then Ah
t ϕ(x) can be simplified as

Ah
t ϕ(x) = lim

s→0+

Eh[ϕ(Rt+s)|Rt = x]− ϕ(x)

s
(34)

= lim
s→0+

E[ϕ(Rt+s)h(Rt+s, t+ s)|Rt = x]− ϕ(x)h(x, t)

sh(x, t)
(35)

=
1

h(x, t)
[
∂h(x, t)

∂t
ϕ(x) +

d∑
i=1

(
∂h(x, t)

∂xi
ϕ(x) + h(x, t)

∂ϕ(x)

∂xi

)
f i(x, t) (36)

+
1

2

d∑
i=1

σ2(t)
∂2h(x, t)

∂x2
i

ϕ(x) +

d∑
i=1

σ2(t)
∂h(x, t)

∂xi

∂ϕ(x)

∂xi
(37)

+
1

2

d∑
i=1

σ2(t)
∂2ϕ(x)

∂x2
i

h(x, t)] (38)

=
1

h(x, t)
[
∂h(x, t)

∂t
ϕ(x) + (Ath(x, t))ϕ(x)

d∑
i=1

h(x, t)
∂ϕ(x)

∂xi
f i(x, t) (39)

+

d∑
i=1

σ2(t)
∂h(x, t)

∂xi

∂ϕ(x)

∂xi
+

1

2

d∑
i=1

σ2(t)
∂2ϕ(x)

∂x2
i

h(x, t)] (40)

Since h(x, t) =
∫
pR(x′, t′|x, t)h(x′, t′)dx, we have(

∂

∂t
+At

)
h(x, t) =

∫ (
∂p(x′, t′|x, t)

∂t
+Atp(x

′, t′|x, t)
)
h(x′, t′)dx. (41)

According to the Backward Kolmogorov Equation (Proposition B.4), we get

∂p(x′, t′|x, t)
∂t

+Atp(x
′, t′|x, t) = 0. (42)

So we get (
∂

∂t
+At

)
h(x, t) = 0. (43)

Then Ah
t ϕ(x) can be simplified as

Ahϕ(x) =
1

h(x, t)
[

d∑
i=1

h(x, t)
∂ϕ(x)

∂xi
f i(x, t) +

d∑
i=1

σ2(t)
∂h(x, t)

∂xi

∂ϕ(x)

∂xi
(44)

+
1

2

d∑
i=1

σ2(t)
∂2ϕ(x)

∂x2
i

h(x, t)] (45)

=

d∑
i=1

∂ϕ(x)

∂xi
f i(x, t) +

d∑
i=1

σ2(t)
1

h(x, t)

∂h(x, t)

∂xi

∂ϕ(x)

∂xi
+

1

2

d∑
i=1

σ2(t)
∂2ϕ(x)

∂x2
i

(46)

=

d∑
i=1

(
f i(x, t) + σ2(t)

∂ log h(x, t)

∂xi

)
∂ϕ(x)

∂xi
+

1

2

d∑
i=1

σ2(t)
∂2ϕ(x)

∂x2
i

. (47)

So we show that

Ah
t =

d∑
i=1

(
f i(x, t) + σ2(t)

∂ log h(x, t)

∂xi

)
∂

∂xi
+

1

2

d∑
i=1

σ2(t)
∂2

∂x2
i

. (48)
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According to the correspondence between SDE and its generator (Definition B.2), the equation above
implies that the h-transformed SDE is given by

dRt =
[
fR(Rt, t) + σ2(t)∇Rt log hR(Rt, t)

]
dt+ σ(t)dWt. (49)

Additionally, we need to show that the h-transformed transition density function satisfies the symmet-
ric constraints. First, we show that if h(·, t0) is SE(3)-invariant, then h(·, t) is also SE(3)-invariant
∀t ∈ [0, T ]. For any g ∈ SE(3), assume ρR(g)[z] = OR(g)z + tR, where OR(g) is an orthogonal
matrix and det(OR(g)) = 1. Since hR(z, t) satisfies

hR(z, t) =

∫
pR(z′, t0|z, t)h(z′, t0)dz′, (50)

then we have

hR(ρR(g)[z], t) =

∫
pR(z′, t0|ρR(g)[z], t)h(z′, t0)dz

′ (51)

=

∫
pR
(
ρR(g)(ρR(g))−1[z′], t0|ρR(g)[z], t

)
h(ρR(g)(ρR(g))−1[z′], t0)dz

′.

(52)
(53)

By Proposition 3.1, pR
(
ρR(g)(ρR(g))−1[z′], t0|ρR(g)[z], t

)
= pR

(
(ρR(g))−1[z′], t0|z, t

)
, let

z1 = ρR(g))−1[z′], then

hR(ρR(g)[z], t) =

∫
pR
(
(ρR(g))−1[z′], t0|z, t

)
h(ρR(g)(ρR(g))−1[z′], t0)dz

′ (54)

=

∫
pR (z1, t0|z, t)h(ρR(g)z1, t0) det(OR(g))dz1 (55)

=

∫
pR (z1, t0|z, t)h(z1, t0)dz1 (56)

= hR(z, t). (57)

So h(·, t) is SE(3)-invariant ∀t ∈ [0, T ], h(·, t) is well-defined under these symmetric constraints.
Then we show phR(z′, t′|z, t) preserves the symmetric constraints:

phR(ρR(g)[z′], t′|ρR(g)[z], t) = pR(ρR(g)[z′], t′|ρR(g)[z], t)
hR(ρR(g)[z′], t′)

hR(ρR(g)[z], t)
(58)

= pR(z′, t′|z, t)hR(ρR(g)[z′], t′)

hR(ρR(g)[z], t)
(59)

= pR(z′, t′|z, t)hR(z′, t′)

hR(z, t)
(60)

= phR(z′, t′|z, t). (61)

Thus we have proved that

phR(ρR(g)[z′], t′|ρR(g)[z], t) = phR(z′, t′|z, t), (62)

which implies that phR(z′, t′|z, t) preserves the symmetric constraints for any g ∈ SE(3). So the
proof is completed.

