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Abstract

Recent advancements in Retrieval-Augmented001
Generation (RAG) have significantly enhanced002
the ability of large language models to ground003
their responses in external knowledge. How-004
ever, solving complex future forecasting prob-005
lems remains a challenge due to the need for re-006
trieving supportive events. Current methods fo-007
cusing on textual-similarity or entity-relevance008
are not able to capture supportive events due009
to incompleteness of the knowledge base and010
the inherent nuanced nature of events. This011
paper introduces EventRAG, an event-oriented012
RAG framework specifically designed for fu-013
ture forecasting tasks. Specifically, we first014
propose the supportive event retrieval where015
we construct the event hypergraph index on016
the knowledge base. Based on that, we denote017
the event supportiveness as random variables018
and maximize the expectation. We establish019
the maximum expected event cover program to020
solve this maximization. Finally, EventRAG in-021
tegrates the retrieval and reasoning into the022
event-oriented agentic reasoning process. It023
enables the framework to retrieve the needed in-024
formation to perform complicated forecasting.025
We conducted experiments and in-depth anal-026
ysis to evaluate the effectiveness of EventRAG.027
The results demonstrate that EventRAG signifi-028
cantly outperforms competitive RAG baselines029
in future forecasting. The code and dataset are030
available on the ARR system.031

1 Introduction032

Retrieval-Augmented Generation (RAG) has033

emerged as a transformative paradigm in natu-034

ral language processing, addressing critical lim-035

itations of large language models (LLMs), such as036

knowledge cutoff issues (Gupta et al., 2024). By037

integrating retrieval mechanisms with generative038

models, RAG systems dynamically access exter-039

nal knowledge to enhance response accuracy and040

relevance in complex intelligent reasoning (Zhao041

et al., 2024). Given a question, recent advanced042

Question

Question: Will astronauts Suni Williams and Butch 
Wilmore be on Earth before September 15, 2024?
Answer: False

2024-06-29:
Boeing Starliner’s date return to Earth 
pushed to June 26.

2024-06-25: 
NASA astronauts Sunita Williams, Barry 
Wilmore remain stuck in orbit.

2024-06-30: 
Boeing delay Starliner astronaut landing 
again, to study helium leaks and 
thruster issues.

Structure-
Based

Text-
Based

EventRAGHappened Events

Figure 1: An example of future forecasting tasks such
as event prediction. Retrieval abilities of each RAG
methodology. EventRAG is able to retrieve supportive
events even without explicit entity connections.

RAG systems aim to retrieve more relevant infor- 043

mation via: 1) improved textual semantic similar- 044

ity between query and knowledge such as query 045

enriching (Gao et al., 2023) and retrieval require- 046

ment understanding (Oh et al., 2024). 2) nuanced 047

entity-centric structured indexing as tree (Sarthi 048

et al.) and graph (Edge et al., 2024). These devel- 049

opments achieve great performance in numerous 050

applications in scenarios such as finance (Li et al., 051

2023; Islam et al., 2023), medical (Dou et al., 2024), 052

law (Fei et al., 2023). 053

While current RAG performs well in problems 054

depending on external knowledge, answering the 055

complex future forecasting tasks remains a signifi- 056

cant challenge. These tasks require RAG systems 057

to retrieve happened events that are not only rel- 058

evant but supportive of answering the questions. 059

The supportiveness of an event for a question im- 060

plies that the event contains information that can 061

be used to answer the question, offering evidence 062

or reasoning to back up the response. An event 063

that is highly relevant may not necessarily provide 064

strong support and vice versa. However, effectively 065

retrieving events with high supportiveness poses 066
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challenges. Firstly, real-world events and relations067

