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ABSTRACT

We address the problem of maximum likelihood estimation (MLE) for finite mix-
tures of elliptically distributed components, a setting that extends beyond the
classical Gaussian mixture model. Standard approaches such as the Expecta-
tion—Maximization (EM) algorithm are widely used in practice but are known
to suffer from local optima and typically require strong assumptions (e.g., Gaus-
sianity) to guarantee convergence. In this work, we use the Bayesian Optimiza-
tion (BO) framework for computing the MLE of general elliptical mixture mod-
els. We establish that the estimates obtained via BO converge to the true MLE,
providing asymptotic global convergence guarantees, in contrast to EM. Further-
more, we show that, when the MLE is consistent, the clustering error rate achieved
by BO converges to the optimal misclassification rate. Our results demonstrate
that BO offers a practical, flexible, and theoretically sound alternative to EM for
likelihood-based inference in mixture models, particularly in complex and/or non-
Gaussian elliptical families where EM is difficult to implement and/or analyze.
Experiments on synthetic and real data sets confirm the effectiveness and practi-
cal applicability of BO as an alternative to EM.

1 INTRODUCTION

Finite mixture models are a fundamental ingredient in statistical modeling for applications such as
clustering, density estimation, and anomaly detection (McLachlan et al., 2019). A central task in
this context is the maximum likelihood estimation (MLE) of the mixture parameters, which provides
a principled and statistically efficient route to inference in general models.

Gaussian mixture model (GMM) is the class of mixture models that has received most of the atten-
tion so far. However, many real datasets exhibit heavy tail distributions, skewness and/or robustness
requirements that cannot be adequately captured by a Gaussian model. Mixtures of elliptical dis-
tributions, such as Student’s t or more general families, provide a natural extension that models
better such constrains. However, estimating such mixtures is a longstanding challenge: the likeli-
hood surface is highly non-convex, and standard algorithms are prone to local optima. Maximizing
the likelihood of a finite mixture model is generally intractable because of the presence of latent
component assignments.

Expectation-Maximization (EM) algorithm is currently the standard approach for maximum like-
lihood estimation in finite mixture models. It iteratively alternates between computing posterior
responsibilities for each component (E-step) and updating the parameters to maximize the expected
complete-data log-likelihood (M-step). The EM algorithm comes with two important advantages for
Gaussian mixtures: it is computationally efficient and it admits closed-form updates. Unfortunately,
these advantages do not extend in general to non-Gaussian distributions, such as the Student’s t or
skewed families. In particular, the presence of heavy tails or skewness makes the M-step much more
complex, often requiring the introduction of auxiliary variables to preserve tractable updates. For
Student’s t mixture models (SMM), Peel & McLachlan (2000) address this issue by introducing a
latent scale variable for each observation, which allows the complete-data log-likelihood to resemble
that of a Gaussian mixture with scaled covariances. This formulation leads to a robust variant of the
EM algorithm that improves estimation under outliers or heavy-tailed data. Similar latent-variable
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representations and modified EM schemes have been proposed for skewed distributions, but they
often involve additional approximations or numerical steps, increasing the complexity of the algo-
rithm and making it more sensitive to initialization (Lin, 2010; Lee & McLachlan, 2016). These
issues with EM motivate the exploration of alternative optimization strategies for mixture models
that are more complex than GMM.

In this work, we propose Bayesian Optimization (BO) as a principled alternative for computing the
MLE in mixture models. BO is a global optimization framework designed for black-box objectives,
combining surrogate modeling with adaptive exploration—exploitation strategies. These features
make BO particularly well-suited to the likelihood maximization problem, where gradients may be
unreliable or even inaccessible, and where the objective landscape is highly multi-modal. Impor-
tantly, and contrary to EM, BO is designed to escape local traps and to adaptively refine the search
for the global maximum. However, optimizing likelihoods of general elliptical mixtures using BO
remains challenging in practice: the parameter space includes positive semidefinite shape matrices,
and the likelihood is invariant under permutation of the mixture components, resulting in multiple
equivalent global optima.

We overcome these difficulties and we establish rigorous convergence guarantees for BO in the
context of elliptical mixture models. Specifically, we show that the sequence of estimates produced
by BO converges to the MLE. Moreover, when the MLE is consistent, we prove that the clustering
risk of the BO-based estimator converges to the asymptotic optimal misclassification rate. These
are the first asymptotic global convergence guarantees of a practically implementable algorithm for
mixtures of general elliptical families.

We complement these theoretical results with experiments on data generated from mixtures of Stu-
dent’s t distributions. We find that BO consistently outperforms standard clustering algorithms such
as k-means, spectral clustering, and EM, which confirms the practical benefits of BO with highly
non-convex likelihood landscapes. We next make experiments on real-world datasets, which high-
lights the flexibility and robustness of BO in applied settings. Overall, our work establishes BO as
a practical and theoretically grounded tool for maximum likelihood estimation in complex mixture
models.

The paper is structured as follows. Section 2 reviews background material on mixture models and
BO. Section 3 presents our approach for using BO to compute the MLE and establishes the corre-
sponding theoretical guarantees. Section 4 reports the results of our numerical experiments. Finally,
Section 5 concludes the paper and outlines directions for future work.

Notations We denote by Sy, the group of permutations over [k] = {1,--- , k}. Fora vector u € R*
and a permutation 0 € Sg, we let 0 o u = (ug(l), S ,ug(k)), that is, the vector u with its entries

permuted according to 0. We let Sfﬁ . denote the cone of d x d positive definite matrices, and Ak—1
the probability simplex, i.e., AF~1 = {x € [0,1]%: S2F_ «, = 1}.

