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ABSTRACT

The substantial memory footprint of large language models (LLMs) remains a
key barrier to their on-device deployment. 2-bit quantization is a promising solu-
tion; however, current methods impose a difficult trade-off between the high accu-
racy of training-intensive Quantization-Aware Training (QAT) and the efficiency
of lower-performing Quantization Error Compensation (QEC). Our analysis of
QEC reveals a critical insight: its effectiveness is more dependent on minimizing
activation discrepancy than weight discrepancy alone. Building on this, we in-
troduce LG-QEC, a framework that significantly enhances the compensation pro-
cess. LG-QEC combines a hybrid adapter and a local-global optimization strategy
to directly align activations and suppress quantization errors. Experiments show
LG-QEC achieves accuracy comparable to state-of-the-art QAT methods while
using only a fraction of the training token budget and trainable parameters. This
work successfully bridges the gap between efficiency and performance, enabling
accurate and practical 2-bit LLMs.

1 INTRODUCTION

The remarkable proliferation of Large Language Models (LLMs) has unlocked unprecedented capa-
bilities across numerous domains Kamalloo et al. (2023); Rozière et al. (2024); Zhang et al. (2024).
However, this advancement comes at the cost of immense model size, with leading models now
comprising hundreds of billions of parameters OpenAI (2023). This scale poses a significant barrier
to their deployment in resource-constrained environments, such as mobile devices, where on-device
inference is crucial for achieving latency, privacy, and offline functionality Gunter et al. (2024); Li
et al. (2025). To bridge this gap, quantization has become an indispensable technique for model
compression. While 8-bit and 4-bit quantization offer substantial memory savings, ultra-low-bit
quantization, particularly at the 2-bit level, represents the frontier for maximizing efficiency and
enabling complex models to operate within the tight memory budgets of edge hardware Liu et al.
(2025); Chen et al. (2025); Lee et al. (2025b).

The path to effective 2-bit quantization is fraught with challenges. Post-Training Quantization (PTQ)
methods, even advanced approaches like QuIP# Tseng et al. (2024), often result in an unacceptable
degradation of model accuracy. Consequently, Quantization-Aware Training (QAT) has been the
dominant strategy, with methods like ParetoQ Liu et al. (2025) achieving performance comparable
to that of 4-bit quantization and approaching the level of full-precision models. However, this ac-
curacy recovery requires drastically updating all weights to overcome the significant quantization
error—a process of ‘weight reconstruction’. This necessitates substantial computational resources,
including a prohibitive memory footprint and tens of billions of training tokens. While techniques
like EfficientQAT Chen et al. (2025) have been proposed to reduce memory usage and long training
times, they fail to match the performance of QAT trained on a 30B token budget.

As an alternative, Quantization Error Compensation (QEC) utilizes lightweight, trainable adapters
to directly ’compensate’ for weight quantization error. This approach has demonstrated a greater
accuracy recovery effect on an equally low training budget. However, a fundamental trade-off exists:
reducing the number of trainable parameters to minimize adapter overhead often leads to a decline
in accuracy recovery performance.
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This paper aims to resolve this trade-off and significantly improve QEC’s accuracy recovery. We
present a systematic study analyzing the impact of 1) adapter structure, 2) training token budget, and
3) quantizer design. Through extensive experiments, we identify three key findings:

• Finding 1: An adapter’s performance is critically linked to its structure and initialization; a
hybrid design combining weight- and error-based signals is superior because it minimizes
activation discrepancy, which is a better predictor of final accuracy than weight discrepancy
alone (Sec. 4.2).

• Finding 2: While scaling up either the adapter budget or training token budget improves
accuracy, increasing the training token budget forces an inefficient adaptation where the
model reduces activation discrepancy at the cost of sacrificing weight fidelity (Sec. 4.3).

• Finding 3: The choice of quantizer fundamentally shapes the adaptation process,
as a refined vector quantizer suppresses initial weight discrepancy, enabling a stable,
compensation-driven regime that allows adapters to efficiently correct activation errors
(Sec. 4.4).

