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Abstract
In combinatorial semi-bandits, a learner repeat-
edly selects from a combinatorial decision set of
arms, receives the realized sum of rewards, and
observes the rewards of the individual selected
arms as feedback. In this paper, we extend this
framework to include graph feedback, where the
learner observes the rewards of all neighboring
arms of the selected arms in a feedback graph G.
We establish that the optimal regret over a time
horizon T scales as Θ̃(S

√
T +

√
αST ), where

S is the size of the combinatorial decisions and
α is the independence number of G. This result
interpolates between the known regrets Θ̃(S

√
T )

under full information (i.e., G is complete) and
Θ̃(
√
KST ) under the semi-bandit feedback (i.e.,

G has only self-loops), where K is the total num-
ber of arms. A key technical ingredient is to real-
ize a convexified action using a random decision
vector with negative correlations. We also show
that online stochastic mirror descent (OSMD) that
only realizes convexified actions in expectation is
suboptimal.

1. Introduction
Combinatorial semi-bandits are a class of online learning
problems that generalize the classical multi-armed bandits
(Robbins, 1952) and have a wide range of applications in-
cluding multi-platform online advertising (Avadhanula et al.,
2021), online recommendations (Wang et al., 2017), web-
page optimization (Liu & Li, 2021), and online shortest path
(György et al., 2007). In these applications, instead of taking
an individual action, a set of actions is chosen at each time
(Cesa-Bianchi & Lugosi, 2012; Audibert et al., 2014; Chen
et al., 2013). Mathematically, over a time horizon of length
T and for a fixed combinatorial budget S, a learner repeat-
edly chooses a (potentially constrained) combination of K
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individual arms within the budget, i.e. from the following
decision set

A0 ⊆ A ≡
{
v ∈ {0, 1}K : ∥v∥1 = S

}
,

and receives a linear payoff ⟨v, rt⟩ where rt ∈ [0, 1]K

denotes the reward associated to each arm at time t. Af-
ter making the decision at time t, the learner observes
{varta : a ∈ [K]} as the semi-bandit feedback or the en-
tire reward vector rt under full information. When S = 1,
it reduces to the multi-armed bandits with either the ban-
dit feedback or full information. For S > 1, the learner
is allowed to select S arms at each time and collect the
cumulative reward.

Under the adversarial setting for bandits (Auer et al., 1995),
no statistical assumption is made about the reward vectors
{rt}t∈[T ]. Instead, they are (potentially) generated by an
adaptive adversary. The objective is to minimize the ex-
pected regret of the learner’s algorithm π compared to the
best fixed decision in hindsight, defined as follows:

E[R(π)] = E

[
max
v∗∈A0

T∑
t=1

⟨v∗ − vt, rt⟩

]
(1)

where vt ∈ A0 is the decision chosen by π at time t. The
expectation is taken over any randomness in the learner’s
algorithm and over the rewards, since the reward rt is al-
lowed to be generated adaptively and hence can be random.
Note that while the adversary can generate the rewards rt

adaptively, i.e. based on the learner’s past decisions, the re-
gret in (1) is measured against a fixed decision v∗ assuming
the adversary would generate the same rewards.

While the semi-bandit feedback has been extensively stud-
ied, the current literature falls short of capturing additional
information structures on the rewards of the individual arms,
except for the full information case. As a motivating exam-
ple, consider the multi-platform online advertising problem,
where the arms represent the (discretized) bids. At each
round and on each platform, the learner makes a bid and
receives zero reward on losing the auction and her surplus
on winning the auction. In many ads exchange platforms,
the winning bid is always announced, and hence the learner
can compute the counterfactual reward for any bids higher
than her chosen bid (Han et al., 2024). This additional
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information is not taken into account in the semi-bandit
feedback.

Another example is the online recommendation problem,
where the website plans to present a combination of rec-
ommended items to the user. The semi-bandit feedback
assumes that the user’s behavior on the displayed items will
reveal no information about the undisplayed items. How-
ever, this assumption often ignores the semantic relationship
between the items. For instance, suppose two items i and
j are both tissue packs with similar prices. If item i is dis-
played and the user clicks on it, a click is likely to happen
if item j were to be displayed. On the other hand, if item i
is a football and item j is a wheelchair, then a click on one
probably means a no-click on the other. Information of this
kind is beneficial for the website planner and yet overlooked
in the semi-bandit feedback.

To capture this rich class of combinatorial semi-bandits with
additional information, we consider a more general feed-
back structure described by a directed graph G = ([K], E)
among the K arms. We assume G is strongly observable,
i.e. for every a ∈ [K], either (a, a) ∈ E or (b, a) ∈ E
for all b ̸= a. After making the decision v ∈ A0 at each
time, the learner now observes the rewards associated to all
neighboring arms of the selected arms in v:{

vir
t
i : ∃a ∈ [K] such that va = 1 and (a, i) ∈ E

}
.

This graph formulation allows us to leverage information
that is unexploited in the semi-bandit feedback.

Note that when G is complete, the feedback structure cor-
responds to having full information; when G contains only
the self-loops, it becomes the semi-bandit feedback. In
the presence of a general G, the exploration-exploitation
trade-off becomes more complicated, and the goals of this
paper are (1) to fully exploit this additional structure in the
regret minimization and (2) to understand the fundamental
learning limit in this class of problems.

1.1. Related work

The optimal regret of the combinatorial semi-bandits has
drawn a lot of attention and has been extensively studied
in the bandit literature. With linear payoff, Koolen et al.
(2010) shows that the Online Stochastic Mirror Descent
(OSMD) algorithm achieves near-optimal regret Θ̃(S

√
T )

under full information. In the case of the semi-bandit feed-
back, Audibert et al. (2014) shows that OSMD achieves
near-optimal regret Θ̃(

√
KST ) using an unbiased estimator

r̃ta = vtar
t
a/Evt [vta], where vt is the random decision se-

lected at time t and the expectation denotes the probability
of choosing arm a.1 The transition of the optimal regret’s de-

1Audibert et al. (2014) only argues there exists a particular
decision subset A0 under which the regret is Ω(

√
KST ). The

pendence from
√
KS to S, as the feedback becomes richer,

remains a curious and important open problem.

Another type of feedback is the bandit or full-bandit feed-
back, which assumes only the realized payoff ⟨v, rt⟩ is
revealed (rather than the rewards for individual arms). In
this case, the minimax optimal regret is Θ̃(

√
KS3T ) (Au-

dibert et al., 2014; Cohen et al., 2017; Ito et al., 2019). This
additional S factor, compared to the semi-bandit feedback,
matches the difference in the observations: in this bandit
feedback, the learner obtains a single observation at each
time, while in the semi-bandit the learner gains S observa-
tions. When the payoff function is nonlinear in v, Han et al.
(2021) shows that the optimal regret scales with Kd where
d roughly stands for the complexity of the payoff function.
More variants of combinatorial semi-bandits include the
knapsack constraint (Sankararaman & Slivkins, 2018), the
fractional decisions (Wen et al., 2015), and the contextual
counterpart (Zierahn et al., 2023).

In the multi-armed bandits, multiple attempts have been
made to formulate and exploit the feedback structure as
feedback graphs since Mannor & Shamir (2011). In par-
ticular, the optimal regret is shown to be Θ̃(

√
αT ) when

T ≥ α3 (Alon et al., 2015; Eldowa et al., 2024) and is a
mixture of T 1/2 and T 2/3 terms when T is small due to
the exploration-exploitation trade-off (Kocák & Carpentier,
2023). When the graph is only weakly observable, i.e. every
node a ∈ [K] has nonzero in-degree, the optimal regret
is Θ̃

(
δ1/3T 2/3

)
(Alon et al., 2015). Here α and δ are the

independence and the domination number of the graph G
respectively, defined in Section 1.3.