Next, we show how to construct a SDE with a fixed terminal point as an simple application of the
Doob’s h-transform. The result of this example is very useful to construct diffusion bridge.
Proposition B.7. Assume the original SDE is given by dXt = f(Xt, t)dt+σ(t)dWt. Let hR(x, t) =
pR(y, T |x, t) which is the transition density function of the original SDE evaluated at XT = y. Then
the h-transformed SDE

dRt =
[
f(Rt, t) + σ2(t)∇Rt log pR(y, T |Rt, t)

]
dt+ σ(t)dWt, (63)

arrive at y almost surely at the final time.
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Proof. The original SDE is given by

dXt = f(Xt, t)dt+ σ(t)dWt. (64)

First, we need to verify that hR(x, t) satisfies the condition

hR(x, t) =

∫
pR(x′, t0|x, t)h(x′, t0)dx

′. (65)

Since hR(x, t) = pR(y, T |x, t), we have∫
pR(x′, t′|x, t)hR(x′, t′) =

∫
pR(x′, t′|x, t)pR(y, T |x′, t′)dx′. (66)

Then by the Chapman–Kolmogorov’s equation∫
pR(x′, t′|x, t)pR(y, T |x′, t′)dx′ = pR(y, T |x, t), (67)

we get ∫
pR(x′, t′|x, t)hR(x′, t′) = pR(y, T |x, t) = hR(x, t). (68)

So the condition is satisfied. Then we can use the result of the Proposition 3.2. The h-transformed
SDE is given by

dRt =
[
f(Rt, t) + σ2(t)∇Rt log pR(y, T |Rt, t)

]
dt+ σ(t)dWt. (69)

And the h-transformed transition density function satisfies∫
A

phR(x′, t′|x, t)dx′ =

∫
A

pR(x′, t′|x, t)hR(x′, t′)

hR(x, t)
dx′ (70)

=

∫
A

pR(x′, t′|x, t)pR(y, T |x′, t′)

pR(y, T |x, t)
dx′ (71)

= P (Xt′ ∈ A|Xt = x,XT = y), (72)

where we use the Bayes’ theorem to deduce the last equality and A is an arbitrary Borel set. Since
Rt is a process conditioning on XT = y, then RT = y almost surly.

B.4 Proof of Theorem 3.3

Theorem B.8 (Equivariant Diffusion Bridge). Given an SDE on geometric states dRt =
fR(Rt, t)dt+ σ(t)dWt with transition density pR(z′, t′|z, t), z, z′ ∈ R satisfying the conditions in
Proposition 3.1. Let hR(z, t; z0) =

∫
pR(z′, T |z, t) qdata(z

′|z0)
pR(z′,T |z0,0)dz

′. By using Proposition 3.2, we
can derive the following hR-transformed SDE:

dRt =
[
fR(Rt, t) + σ2(t)EqR(RT ,T |Rt,t;R0)[∇Rt log pR(RT , T |Rt, t)|R0,Rt]

]
dt+ σ(t)dWt,

(73)
which corresponds to a process (Rt)t∈[0,T ],R

0 ∼ qdata(R
t0) satisfying the following properties:

• let q(·, ·) : R × R → R≥0 denote the joint distribution induced by (Rt)t∈[0,T ], then
q(R0,RT ) equals to qdata(R

t0 , Rt1);

• its transition density qR(Rt′ , t′|Rt, t;R0)=qR(ρR(g)[Rt′ ], t′|ρR(g)[Rt], t; ρR(g)[R0]),
∀0≤t<t′≤T, g∈SE(3),R0∼qdata(R

t0).

We call the tailored diffusion process (Rt)t∈[0,T ] an equivariant diffusion bridge.

Proof. Let hR(z, T ; z0) =
qdata(z|z0)

pR(z,T |z0,0) , then we define

hR(z, t; z0) =

∫
pR(z′, T |z, t) qdata(z

′|z0)
pR(z′, T |z0, 0)

dz′,∀t ∈ [0, T ). (74)
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So we can easily show that hR(z, t; z0) satisfies the condition

hR(z, t; z0) =

∫
pR(z′, T |z, t)h(z′, T ; z0)dz′,∀t ∈ [0, T ],∀z, z0 ∈ R. (75)

Then we can use the result of Theorem 3.2 to get the h-transformed SDE. By Theorem 3.2, the
h-transformed SDE is

dRt =
[
fR(Rt, t) + σ2(t)∇Rt log hR(Rt, t;R0)

]
dt+ σ(t)dWt. (76)

Next, we need to find the explicit form of ∇Rt log hR(Rt, t;R0),

∇z log hR(z, t; z0) =
∇zhR(z, t; z0)

hz(z, t; z0)
(77)

=
1

hR(z, t; z0)

∫
∇zpR(z′, T |z, t) qdata(z

′|z0)
pR(z′, T |z0, 0)

dz′. (78)

The h-transformed density function is

qR(z′, T |z, t; z0, 0) = pR(z′, T |z, t)hR(z′, T ; z0)

hR(z, t; z0)
(79)

= pR(z′, T |z, t) qdata(z
′|z0)

pR(z′, T ; z0, 0)hR(z, t; z0)
. (80)

Then we have

∇z log hR(z, t; z0) =
1

hR(z, t; z0)

∫
∇zpR(z′, T |z, t) qdata(z

′|z0)
pR(z′, T |z0, 0)

dz′ (81)

=

∫
∇zpR(z′, T |z, t)qR(z′, T |z, t; z0, 0)

pR(z′, T |z, t)
dz′ (82)

=

∫
∇z log pR(z′, T |z, t)qR(z′, T |z, t; z0, 0)dz′. (83)

So we get a explicit form of ∇Rt log hR(Rt, t;R0):

∇Rt log hR(Rt, t;R0) = EqR(RT ,T |Rt,t;z0)[∇Rt log pR(RT , T |Rt, t)|z0,Rt]. (84)

Then the h-transformed SDE becomes

dRt =
[
fR(Rt, t) + σ2(t)EqR(RT ,T |Rt,t;z0)[∇Rt log pR(RT , T |Rt, t)|z0,Rt]

]
dt+ σ(t)dWt.

