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ABSTRACT

Reducing the sample complexity associated with deep learning (DL) remains one
of the most important problems in both theory and practice since its advent. Semi-
supervised learning (SSL) tackles this task by leveraging unlabeled instances which
are usually more accessible than their labeled counterparts. Active learning (AL)
directly seeks to reduce the sample complexity by training a classification network
and querying unlabeled instances to be annotated by a human-in-the-loop. Under
relatively strict settings, it has been shown that both SSL and AL can theoretically
achieve the same performance of fully-supervised learning (SL) using far less
labeled samples. While empirical works have shown that SSL can attain this
benefit in practice, DL-based AL algorithms have yet to show their success to
the extent achieved by SSL. Given the accessible pool of unlabeled instances in
pool-based AL, we argue that the annotation efficiency brought by AL algorithms
that seek diversity on labeled samples can be improved upon when using SSL as
the training scheme. Equipped with a few theoretical insights, we designed an AL
algorithm that rather focuses on controlling the convergence rate of a classification
network by actively querying instances to improve the rate of convergence upon
inclusion to the labeled set. We name this AL scheme convergence rate control
(CRC), and our experiments show that a deep neural network trained using a
combination of CRC and a recently proposed SSL algorithm can quickly achieve
high performance using far less labeled samples than SL. In contrast to a few works
combining independently developed AL and SSL (ASSL) algorithms, our method
is a natural fit to ASSL, and we hope our work can catalyze research combining
AL and SSL as opposed to an exclusion of either.

1 INTRODUCTION

The data-hungry nature of supervised deep learning (DL) algorithms has spurred interest in active
learning (AL), where a model can interact with a dedicated annotator and request unlabeled instances
to be labeled. In the pool-based AL setting, a model initially has access to a set of unlabeled samples
and can query instances which need be labeled for training. Under certain conditions on the task,
AL can provably achieve up to exponential improvement in sample complexity and thus has great
potential for reducing the number of labeled instances required to achieve high accuracy. This is
especially important when the annotation task is extremely costly, for example, in medical imaging
where only highly-specialized experts can diagnose a subject’s condition.

Active learning algorithms have been extensively explored, with various formulations including
uncertainty-based sampling (Wang & Shang, 2014), aligning the labeled and unlabeled distributions
(Gissin & Shalev-Shwartz, 2019) with connections to domain adaptation (Ben-David et al., 2010),
and coreset (Sener & Savarese, 2018). Furthermore, there is no standard method in modeling a deep
neural network’s (DNN) uncertainty, and uncertainty-based AL has its own variants ranging from
utilizing Bayesian networks (Kirsch et al., 2019) to using a model’s predictive confidence (Wang &
Shang, 2014). This ambiguous characterization of how much information a sample’s label carries
also motivated AL algorithms based on maximizing the expected change of a classification model
(Huang et al., 2016; Ash et al., 2020).
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Algorithm 1 Active Semi-Supervised Learning
for each query iteration i = 1, ..., N do

Train a classifier fθ using some SSL algorithm on (XL,XU ) until convergence.
Retrieve unlabeled samples X ∗u ⊂ XU using Alg. 2 and obtain their labels.
Update labeled and unlabeled pools XL ← XL ∪ X ∗u , XU = XU\X ∗u .

end for

While AL comes with optimistic potentials, most algorithms outperform random sampling (passive
learning) by only a small margin, with follow-up works (Gissin & Shalev-Shwartz, 2019; Sener
& Savarese, 2018; Ducoffe & Precioso, 2018) reporting worse performance of certain AL algo-
rithms than random sampling due to their dependency on specific model architectures or dataset
characteristics. Furthermore, the performance of AL algorithms are usually reported by training a
model using supervised learning (SL) on the queried labeled data despite the availability of unlabeled
data in pool-based AL. Semi-supervised learning (SSL) has recently shown impressive performance
with a small number of labeled instances, and its most premature variant known as pseudo-labeling
(Lee, 2013) has been combined with AL algorithms (Wang et al., 2017). One recent work (Song
et al., 2019) uses a rather modern SSL algorithm (Berthelot et al., 2019) and shows the strength
of combining AL with SSL which we name ASSL. However, their AL algorithm is not designed
specifically considering the ASSL setting.

In this work, we propose a novel query strategy which naturally blends in with SSL, and show that
our AL algorithm can rapidly achieve the high performance of fully-supervised algorithms using
fewer labeled data. Our algorithm is inspired by recent developments in DNN theory, namely the
neural tangent kernel (NTK) (Jacot et al., 2018). Experimental comparisons with diversity-seeking
strategies and an algorithm with an objective similar to ours demonstrate how labeling instances
based on our objective helps SSL attain high performance in a sample-efficient manner.