Instead of a fixed graph G, Cohen et al. (2016) and Alon
et al. (2017) study time-varying graphs {Gt} and show that

an upper bound Õ

(√∑T
t=1 αt

)
can be achieved. Addi-

tionally, a recent line of research (Balseiro et al., 2023; Han
et al., 2024; Wen et al., 2024) introduces graph feedback
to the tabular contextual bandits, in which case the opti-
mal regret depends on a complicated graph quantity that
interpolates between α and K as the number of contexts
changes.

1.2. Our results

In this paper, we present results on combinatorial semi-
bandits with a strongly observable feedback graph G and
the full decision set A0 = A, while results on general
A0 are discussed in Section 4.1 and 4.2. Our results are
summarized in Table 1, and the main contribution of this
paper is three-fold:

1. We introduce the formulation of a general feedback

lower bound for A is given by Lattimore et al. (2018).
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Table 1. Minimax regret bounds up to polylogarithmic factors. Our results are in bold.

Semi-bandit (α = K) General feedback graph G Full information (α = 1)

Regret Θ̃(
√
KST ) Θ̃(S

√
T+

√
αST) Θ̃(S

√
T )

structure using feedback graphs in combinatorial semi-
bandits.

2. On the full decision set A, we establish a minimax
regret lower bound Ω(S

√
T +
√
αST ) that correctly

captures the regret dependence on the feedback struc-
ture and outlines the transition from Θ̃(S

√
T ) to

Θ̃(
√
KST ) as the feedback gets richer.

3. We propose a policy OSMD-G (OSMD under graph
feedback) that achieves near-optimal regret under gen-
eral directed feedback graphs and adversarial rewards.
Importantly, we identify that sampling with negative
correlations is crucial in achieving the near-optimal
regret, and that the original OSMD is provably subop-
timal.

When the feedback graphs {Gt}t∈[T ] are allowed to be time-
varying, we can also obtain a corresponding upper bound.
The upper bound results are summarized in the following
theorem.

Theorem 1.1. Consider the full decision set A. For 1 ≤
S ≤ K and any strongly observable directed graph G =
([K], E), there exists an algorithm π that achieves regret

E[R(π)] = Õ
(
S
√
T +
√
αST

)
.

When the feedback graphs {Gt}t∈[T ] are time-varying, the
same algorithm π achieves

E[R(π)] = Õ

S
√
T +

√√√√S

T∑
t=1

αt


where αt = α(Gt) is the independence number of Gt.

This algorithm π is OSMD-G proposed in Section 3.1. In
OSMD-G, the learner solves for an optimal convexified
action x ∈ Conv(A) via mirror descent at each time t, using
the past observations, and then realizes it (in expectation) via
selecting a random decision vector vt. In the extreme cases
of full information and semi-bandit feedback, the optimal
regret is achieved as long as vt realizes the convexified
action x in expectation (Audibert et al., 2014). However,
this realization in expectation alone is provably suboptimal
under graph feedback, as shown later in Theorem 3.4.

Under a general graph G, the regret analysis for a tight
bound crucially requires this random decision vector to have

negative correlations among the arms, i.e. Cov(vti , v
t
j) ≤ 0

for i ̸= j, in addition to the realization of x in expectation.
Consequently, the following technical lemma is helpful in
our upper bound analysis:
Lemma 1.2. Fix any 1 ≤ S ≤ K and x ∈ Conv(A). There
exists a probability distribution p over A that satisfies:

1. (Mean) ∀i ∈ [K], Ev∼p[vi] = xi.

2. (Negative correlations) ∀i ̸= j, Ev∼p[vivj ] ≤ xixj ,
i.e. any pair of arms (i, j) is negatively correlated.

In particular, there is an efficient scheme to sample from p.

This lemma is a corollary of Theorem 1.1 in Chekuri et al.
(2009), and the sampling scheme is the randomized swap
rounding (Algorithm 2). The mean condition guarantees that
the convexified action is realized in expectation. The nega-
tive correlations essentially allow us to control the variance
of the observed rewards in OSMD-G, thereby decoupling
the final regret into two terms. Intuitively, the negative corre-
lations imply a more exploratory sampling scheme; a more
detailed discussion is in Section 3.1.

To show that OSMD-G achieves near-optimal performance,
we consider the following minimax regret:

R∗ = inf
π

sup
{rt}

E[R(π)] (2)

where the inf is taken over all possible algorithms and
the sup is taken over all potentially adversarial reward se-
quences. The following lower bound holds:
Theorem 1.3. Consider any decision subset A0 ⊆ A and
strongly observable graph G. When T ≥ max{S, α3/S}
and S < K, it holds that

R∗ = Ω
(
S
√

T log(K/S) +
√
αST

)
.

Our lower bound construction in the proof is stochastic, as is
standard in the literature, and thus stochastic combinatorial
semi-bandits will not be easier.

1.3. Notations

For n ∈ N, denote [n] = {1, 2, . . . , n}. The convex hull of
A is denoted by Conv(A), and the truncated convex hull is
defined by

Convϵ(A) = {x ∈ Conv(A) : xi ≥ ϵ for all i ∈ [K]}.
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We use the standard asymptotic notations Ω, O,Θ to denote
the asymptotic behaviors up to constants, and Ω̃, Õ, Θ̃ up
to polylogarithmic factors respectively. Our results will
concern the following graph quantities:

α = max{|I| : I ⊆ [K] is an independent subset in G},
δ = min{|D| : D ⊆ [K] is a dominating subset in G}.

In a graph G, I ⊆ [K] is an independent subset if for any
i, j ∈ I , (i, j) /∈ E; and D ⊆ [K] is a dominating subset
if for any u ∈ [K], there exists i ∈ D such that (i, u) ∈ E.
For each node a ∈ [K], denote its out-neighbors in G by

Nout(a) = {i ∈ [K] : (a, i) ∈ E}

and its in-neighbors by

Nin(a) = {i ∈ [K] : (i, a) ∈ E}.

For a binary vector v ∈ A that represents an S-arm subset
of [K], we denote its out-neighbors in G by

Nout(v) =
⋃

va=1

Nout(a).

Let D ⊆ Rd be an open convex set, D be its closure, and
F : D → R be a differentiable, strictly convex function.
We denote the Bregman divergence defined by F as

DF (x, y) = F (x)− F (y)− ⟨∇F (y), x− y⟩.

2. Regret lower bound
In this section, we sketch the proof of the lower bound in
Theorem 1.3 and defer the complete proof to Appendix A.
The idea is to divide this learning problem into S indepen-
dent sub-problems and present the exploration-exploitation
trade-off under a set of hard instances to arrive at the final
minimax lower bound.

Under the complete graph G, Koolen et al. (2010) already
gives a lower bound Ω(S

√
T log(K/S)) by reducing the

full information combinatorial semi-bandits to the full infor-
mation multi-armed bandits with rewards ranging in [0, S].
This reduction argument, however, does not lead to the
other Ω(

√
αST ) part of the lower bound. It constructs a

multi-armed bandit policy from any given combinatorial
semi-bandit policy and shows they share the same expected
regret. Thus the lower bound of one translates to that of the
other. As soon as the feedback structure is not full infor-
mation, the observations and thus the behaviors of the two
policies no longer align.

To prove the second part, note that Ω(
√
αST ) only mani-

fests in the lower bound when S < α. In this case, we parti-
tion an independent subset I ⊆ [K] of size α into S subsets
I1, . . . , IS of equal size ⌊αS ⌋ and embeds an independent

multi-armed bandit hard instance in each Im for m ∈ [S].
The other arms J = [K]\I may be more informative but
will incur large regret. Thus a good learner cannot leverage
arms in J due to the exploration-exploitation trade-off.