(85)
Since hR(z, 0; z0) =

∫
pR(z′, T |z, 0) qdata(z

′|z0)
pR(z′,T |z0,0)dz

′ =
∫
qdata(z

′|z0)dz′ = 1, then

qR(z′, T |z0, 0) = pR(z′, T |z0, 0)
qdata(z

′|z0)
pR(z′, T ; z0, 0)hR(z0, 0; z0)

= qdata(z
′|z0), (86)

which means qR(RT , T |R0, 0) = qdata(R
T |R0). Since the initial distribution R0 ∼ qdata(R

t0), so
qR(R0) = qdata(R

0). So we can deduce that

q(R0,RT ) = qR(R0)qR(RT , T |R0, 0) = qdata(R
0)qdata(R

T |R0) = qdata(R
0,RT ). (87)

Finally, we need to show that the transition density function satisfies the corresponding symmetric
constrains. Since hR(z′, T ; z0) =

qdata(z
′|z0)

pR(z′,T |z0,0) is SE(3)-invariant, i.e.

hR(ρR(g)[z], T ; ρR(g)[z0]) = hR(z′, T ; z0),∀g ∈ SE(3), (88)

we can show that h(·, t; ·) is also SE(3)-invariant ∀t ∈ [0, T ] using the following property

hR(z, t; z0) =

∫
pR(z′, T |z, t)h(z′, T ; z0)dz′. (89)
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For any g ∈ SE(3), assume ρR(g)[z] = OR(g)z + tR, where OR(g) is an orthogonal matrix
satisfying det(OR(g)) = 1, then we have

hR(ρR(g)[z], t; ρR(g)[z0]) =

∫
pR(z′, T |ρR(g)[z], t)h(z′, T ; ρR(g)[z0])dz

′ (90)

=

∫
pR
(
ρR(g)(ρR(g))−1[z′], T |ρR(g)[z], t

)
h(ρR(g)(ρR(g))−1[z′], T ; ρR(g)[z0])dz

′. (91)

(92)

By Proposition 3.1, pR
(
ρR(g)(ρR(g))−1[z′], t0|ρR(g)[z], t

)
= pR

(
(ρR(g))−1[z′], t0|z, t

)
, let

z1 = ρR(g))−1[z′], then

hR(ρR(g)[z], t; ρR(g)[z0]) (93)

=

∫
pR
(
(ρR(g))−1[z′], T |z, t

)
h(ρR(g)(ρR(g))−1[z′], T ; ρR(g)[z0])dz

′ (94)

=

∫
pR (z1, T |z, t)h(ρR(g)[z1], T ; ρ

R(g)[z0]) det(OR(g))dz1 (95)

=

∫
pR (z1, t0|z, t)h(z1, t0; z0)dz1 (96)

= hR(z, t; z0). (97)
So h(·, t; ·) is SE(3)-invariant ∀t ∈ [0, T ]. Then we show qR(z′, t′|z, t; z0, 0) preserves the symmet-
ric constraints:

qR(ρR(g)[z′], t′|ρR(g)[z], t; ρR(g)[z0], 0) (98)

= pR(ρR(g)[z′], t′|ρR(g)[z], t)
hR(ρR(g)[z′], t′; ρR(g)[z0])

hR(ρR(g)[z], t; ρR(g)[z0])
(99)

= pR(z′, t′|z, t)hR(ρR(g)[z′], t′; ρR(g)[z0])

hR(ρR(g)[z], t; ρR(g)[z0])
(100)

= pR(z′, t′|z, t)hR(z′, t′; z0)

hR(z, t; z0)
(101)

= qR(z′, t′|z, t; z0, 0), (102)
which completes our proof.

B.5 Objective Function of the Equivariant Diffusion Bridge

Lemma B.9. Let X1, · · · ,Xn,Y,Z be random variables. Then the optimal approximation of Y
based on {X}ni=1 is f∗(X1, · · · ,Xn) = argmin

f
E∥Y − f(X1, · · · ,Xn)∥2 = E[Y|X1, · · · ,Xn].

Proof. Denote X = (X1, · · · ,Xn). We show the following decomposition first:

E∥Y − f(X)∥2 = E∥Y − E[Y|X]∥2 + E
[
∥E[Y|X]− f(X)∥2

]
. (103)

We can compute E∥Y − f(X)∥2 directly by

E∥Y − f(X)∥2 = E∥Y − E[Y|X] + E[Y|X]− f(X)∥2 (104)

= E∥Y − E[Y|X]∥2 + E
[
∥E[Y|X]− f(X)∥2

]
(105)

+ E⟨Y − E[Y|X],E[Y|X]− f(X)⟩. (106)
Since

E⟨Y − E[Y|X],E[Y|X]− f(X)⟩ = E [E⟨Y − E[Y|X],E[Y|X]− f(X)⟩|X] = 0, (107)
we have

E∥Y − f(X)∥2 = E∥Y − E[Y|X]∥2 + E
[
∥E[Y|X]− f(X)∥2

]
(108)

+ E⟨Y − E[Y|X],E[Y|X]− f(X)⟩ (109)