2 BACKGROUND THEORY

2.1 SAMPLE EFFICIENCIES OF ACTIVE LEARNING AND SEMI-SUPERVISED LEARNING

Here we informally describe some theoretical results describing the superiority of AL to passive
learning and SSL to SL in terms of labeled sample complexity, that is, the number of labeled instances
that can be used to attain ε-classification error. Because pool-based AL subsumes unlabeled instances,
it makes much more sense to perform SSL on the readily available unlabeled instances when training
a classification network between each query iteration (Alg. 1). This section describes how AL and
SSL algorithms can consider different objectives to attain higher accuracy in the ASSL setting.

It is well known that SL can find an ε-optimal classifier from a sufficiently rich class of hypotheses
(e.g. classifiers which can be realized by deep neural networks) using Θ̃

(
1
ε

)
i.i.d samples for the

separable case and Θ̃
(

1
ε2

)
in the agnostic case (Massart & Nédélec, 2006; Vapnik & Izmailov, 2015)1.

In contrast, actively adding instances to the (labeled) training set can sometimes improve the sample
complexity sub-exponentially from O(1/ε) to O(poly log 1/ε) (Balcan et al., 2010). When unlabeled
instances are drawn i.i.d., Balcan & Urner (2016) showed how labeling samples selected via binary
search over Õ(1/ε) unlabeled instances can achieve exponential improvement over passive learning.

Göpfert et al. (2019) constructed a few examples which show how an SSL algorithm can use unlabeled
instances to significantly improve the labeled sample complexity for a rather restricted class of data
distributions. A corollary of one such example is that using O(log 1/ε) labeled samples and O(1/ε2)
unlabeled samples can be used to obtain ε-error. Considering a target error ε ≈ 6% achieved by
fully-supervised learning in CIFAR10 using O(1/ε) ≈ 50, 000 labeled samples, a training set with
only O(poly log(1/ε)) ≈ 250 labeled samples and leaving the remaining O(1/ε) ≈ 49, 750 samples
unlabeled is analogous to the aforementioned sample complexities achievable in the respective AL
and SSL settings, although their assumptions may not be satisfied.

Instead of focusing on the same objective for both AL and SSL to attain the potential exponential
sample complexity improvements above, we suggest using an AL algorithm that queries instances to

1Here we slightly abuse the Θ̃ notation to denote upper and lower bounds matching up to logarithmic factors.
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Figure 1: Illustration of how a Π-model’s (Laine & Aila, 2017) decision boundary changes as the
proposed algorithm enlarges the labeled set. The 4 initial pivot points were manually selected.

help optimization. Specifically, we would like an AL algorithm to construct a labeled dataset such
that a classifier f (T ) trained for T iterations rapidly minimizes the optimization error |f (T ) − f (∞)|,
and formulate an SSL objective Ln(f) to guide the target classifier f (∞) ∈ arg minf Ln(f) towards
a solution that minimizes |f (∞) − f∗|, where f∗ ∈ arg minf E [Ln(f)] is the optimal classifier
and Ln is the empirical loss computed over n samples. This perspective spans an online setting
where less training iterations implies better generalization, i.e. f (∞) = f∗, and AL focusing on
|f (T ) − f (∞)| effectively minimize the optimization-generalization error |f (T ) − f∗|. Together, the
resulting model would ultimately minimize the generalization error’s upper bound: |f (T ) − f∗| ≤
|f (T ) − f (∞)| + |f (∞) − f∗|. The next section shows how we can carefully design labeled and
unlabeled sets such that a classifier trained on this construction enjoys a fast rate of convergence by
employing a recently developed tool known as the NTK.

2.2 NEURAL TANGENT KERNEL

The neural tangent kernel (NTK) (Jacot et al., 2018) is a theoretical tool developed to understand how
overparametrized networks can be well-optimized and generalize to unseen data. In particular, the
training dynamics of DNNs parameterized by θt at any iteration t follows a closed form expression

dfθt(X )

dt
= −K̂(t)(X ,X ) (fθt(X )− Y) . (1)

when minimizing the mean-squared error (MSE) loss using gradient descent, where K̂(t)(X ,X ) =[
∇θfθt(x)T∇θfθt(x′)

]
(x,x′)∈X×X is the empirical NTK (Arora et al., 2019), where each element

∇θfθt(x)T∇θfθt(x′) ∈ RC×C is a matrix block and C is the number of classes. If we let the width
of all layers grow to infinity, a remarkable property holds in which the training dynamics can be
characterized using a matrix independent of time, namely the NTK K:

dfθt(X )

dt
= −K(X ,X ) (fθt(X )− Y) (2)

with probability 1 over random initialization2. For any network of finite width d trained for t iterations,
the relation (2) holds with probability ≥ 1− δd, where δd → 0 as d→∞.