The learner then needs to learn S independent sub-problems
with ST total number of arm pulls. If the learner is ‘bal-
anced’ in the sense that for each sub-problem m ∈ [S],

Tm(T ) =

T∑
t=1

∑
a∈Im

1[a is pulled] ≈ T,

then the existing multi-armed bandit lower bound implies
that the regret incurred in each sub-problem is Ω(

√
αT/S),

thereby a total regret Ω(
√
αST ). While in our case the

learner may arbitrarily allocate the arm pulls over the S
sub-problems, it turns out to be sufficient to focus on the
‘balanced’ learners via a stopping time argument proposed
in Lattimore et al. (2018). Intuitively, if a learner devotes
pulls Tm(T ) ≫ T for some m, then he/she must suffers
regret ∆(Tm(T )−T ) where ∆ is the reward gap in the hard
instance, which leads to suboptimal performance.

3. A near-optimal algorithm
This section is structured as follows: In Section 3.1, we
present our OSMD-G algorithm and highlight the choice of
reward estimators and the sampling scheme that allow us
to deal with general feedback graphs. Then we show that
OSMD-G indeed achieves near-optimal regret Õ(S

√
T +√

αST ) in Section 3.2. Finally, we argue in Section 3.3
that if the requirement of negative correlations is removed,
OSMD-G would be suboptimal.

3.1. Online stochastic mirror descent with graphs

The overall idea of OSMD-G (Algorithm 1) is to perform a
gradient descent step at each time t, based on unbiased re-
ward estimators, in a dual space defined by a mirror mapping
F that satisfies the following:

Definition 3.1. Given an open convex set D ⊆ Rd, a mirror
mapping F : D → R satisfies

• F is strictly convex and differentiable on D;

• limx→∂D ∥∇F (x)∥ = +∞.

While OSMD-G works with any well-defined mirror map-
ping, we will prove the desired upper bound in Sec-
tion 3.2 for OSMD-G with the negative entropy F (x) =∑K

i=1(xi log(xi)−xi) defined on D = RK
+ . For this choice

of F , the dual space D∗ = RK and hence (5) is always valid.
In fact, (5) admits the explicit form

wt+1 = xt exp(ηr̃t).
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Recall at each time t, for a selected decision vt ∈ A, the
learner observes graph feedback {vtirti : i ∈ Nout(v

t)}.
Based on this, we define the reward estimator for each arm
a ∈ [K] at time t in (4). As we invoke a sampling scheme to
realize xt in expectation, i.e. Evt∼pt [vt] = xt, our estimator
in (4) is unbiased.

A crucial step in OSMD-G is to sample a decision vt at each
time t that satisfies both the mean condition Evt∼pt [vt] =
xt and the negative correlation Evt∼pt [vtiv

t
j ] ≤ xt

ix
t
j .

Thanks to Lemma 1.2, both conditions are guaranteed for all
possible target xt ∈ Conv(A) when we invoke Algorithm 2
as our sampling subroutine.2 The description and details of
Algorithm 2 are deferred to Appendix B.

Algorithm 1 Online Stochastic Mirror Descent under Graph
Feedback (OSMD-G)
Input: time horizon T , decision set A, arms [K], com-
binatorial budget S, feedback graph G, a truncation rate
ϵ ∈ (0, 1), a learning rate η > 0, a mirror mapping F
defined on a closed convex set D ⊇ Convϵ(A).
Initialize: x1 ← argminx∈Convϵ(A) F (x).
for t = 1 to T do

Generate a combinatorial decision vt by Algorithm 2
with target xt.
Observe the feedback {rta : a ∈ Nout(v

t)}.
Denote

r̂ta =

∑
i∈Nin(a)

1[vti = 1](1− rta)∑
i∈Nin(a)

xt
i

. (3)

Build the reward estimator for each a ∈ [K]:

r̃ta = 1− r̂ta. (4)

if S = 1 then
Denote Ut = {a ∈ [K] : r̂ta ≤ 1

(K−1)ϵ}.
Set r̄t = 1 +

∑
a∈Ut

xt
ar̂

t
a.

Set r̃ta ← r̃ta − r̄t for all a ∈ [K].
end
Find wt+1 ∈ D such that

∇F (wt+1) = ∇F (xt) + ηr̃t. (5)

Project wt+1 to the truncated convex hull Convϵ(A):

xt+1 ← argmin
x∈Convϵ(A)

DF (x,w
t+1). (6)

end

While seemingly intuitive given that ∥vt∥1 = S, we em-
phasize that the negative correlations Evt∼pt [vtiv

t
j ] ≤ xt

ix
t
j

2The use of Algorithm 2 is not essential as long as one can
guarantee the negative correlations in Lemma 1.2.

do not necessarily hold and can be non-trivial to achieve.
Consider the case S = 2. When xt = 2

K1 is the uni-
form vector, a uniform distribution over all pairs satisfies
the correlation condition, seeming to suggest the choice of
p(i, j) ∝ xt

ix
t
j . However, when xt = (1, 0.8, 0.2), the only

such solution is to sample the combination {1, 2} with prob-
ability 0.8 and {1, 3} with probability 0.2, suggesting a zero
probability for sampling {2, 3}. A general strategy must
be able to generalize both scenarios. From the perspective
of linear programming, the correlation condition adds

(
K
2

)
constraints to the original K constraints (from the mean
condition) in finding pt, making it much harder to find a
feasible solution.

Now we give an intuitive argument for why such distri-
bution p exists under A and how the structure of the lat-
ter helps. When S = 1, any distributions possess nega-
tive correlations. Inductively, let us suppose such distri-
butions exist for 1, 2, . . . , S − 1. Then for a fixed target
x ∈ Conv(A), we can always find an index i ∈ [K] such
that

∑i−1
j=1 xj+cxi = 1 and

∑K
j=i+1 xj+(1−c)xi = S−1

for some c ∈ [0, 1]. Namely, the target of size S is parti-
tioned into two sub-targets with ranges [1, i] and [i,K], each
with sizes 1 and S − 1, and with an overlap on index i. We
can then assign vi = 0 with probability 1− xi, to the first
half [1, i] with probability cxi, and to [i,K] with probability
(1 − c)xi. To obtain a final size S solution, we draw v′

supported on [1, i− 1] with size 0 or 1 and v′′ on [i+ 1,K]
with size S − 1 or S − 2, conditioned on the assignment of
vi. For any j1 ∈ [1, i− 1], j2 ∈ [i+ 1,K], and i, any two
of them are negatively correlated because, at a high level,
the presence of one ‘reduces’ the size budget of the other.
The negative correlations among the first half [1, i− 1] and
[i + 1,K] are guaranteed by the induction hypothesis of
the existence of such distributions for solutions with size
less than S. Finally, the structure of A ensures that our
pieced-together solution is valid, i.e. lies in A.

3.2. Regret upper bound

In the following theorem, we show that OSMD-G achieves
near-optimal regret for a strongly observable time-invariant
feedback graph. The proof for time-varying feedback graphs
{Gt}t∈[T ] only takes a one-line change in (11). It is clear
that Theorem 3.2 implies Theorem 1.1.

Theorem 3.2. Let the mirror mapping be F (x) =∑K
i=1(xi log xi − xi). When the correlation condition for

pt is satisfied, the expected regret of Algorithm 1 is upper
bounded by

E[R(Alg 1)] ≤ ϵKT+
S log(K/S)

η
+η(6S+4α log(4KS/(ϵα)))T.

In particular, with truncation ϵ = 1
KT and learning rate η =
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5S log(K/S)

(6S+4α log(4SK2T/α))T = Õ
(√

S
(S+α)T

)
, it becomes

E[R(Alg 1)] ≤ 1 + β
(
S
√
T +
√
αST

)
for β =

√
24 log(K/S) log(4SK2T/α) = Õ(1).