= E∥Y − E[Y|X]∥2 + E
[
∥E[Y|X]− f(X)∥2

]
(110)

≥ E∥Y − E[Y|X1, · · · ,Xn]∥2. (111)
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The inequality becomes equality if and only if f(X1, · · · ,Xn) = E[Y|X1, · · · ,Xn]. So the the
optimal approximation of Y based on {X}ni=1 is E[Y|X1, · · · ,Xn], i.e.

f∗(X1, · · · ,Xn) = argmin
f

E∥Y − f(X1, · · · ,Xn)∥2 = E[Y|X1, · · · ,Xn]. (112)

Proposition B.10. The training objective function of Equivariant Diffusion Bridge is:

L(θ) = E(z0,z1)∼qdata(Rt0 ,Rt1 ),Rt∼qR(Rt,t|z1,T ;z0,0)λ(t)∥vθ(R
t, t; z0)−∇Rt log pR(z1, T |Rt, t)∥2,

(113)
where t ∼ U(0, T ). Then the optimal parameter θ∗ = argmin

θ
L(θ) satisfies

vθ∗(Rt, t; z0) = EqR(RT ,T |Rt,t;R0)[∇Rt log pR(RT , T |Rt, t)|R0,Rt]. (114)

Proof. Let L(θ) = Et∼U(0,T )λ(t)Lt(θ), where

Lt(θ) = E(z0,z1)∼qdata(Rt0 ,Rt1 ),Rt∼qR(Rt,t|z1,T ;z0,0)∥vθ(R
t, t; z0)−∇Rt log pR(z1, T |Rt, t)∥2.

(115)
Then by Lemma B.9, vθ(R

t, t; z0) = EqR(RT ,T |Rt,t;R0)[∇Rt log pR(RT , T |Rt, t)|R0,Rt] mini-
mize Lt(θ),∀t ∈ [0, T ]. Since λ(t) ≥ 0, so the optimal parameter θ∗ = argmin

θ
L(θ) satisfies

vθ∗(Rt, t; z0) = EqR(RT ,T |Rt,t;R0)[∇Rt log pR(RT , T |Rt, t)|R0,Rt],∀t ∈ [0, T ]. (116)

B.6 Proof of Theorem 3.4

Theorem B.11 (Chain of Equivariant Diffusion Bridges). Let {(Rt
i)t∈[0,T ]}i∈[N−1] denote a series

of N equivaraint diffusion bridges defined in Theorem 3.3. For the i-th bridge (Rt
i)t∈[0,T ], if we set

(1) hi
R(z, t; z0) =

∫
pR(z′, T |z, t) qi+1

traj (z′|z0)
pR(z′,T |z0,0)dz

′; (2) R0
0 ∼ q0traj(R̃

0),R0
i = RT

i−1,∀0 < i < N ,
then the joint distribution qR(R0

0,R
T
0 ,R

T
1 , · · · ,RT

N−1) induced by {(Rt)t∈[0,T ]}i∈[N−1] equals to
qtraj(R̃

0, ..., R̃N ). We call this process a chain of equivariant diffusion bridges.

Proof. By Theorem 3.3, the transition density function of (Rt
i)t∈[0,T ] satisfies qiR(RT

i |R0
i ) =

qitraj(R
T
i |R0

i ),∀0 ≤ i ≤ N − 1. The ground truth probability density function has the decompo-
sition q0traj(R̃

0)
∏N

i=1 q
i
traj(R̃

i|R̃i−1). Then we use the boundary condition, R0
0 ∼ q0traj(R̃

0),R0
i =

RT
i−1,∀0 < i < N , we have

q(R0
0,R

T
0 ,R

T
1 , · · · ,RT

N−1) = q0R(R0
0)

N∏
i=1

qiR(RT
i |RT

i−1) (117)

= q0R(R0
0)

N∏
i=1

qiR(RT
i |R0

i ) (118)

= q0traj(R
0
0)

N∏
i=1

qitraj(R
T
i |R0

i ) (119)

= qtraj(R
0
0,R

T
0 ,R

T
1 , · · · ,RT

N−1). (120)

So the joint distribution qR(R0
0,R

T
0 ,R

T
1 , · · · ,RT

N−1) induced by {(Rt)t∈[0,T ]}i∈[N−1] equals to
qtraj(R̃

0, ..., R̃N ).
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B.7 Objective of the Chain of Equivariant Diffusion Bridge

Proposition B.12. The training objective function of the Chain of Equivariant Diffusion Bridge is:

L′(θ) = E(z0,...,zN )∼qtraj(R̃0,...,R̃N ),t,Rt′
i
λ(t)∥vθ(R

t′

i , t; zi)−∇Rt′
i
log piR(zi+1, T |Rt′

i , t
′)∥2,

(121)
where t ∼ U(0, N ×T ), i = ⌊ t

T ⌋, t
′ = t− i×T,Rt′

i ∼ qiR(Rt′ , t′|zi+1, T ; zi, 0). Then the optimal
parameter θ∗ = argmin

θ
L′(θ) satisfies

vθ∗(Rt′

i , t; zi) = EqiR(RT
i ,T |Rt′

i ,t;R0
i )
[∇Rt

i
log piR(RT

i , T |Rt
i, t)|R0

i ,R
t
i]. (122)