2 BACKGROUND

2.1 FINITE MIXTURE MODELS

We consider a parametric family 7 = {f(z;0),0 € @} of probability distributions over R?. We
suppose that X C R? and that the parameter space © is equipped with a metric p. A finite mixture
model with k > 1 components is defined by the probability distribution M such that

M (z;7,0) Zwafxﬂ (1)

where 7 € A*~1 is the vector of the mixing proportions and § € O are the parameters associated to
the components of the mixture. We will always assume that (i) the mixture family is identifiable, that
is, if M (z;7,6) = M(x;7’,0") for almost all x, then there exists a permutation ¢ € Sy, such that
7m' = oomand 8’ = oo#, and (ii) that the mixture has exactly k components, that is min,¢ (k] Ta > 0.

A common choice for the parametric family F is the set of multivariate Gaussian distributions, lead-
ing to the widely used Gaussian Mixture Model (GMM). However, we also consider more general
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families of distributions for the component densities, such as the multivariate Student’s t-distribution,
which introduces greater robustness and flexibility. Tables 1 and 2 in Appendix B summarize some
common non-skewed and skewed parametric distributions, and we refer to Azzalini & Capitanio
(2003); Sahu et al. (2003); Lin (2010) for additional details on skewed elliptic distributions and their
applications.

Parameter Estimation. A long line of recent work has investigated the convergence rates of finite
mixture models under varying degrees of identifiability of the true mixing distribution M* (Nguyen,
2013; Ho & Nguyen, 2016a;b; Heinrich & Kahn, 2018). These studies typically focus on the Maxi-
mum Likelihood Estimator (MLE), which, given an i.i.d. sample X1, - -- , X, from M*, is given by

MMEE(z) = Zszl FMLE £ (4. gMLE) \where

n k
(FMEE, GMEE) = argmax ) log <Z mf(Xi;%)) 7 )

0cO i
wegk_l =t

a=1

where O is a compact subset of ©F that contains #* and on which the log-likelihood is bounded.
In particular, Ho & Nguyen (2016b) show that, under technical assumptions on the parametric fam-

ily 7, we have E [Wl(M*, M};ALE)} < (logn/n)"/? and E |:W2(M*, M}XILE)} < (logn/n)'/4,
where W, is the Wasserstein distance of order 7.

The EM algorithm is widely used for parameter maximum likelihood estimation in Gaussian mixture
models. While extensions of EM have been proposed for more complex families (such as Student
or skewed-Student mixtures, as noted in the introduction), rigorous theoretical guarantees remain
largely restricted to simpler cases. In fact, even for mixtures of three isotropic, well-separated Gaus-
sians, Jin et al. (2016) showed that the likelihood surface contains arbitrarily bad local maxima,
implying that EM with random initialization is likely to get trapped in suboptimal solutions. Nev-
ertheless, some theoretical guarantees have been established in special settings. For instance, in
mixtures of two isotropic Gaussians, Wu & Zhou (2021) proved that EM with random initialization
converges within O(4/n) iterations with high probability and achieves parameter estimates at the
minimax rate. Moreover, under suitable separation conditions on the components, Zhao et al. (2020)
demonstrated that EM, when initialized sufficiently close to the true centers, converges linearly to
the global optimum of the log-likelihood.

Bayes Optimal Clustering An i.i.d. sample Xi,---,X,, from a mixture M*(-;7*,0*) can
be augmented with latent variable zj,---,z) such that z7,---,z; is an i.id. sample from
Multi([k], 7*) and X; | zj ~ f(-]0},). The task of recovering the latent variables 27, - - - , z;; given
the observation of X, --- , X, is called clustering. The misclustering error of an estimator Z of z*
is defined by the fraction of disagreements between 2 and z*, up to a global permutation of the labels

of Z, i.e.,

1
loss(2*,%2) = — min 1z #0(%)}, 3)
n cE€Sy
1€[n]
where S, denotes the group of permutations on [k]. When the mixture parameters 67, - - - , 5 are

known, Dreveton et al. (2024) showed that the expected misclustering error of the best estimator is
asymptotically of the order exp (— min,_se(5] Chernoff (67, 6;)), where Chernoff (67, 6;) denotes
the Chernoff information between the probability densities f(-;8}) and f(-; 6} ), given by

Chernoff(6;,6;) = —log ( i(nofl) / I 00) 175 0{,‘)d:v> . 4)
se(0,

When the mixture parameters are unknown (which is typically the case in practice), Lu & Zhou

(2016) show that the standard Lloyd’s algorithm achieves this exponential rate if M* is a mixture

of isotropic Gaussian distributions. More recently, Chen & Zhang (2024) and Dreveton et al. (2024)

demonstrate that a modified Lloyd’s algorithm attains the same rate in a mixture of anisotropic

Gaussian distributions and in a mixture of Laplace distributions, respectively.
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2.2 BAYESIAN OPTIMIZATION

BO is a framework that has proven to be successful at optimizing a costly-to-evaluate black-box
function f in a broad and diverse range of applications (Marchant & Ramos, 2012; Wang et al.,
2014; Bardou et al., 2025). Using (a) a Gaussian Process (GP) as a surrogate model for the black-box
function f, a BO algorithm exploits (b) an acquisition function to optimize f in an online fashion.
This policy is (c) guaranteed to globally maximize f in the long run under mild assumptions. In this
section, we discuss (a), (b), and (c) in detail.