are often incompletely observable. Many events068

may have hidden details, unrecorded intermediate069

steps, or ambiguous relationships. Moreover, the070

complexity of event relationships themselves poses071

a challenge. Events can be mutually affected in072

complicated ways that are often difficult to repre-073

sent accurately in a knowledge base.074

These factors create restrictions for retrieval075

methods to fully identify highly supportive events.076

Currently, text-based RAG methods focus on077

query-document similarity (Gao et al., 2023)078

while structure-based RAG focuses on entity re-079

lations (Edge et al., 2024). As a result, traditional080

retrieval methods may either retrieve events that081

are only textual-similar or entity-related but lack082

the necessary support for answering the question083

or miss important events that could provide strong084

support. As shown in Figure 1, to solve this event085

prediction task, text-based retrieval methods can086

retrieve the first event through textual similarity.087

Entity-centric structural methods find the second088

event due to the core entities “Sunita Williams” and089

“Barry Wilmore”. However, retrieving the third090

event requires deeper understanding that this event091

can support answering the question.092

To bridge this gap, we propose EventRAG, a new093

event-centric RAG framework designed to retrieve094

support and related events for future forecasting.095

Our approach introduces two key innovations:096

Supportive Event Retrieval EventRAG first con-097

structs event hypergraph index on the knowledge098

base. It extracts events from documents and repre-099

sents them as a hypergraph. The nodes represent100

the participants or actions of the event, whereas101

the hyperedges model the events themselves. This102

hypergraph structure offers a more natural and103

holistic way to capture the complex relations be-104

tween events. To retrieve supportive events and105

knowledge on the hypergraph, we denote the event106

supportiveness as random variables and maximize107

the expectation. We introduce the Maximum Ex-108

pected Event Cover to solve that, which establishes109

an optimization program that jointly maximizes110

event probabilistic supportiveness and structural111

connectivity. Moreover, we prove that this program112

bounds optimal supportive event retrieval. This113

counteracts potential biases in the partial observ-114

ability of event supportiveness.115

Event-Oriented Agentic Reasoning We em-116

ploy a multi-step, agentic generation process to117

iteratively retrieve and reason about the answer.118

This process seamlessly integrates our supportive 119

event retrieval and reasoning, allowing the system 120

to adaptively adjust its approach and search for the 121

knowledge it requires at each step. 122

We conduct experiments to testify the effec- 123

tiveness of EventRAG. Compared to state-of-the- 124

art RAG baselines among textual-based RAG and 125

graph-based RAG, EventRAG achieves significant 126

improvement. The results indicate the necessity 127

of developing event-oriented RAG systems and 128

demonstrate the validity of our method. We list 129

our contributions: 130

• We introduce EventRAG, an event-oriented 131

RAG system. It retrieves supportive events 132

via the hypergraph index and the solving of 133

the maximum expected event cover program. 134

• EventRAG integrates and retrieval and rea- 135

soning in an agentic RAG process. This 136

multi-step process iteratively retrieves needed 137

knowledge and answers the question. 138

• We conduct experiments to evaluate the effec- 139

tiveness of EventRAG. The results demonstrate 140

the validity of our method. 141

2 Preliminaries 142

2.1 Event Representation 143

In natural language processing (NLP) and knowl- 144

edge representation, an event e is typically defined 145

as a structured occurrence (Dölling et al., 2013). 146

Events comprise participants (or arguments) p ∈ P, 147

representing entities involved in the event, and 148

one action a, often identified by a lexical trigger 149

word (Doddington et al., 2004). 150

In our implementation, events may include multi- 151

ple actions a ∈ A to accommodate coarser-grained 152

event definitions, where a single action word in- 153

adequately captures the scope (e.g. “protest” and 154

“arrest” in a civil unrest event). Moreover, while 155

structural representations encode core components, 156

they risk information loss by omitting contextual 157

nuances. To mitigate this, we augment the structure 158

with a textual description X . Thus, our full event 159

representation is formalized as e = (P,A,X ). 160

2.2 Future Forecasting 161

Future Forecasting is a critical research area within 162

the field of artificial intelligence and natural lan- 163

guage processing, aimed at anticipating future 164

events based on historical data and contextual infor- 165

mation. This task involves analyzing large volumes 166

of news articles, social media posts, or other tem- 167

poral data sources, to identify patterns and trends 168
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Supportive Event Retrieval Event-Oriented Agentic Reasoning

Question

Answer

Retrieved
Events
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Document

Maximum Expected Event Cover

Event Hypergraph Indexing
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Participants
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Figure 2: Overview of EventRAG. Given a question, our event-oriented agentic reasoning answers it in the multi-step
process. In each step, it first retrieves supportive events and documents via our supportive event retrieval, then
decides to answer or update states for the next step.