Assuming a network that satisfies the differential equation, the transient solution is given by

fθt(X ) =
∑
i

civi exp (−λi(X )t) (3)

for some constants ci and eigenvalue/vector pairs (λi, vi) of the NTK K(X ,X ). Notice how the
NTK, and in turn the convergence rate, depends on the set of instances X it is computed over. This
sparks the intuition that the rate of convergence can be controlled by carefully designing a labeled set.

3 ACTIVE LEARNING VIA CONVERGENCE RATE CONTROL

3.1 CONVERGENCE RATE CONTROL

Inspired by the aforesaid NTK’s characterization of the model’s training dynamics when supervised
on the dataset it is computed over, we propose to move unlabeled instances X ∗u selected from a

2Formally, the dynamics
dfθt (X )

dt
converges to the RHS in probability as the network’s width sequentially

grows to infinity when initialized using He initialization.
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pool of unlabeled samples XU that maximize the rate of convergence of the SGD dynamics to the
labeled set XL, hence the name convergence rate control (CRC). While Eq. 3 is a solution to the
time-inhomogeneous ODE in Eq. 2, the performance of infinitely-wide networks fall behind their
finite-width counterparts. We thus replace the eigen-pair (λ, v) of the true NTK K with its empirical
NTK K̂(T ) in Eq. 1 using a model trained for T epochs until its validation accuracy saturates.

Maximizing the eigenvalues of the NTK is a multi-objective problem, and CRC takes a worst-case
approach to select unlabeled instances that maximize the smallest eigenvalue of the NTK:

max
Xu⊂XU

min
i∈|XL∪Xu|

λi

(
K̂(T ) (Xu ∪ XL,Xu ∪ XL)

)
. (4)

Each block K̂(T ) (x, x′) ∈ RC×C is replaced by its trace computed as
∑
c K̂

(T )
cc (x, x′), which we

numerically found to be an accurate replacement to the block matrices in computing the minimum
eigenvalue, to reduce both computational and memory complexities. In general, the eigenvalue
distribution is not necessarily supported over positive values, and we observed that considering
only positive eigenvalues consistently results in higher performance than when considering both
negative and positive eigenvalues. CRC thus scores unlabeled instances as the minimum over positive
eigenvalues. The solution to Eq. 4 can then be found using dedicated GPU-implementations available
in popular DL frameworks such as PyTorch. This algorithm is detailed in Alg. 2.

A labeled sample’s influence on a DNN’s predictive behavior is abstruse. Intuitively, a labeled sample
may be most informative when it is near a region separating different classes; however, this does not
guarantee that a DNN learns such a decision boundary effectively. Furthermore, it is unclear whether
a sample in some other region could better enhance a classifier’s performance when added to the
labeled set, especially when considering SSL algorithms which complicate DL analysis. Contrary
to the above intuition, Rebuffi et al. (2019) demonstrates how a DNN trained with a SSL objective
(Laine & Aila, 2017) learns a decision boundary using only 4 manually selected pivot points not on
the class-separating region. Figure 1 illustrates how the classifier’s decision boundary progressively
forms near low-density regions as CRC enlarges the labeled set.

3.2 THEORETICAL ANALYSIS

This section theoretically analyzes the effect of estimating the dynamics using the empirical NTK
to construct a labeled set for least squares regression ` (θ) = 1

2‖fθ (X ) − Y‖22. We begin with a
deviation bound of the empirical NTK from (Arora et al., 2019).
Theorem 1 (Paraphrased Theorem 3.1 in (Arora et al., 2019)). Consider a fully-connected network
with ReLU nonlinearities of width d and depth L. At initialization, taking the form specified in (Arora
et al., 2019), the following holds with probability ≥ 1− δ

max
(xi,xj):‖xi‖,‖xj‖≤1

|K̂(0)(xi, xj)−K(xi, xj)| ≤
L7/2

d1/4
log

L

δ
=: ε.