Proof. Let L′(θ) = Et∼U(0,NT )λ(t)L′
t(θ), where

L′
t(θ) = E(z0,...,zN )∼qtraj(R̃0,...,R̃N ),t,Rt′

i
∥vθ(R

t′

i , t; zi)−∇Rt′
i
log piR(zi+1, T |Rt′

i , t
′)∥2, (123)

where t ∼ U(0, N × T ), i = ⌊ t
T ⌋, t

′ = t− i× T,Rt′

i ∼ qiR(Rt′ , t′|zi+1, T ; zi, 0). Then by Lemma
B.9, vθ∗(Rt′

i , t; zi) = EqiR(RT
i ,T |Rt′

i ,t;R0
i )
[∇Rt

i
log piR(RT

i , T |Rt
i, t)|R0

i ,R
t
i] minimize L′

t(θ),∀t ∈
[0, NT ]. Since λ(t) ≥ 0, so the optimal parameter θ∗ = argmin

θ
L(θ) satisfies

vθ∗(Rt′

i , t; zi) = EqiR(RT
i ,T |Rt′

i ,t;R0
i )
[∇Rt

i
log piR(RT

i , T |Rt
i, t)|R0

i ,R
t
i]. (124)

B.8 Proof of Theorem 3.5

In this paper, we choose the Brownian bridge as our matching target. Let’s first recall the definition
and properties of the Brownian bridge. A Brownian bridge (Xt)t∈[0,T ] with the initial position X0

and the terminal position XT is given by the following SDE

dXt =
XT −Xt

T − t
dt+ σdWt, (125)

where Wt is the standard wiener process. The solution of the Brownian bridge is given by

Xt ∼ N
(
(1− t)X0 + tX1, σ

2t(1− t)
)
. (126)

Next, we recall the definition of the KL Divergence:
Definition B.13 (KL Divergence). The relative entropy (or Kullback–Leibler Divergence) KL(f ||g)
between two probability density functions f(x) and g(x) is defined by:

KL(f ||g) =
∫

f(x) log
f(x)

g(x)
dx. (127)

In general, let P and Q be two probability measures on space X . Assume P is absolutely continuous
with respect to Q then the Kullback–Leibler Divergence between P and Q is defined as follows

KL(P||Q) =

∫
X
log

dP
dQ

dP, (128)

where dP
dQ is the Radon–Nikodym derivative of P with respect to Q.

When we need to compute the KL divergence between the path measures associated with two SDEs,
the Girsanov’s theorem [53] is an useful tool to get the Radon–Nikodym derivative between the two
measure. The precise statements are as follows.
Theorem B.14 (Girsanov’s Theorem). Let Wt be a d-dimensional Wiener process defined on
(Ω,F , (Ft),P). Let Ht be a d-dimensional Ft−adapted process such that∫ T

0

∥Ht∥2dt < ∞,P− a.s. (129)
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Define

Zt = exp

(∫ t

0

Hs · dWt −
1

2

∫ t

0

∥Ht∥2ds
)
. (130)

Assume Zt is a martingale. Define the probability measure Q on FT by

dQ = ZTdP. (131)

Let Mt = Wt −
∫ t

0
Hsds, then Mt is a d−dimensional Wiener process with respect to Q.

In practice, the condition that Zt is a martingale is hard to vertify. So the condition is often replaced
by the Novikov’s condition

E

[
exp

(
1

2

∫ T

0

∥Ht∥2dt

)]
< ∞. (132)

For more discussions and applications of the Girsanov’s theorem, please see [86, 74, 28]. Now we
can give the precise assumptions and proof of Theorem 3.5 using the properties of Brownian Bridge
and Theorem B.14.
Theorem B.15. Assume (R̃i)i∈[N ] is sampled by simulating a prior SDE on geometric states dR̃t =

−∇H∗
R(R̃t)dt+ σdW̃t. Let µ∗

i denote the path measure of this prior SDE when t ∈ [iT, (i+ 1)T ].
Building upon (R̃i)i∈[N ], let {µi

R}i∈[N−1] denote the path measure of our chain of equivariant
diffusion bridges. Assume {µi

R}i∈[N−1] is composed of chain of the Brownian Bridge. Assume the
total time is NT = 1. Under the following assumptions:

• H∗
R(·) : Rd → R is a scalar function with continuous second-order partial derivative;

• The drift function is Lipschitz: there exist a constant L such that

∥∇H∗
R(x)−∇H∗

R(y)∥ ≤ L∥x− y∥,∀x, y ∈ Rd;

• H∗
R(·) satisfies ∥∇H∗

R(x)∥ ≤ K(1 + ∥x∥),∀x ∈ Rd;

• E∥R̃t∥2 < M, ∀t ∈ [0, NT ];

• h(t) = E[H∗
R(R̃t)] is a continuous function on t ∈ [0, NT ];

• The Novikov’s condition:

E

[
exp

(
1

2

∫ NT

0

∥∇H∗
R(W̃t)∥2dt

)]
< ∞;

• The function H∗
R satisfies the following regulaity condition: there exist a constant C such

that ∇2H∗
R(x)− ∥∇H∗

R(x)∥2/σ2 < C,∀x ∈ Rd;

then we have lim
N→∞

max
i

KL(µ∗
i ||µi

R) = 0.

Proof. Let p∗ be the probability density function associated with the ground truth SDE dR̃t =
f∗R(R̃t, t)dt+σdW̃t, R̃0 = R0. Let {(Rt

i)t∈[0,T ]}i∈[N−1] denote a series of N equivaraint diffusion
bridges defined in Theorem 3.4. Then by theorem 3.4, qR(R0

0,R
T
0 ,R

T
1 , · · · ,RT

N−1) induced
by {(Rt)t∈[0,T ]}i∈[N−1] equals to p∗R(R0

0,R
T
0 ,R

T
1 , · · · ,RT

N−1). Additionally, the conditional
probability density function qR(Rt

i|RT
i ,R

0
i ) , for iT ≤ t < (i + 1)T , is associated with the

Brownian bridge

dRt
i =

RT
i −Rt

i

T − t′
dt′ + σdWt, (133)

where t′ = t− iT . Then by the chain rule of KL divergence

KL(µ∗
i ||µi

R) =KL(p∗i (R̃
(i+1)T , R̃iT )||qiR(R̃(i+1)T , R̃iT )+ (134)