These findings establish a core principle: effective 2-bit QEC depends on first stabilizing weights
to create a foundation for precise activation alignment. We materialize this principle in LG-QEC, a
novel framework that systematically orchestrates quantizer design, adapter architecture, and a local-
global optimization strategy toward a single goal: minimizing activation discrepancy. By first using
a vector quantizer to suppress initial weight errors and then employing a two-stage process that
decouples local activation alignment from global fine-tuning, our approach achieves a perplexity
of 8.1 on WikiText-2 Merity et al. (2016) with only 16M training tokens on the 2-bit Llama-3-8B
model. This result matches the state-of-the-art performance of QAT trained with 30B tokens Liu
et al. (2025). Moreover, LG-QEC improves Commonsense Question Answering (CSQA) Talmor
et al. (2019) accuracy by 0.65% over training without local optimization and matches or surpasses
QEC trained with 64M tokens on both CSQA and MMLU Hendrycks et al., demonstrating its effec-
tiveness under extremely data-efficient settings.

2 RELATED WORK

The immense size of Large Language Models (LLMs) necessitates the development of effective
compression strategies for their deployment on resource-constrained devices. The landscape of low-
bit quantization is broadly divided into two main paradigms: Post-Training Quantization (PTQ),
which quantizes a pre-trained model without retraining, and Quantization-Aware Training (QAT),
which incorporates the quantization process into the fine-tuning stage to mitigate accuracy degrada-
tion. While PTQ methods have shown progress, achieving high accuracy at extreme bit widths, such
as 2-bit, often requires more sophisticated training-based approaches.

Quantization-Aware Training (QAT) . QAT is the most prevalent method for accuracy recovery
in ultra-low-bit weight quantization. Its core strategy involves simulating quantization effects dur-
ing fine-tuning, allowing all weight parameters to be updated to compensate for potential accuracy
loss. Recent advancements have focused on improving its effectiveness and efficiency. For instance,
ParetoQ provides a unified framework for analyzing low-bit quantization, revealing a critical learn-
ing transition between 2-bit and 3-bit precision. UPQ Lee et al. (2025b) addresses the practical
challenge of data access by combining block-wise PTQ with a distillation-based QAT. Furthermore,
EfficientQAT Chen et al. (2025) tackles the computational overhead of traditional QAT by proposing
a two-phase algorithm that significantly reduces training cost.

Quantization Error Compensation (QEC). QEC has emerged as a popular, parameter-efficient
alternative to recover accuracy loss from quantization error . These methods typically freeze the
quantized base model and train lightweight adapters to correct errors. They can be characterized by
their initialization strategies and adapter structures.

• Initialization Strategy: Two main approaches exist. The Error-initialization strategy, used
by LoftQ and LQ-LoRA Guo et al., initializes an adapter to approximate the quantization
error matrix (W −Q) explicitly. In contrast, the Weight-init strategy, employed by PiSSA,
preserves the most salient components of the original weights by initializing the adapter
with their principal singular values and vectors.
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• Adapter Structure: QEC methods leverage different adapter forms. Low-rank adapters
(LoRA) are a common choice for capturing distributed, global error patterns. As a more
parameter-efficient alternative, sparse adapters focus on updating a minimal subset of pa-
rameters to correct localized, critical errors. Methods like RoSA Nikdan et al. have ex-
plored a hybrid approach, jointly training a low-rank and a sparse component to capture
both global and fine-grained updates.

3 MOTIVATION

While QAT and QEC both aim to reconcile low-precision weights with high accuracy, they represent
fundamentally different philosophies in addressing quantization error, especially at the 2-bit level.
This section compares these approaches through the lens of ‘reconstruction’ vs. ‘compensation’.

The Challenge of Full QAT as ‘Reconstruction’. QAT is recognized as a powerful method for
recovering accuracy in ultra-low-bit settings. Leading methods, such as ParetoQ, demonstrate that
2-bit models can achieve high performance. However, this effectiveness comes at a significant
cost. As shown in Fig. 1(a), QAT requires maintaining a full-precision (FP) master copy of all
weights during training, leading to a prohibitive memory footprint, and often necessitates tens of
billions of training tokens for optimal results (Fig. 1(b)). The root of this inefficiency lies in the
‘reconstruction’ process that 2-bit quantization forces upon the model. As identified by ParetoQ,
the quantization error is so significant that the model’s original weight distribution is effectively
destroyed. Consequently, the training process is not merely fine-tuning but a substantial undertaking
to relearn new functional representations from scratch by making significant changes to the weight
parameters. This reconstruction is highly data-dependent; with a limited budget of 1M fine-tuning
tokens, QAT fails to complete this process, resulting in an impractically high perplexity (PPL) of
over 1100 (Fig. 1(c)).