The above statement shows a general case in which the empirical NTK can be expressed as a linear
combination of the true NTK and a noise matrix parametrized by ε > 0, as long as the empirical
NTK does not change abruptly. A similar result holds for ResNets and CNNs given appropriate
conditions (Lipschitz, smooth, non-polynomial, analytic) on non-linearities and initialization (Du
et al., 2019), where it has also been shown that K̂(t) provably stays close to K(0) throughout training.
The next proposition gives a tractable approximation of the true NTK’s (unknown) eigenvalue as a
neighborhood of the empirical NTK’s (known) eigenvalue.

Proposition 1 (CRC approximation error due to empirical NTK). Suppose K = K̂(t) + N (t)

with a symmetric noise matrix of bounded spectral norm ρ
(
N (t)

)
< ε. Then, the true NTK’s

eigenvalues lies in an ε-neighborhood of the empirical NTK’s eigenvalues with respect to ‖·‖∞, i.e.

λ (K) ∈ Bε
(
λ
(
K̂(t)

))
, where the eigenvalues λ(·) are listed monotonically.

This statement has nice implications on optimizing DNNs. Consider Theorem 5.1 in (Du et al.,
2019) that states running gradient descent with learning rate ηt = O

(
λmin(K(XL,XL))L2

|XL|2

)
on least-

squares regression using a fully-connected network of sufficient width converges linearly at rate
1− ηλmin(K(XL,XL))

2 . Two remarks follow:
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Remark 1 (Better conditioning of learning rates). The sufficient condition on learning rate is
proportional to the (unknown) minimum eigenvalue of the NTK. This implies that the increased
minimum eigenvalue allows for a larger set of admissable learning rate schedules. In (Athiwaratkun
et al., 2019), it has been shown that SSL algorithms take larger steps throughout training, continually
exploring parameters. Since CRC permits larger learning rates, tuning the step-size may be easier
and the larger steps taken by SSL algorithms can still converge when the step-size is over-estimated.
Remark 2 (Direct estimate of sufficient learning rate and convergence rate guarantees). Both the
admissable learning rates and convergence rate are unknown. Invoking Proposition 1 after selecting

XL using CRC with K̂(T ), we can set η = O

(
λmin(K̂(T )(XL,XL))L2

|XL|2

)
which would guarantee linear

convergence with the rate deviating at most by the spectral norm ε of the noise matrix.

3.3 PRACTICAL CONSIDERATIONS

Summing the network’s gradients over all layers for each instance pair is infeasible for modern
network architectures, and we compare one realization of using all parameters with the final layer’s to
compute the NTK. A comparison of one realization using the NTK computed over all layers vs. using
just the final layer averaged over 3 trials (Tab. 1) shows how using the final layer performs just as
well as when all layers were used but with much faster (×100) queries. If we assume that the shallow
layers saturate more quickly than deeper layers, justified by the ‘lower layers learn first’ phenomenon
(Raghu et al., 2017), the NTK estimate computed at the network’s last layer is a prediction of the
training dynamics corresponding to a single layer perceptron attached to a (slowly-changing) feature
extractor. In this perspective, the final accuracy is mostly affected by the final layer which determines
how high-level features are recognized, and designing a labeled set using the NTK estimated over the
last layer would sufficiently capture the model’s training dynamics.

Initial Pool Randomly initialized model Random sampling
# Labeled 50 100 150 100 150 200

Last 53.12±5.50 67.14±4.28 71.98±4.04 78.41±3.16 83.67±3.24 85.67±1.31
All 50.47 68.25 74.03 71.26±3.92 78.13±4.32 79.10±3.64

Table 1: CRC performances when NTK is computed over final vs. all layers with G = 5 at Q = 50.
Left describes performances when initial query and initial SSL training is performed with a randomly
initialized model (one trial for ‘All’); right uses random sampling for the first query.

One reason why estimating the training dynamics over all layers could be worse than using the
last is that the former requires a network trained in the next SSL phase to learn a similar low-level
representation to that obtained in the previous SSL phase. However, it was observed by Raghu
et al. (2017) that two randomly initialized networks trained on the same dataset have similar final
layers but extremely different intermediate representations. Because our networks are retrained from
scratch between each query iteration, it is highly likely that the next network will have very different
intermediate representations, and these middle layers would provide noisy estimates as to how much
the model’s functional representation would be affected by the enlarged dataset. Since we are seeking
to modify a dataset in order to amplify a model’s performance, it is reasonable that we enlarge the
labeled set based on how much the additional samples would affect the model’s final layers. Had
we designed the experiments such that a model is continuously trained from its previous SSL phase,
computing the NTK over all layers may have been beneficial at the expense of computation.