Proof. We present the proof for the case S ≥ 2 here. The
proof for S = 1 is similar and is deferred to Appendix C
due to space limit. Now fix any v ∈ A. Let

vϵ = argmin
v′∈Convϵ(A)

∥v − v′∥1

which satisfies (v − vϵ)
⊤rt ≤ ∥v − vϵ∥1 ≤ Kϵ since

rt ∈ [0, 1]K . We can decompose the regret as

E

[
T∑

t=1

(
v − vt

)⊤
rt
]
= E

[
T∑

t=1

(v − vϵ)
⊤rt +

(
vϵ − vt

)T
rt
]

≤ ϵTK + E

[
T∑

t=1

(
vϵ − vt

)⊤
rt
]

(7)

Standard OSMD analysis applied to the truncated convex
hull Convϵ(A) further bounds the second term in (7) as
follows (see e.g. Theorem 3 in Audibert et al. (2014)).

E

[
T∑

t=1

(
v − vt

)⊤
rt

]

≤ ϵTK +
S log(K/S)

η
+ ηE

[
T∑

t=1

K∑
a=1

xt
a

(
r̃ta
)2]

. (8)

To bound the last term, we first use the non-negativity of r̂ta,
defined in (3), to further decompose it:

T∑
t=1

K∑
a=1

xt
a

(
r̃ta
)2

=

T∑
t=1

K∑
a=1

xt
a

(
1− r̂ta

)2
≤

T∑
t=1

K∑
a=1

xt
a

(
1 +

(
r̂ta
)2) ≤ ST +

T∑
t=1

K∑
a=1

xt
a

(
r̂ta
)2

︸ ︷︷ ︸
(A)

.

Now we proceed to bound term (A). Recall that G is strongly
observable, and let U = {a ∈ [K] : (a, a) /∈ E} be the set

of nodes with no self-loops. On the set U we have

E

[
T∑

t=1

∑
a∈U

xt
a

(
r̂ta
)2]

=

T∑
t=1

∑
a∈U

E

xt
a

(∑
i∈Nin(a)

1[vti = 1](1− rta)∑
i∈Nin(a)

xt
i

)2


(a)

≤
T∑

t=1

∑
a∈U

E

xt
a

(∑
i ̸=a 1[v

t
i = 1]∑

i ̸=a x
t
i

)2


(b)

≤
T∑

t=1

∑
a∈U

E

[
xt
a

(
S

S − 1

)2
]

≤ 4

T∑
t=1

∑
a∈U

E[xt
a] ≤ 4ST. (9)

Here (a) is due to rta ∈ [0, 1] and that, if a ∈ U , then (i, a) ∈
E for all i ̸= a, and (b) uses

∑
i ̸=a x

t
i = S − xt

a ≥ S − 1.
On the other hand, by the choice of vt in Algorithm 1, the
random variables vti are negatively correlated. Thus for each
a ∈ [K], we can upper bound the second moment of the
following sum:

Evt∼pt


 ∑

i∈Nin(a)

vti

2


=

 ∑
i∈Nin(a)

Evt∼pt

[
vti
]2

+ Var

 ∑
i∈Nin(a)

vti


=

 ∑
i∈Nin(a)

Evt∼pt

[
vti
]2

+
∑

i∈Nin(a)

Var
(
vti
)

+
∑

i,j∈Nin(a)
i̸=j

Cov
(
vti , v

t
j

)

≤

 ∑
i∈Nin(a)

xt
i

2

+
∑

i∈Nin(a)

xt
i. (10)
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Then on the set U c ≡ [K]\U , we have

E

[
T∑

t=1

∑
a/∈U

xt
a

(
r̂ta
)2]

≤
T∑

t=1

∑
a/∈U

E

xt
a

(∑
i∈Nin(a)

1[vti = 1]∑
i∈Nin(a)

xt
i

)2


(10)
≤

T∑
t=1

∑
a/∈U

E

[
xt
a

(
1 +

1∑
i∈Nin(a)

xt
i

)]

≤
T∑

t=1

∑
a/∈U

E

[
xt
a

(
1 +

1∑
i/∈U :i∈Nin(a)

xt
i

)]
(c)

≤ T

(
S + 4α log

(
4KS

ϵα

))
. (11)

Here (c) uses
∑K

a=1 x
t
a ≤ S, Lemma F.2 on the restricted

subgraph G|Uc , and the fact that α(G|Uc) = α(G) = α.
Combining (9) and (11) yields

E

[
T∑

t=1

K∑
a=1

xt
a

(
r̃ta
)2] ≤ 6TS + 4Tα log

(
4KS

ϵα

)
. (12)

Finally, combining (12) with (8), we end up with the desired
upper bound

E[R(Alg 1)] ≤ϵKT +
S log(K/S)

η

+ η(6S + 4α log(4KS/(ϵα)))T.

Note that at each time t and for each arm a ∈ [K], the total
number of arms that observe a is a random variable due to
the random decision vt. In (10) in the proof above, one can
naively bound the second moment of this random variable
by

E


 ∑

i∈Nin(a)

vti

2
 ≤ SE

 ∑
i∈Nin(a)

vti


since ∥vt∥1 ≤ S, which leads to an upper bound Õ(S

√
αT ).

We will see that this rate is sometimes not improvable for
certain proper decision subsets A0 ⊊ A later in Section 4.1.

To improve on this bound for A, we need to further exploit
the structures of the full decision set A and the sampling
distribution pt of vt, which motivates Lemma 1.2. The
negative correlations therein allow us to decompose this
second moment into the squared mean and a sum of the
individual variances, as in (10). By saving on the O(K2)
correlation terms, this decomposition shaves the factor in
(10) from Sα to S+α, yielding the desired result Õ(S

√
T+√

αST ).

Remark 3.3. It turns out that when S ≥ 2 and G is strongly
observable, the presence of the nodes with no self-loop can
be easily handled in this upper bound analysis, whereas the
case S = 1 proved in Appendix C requires more care. This
matches the intuition that, when S ≥ 2, the learner always
observes the entire subset U at every time t. Therefore,
the extension from U = ∅ to |U | ≥ 1 does not add to the
difficulty in learning.

3.3. The necessity of negative correlations

The previous section shows an improved performance for
OSMD-G when vt has negative correlations, which is a
requirement never seen in either the semi-bandit feedback
or the full feedback in previous literature. In either of the
two cases, OSMD with the mean condition (in Lemma 1.2)
alone is sufficient to achieve the near-optimal regret.

Then, one may naturally ask if the vanilla OSMD-G with
only the mean condition still achieves this improved rate,
i.e. when it only guarantees Evt∼pt [vt] = xt. The answer
is negative.

Theorem 3.4. Fix any problem parameters (K,S, α, T )
with Sα ≤ K, S ≤ K

2 , and T ≥ max{S, α3}, and con-
sider the full decision set A. There exists a feedback graph
G = ([K], E) and a sampling scheme pt that satisfies
Evt∼pt [vt] = xt, such that

sup
{rt}

E[R(π0)] = Ω
(
S
√
αT
)

where π0 denotes OSMD-G equipped with this pt and mirror
mapping F (x) =

∑K
i=1(xi log xi − xi).

Proof. The core idea of this proof is that, for some G and
pt, running the vanilla OSMD-G on this problem instance
is equivalent to running OSMD on a multi-armed bandit
with rewards ranging in [0, S]. Without loss of generality,
assume K = nS for n ∈ N.3 By assumption α ≤ n.

First, we construct the graph G. Let V1, . . . , Vn partition
the nodes [K] each with size S, and let H = ([n], En) be
an arbitrary graph on n nodes with independence number
α(H) = α. Then we let (a, b) ∈ E iff either a, b ∈ Vi or
a ∈ Vi, b ∈ Vj , and (Vi, Vj) ∈ En, i.e. each Vi is a clique
and H is a graph over the cliques.