The Efficiency of QEC as ‘Compensation’. In contrast, QEC offers a more efficient paradigm by
reframing the problem as ‘compensation’. Instead of reconstructing the entire model, QEC freezes
the low-bit weight backbone and uses lightweight, trainable adapters to compensate for the quanti-
zation error directly. This approach dramatically reduces the trainable parameter count, leading to a
17.7× reduction in training memory. Because it performs a targeted correction rather than a com-
plete reconstruction, QEC is significantly less reliant on extensive training token budget (Fig. 1(a-
b)). As shown in Fig. 1(c), QEC achieves an intense PPL of approximately 14 with the same 1M
training tokens that left QAT ineffective. This demonstrates the clear advantage of a compensation-
based strategy in resource-constrained scenarios. While methods like EfficientQAT Chen et al.
(2025) attempt to find a middle ground by applying QAT locally, they do not entirely escape the
overhead of reconstruction and still fall short of large-scale QAT’s peak performance.

This study is motivated by the unrealized potential of a proper compensation-driven approach. We
build upon the inherent efficiency of QEC and propose to significantly enhance its accuracy recov-
ery capabilities through a systematic investigation into three key areas: 1) adapter construction, 2)
quantizer optimization, and 3) local-global optimization.

4 OBSERVATIONS

In this section, we systematically analyze the factors that govern the effectiveness of QEC. We
begin by formalizing different adapter structures and initialization strategies (Sec. 4.1) and examine
how they influence QEC (Sec. 4.2). To gain deeper insight into why performance differences arise,
we complement accuracy metrics with discrepancy analysis in both weight and activation space,
measured relative to the FP baseline. We then investigate how scaling the trainable parameter budget
and the number of the training tokens affects accuracy recovery (Sec. 4.3), and finally evaluate how
the choice of quantizer fundamentally constrains the attainable performance (Sec. 4.4).

4.1 ADAPTER SETTINGS

We systematically investigate how different adapter initialization methods and structural choices
affect QEC. Unlike prior studies that primarily restrict their analysis to either low-rank or sparse
adapters Li et al. (a); Guo et al.; Zhang et al., our study explicitly incorporates the hybrid design,
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Figure 1: (a) Comparison of forward/backward pass in QAT and QEC. (b) Comparison of training
token usage, trainable parameter ratio, and Wikitext-2 perpleixty (PPL) across QAT and QEC meth-
ods. (c) Perplexity and CSQA accuracy of QEC and QAT across training token budgets.

Algorithm 1 Adapter Initialization under Quantization with Parameter Budget
Require: Full-precision weight W ∈ Rm×n, quantizer Quant(·), parameter budget p% of |W |
Ensure: Approximate decomposition W ≈ Q+A

1: Notation:
Q quantized base weight A adapter (L, S, or LS)
Top-k(X) k largest-magnitude elements of X SVDr(X)

rank-r truncated SVD of X
(UrSrV

⊤
r )L low-rank adapter from SVDr(·)

LS hybrid adapter (L+S) S sparse adapter from Top-k(·)
2: Budget allocation:
3: k ← ⌊p%× (m · n)⌋ // number of sparse elements
4: r ← ⌊k/(m+ n)⌋ // LoRA rank (approx. same params)
5: For LS, allocate r/2 and k/2 to each branch to maintain the total parameter budget p%.
6: Case 1: Zero-Init

7: A←


N (0, σ2)m×r · 0r×n (L), standard LoRA zero initialization
0m×n (S), k sparse positions initialized to zero
N (0, σ2)m×(r/2) · 0(r/2)×n + 0m×n (LS), zero-initialized low-rank + sparse adapter

8: Case 2: Error-Init
9: Q← Quant(W )

10: E ←W −Q

11: A←


SVDr(E) (L), low-rank approximation of quantization error
Top-k(E) (S), sparse selection from quantization error
SVDr/2(E) + Top-k/2(E) (LS), low-rank + sparse adapter initialized from error

12: Case 3: Weight-Init

13: A←


SVDr(W ) (L), low-rank approximation of full-precision weight
Top-k(W ) (S), sparse selection from full-precision weight
SVDr/2(W ) + Top-k/2(W ) (LS), low-rank + sparse adapter initialized from weight

14: Q← Quant(W −A)

where both low-rank and sparse adapters are jointly considered within the same parameter budget. In
addition, all comparisons are conducted under a fixed parameter budget to ensure that the evaluation
across adapter types and initialization strategies remains fair and controlled.