3.4 MYOPIC VS. BATCH-MODE ACTIVE LEARNING

Myopic AL policies refer to algorithms that score unlabeled instances based on their individual
importance. Considering how an expert annotator ‘in-the-loop’ must label queried samples, it is
desirable that an AL algorithm queries large batches based on their collective importance. Myopic
policies usually degrade in performance as the query size Q increases, as they may repetitively
sample identical instances (Kirsch et al., 2019), and it has been of great interest in designing a
computationally efficient batch-AL algorithm. CRC (Alg. 2) is a batch-mode AL algorithm as it
computes λmin over groups of unlabeled instances Xu. To cope with the combinatorial complexity
associated with the outer-maximization in Eq. 4, we randomly sample candidate groups Xu without
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Algorithm 2 Convergence Rate Control (batch-mode solution to equation 4)
Inputs: Unlabeled pool XU , query-size Q, group-size G.
Output: New pool X ∗u to be labeled.
for t = 1, · · · |XU |/G do
X (t)
u ← G unlabeled instances randomly sampled from XU .

s(X (t)
u )← λ+min

(
XL ∪ X (t)

u

)
using the empirical NTK computed over final layers.

end for
Store Q/G highest groups: t∗1, . . . t

∗
Q/G ← arg max (s).

return X ∗u ← X
(t∗1)
u ∪ · · · ∪ X (t∗Q/G)

u

replacement. This randomization significantly reduces the search space, potentially yielding highly
sub-optimal solutions, and we introduce a hyperparameter G such that G divides Q, and search
over candidate groups |Xu| = G, selecting Q/G groups at each query step. The group size controls
whether the outer maximization is solved more accurately (G = 1) without considering the collective
significance of a group, or the inner-minimization incorporates the collective importance of all
queried samples (G = Q) at the expense of a substantially smaller search space. This trade-off is
established in Tab. 2 when Q = 100, averaged over three realizations for G = 2, 5, 10, 100. Our
relatively small group-sizes make the cubic complexity of the inner-minimization negligible, and a
larger group size is consequently faster due to less (Q→ Q/G) eigen-decomposition operations and
inefficient batch-gradient computations in autograd packages. All experiments hereon use G = Q/10
considering the speed vs. performance trade-off.

Query step 1 2 3 4 5

G = 2 84.72 ± 0.96 87.11 ± 1.14 87.83 ± 0.17 88.3 ± 0.30 89.44 ± 0.59
G = 5 82.55 ± 3.21 84.13 ± 2.64 87.24 ± 2.42 87.66 ± 1.33 88.63 ± 0.60
G = 10 83.38 ± 1.14 85.71 ± 1.50 88.07 ± 0.06 88.36 ± 0.71 89.35 ± 0.79
G = 100 83.31 ± 2.17 86.49 ± 1.47 86.76 ± 2.56 88.49 ± 1.43 88.63 ± 1.67

Table 2: Effect of different group sizes with Q = 100 using random sampling for the fist query.

3.5 RELATION TO GRADIENT-BASED METHODS

The proposed algorithm can be interpreted as measuring the importance of unlabeled instances by how
much they would change a model’s parameters. Two AL algorithms are similar in this manner in that
they seek to label instances which affect the model the most: expected gradient length (EGL) (Huang
et al., 2016) and BADGE (Ash et al., 2020). EGL first computes the gradient of the cross-entropy loss
over all unlabeled instances, replacing the ground truth target with an expectation over a posterior
distribution determined by the trained model, then selects instances with the greatest norm. BADGE
uses an embedding of the loss’ gradients using predicted classes, computed over the parameters
in just the final layer, and uses kmeans++ to enforce diversity. Nonetheless, both algorithms only
estimate the benefit due to candidate unlabeled samples and do not measure the collective influence
of the labeled set.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Our SSL implementation is primarily based on different publicly-available PyTorch implementations
of FixMatch (Sohn et al., 2020) for CIFAR103 and CIFAR1004, as well as mean teacher (Tarvainen
& Valpola, 2017) for SVHN5 that performed best at the time of this work. We made modifications as

3https://github.com/kekmodel/FixMatch-pytorch
4https://github.com/LeeDoYup/FixMatch-pytorch
5https://github.com/perrying/realistic-ssl-evaluation-pytorch

6



Under review as a conference paper at ICLR 2021

Accuracy (%) Q=50 Q=100
# Labeled 100 150 200 250 300 200 300 400 500 600
Random 69.81±4.77 82.14 ±2.30 82.41±0.68 84.98±2.32 84.92±0.73 85.04±1.53 87.09±1.25 87.57±0.57 87.92±0.47 87.37±2.18
Entropy 72.43±8.21 82.41±2.89 83.38±1.93 84.86±1.83 86.42±0.95 85.51±1.47 86.89±0.47 86.87±1.22 88.27±0.30 88.44±1.17