(a) Surrogate Model. The goal of a BO algorithm is to maximize a black-box objective function

f:0 Cc RP — R, where O is a compact search space. To do so, it leverages a stochastic process,
which is in general a GP (Williams & Rasmussen, 2006), as a surrogate model for f. Formally, it

operates under the assumption that f ~ GP(u, k), where p : O >Randrk: O x © — R are the

prior mean and covariance of the GP, respectively, such that for any 6,60’ € ©, (0) = E[f(6)] and
k(0,0") = Cov [f(0), f(€')]. Most definitions of covariance functions « include hyperparameters
that are inferred with MLE from the observations in D;. Without loss of generality, we set that for
any 0 € ©, u() = 0 and x(0, 0) = 1. Given a dataset D; = {(0;,y:) }ic[) Of ¢ observations, where

yi = f(6;), f|Dy is also a GP. In particular, for any 6 € ©, f(8)|D; ~ N (114(0), 07 (8)) where
pe(0) = K(6,D2) " K(Dy, Dy) 1y, ®)
O-tQ(e) = K’(e7 9) - KJ(97Dt)TH(Dt7Dt)_1K(97Dt)7 (6)
where '%(Xv X/) = (,‘1(91‘, ej))eie)(,gjgx/ and y= (y17 t ayt)‘

Note that assuming f ~ GP(0, k) is mild because GPs enjoy a universal approximation property.
As an example, the posterior mean (5) of a GP equipped with the Gaussian (RBF) kernel can ap-
proximate any continuous function given a sufficiently large dataset D, (Micchelli et al., 2006).

(b) Acquisition Function. At iteration ¢ 4+ 1, a BO algorithm must acquire a new observation
(0¢41,y++1) that improves the quality of the surrogate model (exploration) and such that y;; is
close to max, g p¢(f) (exploitation). To find a trade-off between these two objectives, a BO al-

gorithm uses an acquisition function ¢, : © — R and sets 041 = argmax, g @¢(6). There are
many popular acquisition functions, such as GP-UCB (Srinivas et al., 2012), Expected Improve-
ment (Mockus, 1994) or Knowledge Gradient (Gupta & Miescke, 1996).

(c) Asymptotic Performance. The optimization error of a BO algorithm at iteration ¢ is measured
by the instantaneous regret 7y = f(6*) — f(6;) > 0, where 0" = arg max, g f(0). The cumulative

regret Ry = ZL r¢ quantifies the optimization error from the beginning of the optimization
process and up to iteration 7. A BO algorithm is said to have the no-regret property if it satisfies
limyp_o Ry /T = 0, thatis, Ry € o(T). A no-regret BO algorithm is guaranteed to globally
maximize its objective function f asymptotically. As an example, a BO algorithm using GP-UCB
and a Gaussian kernel as its covariance function x is no-regret since its cumulative regret Ry €

&) (\/ TlogD + T) (Srinivas et al., 2012), where O denotes asymptotics up to poly-logarithmic

factors. Equivalently, the average regret Ry /T is in @) (\ /(logP+1 T) / T) .

3 COMPUTING THE MLE USING BAYESIAN OPTIMIZATION

3.1 PROBLEM FORMULATION

Given an i.i.d. sample (Xy,---,X,,) from a finite mixture distribution I" with & components be-
longing to a parametric family J, our goal is to use a BO algorithm to find the parameters 6" € ©
that maximize the likelihood L given in (2). Formally, 0* = arg max, g L(X;0), where © C RP

is a D-dimensional compact search space. In this section, we rigorously specify O, the covariance
function x and the information we leverage to reduce the problem complexity.
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The search space © = X’;Zl 0, is the cross-product of the search spaces ©, for parameters of the
a-th component of the mixture distribution, for all a € [k]. As described in Table 1, a d-dimensional
elliptical distribution is defined by a d x d shape matrix ¥,, a d-dimensional location vector fi,,
and possibly one additional distribution-specific parameter (v, for Student’s t or 5, for generalized
Gaussian). For skewed distributions, we also add d real-valued skewness parameters Aq1,- - , Agq
(see Table 2). To compute the covariance between two likelihood values L(X,60) and L(X,6’),

where 0,0’ € (:), we use the universal Gaussian kernel defined by

_n2
k(0,0") = o?exp (-”9 %f ”2> : (7)

where the lengthscale ¢ is the kernel hyperparameter.

Dimension of the Search Space. Let § € Z denote the number of distribution-specific param-
eters in the parametric family (such as the degree of freedom for the Student’s t distribution). Be-
cause 4 € R? and ¥ € R%*?, we can naively see O as a D-dimensional search space, where
D = k(d? + d + 6) for elliptic distributions. Skewed distributions add a diagonal matrix A € R4*¢
to the model, bringing us to D = k(d? + 2d + &). However, the shape matrix Y. is necessarily pos-
itive definite (PD). Using Cholesky’s decomposition, one can write > = LLT, where Lisad x d
lower triangular matrix with nonnegative diagonal entries and only d(d + 1) /2 nonzero coefficients.
Learning L instead of 3 allows us to factor the PD constraint directly into the search space and, by
doing so, to reduce the dimensionality D of the search space © to

Deptiptic = k d(d+1)/2 d )
elliptic \ , ( ( + )/ + N , + N )
Number of clusters Shape 3; Location p1;  Extra parameter
Dy = k dd+1)/2 d ) d
skewed R , ( ( + )/ + ~— + —~— + ~—~ ),
Number of clusters Shape X, Location pt, ~ Extra parameter  skewness parameters

for elliptic and skewed distributions, respectively. These dimensions scale quadratically in d (but
only linearly in k). We show below how we can leverage some information about the problem to
significantly speed up the search for the maximal argument 8* of the likelihood L.

Permutation Invariance of the Likelihood. The likelihood L of the mixture model is invariant up
to a permutation of the elliptical distributions parameters. Formally, for any § = (61,--- ,0;) € ©
and any permutation o € Si, we have L(X,0) = L(X, 0 o #). Encoding this symmetry into the
kernel function used by a BO algorithm drastically increases its sample efficiency, as recently shown
by Brown et al. (2024). To do so, we follow their recommendations and use the kernel

1
rs(0.0) = o > k(6,0)), (8)

T oeS(k)

where k is defined in (7).