Adapter initialization methods. We consider a design space comprising three initialization strate-
gies and three adapter structures, as summarized in Algorithm 1. The initialization strategies include
Zero-Init, where all adapter parameters are initialized to zero regardless of structure; Error-Init,
which uses the quantization error W −Quant(W ) to initialize the adapter via either a low-rank SVD
approximation or sparse top-k selection; and Weight-Init, which directly derives adapter weights
from the FP weights W , quantizing only the residual W −A.
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① Construct Sparse Adapter 1

② Form the quantized base weight

③ Compensate the residual error via LS
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Results

Figure 2: Example procedure for using Weight-Init and Error-Init together (Weight-Init-S + Error-
Init-LS). The process constructs a sparse adapter, quantizes the residual, and compensates remaining
errors with both a low-rank adapter and a second sparse adapter. The final result combines the frozen
quantized weight and three adapters while keeping the total parameter budget fixed.

Adapter types. The adapter structures under evaluation are: (1) L (low-rank), employing a rank-r
LoRA-style structure; (2) S (sparse), which selects k non-zero elements based on magnitude; and
(3) LS (hybrid), which combines both low-rank and sparse branches within a fixed parameter budget.
In the hybrid case, the total budget is split evenly, assigning r/2 and k/2 to the low-rank and sparse
components respectively.

To clearly represent different adapter settings, we adopt a unified notation that concatenates the
initialization method and the adapter type. For example, Error-Init-S denotes a sparse adapter
initialized from quantization errors, and Weight-Init-LS represents a hybrid adapter where both
low-rank and sparse components are constructed from FP weights. Visualizations of adapters, base
weights, and residual errors under different initialization methods are provided in Appendix A.2.

An important aspect of our design space is that initialization methods are not mutually exclusive.
Weight-based and error-based initialization can also be applied in combination, and the unified no-
tation naturally extends to such settings. For example, Weight-Init-S + Error-Init-LS denotes a
sparse adapter initialized from FP weights and additional hybrid adapters initialized from residual
errors. Fig. 2 illustrates this combined case under a fixed parameter budget.

4.2 IMPACT OF ADAPTER INITIALIZATION METHOD AND STRUCTURE
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Figure 3: (a) Perplexity after fine-tuning with different
adapter initialization methods. (b) Weight and (c) acti-
vation discrepancy after adapter initialization.

We next examine how adapter initial-
ization strategies and structural design
choices influence QEC performance. Our
key finding is that reducing weight dis-
crepancy alone is insufficient; minimizing
activation discrepancy provides a more re-
liable indicator of final performance. We
support this with two complementary dis-
crepancy metrics that quantify deviations
from the FP model:

Dweight =
∥W − (Q+A)∥F

∥W∥F
, (1)

Dactivation =
∥X −Xq∥F
∥X∥F

, (2)

where W and Q+A denote the FP weight
and the quantized weight with adapter
compensation, respectively. X is the input
activation from FP inference, and Xq is the
corresponding activation from the quan-
tized model. Dweight captures parameter-
level deviation, while Dactivation reflects
functional misalignment. Unless otherwise specified, both metrics are averaged across all Trans-
former layers. We evaluate these effects through short QEC fine-tuning on 256 samples from C4 Raf-
fel et al. (2019) with sequence length 512. Fig. 3 reports the results: (a) PPL after fine-tuning, (b)
Dweight, and (c) Dactivation measured at initialization.
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Model accuracy impact. As shown in Fig. 3(a), providing informative initialization—either from
FP weights (Weight-Init) or from quantization errors (Error-Init)—substantially improves PPL com-
pared to Zero-Init, which lacks any prior signal. Among individual methods, Weight-Init-S offers
strong accuracy improvements, while their combination—Weight-Init-S + Error-Init-LS—achieves
the lowest PPL overall. This result indicates that combining weight-based and error-based signals,
even under the same parameter budget, yields superior performance. Also, the hybrid adapter struc-
ture (LS) can offer improved performance over purely low-rank or sparse structures. This suggests
that low-rank and sparse branches may capture complementary aspects of quantization error, and
that their joint use, when properly initialized, can potentially offer a more robust mechanism for
error mitigation.