Confidence 52.54±7.71 49.55±7.77 50.67±3.15 45.04±8.25 53.44±8.75 77.05±4.66 78.29±5.55 73.68±5.12 73.69±2.50 75.98±3.29
EGL 57.18±7.41 56.67±10.53 68.76±12.57 74.47±12.32 76.67±7.43 79.95±3.11 80.41±2.77 81.20±5.10 82.62±0.36 83.55±3.36
CRC† 78.41±3.16 83.67±3.24 85.67±1.31 86.88±0.87 87.01±0.28 83.38±1.14 85.71±1.50 88.08±0.06 88.37±0.71 89.35±0.79

Table 3: Performances on CIFAR10 using Q ∈ {50, 100} with random sampling for the first query.

suggested in (Oliver et al., 2018). In particular, we used the WRN-28-2 and WRN-28-10 architectures
for SVHN/CIFAR10 and CIFAR100, respectively, further motivated by the derivation of NTK as
a network in its infinite width limit. Mean teacher (MT) enforces consistency between the model
trained using SGD and an exponential moving average (teacher) of the model’s weights. FixMatch is
a variant of MixMatch (Berthelot et al., 2019), replacing standard augmentations with more powerful
augmentation techniques when computing the SSL loss. In short, FixMatch enforces consistency
between a classification model’s predictions on perturbed inputs which effectively yields a more
robust model with small Jacobian norm (Athiwaratkun et al., 2019) in junction with other SSL
algorithms including MT. Furthermore, the hyperparameters in FixMatch were kept the same across
different dataset sizes in their original report, making our experimental comparisons convenient.

The initial pool of labeled instances significantly affected the downstream SSL task and subsequent
AL queries, especially for uncertainty-based algorithms (see section 4.2). It is practical to assume that
a model would initially have access to a small pool of labeled images with an equal number of classes.
Thus, we randomly sampled a balanced number of images per class in the first query iteration and use
the AL algorithms in subsequent queries without enforcing balanced classes. Between each query
step, the classification network was trained until either its validation accuracy does not improve for
50/100/∞ epochs or 350/600/512 epochs is reached for CIFAR10/100/SVHN. All experiments are
repeated 3 times with mean± std performances reported unless stated otherwise. Our implementation
will be open-sourced upon publication.

4.2 BASELINE ALGORITHMS

Both AL and SSL algorithms demand much more time than standard supervised learning, and an
extensive comparison of all ASSL combinations is beyond our compute availability. We resort
to comparing the proposed algorithm with 3 other AL algorithms, 2 of which scores unlabeled
instances based on how much they reduce a model’s uncertainty, and the other because of its
similarity to CRC. Uncertainty-based AL (Wang & Shang, 2014) is one of the simplest DL-based
AL algorithm that selects the unlabeled instance with lowest confidence in its prediction: X ∗u =
arg min{x∈XU}maxy fθ,y(x). In the same work, Wang & Shang (2014) proposed to also use entropy
as a measure of the model’s uncertainty in unlabeled samples. EGL (Huang et al., 2016) retrieves
instances that modify a model the most: X ∗u = arg max{x∈XU} Ey∼p̂(·;x,θ)

[
‖∇θH (y, fθ(x))‖2

]
where p̂(y;xi, θ) = fθ,y(xi) is the model’s confidence in class y and H is the cross entropy function.

4.3 ACTIVE SEMI-SUPERVISED LEARNING

Here we report the sample efficiencies obtained by different SSL algorithms when the labeled set is
constructed using various AL schemes in Tabs. 3 and 4. For reference, the implementations used
for each experiment achieve average accuracies of SVHN (100/class): 93.52%, CIFAR10 (25/class):
87.33, and CIFAR100 (40/class): 48.96% with balanced sampling. Note, however, that SSL settings
consider labeled sets (and consequently, unlabeled sets) with equal numbers of images per class,
putting SSL settings to an unrealistic advantage at the same number of labeled images. Different
levels of class-imbalance result in larger performance variance, which is especially critical in the
low-data regime.