Ep∗
i (R̃

(i+1)T ,R̃iT )

[
KL(µ∗

i (·|R̃(i+1)T , R̃iT )||µi
R(·|R̃(i+1)T , R̃iT ))

]
. (135)
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Since p∗i (R̃
(i+1)T , R̃iT ) = qiR(R̃(i+1)T , R̃iT ), we have

KL(µ∗
i ||µi

R) = Ep∗
i (R̃

(i+1)T ,R̃iT )

[
KL(µ∗

i (·|R̃(i+1)T , R̃iT )||µi
R(·|R̃(i+1)T , R̃iT ))

]
. (136)

Since the prior SDE is time homogeneous, we can only consider the case i = 0 without loss of
generality. Let υ be the path measure of the Brownian motion σW̃t on space R. Since the condition
of Theorem B.14 is satisfied, then we can use Theorem B.14 and get

dµ∗
0(·|R̃0) = exp

(
− 1

σ

∫ T

0

∇H∗
R(σW̃t) · dW̃t − 1

2σ2

∫ T

0

∥∇H∗
R(σW̃t)∥2dt

)
dυ(·|R̃0).

(137)
Then we can use the Ito’s formula (Theorem B.1) to simplify the expression

dµ∗
0(·|R̃0) = exp

(
1
σ2 (H

∗
R(σW̃0)−H∗

R(σW̃T )) + 1
2

∫ T

0
(∇2H∗

R(σW̃t)− 1
σ2 ∥∇H∗

R(σW̃t)∥2)dt
)
dυ(·|R̃0).

(138)
To simplify our notation, we denote

ZT = exp

(
1

σ2
(H∗

R(σW̃0)−H∗
R(σW̃T )) +

1

2

∫ T

0

(∇2H∗
R(σW̃t)− 1

σ2
∥∇H∗

R(σW̃t)∥2)dt

)
.

(139)
Let F, g be measurable functions on C[0, T ],Rd, respectively. Then by the disintegration of Wiener
measure into pinned Wiener measures (path measure of the Brownian Bridge), we have

Eµ∗
0(·|R̃0)[Fg( ˜σW

T
)] = Eυ(·|R̃0)[Fg(σW̃T )ZT ] =

∫
Eυ(·|R̃0,R̃T=x)[FZT ]g(x)pT (x|R̃0)dx,

(140)
where pT (x|R̃0) is the transition density function of σW̃t. Let F = 1, we get∫

Eυ(·|R̃0,R̃T=x)[ZT ]g(x)pT (x|R̃0)dx =

∫
g(x)p∗0(x|R̃0)dx. (141)

So we have Eυ(·|R̃0,R̃T=x)[ZT ] = p∗0(x|R̃0)/pT (x|R̃0). Let g = 1, then we get∫
Eµ∗

0(·|R̃0,R̃T=x)[F ]p∗0(x|R̃0)dx =

∫
Eυ(·|R̃0,R̃T=x)[FZT ]pT (x|R̃0)dx. (142)

So we can conclude that

dµ∗
0(·|R̃

0,R̃T )

dυ(·|R̃0,R̃T )
= pT (R̃T |R̃0)

p∗
0(R̃

T |R̃0)
· exp( 1

σ2 (H∗
R(R̃0))

exp( 1
σ2 (H∗

R(R̃T ))
exp

(
1
2

∫ T

0
(∇2H∗

R(·)− 1
σ2 ∥∇H∗

R(·)∥2)dt
)
.

(143)
Note that µi

R(·|R̃0, R̃T ) = υ(·|R̃0, R̃T ). Now we can calculate the KL divergence by

KL(µ∗
0||µ0

R) = Ep∗
0(R̃

T ,R̃0)

[
KL(µ∗

0(·|R̃T , R̃0)||µ0
R(·|R̃T , R̃0))

]
(144)

≤ Ep∗
0(R̃

T ,R̃0)

log
pT (R̃

T |R̃0)

p∗0(R̃
T |R̃0)

·
exp

(
1
σ2 (H

∗
R(R̃0)

)
exp

(
1
σ2 (H∗

R(R̃T )
)
+

CT

2
(145)

= Ep∗
0(R̃

0,R̃t)

[
log

(
pT (R̃

T |R̃0)

p∗0(R̃
T |R̃0)

)]
+ E[

1

σ2
H∗

R(R̃0)]− E[
1

σ2
H∗

R(R̃T )] +
CT

2

(146)

= −Ep∗
0(R̃

0) KL(p∗0(R̃
T |R̃0)||pT (R̃T |R̃0)) +

h(0)− h(T )

σ2
+

CT

2
(147)

≤ h(0)− h(T )

σ2
+

CT

2
. (148)

When N → ∞, T = 1
N → 0. Since h(t) is continuous by our assumption, then KL(µ∗

0||µ0
R) →

0.
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C Derivation of Practical Objective Function

In this subsection, we show the implementation details of our framework. We set T = 1 in all the
experiments.

Matching objective. We design the SDE on geometric states in Proposition 3.1 to be:

dRt = σdWt, with transition density pR(z′, t′|z, t) = N (z0, σ
2(t′ − t)I) (149)

The explicit form of the objective is

∇Rt log pR(z1, 1|Rt, t) = ∇Rt logN (z0, σ
2(1− t)I) =

z1 −Rt

σ2(1− t)
(150)

Then the h-transformed SDE becomes

dRt =
R1 −Rt

1− t
dt+ σdWt, (151)

which is known as the Brownian bridge. The corresponding h-transformed density is

qR(Rt, t|z1, 1; z0, 0) = N (tz1 + (1− t)z0, σ
2t(1− t)I). (152)

In practice, we do not use qR(R0, 0|z1, 1; z0, 0) = δ(R0 − z0) as our initial distribution. We use
qR(R0, 0|z1, 1; z0, 0) = N (z0, σ

2I) instead. Since the solution of the Brownian bridge is given by

Rt = (1− t)R0 + tR1 + σ
√
t(1− t)Z, (153)

where Z ∼ N (0, I), then the marginal distribution of Rt becomes N ((1− t)z0 + tz1, (1− t)σ2I).
We use this distribution to sample geometric state Rt in the training stage.