Discrepancy analysis. Fig. 3(b) shows that both Weight-Init and Error-Init effectively reduce
Dweight compared to Zero-Init, with Weight-Init-S achieving the lowest discrepancy. However,
tighter alignment in weight space does not always translate to improved downstream performance.
For instance, the combined configuration (Weight-Init-S + Error-Init-LS) incurs a slightly higher
Dweight than Weight-Init-S alone, yet yields better PPL. This apparent discrepancy is explained by
differences in activation behavior, as shown in Fig. 3(c). Within Weight-Init, sparse adapters more
effectively reduce Dactivation than their low-rank counterparts. Although LoRA can closely match
the original weights, they often induce functional misalignment—underscoring a key limitation:
accurate weight reconstruction does not necessarily preserve activation semantics. The combined
approach mitigates this limitation by distributing the parameter budget across complementary com-
ponents: the sparse branch initialized from weights minimizes Dweight, while the error-based low-
rank and sparse branches further reduce Dactivation.

4.3 IMPACT OF TRAINABLE PARAMETER AND TRAINING TOKEN BUDGET
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Figure 4: Impact of adapter budget and number of training tokens on QEC performance. (a) Per-
plexity after full QEC training with varying numbers of training tokens. (b) Average weight and
activation discrepancies across adapter parameter budgets with a 64M training tokens. (c) Average
weight and activation discrepancies across training tokens under a 3.5% adapter parameter budget.

We now investigate how scaling the trainable parameter budget and the amount of training to-
kens influences QEC performance. All experiments in this section begin from the best-performing
adapter configuration identified in Sec. 4.2—Weight-Init-S + Error-Init-LS—which already provides
a strong starting point by combining structural diversity with informative initialization.

Adapter size. As shown in Fig. 4(a), larger adapters yield lower PPL for a fixed number of training
tokens, indicating improved adaptation capacity. Consistently, Fig. 4(b) shows that both Dweight and
Dactivation decrease as the adapter budget increases. This suggests that increasing capacity allows
QEC to better approximate both parameter- and function-level behaviors. However, this improve-
ment comes at the cost of increased memory usage during both training and inference, limiting its
practicality under strict resource constraints.

Training tokens. Scaling the number of training tokens also leads to consistent gains in QEC per-
formance. As shown in Fig. 4(a), with a fixed adapter budget of 7.4%, increasing the training tokens
up to 32M is sufficient to reach the perplexity level of W3A16. However, as depicted in Fig. 4(c),
this improvement does not arise from better alignment in weight space. In fact, Dweight slightly in-
creases as training proceeds with more tokens. Instead, Dactivation steadily decreases, closely tracking
the improvements in PPL. These results expose a key limitation of current QEC training dynamics.
While high-quality initialization reduces both Dweight and Dactivation (Sec. 4.2), we observe that QEC
continues to lower Dactivation during training at the expense of increasing Dweight. This trend implies
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Figure 5: Impact of quantizer choice on QEC. (a) PPL across adapter types and training tokens. (b)
Change in weight discrepancy from adapter initialization during training token scaling. (c–d) Acti-
vation discrepancy under uniform and vector quantizers as the number of training tokens increases
(Adapter type: Weight-Init-S+Error-Init-LS).

that the model sacrifices weight fidelity in pursuit of activation alignment, ultimately undermining
the stability of adaptation—a behavior that counters the intended role of initialization as a foundation
for robust performance recovery.

4.4 IMPACT OF QUANTIZER DESIGN

We next investigate how quantizer design shapes the adaptation dynamics of QEC, particularly in
terms of weight stabilization and activation discrepancy minimization. To this end, we compare
two representative 2-bit quantizers applied under identical adapter configurations: (i) an asymmetric
uniform quantizer with group size 64, and (ii) a vector quantizer based on incoherence processing
with codebooks Tseng et al. (2024). Although both operate at the same bit precision, their effects
on weight behavior, activation alignment, and final PPL diverge significantly.

Fig. 5(a) highlights a striking difference in PPL trajectories. Vector quantization achieves substan-
tially lower PPL already at initialization, with rapid convergence within the first 1M–2M tokens.
This early stabilization implies that most of the functional adaptation occurs before any extensive
weight changes are necessary. In contrast, uniform quantization starts from a much higher PPL and
improves only gradually.