One difficulty arising from the ASSL setting is class imbalance. In contrast to standard AL settings
that consider much larger query sizes, the small query size in ASSL significantly impacts the class
distribution, resulting in occasional performance drop for certain query strategies. Entropy has
repeatedly achieved state-of-the-art performance (Gissin & Shalev-Shwartz, 2019; Wang et al., 2017;
Ash et al., 2020) in AL settings despite its simplicity, and our experiments show the same holds
for ASSL. Conforming with our motivation in section 2.1, CRC performed comparable or better
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Accuracy (%) SVHN CIFAR-100
# Labeled 140 160 180 200 220 250 300 350 400
Random 56.03±5.88 66.48±12.53 73.46±1.73 89.20±1.08 91.01±0.95 41.45±1.04 44.57± 0.74 45.19±0.91 49.35±1.55
CRC† 55.01±3.98 64.02±4.58 85.14±5.01 89.89±0.63 91.44±0.23 41.87±1.45 45.27± 0.59 47.04±0.50 50.16±0.37

Table 4: Mean teacher (SVHN: Q = 20) and FixMatch (CIFAR100: Q = 50) performances with 12
and 20 randomly sampled images per class in the first query.

than entropy although it does not explicitly enforce diversity on the labeled set. Furthermore, while
both CRC and EGL scores instances by estimating how much they would affect the model’s training
dynamics, only CRC outperformed random sampling. Our results suggest that actively enlarging the
labeled set can definitively reduce the labeled sample complexity in the SSL setting, without having
to construct a labeled set consisting of images representative of their class.

Existing DL-based AL algorithms have performed comparably to random sampling when using large
query sizes, and our experiments show the same for entropy and CRC with Q = 100 in the ASSL
setting. A proper AL algorithm should achieve higher performance at the same number of labeled
samples if the query size is small since it would be taking more query steps in order to claim its
superiority to random sampling; however, we observed that only CRC satisfies this property. EGL’s
low performance had been reported on image classification tasks (Gissin & Shalev-Shwartz, 2019;
Sener & Savarese, 2018; Ducoffe & Precioso, 2018) under the AL setting. Our experimental design
of retraining networks from scratch may have had negative influence on EGL, similar to how it
affected the NTK estimate over all layers. We attribute confidence’s low performance to the poor
calibration of DNNs (Guo et al., 2017), inadequately capturing the model’s uncertainty on unlabeled
instances. A successful application of confidence-based query may require incorporating calibration
while training classification networks or before performing such queries.

Figure 2: Performances when the initial AL queries were performed using a randomly initialized
model. The figure on the right underscores performance gains in consecutive query steps.

Ideally, an AL algorithm should have a nice transferrability property, constructing labeled sets that
are useful to train other networks. This obviously holds for random sampling, as the queries do
not depend on the model’s weights. To validate the transferrability of dataset constructions of AL
algorithms, we used a randomly initialized model to query only the initial pool, trained the model
using a different realization of initialization, and as done previously for other experiments, queried
additional labels using the model trained using SSL. As shown in Fig. 2, however, such initial queries
adversely affected all subsequent queries. While entropy and CRC overcome this initial disadvantage
after a few query iterations, other baselines tend to under-perform random sampling due to this initial
disadvantage. This phenomenon has not been reported in previous works, and whether this is an
artifact of our ASSL setting or the architecture/hyperparameters used deserves future notice.

4.4 CONVERGENCE RATE AND TIME HORIZON PREDICTION

The proposed CRC algorithm is designed to query unlabeled instances that improve the rate of
convergence a DNN in the following SSL phase. To see if our algorithm achieves this purpose, we
plot the empirical NTK’s minimum eigenvalues used to score unlabeled instance groups against the
number of training epochs until the test loss reaches its global minimum in Fig. 3 (a) to show how the
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Figure 3: Minimum eigenvalues’ distribution in log-scale (Q = 50). Left figure shows how in-
formative the minimum eigenvalues are in terms of predicting the number of epochs required for
convergence, and right figure illustrates how the minimum eigenvalues’ distribution concentrates
towards zero. Negative linear slope implies (a) exponential convergence as predicted by Eq. 3 and (b)
slower convergence rate with increasing labeled set size.

minimum eigenvalues are predictive of the time horizon. Global minimum here refers to the value for
which the loss never falls below until training completes. We additionally plot how the minimum
eigenvalues’ distribution progresses with query steps, where Fig. 3 (b) shows that the eigenvalue
distribution concentrates towards 0 as the labeled set grows, implying slower convergence rates. A
similar observation was made by Nitanda & Suzuki (2020) where the authors showed how the true
NTK’s eigenvalues concentrate towards zero as the training set size increases, whereas our plot is
over a union of labeled and queried groups. This figure illustrates how all candidate datasets will
inevitably have eigenvalue distributions concentrated near zero, but the enlarged dataset chosen by
CRC will have the fastest convergence rate among all considered candidates.