Expert Knowledge. Finally, we can easily factor prior knowledge about the clusters. As a
simple example, consider the search space ©! for the location vector j; of the ith elliptical
distribution. Without any prior knowledge, the BO algorithm must use the naive search space

(:)z“ = an:l [min;e(n) Xjm, max;e(n) Xjm]. These loose bounds could be refined by an expert’s

knowledge on p; to reduce the hypervolume vol(©) of the search space and speed up the search for
the optimal clustering 6*.

3.2 ALGORITHM AND PRACTICAL CONSIDERATIONS

In Algorithm 1, we use the GP-UCB acquisition function ¢;(6) = u(0) + 8, / %04(6) introduced
by Srinivas et al. (2012) to guide the search for the global maximizer of the log-likelihood L. Here,
¢ and o2 are defined in (5) and (6), respectively. Using GP-UCB, we are able to provide formal
guarantees about the parameters recommended by Algorithm 1 (see Section 3.3).

Now, let us discuss a few practical aspects when running Algorithm 1.



Under review as a conference paper at ICLR 2026

Algorithm 1: BO for Clustering in Finite Mixture Models

1: Input: number of clusters k, search space é horizon T, finite sample X, sequence ( Bt)t e

2: Init dataset Dy = ()
: fort e [T]do
1/2
Select 0; = argmaxy g p¢—1(0:) + B, 10¢—1(0¢)
Compute y; = L(X;6;)
Update dataset Dy = D1 U {(0,y+)}
end for
: Return 7 = arg max,_g pr(6)

(98]

AN A

Computational cost. The computational cost is dominated by the computation of (5) and (6), both
of which require the inverted ¢ x ¢ covariance matrix #(D;, D;). This requires O(t3) operations.

Choosing ; and 7. For the guarantees provided in Section 3.3 to hold, 3; should be defined as
in Theorem 2 of Srinivas et al. (2012). However, in practice, this definition of g; leads to over-
exploration of ©. To achieve better performance in finite time horizons 7', we set 3; = %1og(2t).
Furthermore, the time horizon 7" should be chosen as large as possible, since the guarantees provided
in Section 3.3 are asymptotic (i.e., they hold when T" — +-00).

Recommended mixture parameters. Algorithm 1 returns the Bayes’ optimizer
argmax,cg (). These are the optimal mixture parameters given the GP surrogate at
time T'. Alternatively, one could also return the best mixture parameters explored so far, which are
0¢«, where t* = arg max; ) L(X; 0;).

3.3 THEORETICAL GUARANTEES

In this section, we leverage the no-regret guarantee provided by the BO framework to formulate

asymptotic guarantees on the recovery of GMLE by Algorithm 1. Recall that p is a metric over
the space of parameters ©. To account for the permutation of cluster labels in the recovery of the
mixture parameters, we define for any 6,6’ € ©

k
1001 = jag, 30 (0ns o)

where the inf is taken over all the permutations o of [k].

The following proposition establishes the convergence of the BO-based estimator to the MLE, both
in parameter space and in distribution under the Wasserstein metric.

Proposition 1. Let 7* € A1 and 6* € ©F, and let X1, - - - , X,, be an iid sample from the mixture
M (;7*,0%). Let (77,07 be the parameters returned by Algorithm 1 on the time horizon T, and
suppose that O™F s uniquely defined (up to permutations). Then,

lim |67 — 6MEE|| = 0.
T—00
Moreover, if the moment of order r > 1 of the parametric family is finite, we also have

lim E [Wr (M(-;frT,éT),M(-;erLE,éMLE)] - 0.

T—o0

The condition on the finiteness of the r-th moment is required to ensure that the Wasserstein dis-
tance is both well defined and continuous.! This condition is satisfied for families with sufficiently
fast-decaying tails, such as generalized Gaussians. For families with polynomially decaying den-
sities, one must ensure the decay is strong enough; for instance, in the Student’s t distribution, the

'Recall that if (X, d) is a Polish space and P, (X’) denotes the set of probability measures with finite r-th
moment, then W, is continuous on P, (X); see, e.g., (Villani et al., 2008, Corollary 6.8).
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degrees-of-freedom parameter » must exceed r. Note however that this condition is not linked to the
performance of Algorithm 1, but to the well-definiteness of the Wasserstein metric. In particular, the
first statement of Proposition 1 does not require any extra condition on the moments of the family.

We now focus on the clustering obtained using a predicted 6 instead of the true mixture parameters

0*. More precisely, given estimated parameters 6= (éh e ,ék), we consider the clustering rule
Vi e [n]: 2(0) = argmax f(X;;0,). )
a€lk]

We will make the following assumption on the likelihood ratios.

Assumption 1 (Uniform integrability of likelihood ratio). For every 0, 0" € O, there exists a neigh-
borhood N g gy of (6,0") such that the family {f(x, ) '7;((2;%)); 0,0") e N(gygl)} is uniformly inte-
grable.

Assumption 1 is required to ensure the convergence of integrals [ f(x; 6}) (;EZZ%) dz, when éf

and ég are sequences of estimators, converging point-wise to 8, and 8], respectively. These integrals

naturally appear using a Chernoff bound to control the expected loss of (). Under Assumption 1,
these integrals converge to Chernoff (67, 6} ), which controls the optimal error rate, as established in
the following proposition.