Discrepancy analyses in Fig. 5(b–d) support this distinction. Uniform quantization leads to large
Dweight values, indicating significant weight modification throughout training. Although this helps
reduce activation discrepancies over time, it comes at the cost of poor weight-level stability. Fur-
thermore, Fig. 5(c) shows that activation alignment under uniform quantization often involves com-
plex cross-layer trade-offs, with some deeper layers exhibiting drift despite overall improvements
in output similarity. These trends suggest that under uniform quantization, QEC attempts to reduce
activation discrepancy, but does so at the cost of disrupting weight-level stability—leading to un-
stable adaptation dynamics. In contrast, vector quantization preserves the original weight structure
more faithfully, resulting in smaller Dweight across training tokens. This inherent stability allows
QEC to operate in a compensation-oriented regime, where adapters make localized, fine-grained
adjustments to reduce residual activation discrepancies. Indeed, Fig. 5(d) shows consistently low
Dactivation throughout training, without the layer-level drift seen in the uniform case.

The effectiveness of hybrid initialization (Weight-Init-S + Error-Init-LS) also varies across quan-
tizers. Under uniform quantization, hybrid initialization yields substantial performance gains, re-
flecting the need to preemptively reduce weight discrepancy. However, under vector quantiza-
tion—where weight errors are already suppressed—such hybridization offers only marginal benefit,
highlighting how quantizer quality modulates the role of initialization.

Taken together, these results show that quantizer design fundamentally shapes the QEC adaptation
regime. Uniform quantization necessitates weight reconstruction and induces unstable cross-layers
alignment. Vector quantization, by contrast, enables a more desirable pathway: it stabilizes weights
early and allows adapters to focus on minimizing activation discrepancies. This finding reinforces
the importance of targeting activation alignment once weight-level errors are constrained, motivating
our subsequent approach that incorporates local optimization to enhance QEC performance.
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5 EMPLOYING LOCAL OPTIMIZATION TO BOOST QEC PERFORMANCE

The analyses in Sec. 4 reveal a consistent trend: although QEC benefits from strong initializations
and increased training tokens, its performance ultimately depends on how effectively it reduces
activation discrepancies during training. Crucially, when weight-level errors are large—as is often
the case under uniform quantization—QEC struggles to stabilize, frequently altering weights in a
manner that undermines consistent adaptation. Conversely, employing refined quantizers such as
vector quantization suppresses weight discrepancies from the outset, enabling QEC to concentrate
on correcting activation-level mismatches.
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Figure 6: Effectiveness of local optimization.
Step-1 reduces Dactivation comparably to Step-2
alone, while Step-1+Step-2 achieves both the low-
est discrepancy and the highest CSQA accuracy.

These findings suggest a division of roles in
effective QEC: quantizer design should mini-
mize weight-level discrepancies, while adapters
should focus on locally reducing activation
mismatches without disrupting weight stabil-
ity. However, standard end-to-end QEC fine-
tuning forces the model to solve both problems
simultaneously. As observed in Sec. 4.3, this
joint optimization can lead to unstable dynam-
ics where the model sacrifices weight fidelity to
improve activation alignment. Based on this in-
sight, we introduce LG-QEC, a two-stage op-
timization procedure that explicitly decouples
these competing objectives. By separating the initial, coarse-grained alignment of activations from
the subsequent refinement of residual errors, LG-QEC achieves a more stable and efficient compen-
sation process. All experiments are conducted with vector quantization and Error-Init-LS adapters,
ensuring that weight errors are already minimized at initialization.

• Step-1 (Local optimization): A brief calibration phase with 4M tokens and half the total
parameter budget focuses on aligning activations between the quantized and FP models.
This local adaptation reduces activation discrepancy with minimal weight changes, provid-
ing a stable starting point for training.

• Step-2 (Global optimization): Standard QEC fine-tuning is then applied with 16M tokens
and the full parameter budget. Building upon the activation-aligned model from Step-1,
this stage refines residual errors more effectively under the same budget constraint.

Effectiveness. Fig. 6 summarizes the results of our two-stage procedure, evaluated under a fixed
16M token budget. We compare our LG-QEC approach—a 4M token local optimization phase
(Step-1) followed by a 12M token fine-tuning phase (Step-2)—against a baseline (’Step-2 Only’)
that uses the entire 16M tokens for standard fine-tuning. The combined LG-QEC method yields
both the lowest activation discrepancy and the highest CSQA accuracy, outperforming either stage
in isolation. While Step-1 alone effectively reduces discrepancy, it provides insufficient accuracy,
demonstrating the strength of the combined approach. This result validates our hypothesis: once
weight discrepancy is controlled, explicitly targeting activation alignment enables more efficient
and stable QEC adaptation.