For clarity, we denote the mean condition as

Evt∼pt [vt] = xt (M)

and for vector q ∈ RK , we say q aligns with the cliques if

qa = qb ≡ q(Vi), ∀a, b ∈ Vi ∀i ∈ [n]. (AC)

3If S does not divide K, one can put the remainder nodes in
one of the cliques and slightly change the sampling pt to draw uni-
formly within this clique, while maintaining the mean condition.
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Now we consider a sampling scheme pt as follows: (1) if xt

satisfies (AC), then let vt = Vi with probability xt(Vi); (2)
otherwise, use any distribution pt satisfying (M). Note that
(1) gives a valid distribution over the cliques and satisfies
(M). We will show via an induction that if rt satisfies (AC)
for all t ∈ [T ], then (2) never happens. As the base case, the
OSMD initialization x1 = 1

K1 satisfies (AC).

For the inductive step, when xt satisfies (AC), we have vt =
Vi for some i and thereby satisfies (AC). By construction
of G, the reward estimator r̃t also satisfies (AC). Given the
negative entropy mapping F , straightforward computation
shows that both wt+1 and xt+1 satisfy (AC), completing
the induction. Consequently, we have vt = Vit for some
it ∈ [n] when rt satisfies (AC) for all t ∈ [T ]. Namely,
OSMD-G now reduces to a policy running on an n-armed
bandit with feedback graph H , and now the lower bound of
the latter can apply.

From the lower bound of the multi-armed bandits with feed-
back graphs (see e.g. Alon et al. (2015)), there exists a set
of reward sequences {ht(j)}t∈[T ],j∈J with some index set
J and ht(j) ∈ [0, S]n such that

Ej∼Unif(J )[Rj,MAB(π)] = Ω(S
√
αT )

for any policy π, where Rj,MAB(π) denotes the multi-armed
bandit regret when the reward sequence is {ht(j)}t,∈[T ].
Define the clique-averaged reward sequences by rta(j) =
ht
i(j)
|Vi| ∈ [0, 1] for a ∈ Vi for each j ∈ J . Since (AC) is

guaranteed, we have

sup
{rt}

E[R(π0)] ≥ Ej∼Unif(J )[Rj(π0)] = Ω(S
√
αT )

where Rj(π0) denotes the regret for this vanilla OSMD-G
π0 under reward sequence {rt(j)}t∈[T ].

We remark that Theorem 3.4 does not directly show that
the negative correlations are necessary, even though they
are sufficient as shown by Theorem 1.1. It only says that
the mean condition alone is insufficient when dealing with
general graph feedback, despite its success in the existing
literature. It is possible that imposing extra conditions other
than negative correlations can also lead to the near-optimal
regret.

4. Extension to general decision subsets
4.1. When negative correlations are impossible

So far, we have shown the optimal regret Θ̃(S
√
T+
√
αST )

on the full decision set A. Our upper bound in Theorem 1.1
fails on general decision subsets A0 ⊆ A, because it is not
always possible to find a distribution pt for the decision
vt in OSMD-G that provides the negative correlations in

Lemma 1.2. For example, when there is a pair of arms (a, b)
with va = vb for all v ∈ A0, it is simply impossible to
achieve negative correlations.

This failure, however, is not merely an analysis artifact.
In the following, we present an example where moving
from the full set A to a proper subset A0 ⊊ A provably
increases the optimal regret to Θ̃(min{S

√
αT ,
√
KST})

when S ≤ K
2 . This argument is very similar to the proof of

Theorem 3.4.

We first consider the case Sα ≤ K. Assume again S ≤ K
2

and S divides K. We let V1, V2, . . . , VK/S be a partition
of the arms [K] of equal size S. For the feedback graph
G, let each Vi be a clique for i = 1, . . . ,K/S. Let H =
({V1, . . . , VK/S}, E) be an arbitrary other graph over the
cliques such that (Vi, Vj) ∈ E in H iff (a, b) ∈ E for all a ∈
Vi and b ∈ Vj in G. The independence numbers α(G) =
α(H) are equal. On the full decision set A, Theorem 1.1
and 1.3 tell us the optimal regret is Θ̃(S

√
T +
√
αST ).

Now consider a proper decision subset

Apartition = {11:S ,1S+1:2S , . . . ,1K−S+1:K} (13)

where (1i:j)k = 1[i ≤ k ≤ j] is one on the coordinates
from i to j and zero otherwise. Namely, the only feasible
decisions are the first S arms in V1, the next S arms in V2,
..., and the last S arms in VK/S . It is straightforward to see
that this problem is equivalent to a multi-armed bandit with
K/S arms and a feedback graph H , and the rewards range
in [0, S]. From the bandit literature (Alon et al., 2015), the
optimal regret on this decision subset Apartition is Θ̃(S

√
αT )

which is fundamentally different from the result for the full
decision set, even under the same feedback graph.

On the other hand, if Sα > K, a similar construction fol-
lows, except that some of the grouped nodes Vi are no longer
cliques in order to satisfy α(G) = α, and that the graph
H has only self-loops. Then α(H) = K

S and the regret is
Θ̃(
√
KST ). To formalize this statement:

Theorem 4.1. Fix any problem parameters (K,S, α, T )
with Sα ≤ K, S ≤ K

2 , and T ≥ max{S, α3}. There exists
a decision subset A0 ⊊ A such that

R∗(A0) = Ω
(
min{S

√
αT ,
√
KST}

)
where R∗(A0) denotes the minimax regret, as defined in (2),
on this subset A0.

Given this (counter-)example, the following upper bound is
of interest:
Theorem 4.2. On general decision subset A0 ⊆ A where
only the mean condition is guaranteed, the algorithm
OSMD-G achieves

E[R(Alg 1)] = Õ
(
S
√
αT
)
.
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In particular, when Sα > K, one can ignore the graph feed-
back and directly apply OSMD. The combination of OSMD
and OSMD-G then guarantees Õ

(
min{S

√
αT ,
√
KST}

)
.

For any target xt ∈ Conv(A0), there is always a proba-
bility distribution pt such that Evt∼pt [vt] = xt, which is
used in earlier works (Koolen et al., 2010; Audibert et al.,
2014). With this choice of pt, OSMD-G achieves the re-
gret in Theorem 4.2. The proof follows from Section 3.2
and is left to Appendix E. Together with the construction
of Apartition in (13), it suggests that leveraging the negative
correlations, whenever the decision subset A0 allows, is
crucial to achieving improved regret Õ(S

√
T +

√
αST ).

We will see examples of A0 where negative correlations are
guaranteed in the next section.

Note on general A0, the efficiency of OSMD-G is no longer
guaranteed; see discussions in Koolen et al. (2010); Audib-
ert et al. (2014). To compensate, we provide an efficient
elimination-based algorithm that is agnostic of the structure
of the decision subsetA0 and achieves Õ(S

√
αT ) when the

rewards are stochastic. The algorithm and its analysis are
left in Appendix D.

4.2. When negative correlations are possible

This section aims to extend the upper bound in Theorem 1.1
to some other decision subsets A0 ⊆ A. First, by Theorem
1.1 in Chekuri et al. (2009), Lemma 1.2 and OSMD-G
can be generalized directly to any decision subset A′

0 ⊆
{v ∈ {0, 1}K : ∥v∥1 ≤ S} that forms a matroid. Notably,
matroids require that decisions with size less than S are also
feasible, hence they are different from the setup A0 ⊆ A
we consider throughout this work.

In addition, while Chekuri et al. (2009) focuses on matroids,
the proof of their Theorem 1.1 only relies on the following
exchange property of a decision set A0: for any v, u ∈ A0,
there exist i ∈ u − v and j ∈ v − u such that u − {i} +
{j}, v − {j} + {i} ∈ A0. Lemma 1.2 remains valid for
any such A0. Here we provide an example of A0 ⊊ A that
satisfies this property:

Consider the problem that the learner operates on S systems
in parallel, and on each system s he/she has Ks arms to
choose from. Then K =

∑
s∈[S] Ks and the feasible deci-

sions are A0 = {(v1, . . . , vS) : vs ∈ [Ks]}. It is clear that
this A0 satisfies the exchange property above, and hence
OSMD-G and Theorem 1.1 apply directly to such problems.
The independence number α can be small if there is shared
information among the S systems.