Proposition 2. Suppose that, for almost every v € X, 0 — f(x;0) is continuous and strictly

positive. Suppose also that Assumption 1 holds. Let 2(07) be the clustering obtained using the

clustering rule (9) where the sequence of estimators 0T = (0 ,--- | 0F) satisfy Tlim 16T — 0% =
— 00

0. Then, there exists a sequence nr such that limp np = 0 and

*

E [IOSS(ZA:T, Z*)] < 6_(1+7]T)mina;ébe[k] Chernoff(ez,Gb).

We recall from Dreveton et al. (2024) that e~ ™inazbe(s) Chernoff(05,65) characterizes the optimal
asymptotic error rate, such that no algorithm can achieve a lower error rate when n is large. Proposi-
tion 2 states that the classification rule (9) achieves this optimal error rate whenever the sequence of
estimators 7 converges to 0* (up to a permutation of the cluster labels). Hence, this result is quite
general as it can be applied to any estimator (and not only the estimates obtained by BO). Moreover,
Proposition 1 shows that the estimates 67 obtained by BO converge to the MLE estimate. There-
fore, the rate at which the expected loss of the clustering rule (9) using the estimates 07 returned by
Algorithm 1 decreases is optimal whenever the estimate obtained by the MLE are consistent. This
latter condition typically requires technical conditions on the mixture, such as strong identifiability,
and we refer the reader to (Nguyen, 2013; Ho & Nguyen, 2016a;b; Heinrich & Kahn, 2018).

We conclude this discussion by noting that Assumption 1 is a mild assumption, and is in particular
implied by the integrability of the likelihood-ratio (easier to check in practice). In particular, we
show in Lemma 6 in the Appendix that the multivariate Student’s t family satisfies Assumption 1.

4 NUMERICAL RESULTS

In this section, we evaluate the performance of several clustering algorithms on both synthetic
and real-world datasets. Specifically, we compare Lloyd’s algorithm, the EM algorithm for Gaus-
sian mixture models (GMM) and for Student’s t mixture models (SMM), spectral clustering (SC),
and Algorithm 1. Lloyd’s, GMM, and SC are employed through their implementations in the
scikit-learn library with default parameters; the implementation of SMM is taken from the
package student-mixture? and the algorithm is described in Peel & McLachlan (2000). Fi-
nally, Algorithm 1 is implemented with BOTorch (Balandat et al., 2020), a popular BO library. The
code to reproduce our simulations is available in an anonymous online repository.

2Accessible at https://pypi.org/project/student-mixture/.

3Accessible at https: //anonymous.4open.science/r/Estimation-and-Clustering-i
n-Finite-Mixture-Models—-Bayesian-Optimization-as—-an-Alternative-to-EM-5
DO6.
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4.1 STUDENT’S T MIXTURE MODEL

We first consider synthetic data sets of SMM with n = 1000 points in R? (d = 2) partitioned into
k = 2 clusters of same size. We fix 11 = (2, 1) and p2 = (0, 2) and consider the scenarios:

1.y =vy=25and ¥ = ¥y = (i T) , and we vary ¢ from —0.9 to 0.9;

2. ¥ =3 = (0%5 Of) and we vary vy = vp = v from 1 to 10;

1 05

3. 21 = IQ and v = 2, while 22 = (0 5 1

) and we vary vy from 1 to 10.

The accuracy (defined as 1 — loss(z*, 2), where z* and Z are the true and the predicted cluster
memberships, respectively) and the Wasserstein distance of order 2 between the true and the esti-
mated mixture obtained by each algorithms for each scenario are given in Figure 1 and Figure 2,
respectively.

We find that fitting a SMM with BO consistently outperforms competing methods, both in terms of
clustering accuracy and parameter estimation. In contrast, EM-based approaches tailored to SMM
often break down when the Student’s t components are heavy-tailed.

Specifically, in the first scenario, the Student’s t distribution has a small degrees-of-freedom parame-
ter v, making the Gaussian approximation invalid (recall that as ¥ — oo, the Student’s t distribution
converges to a Gaussian). In this regime, an EM algorithm fitting a GMM performs poorly. Simpler
methods such as k-means can sometimes recover clusters, particularly when the components are
isotropic.* In the second scenario, fitting a GMM works well when v is sufficiently large, but fails
otherwise. The third scenario combines features of the previous two: the first Student component is
isotropic with a small v, while the second is anisotropic with v5 varying. Here, we observe that the
presence of even a single non-Gaussian component is enough to cause EM (GMM) to fail.

Accuracy
Accuracy
Accuracy

—e— SMM (BO)
GMM (EM)

—4— K-Means

—— Spectral Clustering

—%— SMM (EM)

—e— SMM (BO)
GMM (EM)

—— KMeans

—s— Spectral Clustering

—— SMM (EM)

—e— SMM (BO)
GMM (EM)

—— KMeans

—s— Spectral Clustering

—— SMM (EM)

-075 -050 -025 000 025 050 075 2 a 6 8 10 2 a 6 8 10
[ v Vs

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 1: Performance of the different algorithms for clustering SMMs. Results show the clustering
accuracy, averaged over 10 realizations, and error bars show the standard errors.

4.2 SKEWED STUDENT’S T MIXTURE MODEL

Next, we consider a setting of a mixture of a skewed and a non-skewed Student’s t distribution. Both
019 019>, degree-of-freedom v = 2.5 and respective locations
w1 = (0,0) and pe = (2,2). The first distribution has a skewness vector (A, A), where A varies
from —10 to 10, while the second distribution is non-skewed.

distributions have shape ¥ =

Figure 3 demonstrates that BO consistently delivers the best performance, both in clustering accu-
racy and in Wasserstein distance. This advantage holds across nearly all values of A, including the
challenging regime A € [0, 3] where the clusters are highly non-separable. Spectral clustering also

*As shown in Chen & Zhang (2024), k-means achieves optimal clustering for isotropic GMMs but is subop-
timal in the anisotropic setting. Our experiments confirm this limitation, as k-means fails to recover anisotropic
mixtures. Nonetheless, it retains some effectiveness when clustering heavy-tailed but isotropic mixtures.
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Figure 2: Performance of the different algorithms for estimating SMMs. Results show the Wasser-
stein distance, averaged over 10 realizations, and error bars show the standard errors.

shows robust behavior when the clusters are separable, reliably recovering the clusters, whereas the
remaining methods exhibit more erratic performance, achieving competitive results only in narrow
parameter ranges.