6 EXPERIMENTS

We evaluate the effectiveness of refined quantizers and local optimization as preprocessing strategies
for QEC on the Llama-3-8B model Meta (2024). Experimental setup, including training configura-
tions and benchmark details, is provided in Appendix A.1.

6.1 QUANTIZATION ERROR COMPENSATION RESULTS

Table 1 demonstrates that both quantizer choice and the presence of local optimization critically
affect downstream performance. Uniform quantization yields consistently poor results, with PPL
remaining high (>11 on Wikitext-2) and CSQA accuracy plateauing below 60% even as the training
token increases from 16M to 64M. In contrast, vector quantization substantially improves perfor-
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Quantizer
Local

Optim.
# Fine-tuning

Trained Tokens
PPL ↓ CSQA Accuracy ↑ MMLU↑

Avg.Wiki2 C4 ARC-C ARC-E Hellaswag PIQA Winorande Avg.
Baseline 6.14 8.88 50.43 80.22 60.15 79.54 72.93 68.65 65.13

Uniform
– 16M 11.15 13.92 34.64 68.14 49.86 74.48 66.30 58.68 40.17
– 32M 11.04 13.69 35.07 68.90 49.88 73.83 63.46 58.23 43.18
– 64M 11.16 13.53 35.67 68.64 50.76 75.41 65.35 59.17 41.23

Vector

– 16M 8.15 11.26 42.66 74.37 55.08 76.55 69.06 63.54 55.06
– 32M 8.11 11.15 41.98 74.79 55.45 76.66 69.06 63.59 55.37
– 64M 8.08 11.04 43.43 75.59 55.72 76.99 69.53 64.25 55.63
✓ 16M 8.11 11.19 43.09 75.63 55.52 77.20 69.53 64.19 55.65

Table 1: Impact of local optimization under training token scaling.

mance across all training token sizes, reducing PPL by more than 2 points on both Wikitext-2 and
C4 while delivering ∼4% higher CSQA accuracy than uniform quantization.

Method
# Fine-tuning

Trained Tokens
Model

Size(GB)
PPL↓
Wiki2

Baseline 16 6.1

PTQ

RTN -

2.8

2.2E+4
OmniQuant - 61.8

QuIP# - 12.7
QuaRot - 15.0
GPTQ - 2.1E+2
AWQ - 1.7E+6

Slim-LLM - 39.7
DB-LLM - 13.6
PB-LLM - 24.7

QAT
ParetoQ 30B

2.8
8.0

EfficientQAT 16M 9.4

QEC
RILQ(LoftQ) 0.4M 3.4 18.0
RILQ(LoftQ) 32M 3.4 13.2

LG-QEC 16M 3.8 8.1

Table 2: PPL of Llama-3-8B under 2-bit quanti-
zation using PTQ, QAT, and QEC.

Crucially, local optimization yields substantial
gains even with a small training token budget:
with only 16M tokens, it achieves perplexity
comparable to 64M-token training and raises
CSQA accuracy to 64.19%, matching or ex-
ceeding the best results without local optimiza-
tion. This advantage also appears on the 5-shot
MMLU benchmark, where 16M tokens with lo-
cal optimization outperform 64M tokens with-
out it, underscoring that activation alignment is
more critical than merely increasing the num-
ber of training tokens.

These results confirm that vector quantization
establishes a stable foundation by minimizing
weight discrepancies, while local optimization
efficiently mitigates activation mismatches. To-
gether, they enable QEC fine-tuning to achieve
state-of-the-art PPL and accuracy under signif-
icantly reduced training token budgets.

6.2 2-BIT COMPARISON WITH PTQ AND QAT

Table 2 summarizes the 2-bit quantization results on Llama-3-8B. PTQ methods, while requiring no
training tokens, suffer from severe degradation at 2-bit precision: PPL exceeds 104 in most cases,
rendering them impractical for language modeling. QAT alleviates this issue by jointly updating all
weights during training, reducing PPL below 10. For example, ParetoQ achieves a PPL of 8.0, but
only by consuming 30B training tokens, which entails prohibitive computational cost. Meanwhile,
QECs such as RILQ Lee et al. (2025a) reduce PPL by optimizing small, full-precision adapters, yet
scale poorly with training token budget, even at 32M tokens. In contrast, our proposed approach,
LG-QEC, which combines vector quantization with hybrid adapter structrue and local optimization,
achieves a PPL of 8.1 on Wikitext-2 and 11.2 on C4 with only 16M training tokens, outperforming
previous QEC methods.