4.3. Other open problems

Weakly observable graphs: The results in this work focus
on the strongly observable feedback graphs. A natural ex-

tension would be the minimax regret characterization when
the feedback graph G = ([K], E) is only weakly observ-
able. Recall that when S = 1, Alon et al. (2015) shows the
optimal regret is Θ̃(δ1/3T 2/3).

To get a taste of it, consider a simple explore-then-commit
(ETC) policy under stochastic rewards: the learner first ex-
plores the arms in a minimal dominating subset as uniformly
as possible for T0 time steps, and then commit to the S em-
pirically best arms for the rest of the time.4 Its performance
is characterized by the following result.

Theorem 4.3. With high probability, the ETC policy
achieves regret Õ(ST 2/3 + δ1/3S2/3T 2/3).

When S = 1, this policy is near-optimal. We briefly outline
the proof here. When δ ≥ S, thanks to the stochastic
assumption and concentration inequalities, each one of the
S empirically best arms contributes only a sub-optimality
of order Õ(

√
δ/ST0) with high probability. Trading off T0

in the upper bound

ST0 + ST
√
δ/(ST0)

gives the bound Õ(δ1/3S2/3T 2/3). When δ < S, a similar
analysis yields the bound Õ(ST 2/3).

Small time horizon: Note that our lower bound in The-
orem 1.3 only holds when T ≥ max{S, α3/S}. In the
multi-armed bandits with graph feedback, the optimal regret
is fundamentally different when the time horizon T < α3:
when T is small, exploration picks up an important role and
thereby introduces a T 2/3 term (Kocák & Carpentier, 2023).
We expect a similar behavior to take place in our setting
when T < α3/S, while the exact regret characterization
and the optimal algorithm are still unexplored.

Problem-dependent bounds: With the semi-bandit feed-
back and stochastic rewards, Combes et al. (2015) proves a
problem-dependent bound Õ

(
K

√
S

∆min

)
where ∆min denotes

the mean reward gap between the best arm and the second-
best arm. It would be another interesting question to see
how the presence of feedback graph G helps the problem-
dependent bounds.
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A. Proof of Theorem 1.3
Under the full information setup (i.e. when G is a complete graph), a lower bound Ω(S

√
T log(K/S)) was given by

(Koolen et al., 2010), which implies that R∗(G) = Ω(S
√
T log(K/S)) for any general graph G.

To show the second part of the lower bound, without loss of generality, we may assume α = nS for some n ∈ N≥4.
Consider a maximal independent set I ⊆ [K] and partition it into I1, . . . , IS such that |Im| = n = α

S for m ∈ [S]. Index
each subset by Im = {am,1, . . . , am,n}. To construct a hard instance, let u ∈ [n]S be a parameter and the product reward
distribution be Pu =

∏
a∈[K] Bern(µa) where

µa =


1
4 +∆ if a = am,um

∈ Im for m ∈ [S];
1
4 if a ∈ I\{am,um

}m∈[S];
0 if a ̸∈ I .

The reward gap ∆ ∈ (0, 1/4) will be specified later. Also let Pu−m differ from Pu at µa = 1
4 for all a ∈ Im, where

u−m = (u1, . . . , um−1, 0, um+1, . . . , uS) denotes the parameter u with m-th entry replaced by 0. Then the following
observations hold:

1. For each u ∈ [n]S , the optimal combinatorial decision is v∗(u) = {am,um
}m∈[S], and any other v ∈ A suffers an

instantaneous regret at least ∆|v\v∗(u)|;

2. For each u or u−m, a decision v ∈ A suffers an instantaneous regret at least 1
4 |v ∩ Ic|;

Fix any policy π and denote by vt the arms pulled by π at time t. Let Nm,j(t) be the number of times am,j is pulled at the
end of time t and Nm(t) =

∑n
j=1 Nm,j(t), and N0(t) be the total number of pulls outside I at the end of time t. Let u be

uniformly distributed over [n]S , E(u)[·] denote the expectation under environment Pu, and Eu[·] denote the expectation over
u ∼ Unif([n]S).

Define the stopping time by τm = min{T,min{t : Tm(t) ≥ T}}. Note that T ≤ Nm(τm) ≤ T + S since at each round
the learner can pull at most S arms in Im. Under any u, the regret is lower bounded by:

E(u)[R(π)] ≥ ∆E(u)

[
N0(T ) +

S∑
m=1

Nm(T )−Nm,um
(T )

]
= ∆E(u)

[
S∑

m=1

T −Nm,um
(T )

]

E(u)[R(π)] ≥ ∆E(u)

 S∑
m=1

T∑
t=1

n∑
j=1

1[am,j ∈ vt]

 ≥ ∆E(u)

 S∑
m=1

τm∑
t=1

n∑
j=1

1[am,j ∈ vt]


= ∆E(u)

[
S∑

m=1

Nm(τm)−Nm,um(τm)

]
.

Together with x+ y ≥ max{x, y}, we have

E(u)[R(π)] ≥ ∆

2

S∑
m=1

E(u)[max{T −Nm,um(T ), Nm(τm)−Nm,um(τm)}]

≥ ∆

2

S∑
m=1

E(u)[T −Nm,um
(τm)]

12
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where the second line follows from the definition of τm. Next, we lower bound the worst-case regret by the Bayes regret:

max
u∈[n]S

E(u)[R(π)] ≥ EuE(u)[R(π)] ≥ ∆

2

S∑
m=1

EuE(u)[T −Nm,um
(τm)]

=
∆

2

S∑
m=1

Eu−m

[
1

n

n∑
um=1

E(u)[T −Nm,um(τm)]

]

=
∆

2

S∑
m=1

Eu−m

[
T − 1

n

n∑
um=1

E(u)[Nm,um
(τm)]

]
(14)

For any fixed m, u−m, and um ∈ [n], let Pm denote the law of Nm,um(τm) under environment u, and P−m denote the law
of Nm,um

(τm) under environment u−m. Then

E(u)[Nm,um(τm)]− E(u−m)[Nm,um(τm)]
(a)

≤ T

√
1

2
KL(P−m∥Pm)

(b)

≤ T

√
32∆2

3
E(u−m)[N0(τm) +Nm,um(τm)]

≤ 4∆T
√

E(u−m)[N0(T )] + E(u−m)[Nm,um
(τm)].

Here (a) uses Pinsker’s inequality, and (b) uses the chain rule of the KL divergence, the inequality KL(Bern(p)∥Bern(q)) ≤
(p−q)2

q(1−q) and ∆ ∈ (0, 1/4), and the important fact that Tm,um(τm) is Fτm-measurable. The last fact crucially allows us to
look at the KL divergence only up to time τm.

Note that E(u−m)[R(π)] ≥ 1
4E

(u−m)[N0(T )]. So if E(u−m)[N0(T )] ≥
√
αST for any m ∈ [S], the policy incurs too

large regret under this environment u−m and we are done. Now suppose E(u−m)[N0(T )] <
√
αST for every m. By

Cauchy-Schwartz inequality and the definition of τm,

n∑
um=1

E(u)[Nm,um
(τm)] ≤

n∑
um=1

E(u−m)[Nm,um
(τm)] + 4∆T

√√√√n2
√
αST + n

n∑
um=1

E(u−m)[Nm,um(τm)]

≤ T + S + 4∆T

√
n2
√
αST + n(T + S). (15)

Plugging (15) into (14) leads to

max
u∈[n]S

E(u)[R(π)] ≥ ∆

2

S∑
m=1

Eu−m

[
T − T + S

n
− 4∆T

√
√
αST +

T + S

n

]

=
∆ST

2
− ∆S(T + S)

2n
− 2∆2ST

√
√
αST +

T + S

n
(c)

≥ ∆ST

4
− 4∆2ST

√
T

n
.

where (c) uses the assumptions that T ≥ S, n ≥ 4, and 2T
n ≥

√
αST when T ≥ α3

S . Plugging in ∆ = 1
64

√
n
T and recalling

n = α
S yield the desired bound

max
u∈[n]S

E(u)[R(π)] ≥ 1

1024

√
αST .