0.8 { == SMM (B0)
GMM (EM)

= KMeans

~#— Spectral Clustering

0.7 == SMM (EM)

v a
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Accuracy

Wasserstein Distance
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(a) Accuracy (b) Wasserstein distance

Figure 3: Performance of the different algorithms for estimating mixtures with skewed components.
Results show the (a) accuracy and (b) the Wasserstein distance, averaged over 10 realizations, and
error bars show the standard errors.

5 CONCLUSION

In this work, we proposed a BO algorithm (Section 3.2) as an alternative to the EM algorithm
for MLE and clustering in finite mixtures of elliptical distributions. Theoretically, we established
that the sequence of BO estimates converges to the MLE up to label permutation, and that the
resulting clustering achieves asymptotically the optimal misclassification rate under mild regularity
assumptions (Section 3.3). To the best of our knowledge, these constitute the first global convergence
guarantees for a practically implementable algorithm in this setting. Empirically, BO consistently
outperforms EM, Lloyd’s algorithm, and spectral clustering on challenging synthetic Student’s ¢
mixtures, particularly in heavy-tailed and anisotropic regimes where standard methods are known to
fail (Section 4.1). Finally, we showed that the BO framework extends naturally to broader clustering
tasks, as illustrated by its strong performance on skewed Student’s ¢ mixtures (Section 4.2).

Beyond the results presented here, the versatility of the BO framework may be used to address other
challenging clustering problems. As an example, online clustering (i.e., datapoints come sequen-
tially as described in Cohen-Addad et al. (2021)), remains a challenging task because the optimized
likelihood L, changes constantly with the online sample X;. Time-varying Bayesian Optimiza-
tion (TVBO) can account for time-varying objective functions and successfully optimize them in an
online fashion (Bardou et al., 2024). We keep the time-varying extension of the method described
in this paper as a future work.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Proof. Denote by L(X;m,0) = > .logM(X;;m,0) the likelihood function of the sample
Xy, , X, with respect to the mixture parameters 7, §. Srinivas et al. (2012, Theorem 2) ensures

that Rp = 3.1 L(X; #MLE gMLE) _ [(X: 7,,0,) € O <\ / TlogD“(T)) with high probability
(w.h.p.). Because the MLE is uniquely defined (up to permutations), the sub-linearity of Ry en-
sures that the estimation 7 returned by Algorithm 1 defined by 07 = argmax,_g pr(6) satisfies
67 —s GMLE up to permutations.’ More precisely, there exists a sequence (o7)7¢z , of permutations
such that

k
lim p (éf,éMLE ) = 0.

T—o0 or(a)

Let » > 1 be such that the r-th moment of M is finite. By continuity of the Wasserstein metric

(see for example Villani et al. (2008, Corollary 6.8)), the convergence o o 6T — OMLE for some
sequence of permutations (o) established above implies that

lim W, (M(30r 0, 0r 06), M(5 71, 4MIF)) = o,

T—o0

Moreover, because the distribution M is permutation-invariant (that is, M (-;7,0) = M(-;ocom, 00
6) for any permutation o), we obtain

lim W, (M(.;ﬁ.T7éT)’M(,;ﬁ.MLE,éMLE)) -0
T—o00

In other words, the mixture distribution defined by the BO estimates converges, in Wasserstein
distance, to the MLE mixture distribution, without the need to relabel the components.

Finally, since O is compact, the continuity of the Wasserstein metric ensures that
supg grce Wr (M (+;7,0), M(-;7',0") < oo. Therefore, by the dominated convergence theorem,

lim B [W, (M(5#7,67), M(5#M9, 0E) | = B [ lim W, (M(577,67), M(; 708, GNP

T—o0 T—o0

= 0.

In other words, the expected Wasserstein distance between the estimated mixture distribution and
the MLE distribution also vanishes asymptotically. O

A.2 PROOF OF PROPOSITION 2

Proof. Denote by o the optimal permutation, that is, o7 = argmin, g, [|6* — 67 ||. Without loss
of generality, we suppose that o7 is the identity. Equation (3) yields that

n

EMMﬂﬁﬂsHﬂZu£¢m]iZPW#ﬁk

n :
=1

5 A sublinear Ry does not ensure that 7, = L(X; #MVE gMEEY — (X #,,0,) — 0 point-wise. However,
the Bayes’ optimizer " returned by Algorithm 1 at time horizon T, that is 7 = argmax, g pr(0) does
satisfy L(0MLE) — L(T) — 0 or, equivalently, 7 — g™ME,

12
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Fix ¢ € [n] and observe that

(T 25) = { : argmaXf(Xi;ébT)}

belk]
= {Be W\ (o1} F(X D) > F(X 0%}
Denote by a = z; the true cluster of . By a union bound,
Pl 2] < > B (f(X00) > £(xi0D))
be[k]\{a}

T T
(k= 1), max B (7(X:0]) > f(X:0))

Denote Py- () = P(-; ¢;;) and observe that

IN

P (F(Xs07) > F(Xi00)) = Boy (FOX500) > £(X:0D)).
Therefore,

s B 4T 4T
Blloss(z,2%)] < (k= 1), max By (f(X,eb) > f(X; 00 )). (10)