7 CONCLUSION

This paper identifies and validates a core principle for 2-bit LLM quantization: the most efficient
path to recovering performance is not to reconstruct weights, but to compensate for errors by directly
aligning activation distributions. Our systematic analysis reveals that while suppressing weight dis-
crepancy is necessary for stable adaptation, minimizing activation discrepancy is the ultimate driver
of model accuracy. This insight motivates our proposed framework, LG-QEC, which combines
refined quantizers with local activation alignment to exploit this principle. Experiments show that
LG-QEC achieves superior 2-bit performance with far fewer parameters and training token budget
than PTQ and QAT baselines.
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Mahdi Nikdan, Soroush Tabesh, Elvir Crnčević, and Dan Alistarh. Rosa: Accurate parameter-
efficient fine-tuning via robust adaptation. In Forty-first International Conference on Machine
Learning.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
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Figure 7: Visualization of Zero-Init and Weight-Init adapters. For a base weight W ∈ R64×64 with
a 6% parameter budget, allocated as follows; 6% sparse parameters for Weight-Init-S, rank-2 for
Weight-Init-L, and 3% sparse prarameter plus rank-1 for Weight-Init-LS.

A APPENDIX

A.1 EXPERIMENTAL DETAILS

Benchmarks. We report perplexity on WikiText-2 Merity et al. (2016) and C4 Raffel et al. (2019),
and accuracy on five commonsense question answering benchmarks: ARC-Challenge Clark et al.
(2018), ARC-Easy Clark et al. (2018), HellaSwag Zellers et al. (2019), PIQA Bisk et al. (2019),
and WinoGrande Sakaguchi et al. (2019), as well as 5-shot accuracy on MMLU Hendrycks et al..
Perplexity is measured with a sequence length of 2048 tokens. In Table 2, the results for OmniQuant,
QuIP#, QuaRot, and RILQ are obtained from their publicly available codebases, while the other
results are taken from the respective papers and Huang et al. (2024).

Training settings. Both local optimization and QEC fine-tuning are performed on C4 with a maxi-
mum token length of 2048. Local optimization is conducted with approximately 4M training tokens
in a block-wise manner which enables efficient implementation, similar to previous PTQ meth-
ods Frantar et al. (2023); Li et al. (b). For QEC fine-tuning, we allocate adapters corresponding to
7.4% of the total model parameters, ensuring a consistent parameter budget across all experiments.
For both stages, we sweep the learning rate from 1× 10−5 to 3× 10−4 under a cosine schedule.

A.2 VISUALIZATION OF WEIGHT-INIT ADAPTER

We visualize the behavior of Weight-Init adapters using a matrix W ∈ R64×64. The weights are
quantized with a uniform quantizer using a group size of 64 (i.e., row-wise grouping). With Zero-
Init, the adapter A is initialized to zero (a), so W − A is identical to the original W (e). Using
SVD, the Weight-Init-L isolates the outlier row in W (b), yielding a residual W − A without the
outlier (f). Because outliers induce large weight discrepancy after quantization (i), their removal
with Weight-Init-L reduces the corresponding row’s discrepancies (j), although other rows may still
exhibit nontrivial gap. In contrast, Weight-Init-S extracts high magnitude parameters for each group
of W (c), shrinking the dynamic range within each group (g) and thereby lowering the overall weight
discrepancy (k); however, it does not fully remove an entire outlier row as effectively Weight-Init-L.
Combining the two (Weight-Init-LS) captures the outlier structure while also reducing the per-group
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range, achieving the lowest weight error (l). In summary, Weight-Init-L and Weight-Init-S reduce
weight discrepancy through complementary mechanisms, outlier removal versus range compression,
so their combination yields the lowest weight discrepancy.

A.3 ACKNOWLEDGEMENT OF LLMS USAGE

We acknowledge the assistance of LLMs in polishing the paper writing and generating code used in
our experiments.
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