Note that the constants in this proof are not optimized.

B. Randomized Swap Rounding
This section introduces the randomized swap rounding scheme by Chekuri et al. (2009) that is invoked in Algorithm 1.
Note that randomized swap rounding is not always valid for any decision set A: its validity crucially relies on the exchange

13
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property that for any u, c ∈ A, there exist a ∈ u\c and a′ ∈ c\u such that u− {a}+ {a′} ∈ A and c− {a′}+ {a} ∈ A.
This property is satisfied by the full decision set A as well as any subset A ⊆ {v ∈ {0, 1}K : ∥v∥1 ≤ S} that forms a
matroid. However, for general A this can be violated, and as discussed in Section 4.1, no sampling scheme can guarantee
the negative correlations and the learner must suffer a Θ̃(S

√
αT ) regret.

Algorithm 2 Randomized Swap Rounding

Input: decision set A, arms [K], target x =
∑N

i=1 wivi where N = |A|.
Initialize: u← v1.
for i = 1 to N − 1 do

Denote c← vi+1 and βi ←
∑i

j=1 wj .
while u ̸= c do

Pick a ∈ u\c and a′ ∈ c\u such that u− {a}+ {a′} ∈ A and c− {a′}+ {a} ∈ A.
With probability βi

βi+wi+1
, set c← c− {a′}+ {a};

Otherwise, set u← u− {a}+ {a′}.
end

end
Output u.

C. Case S = 1 in the proof of Theorem 3.2
In this section, we present the proof of Theorem 3.2 for the special case S = 1. The overall idea is the same as in Section 3.2
but requires an adaptation of Lemma 4 in Alon et al. (2015) to our reward setting.

Proof. Let U = {a ∈ [K] : (a, a) /∈ E}. For the clarity of notation, let r̃ta be defined as in (4) and recall r̄t =
1 +

∑
a∈U xt

ar̂
t
a ≥ 0. Fix any v ∈ A and let vϵ = argminv′∈Convϵ(A) ∥v − v′∥1. The regret becomes

E

[
T∑

t=1

(
v − vt

)⊤
rt

]
≤ ϵKT + E

[
T∑

t=1

(
vϵ − vt

)⊤
rt

]
= ϵKT + E

[
T∑

t=1

(
vϵ − vt

)⊤(
rt − ct1

)]
for any ct ∈ R when S = 1, where 1 ∈ RK denotes the all-one vector. Recall that r̃ta is an unbiased estimator of rta and
plug in ct = r̄t, we get

E

[
T∑

t=1

(
v − vt

)⊤
rt

]
≤ ϵKT + E

[
T∑

t=1

(
vϵ − vt

)⊤(
r̃t − r̄t1

)]
.

Following the same lines in the proof of Theorem 3.2, we arrive at a similar decomposition as (8):

E

[
T∑

t=1

(
vϵ − vt

)⊤(
r̃t − r̄t1

)]
≤ S log(K/S)

η
+ ηE

[
T∑

t=1

K∑
a=1

xt
a

(
r̃ta − r̄t

)2]
. (16)

Now for any time t, it holds that

T∑
t=1

∑
a∈Ut

xt
a

(
r̃ta − r̄t

)2
=

T∑
t=1

∑
a∈Ut

xt
a

(
r̂ta + r̄t − 1

)2
=

T∑
t=1

∑
a∈Ut

xt
a

(
r̂ta
)2 − T∑

t=1

(∑
a∈Ut

xt
ar̂

t
a

)2

≤
T∑

t=1

∑
a∈U

xt
a

(
r̂ta
)2 − T∑

t=1

∑
a∈U

(
xt
a

)2(
r̂ta
)2

=

T∑
t=1

∑
a∈U

xt
a(1− xt

a)
(
r̂ta
)2

14
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where the inequality is due to the non-negativity of xt
a and r̂ta. On the other hand, by definition of Ut = {a ∈ [K] : r̂ta ≤

1
(K−1)ϵ}, it holds that r̄t ≤ 1 + 1

(K−1)ϵ . Then

T∑
t=1

∑
a/∈Ut

xt
a

(
r̃ta − r̄t

)2 ≤ T∑
t=1

∑
a/∈U

xt
a

(
r̃ta
)2

since r̃ta − r̄t ≥ r̂ta − 1
(K−1)ϵ ≥ 0 for each a /∈ Ut and r̄t ≥ 0. Finally, for every a ∈ U , it holds that

r̂ta ≤
1

(K − 1)ϵ

since xt ∈ Convϵ(A), and so U ⊆ Ut for all time t. Substituting back in (16), we get

E

[
T∑

t=1

(
vϵ − vt

)⊤(
r̃t − r̄t1

)]
≤ S log(K/S)

η

+ ηE


T∑

t=1

∑
a∈U

xt
a(1− xt

a)
(
r̂ta
)2

︸ ︷︷ ︸
(A)

+

T∑
t=1

∑
a∈Ut\U

xt
a(1− xt

a)
(
r̂ta
)2

︸ ︷︷ ︸
(B)

+

T∑
t=1

∑
a/∈Ut

xt
a

(
r̃ta
)2

︸ ︷︷ ︸
(C)

.
(17)

First, we bound the expectation of term (A) as follows:

= E

[
T∑

t=1

∑
a∈U

xt
a(1− xt

a)
(
r̂ta
)2]

= E

[
T∑

t=1

∑
a∈U

xt
a

∑
i̸=a 1[v

t
i = 1](1− rta)

1− xt
a

]
≤ E

[
T∑

t=1

∑
a∈U

xt
a

∑
i ̸=a 1[v

t
i = 1]

1− xt
a

]

= E

[
T∑

t=1

∑
a∈U

xt
a

]
≤ ST.

Note (C) can be decomposed as follows:

E

 T∑
t=1

∑
a/∈Ut

xt
a

(
r̃ta
)2 = E

 T∑
t=1

∑
a/∈Ut

xt
a

(
1− r̂ta

)2 ≤ E

 T∑
t=1

∑
a/∈Ut

xt
a

(
1 +

(
r̂ta
)2)

= E

 T∑
t=1

∑
a/∈Ut

xt
a

+ E

 T∑
t=1

∑
a/∈Ut

xt
a

(
r̂ta
)2.

Since 1− xt
a ∈ [0, 1] in term (B), we can plug the above bounds back in (17) and get

E

[
T∑

t=1

(
vϵ − vt

)⊤(
r̃t − r̄t1

)]
≤ S log(K/S)

η
+ ST + E

[
T∑

t=1

∑
a/∈U

xt
a

(
r̂ta
)2]

≤ S log(K/S)

η
+ ST + T

(
S + 4α log

(
4KS

ϵα

))
where the last inequality follows from (11).

D. Arm elimination algorithm for stochastic rewards
As promised in Section 4.1, we present an elimination-based algorithm, called Combinatorial Arm Elimination, that is
agnostic to the decision subset A0 and achieves regret Õ(S

√
αT ). We assume the reward rti ∈ [0, 1] for each arm i ∈ [K]
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Algorithm 3 Combinatorial Arm Elimination
Input: time horizon T , decision subset A0 ⊆ A, arm set [K], combinatorial budget S, feedback graph G, and failure
probability ϵ ∈ (0, 1).
Initialize: Active set Aact ← A0, minimum count N ← 0.
Let (r̄ta, n

t
a) be the empirical reward and the observation count of arm a ∈ [K] at time t.