We have, for any s > 0,
. . slog L%
Py- (f(X;ebT) > f(X;eff)) Py: (& 570D > 1
Fx:67)
Eg- leﬂ & ebT)]

NEICUNY
= z; 0, ~ dzx. 11
/f( )<f(:c;eg”)> (11)

where the inequality follows from Markov’s inequality. Therefore, by combining (10) and (11), we
obtain

gT
E[loss(z,2%)] < (k—1) berg]%}{(a}selg)fl /f x; 0 <;;> dx

IA

a

T S
— * b )
(k—1)exp (ber[lkl]a\}fa} log <sel%f1 /f x;0%) ( ég)) dm)) . (12)

Lop(s,T) /f ;0;) < %;) dr  and  Jau(s) = /(f(w;92))175 (f(2:05))" d

Let

Furthermore, because ¢ # 0, Lemma 4 ensures that the infimum of J, 5 (s), infseo,1] Ja,b(8), is
attained at some ¢* bounded away from 0 and from 1. Let e > 0 and K = [¢,1 — ¢] such that
t* € K. Lemma 3 ensures that, for any pair a # b, we have

lim inf I,,(s,T) = Slél[f( Ja,p(8)- (13)

T—o0 seK

Combining (13) with (12), and noticing that

Chernoff (0}, 6;) = —log ( inf Ja7b(s)) ,
s€(0,1)

13
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and recalling that inf ¢ g 1) Ja,p(5) = infsex Jo,b(5), we obtain

be[k\{a}

which concludes the proof. O

E[loss(%,2%)] < (k—1)exp <—(1 +o0(1)) min Chernoff(0;, 0;)) ,

A.3 ADDITIONAL LEMMAS

Lemma 3. Let {f(-;0);0 € ©} be a parametric family of pdf (over R%). Let 0,0' € © such that
0 # 0'. Suppose that:

1. For almost every x, 0 — fz; é) is continuous at 0 and at 0';

2. There exists a neighborhood Ng gy of (0,0) such that the family of functions

{x — f(z;0) (f((x;,) ) 0,0") e Ng,gr )} is uniformly integrable.

Then, for any sequence (O7)rez, and (07)rez, such that Thm 01 = 0 and Thm 0% = 0’ and for
—00

any compact K C [0, 1], we have

lim inf/fx 9) ( i 9')>de - inf/(f(x;a)f*s (f(a:0"))° da.

T—o0s€K .Z’ QT) sEK

Proof. Denote
/fx 0) ( iZTDdx and  J(s) = /(f(x;o))l—s (f(2:0))" da.

The proof follows two steps. We first establish the point-wise convergence of the sequence of func-
tions (I7(-))rez, to the function J(-) using the uniform integrability assumption. Next we refine it
to an uniform convergence using the convexity of each function I (-).

(i) Point-wise convergence in s: limp I(s,T) = J(s). Fix s € (0,1). For almost every z € X, the
continuity of § — f(x;0) and the convergence of 07 — 6 and 67, — ¢’ imply that

flx;07) f(x;0)
Fl@0r)  F(z:0)

Hence, the integrand f(x;6) (f (z; 9T)> of Ir(s) converges point-wise to the integrand

f(z;07)
(f(2:0))" " (f(2:0'))" of J(s).

Denote by N (6, ¢) the neighborhood appearing in Assumption 1. Observe that, for ¢ large enough
(say, ¢ > T4 for some Ty > 0), we have (01,07) € N(6,6). Moreover, using the inequality
u® < 1+ u valid for all © > 0, we have

. Fla:0) ) . o f(z;0)
f(;0) (f(x;é’)> < flz;0) + f(x50) (f(:::;é/))’

ensuring the uniform integrability of the family { f(z; 6) ( ){ ((;_;g))) :(0,0') € Ng,gy} forany s €
[0, 1].

Hence, the family {f(x;6) ( (z; O ;) ;t > T } is uniformly integrable. Vitali’s theorem therefore
implies that

lim Ir(s) = J(s)

T—o0

for each fixed s € (0,1).

14
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(ii) Convexity and uniform convergence on compacts. For any T' € 7, the functions s +— Ip(s)
are convex. Indeed, I7(s) = Ey [e“og (X )] is the moment generating function (MGF) of some

random variable, with rp(X) = ;gzg; The pointwise convergence Ir(s) — J(s) forall s €

[0, 1] together with convexity implies uniform convergence on every compact sub-interval of [0, 1].
In particular, for the compact K introduced earlier, we have

lim sup |I(s,T) — J(s)] = 0.
€K

*)OOS

Because uniform convergence on a compact implies the convergence of the minimum, we finally
obtain

lim inf I(s,T) = inf J(s).
T—ooseK seK

O

Lemma 4. Let f,g be two distinct probability densities. The infimum of inf¢g 1] [ fegt=sis
attained at some s* € (0,1).

Proof. Let ¢(s) = [ f®g' 7. Observe that, by standard arguments, ¢ is continuous on [0, 1].
Moreover, ©(0) = ¢(1) = 1. Forall s € (0,1), Holder’s inequality implies that [ f5g'~¢ <
U 9)175 and therefore, as [ f = [ g = 1 because f and g are pdfs,

o(s) < 1 forallse (0,1).

Equality in Holder occurs only in the degenerate case f = cg for some constant c. The normalization
condition on f and g imposes ¢ = 1 and thus f = g almost everywhere. Consequently, for f # g
we have

p(s) <1 foralls e (0,1).