Trajectory guidance. Similarly, we set T = 1
N , piR(zi+1, T |Rt′ , t′) = N (Rt′ , σ2

i (T−t′)I) when
we use the trajectory guidance. So the h-transformed SDE becomes

dRt
i =

RT
i −Rt

i

T − t
dt+ σidW

t, (154)

which is a Brownian bridge with T = 1
N . Then associated density function is

qiR(Rt′ , t′|zi+1, T ; zi, 0) = N (
t′

T
zi+1 +

T − t′

T
zi, σ

2
i

t′(T − t′)

T 2
I). (155)

Additionally, we set σi decays linearly with respect to i
N , i.e. σi =

N−i
N σ, where σ is a hyperpa-

rameter. Again, in training stage, we set qiR(R0
i , 0|z1, 1; z0, 0) = N (z0, σ

2
i I) as initial distribution,

and the terminal distribution is qiR(R0
i , 0|z1, 1; z0, 0) = N (z1, σ

2
i+1I), which is same as the initial

distribution of the next bridge.

Sampling Algorithm We use the ODE-based method to generate samples at inference time. After
the training process, the neural network vθ is trained as described in Algorithm 3 and Algorithm 4.
When the network is trained without trajectory guidance, we simulate the following ODE to generate
samples:

dRt

d t
= vθ(R

t, t;R0),R0 ∼ qdata(R
t0), t ∈ [0, T ] . (156)

When the network is trained with trajectory guidance, we solve the following ODE to generate
samples:

dRt

d t
= vθ(R

t, t;R⌊ t
T ⌋T ),R0 ∼ qdata(R

t0), t ∈ [0, N × T ] . (157)

Denote a black box ODE solver by Solver(v, t). Solver(v, t) takes a vector field v and a time point
as inputs, then returns the solution of the ODE

dXt

d t
= v(Xt, t;ϕ),X0 = x0, (158)

at the specific time t, i.e. Solver(v, t) = Xt. Combining all the above design choices, we have the
following algorithms for sampling our Geometric Diffusion Bridge (Algorithm 5) and leveraging
trajectory guidance if available (Algorithm 6).
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Algorithm 3 Training

1: repeat
2: (z0, z1) ∼ qdata(R

t0 , Rt1)
3: t ∼ U [0, T ]
4: ϵ ∼ N (0, I)

5: Rt = t
T
z1 +

T−t
T

z0 +

√
t(T−t)

T
σϵ

6: Take gradient descent step on

∇θλ(t)
∥∥∥ z1−Rt

σ2(T−t)
− vθ(R

t, t; z0)
∥∥∥2

7: until converged

Algorithm 4 Training with trajectory guidance
1: repeat
2: (z0, . . . , zN ) ∼ qtraj(R̃

0, . . . , R̃N )
3: t ∼ U (0, N × T ), i = ⌊ t

T
⌋, t′ = t− i× T

4: ϵ ∼ N (0, I)

5: Rt′
i = t′

T
zi+1 +

T−t′

T
zi +

√
t′(T−t′)

T
σiϵ

6: Take gradient descent step on

∇θλ(t)

∥∥∥∥ zi+1−Rt′
i

σ2
i (T−t′)

− vθ(R
t′
i , t; zi)

∥∥∥∥2

7: until converged

Algorithm 5 Sampling

Require: Initial geometric state z0 ∼ qdata(R
t0), a

trained neural network vθ , a numerical ODE solver
Solver(v, t)

1: R0 = z0
2: RT = Solver(vθ(R

t, t;R0), T )
Ensure: RT

Algorithm 6 Sampling with trajectory guidance

Require: Initial geometric state z0 ∼ qdata(R
t0), a

trained neural network vθ , a numerical ODE solver
Solver(v, t)

1: R0 = z0
2: RNT = Solver(vθ(R

t, t;R⌊ t
T

⌋T ), t = NT )
Ensure: RNT

D Experiments

D.1 Equilibrium State Prediction

Dataset. QM9 [79] is a quantum chemistry benchmark consisting of 134k stable small organic
molecules, which has been widely used for molecular modeling. These molecules correspond
to the subset of all 133,885 species out of the GDB-17 chemical universe of 166 billion organic
molecules. In convention, 110k, 10k, and 11k molecules are used for train/valid/test sets respectively.
The geometric conformations that are minimal in energy are provided in the QM9 dataset. The
equilibrium conformation and its relative properties are all calculated at the B3LYP/6-31G(2df,p)
level of quantum chemistry.

Molecule3D [116] is a large-scale dataset curated from the PubChemQC project [67, 71], consisting of
3,899,647 molecules in total, 2,339,788 molecules in training set, 779,929 molecules in the validation
set, 779,930 molecules in the test set, and its train/valid/test splitting ratio is 6 : 2 : 2. For each
molecule, the 2D atom graph, the 3D equilibrium geometric conformation, and four extra properties
are provided. In particular, both random and scaffold splitting methods are adopted to thoroughly
evaluate the in-distribution and out-of-distribution performance. For each molecule, an initial
geometric state is generated by using fast and coarse force field [73, 52] and geometry optimization
is conducted to obtain B3LYP/6-31G* level DFT-calculated equilibrium geometric structure.