For each combinatorial decision v ∈ Aact, let r̄tv =
∑

a∈v r̄
t
a be the empirical reward and nt

v = mina∈v n
t
a be the minimum

observation count.
for t = 1 to T do

Let AN ← {v ∈ Aact : n
t
v = N} be the decisions that have been observed least.

Let GN be the graph G restricted to the set Ut = {a ∈ [K] : ∃v ∈ AN with a ∈ v} =
⋃

v∈AN
v.

Let at ∈ Ut be the arm with the largest out-degree (break tie arbitrarily).
Pull any decision vt ∈ AN with at ∈ vt.
Observe the feedback {rta : a ∈ Nout(vt)} and update (r̄ta, n

t
a) accordingly.

if minv∈AN
nt
v > N then

Update the minimum count N ← minv∈Aact
nt
v .

Let r̄tmax ← maxv∈Aact
r̄tv be the maximum empirical reward in the active set.

Update the active set as follows:

Aact ←

{
v ∈ Aact : r̄

t
v ≥ r̄tmax − 6S

√
log(2T ) log(KT/ϵ)

N

}
.

end
end

is i.i.d. with a time-invariant mean µi. The algorithm maintains an active set of the decisions and successively eliminates
decisions that are statistically suboptimal. It crucially leverages a structured exploration within the active set Aact. In the
proof below and in Algorithm 3, for ease of notation, we let v ∈ A0 denote both the binary vector and the subset of [K] it
represents. So a ∈ v ⊆ [K] if va = 1.

Theorem D.1. Fix any failure probability ϵ ∈ (0, 1). For any decision subset A0 ⊆ A, with probability at least 1 − ϵ,
Algorithm 3 achieves expected regret

E[R(Alg 3)] = Õ
(
Sα+ S

√
log(KT/ϵ)αT

)
.

Proof. Fix any ϵ ∈ (0, 1). For any n ≥ 0, denote ∆n = 3
√
log(2T ) log(KT/ϵ)/n (let ∆0 = 1 for simplicity). During the

period of N = n, by Lemma F.6, with probability at least 1− ϵ, we have |r̄ta − µa| ≤ ∆n for any individual arm a ∈ Ut at
any time t. In the remaining proof, we assume this event holds. Then the optimal combinatorial decision v∗ is not eliminated
at the end of this period, since

r̄tv∗ ≥ µv∗ − S∆n ≥ µmax − S∆n ≥ r̄tmax − 2S∆n.

In addition, for any v ∈ Aact, the elimination step guarantees that

µv ≥ r̄tv − S∆n ≥ r̄tmax − 3S∆n ≥ r̄tv∗ − 3S∆n ≥ µv∗ − 4S∆n. (18)

Let Tn be the duration of N = n. Recall that at ∈ Ut has the largest out-degree in the graph G restricted to Ut. By
Lemma F.1 and Lemma F.3, we are able to bound Tn:

Tn ≤ (1 + log(K))δ(GN ) ≤ 50 log(K)(1 + log(K))α(GN ) ≤ 50 log(K)(1 + log(K))α ≡M.

By (18), the regret incurred during Tn is bounded by 4S∆nTn. Thus with probability at least 1− ϵ, the total regret is upper
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bounded by

E[R(Alg 3)] ≤ ST0 + 4S

∞∑
n=1

∆nTn

≤ SM + 4S

T/M∑
n=1

∆nM

≤ SM + 12SM
√
log(2T ) log(KT/ϵ)

√
T/M

≤ SM + 12S
√

log(2T ) log(KT/ϵ)
√
MT

≤ SM + 60
√
log(K)(1 + log(K)) log(2T ) log(KT/ϵ)S

√
αT .

E. Proof of Theorem 4.2
The proof of Theorem 4.2 follows that of Theorem 3.2. The only difference is that the correlation condition of pt is no

longer guaranteed on general A0. Now we can only bound (10) as E
[(∑

i∈Nin(a)
vti

)2]
≤ SE

[∑
i∈Nin(a)

vti

]
. Then (11)

becomes

T∑
t=1

∑
a/∈U

xt
a

E
[(∑

i∈Nin(a)
vti

)2]
(∑

i∈Nin(a)
xt
i

)2 (a)

≤
T∑

t=1

∑
a/∈U

xt
a

SE
[∑

i∈Nin(a)
vti

]
(∑

i∈Nin(a)
xt
i

)2
=

T∑
t=1

∑
a/∈U

xt
a

S
∑

i∈Nin(a)
xt
i(∑

i∈Nin(a)
xt
i

)2
=

T∑
t=1

∑
a/∈U

S
xt
a∑

i∈Nin(a)
xt
i

≤
T∑

t=1

∑
a/∈U

S
xt
a∑

i/∈U :i∈Nin(a)
xt
i

(b)

≤ 4SαT log

(
4K

αϵ

)
where (a) is by ∥vt∥1 ≤ S and (b) uses Lemma F.2. Plugging this back to (11) in the proof of Theorem 3.2 yields the first

bound. When the feedback graphs are time-varying, one gets instead Õ

(
S
√∑T

t=1 αt

)
.

F. Auxiliary lemmas
For any directed graph G = (V,E), one can find a dominating set by recursively picking the node with the largest out-degree
(break tie arbitrarily) and removing its neighbors. The size of such dominating set is bounded by the following lemma:

Lemma F.1 ((Chvatal, 1979)). For any graph G = (V,E), the above greedy procedure outputs a dominating set D with

|D| ≤ (1 + log |V |)δ(G).

Lemma F.2 (Lemma 5 in (Alon et al., 2015)). Let G = ([K], E) be a directed graph with i ∈ Nout(i) for all i ∈ [K]. Let
wi be positive weights such that wi ≥ ϵ

∑
i∈[K] wi for all i ∈ [K] for some constant ϵ ∈ (0, 1

2 ). Then

∑
i∈[K]

wi∑
j∈[K]:j→i wj

≤ 4α log

(
4K

αϵ

)
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Lemma F.3 (Lemma 8 in (Alon et al., 2015)). For any directed graph G = (V,E), one has δ(G) ≤ 50α(G) log |V |.
Lemma F.4. Let F : X → R be a convex, differentiable function and D ⊂ Rd be an open convex subset. Let x∗ =
argminx∈D F (x). Then for any y ∈ D, (y − x∗)

T∇F (x∗) ≥ 0.

Proof. We will prove by contradiction. Suppose there is y ∈ D with (y−x∗)
T∇F (x∗) < 0. Let z(t) = F (x∗+ t(y−x∗))

for t ∈ [0, 1] be the line segment from F (x∗) to F (y). We have

z′(t) = (y − x∗)
T∇F (x∗ + t(y − x∗))

and hence z′(0) = (y − x∗)
T∇F (x∗) < 0. Since D is open and F is continuous, there exists t > 0 small enough such that

z(t) < z(0) = F (x∗), which yields a contradiction.

Lemma F.5 (Chapter 11 in (Cesa-Bianchi & Lugosi, 2006)). Let F be a Legendre function on open convex set D ⊆ Rd.
Then F ∗∗ = F and∇F ∗ = (∇F )−1. Also for any x, y ∈ D,

DF (x, y) = DF∗(∇F (y),∇F (x)).

Lemma F.6 (Lemma 1 in (Han et al., 2024)). Fix any ϵ ∈ (0, 1). With probability at least 1− ϵ, it holds that

∣∣r̄ta − µa

∣∣ ≤ 3

√
log(2T ) log(KT/ϵ)

nt
a

for all a ∈ [K] and all t ∈ [T ].
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