Thus ¢ takes the value 1 at the endpoints and values strictly smaller than 1 inside, so that the
minimum over [0, 1] (and hence also the infimum over (0, 1)) is strictly smaller than 1 and cannot
occur at the endpoints. O

A.4 UNIFORM INTEGRABILITY OF LIKELITHOOD RATIO FOR SPECIFIC FAMILIES

The purpose of this section is to establish that the Student’s t family satisfy Assumption 1.

First, we recall that the uniform integrability of a family of random variables is typically verified
thorough a slightly stronger, but easier to check, condition, which is the boundedness of the moment
of order 1 + § for some § > 0. In particular, the following lemma is a direct application of standard
properties regarding uniform integrability.

Lemma 5 (Uniform L'*? likelihood-ratio condition implies Assumption 1). Let § > 0. For every
0,0" € ©, there exists a neighborhood N g 1y of (0,0") such that

~ 1+6
(f (z; 9’))
sup Ep —
(0.0)€N 01, f(;0)

Then the family F = {f(-;0);0 € O} satisfies Assumption 1.

For a symmetric matrix 3, we denote eigenmin(X) (resp., eigenmax (X)) its smallest (resp.,
largest) eigenvalue. The following lemma ensures that the family of multivariate Student’s t dis-
tributions satisfies Assumption 1.

via - _vid
Lemma 6. Let F = {f(z;v,pn, X) = W(l%—w) ’ i v>0,p €

R, Y € S(;H'} be the family of Student’s t distributions. Let © = R’} x R? x Sj+, andlet® C ©
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be compact. Assume that for all (v, i, ) € 0,

Umin = Inf v >0 and 0 < Apin < eigenmin(X) < eigenmaz(X) < Apax < 00,
(v,p,2)EO

Amax < 00. Then, for every 0,0' € ©, there exists a
O x O such that

for some constants vy, > 0and 0 < Ay, 1

d > 0 and a neighborhood N g g+ of (0

<
) €
sup (
(@, 0’)€N(9 o)

In particular, the family F satisfies Assumption 1.

Q}I

Note that restricting the parameters to belong in the compact set S ensuring that the likelihood
remains bounded over © because v is bounded away from 0 and the scale matrices X are uniformly
well-conditioned.

Proof. Fix0 = (v,p,X) € Kand ¢ = (v, 1/, ¥') € K.

Observe that there exists constants C;, Ca, a1, &z > 0 such that for all z € R?

—(v+d)/2 —(v+d)/2
O (L4 anllz — pl2) " < f@0) < Co (14 asfle — uf?) "2
Hence,

flz;0) < ||J:||_(”+d) when  ||z]] = oc.

CTOAN
0 = f(z;0 7 ,
) = A >< fw)>

where § = (7, i,%) € K and 0 = (¢, ', %) € K belong to a neighborhood of # and ¢’. Observe

that, for large ||z||,
, 146
I
laf~ter (L
[| ]|~ (#+d)

C|‘$||7(V+d+(1+6)(i; 717).

Consider the quantity

I(x;0,

Y

I(z;0,0,0")

IN

IN

Because the integral [ ||z~ is finite iff p > d, we require v + (1 + 8§)(2/ — ) > 0, or equivalently
> (1+0)(7 = 7). (14)

Case (i): v < v/'. Because we restrict § and 6’ to be in a neighborhood of 6,6, we can shrink the

neighborhood N so that 7 < 7 for all element in é, ¢ € N, and the condition (14) is satisfied for
an arbitrary 0.

Case (ii): v > V.
In that case we can choose the neighborhood so that
lv—v| < e and [P/ —V| < ¢,

where ¢ is small enough (we will see that imposing ¢ < »//2 is enough). The choice of this
neighborhood ensures that 7 — o/ < v — v/ + 2¢. The condition (14) becomes equivalent to

v>(140)(v—7)+ (1+9)2,
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which can be recast in

5 < v — 2
v—v + 2
We observe that, playing on €, we can establish the finiteness of the 1 4+ ¢ moment for all § <
s O

B CoMMON ELLIPTIC DISTRIBUTIONS

Tables 1 and 2 summarize some common non-skewed and skewed parametric distributions.

Table 1: Parametric families F of elliptic distributions considered in this work. Each family involves
a location parameter ;1 € R?, a scale matrix ¥ € Sfi ., and potentially other real-valued parameters
(a degree of freedom v for the Student’s t-distribution, and a shape /3 for the Generalized Gaussian).
The densities are given by f(z;0) = \2|L1/2 - g(u), where v = (z — p) "7 x — p), where
g: Ry — Ris the generator function and C'is the corresponding normalization constant.

Name Parameters © Density Generator ¢ Normalization constant C'
Gaussian peERL T eSSt exp (—3u) (2m)~ %
Student'st  p€RL T ESE ,v>0 (1+ %)JTH %
Gen. Gaussian p€RL, X eS8t >0 exp (—3u?) %

Table 2: Parametric families F of multivariate skewed distributions. Each family extends a corre-
sponding non-skewed distribution by incorporating a skewness vector A = (A1,--- ,A\g) € R% In
the table, ¢(-; 1, 22) denote the pdf of a Gaussian distribution with mean p and covariance ¥, while
®(-) is the univariate standard normal cdf. Similarly, ¢, (-; u, ) is the pdf of a ¢-distribution with
degree of freedom v, location p, and shape X, while T, (-) is the univariate Student’s t cdf (with
degree of freedom v). Finally, we let ¢(z) = (z — p)TQ " (2 — p).

Name Parameters O pdf f(x)
Skewed normal w2, A 20(x — 11504, %) D(ATS V2 (2 — 1) | 04, A)
Skewed Student’s t v, 1, 5,A 2t (¢ — 11304, ) Thsa ( L AT 2 (g u))
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