Baselines. We comprehensively compare our GDB framework with previous equilibrium confor-
mation prediction methods. Following [111], we use DG and ETKDG algorithms implemented
by RDkit as our fundamental baselines. The benchmark [116] used the DeeperGCN-DAGNN
framework [60] which proposed a deep graph neural network architecture to predict 3D geometric
conformation of the molecule based on its 2D graph structure, and got impressive performance on the
Molecule3D dataset. GINE [39] proposed a method for pretraining GNN to improve the performance
and capacity of GNN. GATv2 [10] proposed a dynamic graph attention mechanism and improved
the performance of the graph attention network on several tasks. GPS [80] proposed a general
framework that supported multiple types of encodings with efficiency and scalability guarantees
in both small and large graph prediction tasks. GTMGC [111] proposed a novel neural network
based on Graph-Transformer (GT) [118, 66, 119, 65] to predict the equilibrium conformation of
the molecule in 3D based on its 2D graph structure.

Metric. Following [116], three metrics are adopted to evaluate predictions of equilibrium states: (1)
C-RMSD: given prediction R̂ = {r̂i}Ni=1 which is rigidly aligned to the ground-truth R∗ = {r∗i }Ni=1
by the Kabsch algorithm [44], Root Mean Square Deviation between their atoms is calculated,

i.e., C-RMSD(R̂, R∗) =
√

1
N

∑N
i=1 ∥r̂i − r∗i ∥22; (2) D-RMSE: based on R̂ and R∗ = {r∗i }Ni=1,

interatomic distances can be calculated, i.e., {d̂i}N
′

i=1 and {d̂∗i }N
′

i=1. Root Mean Square Error be-
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tween these distances is calculated, i.e., D-RMSE({d̂i}N
′

i=1, {d̂∗i }N
′

i=1) =
√

1
N ′

∑N
i=1(di − d∗i )

2; (3)

D-MAE({d̂i}N
′

i=1, {d̂∗i }N
′

i=1) =
1
N ′

∑N
i=1 |di − d∗i |.

Settings. In this task, we parameterize vθ(R
t, t;R0) by extending a Graph-Transformer based

equivariant network [92, 63] to encode both time steps and initial geometric states as conditions.
For training, we use AdamW as the optimizer, and set the hyper-parameter ϵ to 1e-8 and (β1, β2) to
(0.9,0.999). The gradient clip norm is set to 5.0. The peak learning rate is set to 1e-4. The batch size
is set to 512. The weight decay is set to 0.0. The model is trained for 500k steps with a 30k-step
warm-up stage. After the warm-up stage, the learning rate decays linearly to zero. The noise scale σ
is set to 0.5. For inference, we use 10 time steps with the Euler solver [12]. All models are trained on
16 NVIDIA V100 GPU.

D.2 Structure Relaxation

Dataset. Open Catalyst 2022 (OC22) dataset [105] is a widely used dasaset, which has great
significance for the development of Oxygen Evolution Reaction (OER) catalysts. Each data in the
dataset is in the form of the adsorbate-catalyst complex. Both initial and adsorption states with
trajectories connecting them are provided. The dataset consists of 62,331 Density Functional Theory
(DFT) relaxations trajectories, and about 9,854,504 single-point DFT calculations across a range
of oxide materials, coverages, and adsorbates.The training set consists of 45,890 catalyst-adsorbate
complexes. To better evaluate the model’s performance, the validation and test sets consider the
in-distribution (ID) and out-of-distribution (OOD) settings which use unseen catalysts, containing
approximately 2,624 and 2,780 complexes respectively.

Baselines. Following [105], we choose strong MLFF baselines trained on force field data for a
challenging comparison. Spinconv [94] introduced a novel approach called spin convolution to model
angular information between sets of neighboring atoms in a graph neural network and got impressive
performance in molecular simulation tasks. Gemnet [32] proposed multiple structural improvements
for geometric GNN with theoretical insights, which significantly improved the experimental perfor-
mance as well. Based on Gemnet’s framework, Gemnet-OC [34] modified the architecture of the
network and improved the experimental performance on more diverse tasks.

In [105], there are still other baseline setting. [105] introduce a large-scale dataset Open Catalyst 2020
(OC20), which consists of 1,281,040 Density Functional Theory (DFT) relaxations and 264,890,000
single point evaluations to help training the baseline model. [105] presented baselines using both
OC20 and OC22 data in training stage and baselines using only OC20/OC22 for comparison.

Metric. Following [105], we use the Average Distance within Threshold (ADwT) as the evaluation
metric, which reflects the percentage of structures with an atom position MAE below thresholds.
To be more precise, the ADWT metric across thresholds ranging from β = 0.01Å to β = 0.5Å in
increments of 0.001Å. The computation of ADwT metric is to count the percentage of structures
with an atom position MAE below the threshold.

Settings. In this task, We parameterize vθ(R
t, t;R0) by using GemNet-OC [34], which also serves

as a verification that our framework is compatible with different backbone models. For training, we
use AdamW as the optimizer, and set the hyper-parameter ϵ to 1e-8 and (β1, β2) to (0.9,0.999). The
gradient clip norm is set to 10.0. The peak learning rate is set to 5e-4. The batch size is set to 64.
The weight decay is set to 0.0. The model is trained for 200k steps. After the warm-up stage, the
learning rate decays linearly to zero. The noise scale σ is set to 0.5. The trajectory length is set to
N = 10. For inference, we also use 10 time steps with the Euler solver [12]. All models are trained
on 8 NVIDIA A100 GPU.

33



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 3, 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed several future directions in Section 3 and 6
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions and complete proofs are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4 and Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code and model checkpoints will be publicly available after the submission
is acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: There exists little randomness in all the experiments of this submission, which
means that results of using different random seeds are almost the same.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 4 and Appendix D
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research in this work conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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