5 CONCLUSION

This work motivated the combination of AL with SSL, using the former for optimization and latter
objective to restrict the hypothesis space to those that generalize well. We then proposed an AL
algorithm inspired by the NTK, and demonstrated how controlling the convergence rate of the training
dynamics can significantly improve sample efficiency. To the best of our knowledge, this work is the
first practical application of NTK outside of supervised learning, where it has been shown that the
true NTK is inferior to its DNN counterpart. In contrast to most DL-based AL experiments which
use relatively small networks, this work demonstrates that DL can benefit from AL using modern
architectures. Our algorithm outperformed uncertainty-based AL algorithms which enforce diversity
and an AL algorithm with a similar goal of maximizing the model’s change. The proposed algorithm’s
superiority was also demonstrated in the batch-AL setting, where an optional hyperparameter can be
used to control the trade-off between computational complexity and performance.

Our CRC algorithm is developed under the assumption that a well-optimized network f (∞) induced
by the SSL objective is a good approximation of a model f∗ that generalizes well. Incorporating the
interplay between AL and SSL seems promising in further reducing the sample complexity, designing
either an SSL algorithm best fit for some fixed AL algorithm or a joint ASSL scheme. For example,
CRC provides an estimate on the number of epochs required for convergence, and a learning rate
schedule best fit for the estimated time horizon could be used (Ge et al., 2019).

The proposed CRC algorithm can be extended in several directions, applying generalization guarantees
characterized by the NTK to an online (streaming) setting where unlabeled instances cannot be stored.
Another exciting direction to pursue would be to use the True NTK (Arora et al., 2019; Novak et al.,
2020) to estimate the training dynamics. While CRC is motivated by controlling the transient solution
using an estimated proxy of the training dynamics, the true NTK would enable an exact computation
of the ODE solution. Of utmost importance would be that this could allow AL queries to be performed
offline, that is, without having to train a model between each query iteration, alleviating the long
training times associated with ASSL.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

All experiments described samples equal numbers of images per class on the first query step. Those
described as “using random sampling” uses the Random (passive) AL scheme, i.e. sampling uniformly
at random, and “randomly initialized models” refers to transferrability, where the first query step
is performed using a randomly initialized model (e.g. confidence of a randomly initialized model
when using the “Confidence” AL scheme), then performing SSL with another instance of random
initialization. When random sampling was performed, we ran several experiments and used the best
models at query step 0, since we observed (similar to transferrability experiments) that the first query
step may highly influence subsequent steps, affecting the performance of different AL algorithms
resulting in an unfair comparison. This is why all experiments with first query being random sampling
(query step 0) excluded the first query step, as they all used identical models when performing the
first actual AL query (query step 1). All subsequent queries were performed using the trained model
obtained from the previous SSL step, regardless of transferrability. Taking “Confidence” on CIFAR10
as an example for the AL scheme, a model trained using SSL at query step 1 is loaded to query the
next 50 (when Q = 50) labeled samples for query step 2.

Architectures used for SVHN/CIFAR10/CIFAR100 are WRN-28-2/WRN-28-2/WRN-28-8, where
the last is a known requirement due to more classes. SVHN used leaky ReLU with negative slope
0.1 for Mean Teacher, and the others used ReLU activations. “One epoch” is defined as the number
of SGD steps between each validation, which we set as 1024 training iterations (far more frequent
than the default parameters for Mean Teacher on SVHN). All other configurations were as set in the
original implementations.

A.2 PROOF OF PROPOSITION 1

Proof. Let N (t) = K − K̂(t) and denote λ (·) the eigenvalues of some matrix of size n, listed in
non-increasing order. Since K and K̂(t) are Hermitian by definition, Weyl’s inequality gives

λi

(
K̂(t)

)
+λj

(
N (t)

)
≤ λk

(
K̂(t) +N (t)

)
≤ λr

(
K̂(t)

)
+λs

(
N (t)

)
, i+j−n ≥ k ≥ r+s−1.

This implies

λk

(
K̂(t)

)
+ λn

(
N (t)

)
≤ λk

(
K̂(t) +N (t)

)
≤ λk(K̂(t)) + λ1(N (t)),∀k ∈ {1, . . . , n}

and hence,

|λk (K)− λk
(
K̂(t)

)
| = |λk

(
K̂(t) +N (t)

)
− λk

(
K̂(t)

)
| ≤ ‖N (t)‖2,

where ‖ · ‖2 is the spectral norm.
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