that can help forecast the occurrence of specific169

events. Specifically, given a binary classification170

prediction question Q, a large set of documents171

D records all related information. The RAG sys-172

tem should retrieve supportive information such173

as events and documents from D and reason the174

whether the event in Q will happen or not:175

Y = Reason(Q,Retrieve(Q,D)), (1)176

where Y ∈ [0, 1] is the predicted probability of177

how likely the event asked by Q would happen.178

3 Method179

Our EventRAG framework addresses future fore-180

casting tasks as shown in Figure 2. The system181

retrieves supportive events by indexing the knowl-182

edge base as an event hypergraph and models the183

event retrieval as the maximum expected event184

cover program (Section §3.1). Then it integratedly185

conducts iterative reasoning through an agentic rea-186

soning process (Section §3.2).187

3.1 Supportive Event Retrieval188

Future forecasting tasks demand that RAG systems189

retrieve not just relevant but also supportive past190

events to answer questions. An event is considered191

supportive if it contains information to answer the192

question, providing evidence or rationales. Rele-193

vance does not always imply strong support, and194

vice versa. Effectively retrieving highly supportive195

events is challenging. First, real-world events and196

their relations are often not completely observable. 197

There may be hidden details and unrecorded inter- 198

mediate connections. Second, the complexity of 199

event relations themselves is a problem. Events 200

can interact intricately, and accurately represent- 201

ing them is difficult. These issues limit retrieval 202

methods from fully identifying highly supportive 203

events. Currently, text-based RAG methods focus 204

on query-document similarity (Ma et al., 2024), 205

while structure-based RAG emphasizes entity rela- 206

tions (Edge et al., 2024). As a result, these retrieval 207

methods may retrieve only superficially relevant 208

events lacking the required support. 209

To address this, EventRAG constructs an event 210

hypergraph index in the knowledge base. Events 211

are extracted from documents represented as hyper- 212

graphs. Nodes represent participants or actions of 213

the event, and hyperedges represent events. The 214

hypergraph structure captures the complex event 215

semantics more naturally and comprehensively. We 216

then introduce the maximum expected event cover 217

program for retrieval. This program formulates an 218

optimization problem to maximize both event struc- 219

tural connectivity and probabilistic supportiveness. 220

We also prove that this program bounds optimal 221

supportive event retrieval. 222

3.1.1 Event Graph Indexing 223

Specifically, to construct the hypergraph index, the 224

first step is to extract events from the knowledge 225
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base. Given the knowledge base D, EventRAG be-226

gins with event extraction in each documentD ∈ D227

and constructs the event hypergraph. However,228

directly extracting events would encounter entity229

coreference problems where the same entity would230

be in different wording between events. To miti-231

gate this problem, we first extract named entities232

then mining events based on them.233

Entity Extraction The foundation of event ex-234

traction lies in accurate entity recognition. Precise235

entity identification reduces event extraction errors236

through better argument binding. Given a docu-237

mentD ∈ D, we extract named entities with LLMs,238

which are the event participants in the later stage.239

We show the prompt in Appendix A.7 (a). We240

provide several extraction examples in the prompt.241

Event Extraction After harvesting the named en-242

tities which are the event participants, we perform243

event extraction based on them. We also imple-244

ment this process using LLMs. The prompt is in245

the Appendix A.7 (b). We describe each event in246

sentences resulting in X and also extract the date247

and location. We provide demonstrations for few-248

shot typing. We also resolve the event co-reference249

by merging events that have large overlapped par-250

ticipants and actions. We concatenate their descrip-251

tions into the final description X . After this, we252

acquire the structured event e.253

Hypergraph Indexing We next construct the254

event hypergraph index based on the extracted255

events. An event hypergraph is a generalization256

of a graph in which an edge (called a hyper-257

edge) is an event. It can connect any number258

of vertices, rather than being restricted to pair-259

wise connections. Formally, a hypergraph H is260

defined as a pair (V,E). The node set V =261

{vP1 , vP2 , . . . , vPn , vA1 , vA2 , . . . , vAm} represents all262

participants and actions which is a finite set of263

vertices of H1. E = {e1, e2, . . . , el} is a family264

of non-empty subsets of V, each representing a265

hyperedge which is also the event2. In particular,266

each hyperedge e in E corresponds to an event267

e = (P,A,X ,D). where P and A are participants268

and actions of e. X is the event description gener-269

ated before. D is the document where e sources.270

Each edge e plays the role of indexing associated271

with its source documentD. Unlike structure-based272

1We use v without superscripts to indicate node on H when
we don’t distinguish participants or actions.

2We use e represents both hyperedge and event since they
are the same in our work. E is the set of them.

RAG indexing such as GraphRAG, hyperedges in 273

H can encompass two or more vertices, enabling 274

the retrieval of higher-order semantics of events 275

demonstrated in Figure 2. 276

3.1.2 Maximum Expected Event Cover 277

In this section, we elaborate on how we do re- 278

trieval on our constructed event hypergraph index. 279

Starting with the queried entities P̃ and actions 280

Ã, we aim to retrieve query-relevant and question- 281

supportive events and the documents: 282

(Ẽ, D̃) = Retrieve(H, P̃, Ã). (2) 283

Ẽ is the retrieved events while D̃ is the retrieved 284

documents indexed by Ẽ. It first links P̃ and Ã 285

to nodes Ṽ ⊆ V on the hypergraph. We model 286

the retrieval as selecting a set of supportive and 287

relevant events Ẽ ⊆ E. 288

To select supportive Ẽ, the first thing is to mea- 289

sure the supportiveness of events in H. How- 290

ever, the precise supportiveness is hard to obtain 291

since the events are partially observed in the real 292

world. Therefore, we use Bernoulli random vari- 293

able X(e) ∼ Bernoulli(P(e)) to represent whether 294

event e supports answering the question. P(e) is 295

the probability of X(e) = 1. We then use LLMs to 296

estimate a probability P(e). LLMs, pretrained on 297

broad semantic and reasoning patterns, can assess 298

the event against the query to measure its potential 299

usefulness (Bynum and Cho, 2024). Inspired by 300

Halawi et al. (2024), we calculate the supportive 301

probability of documentD as that of e. The prompt 302

is in Appendix A.7 (c). Therefore, our retrieval is 303

equivalent to we can select Ẽ to have the maximum 304

total supportive probability. 305

Besides, we also consider the topology relevance 306

of events on H. This program should ensure that 307

the retrieved events Ẽ are structurally related to Ṽ. 308

To do that, we assign a relevance score CV for all 309

nodes v on H via the Personal Page Rank (Yang 310

and Wang, 2024). The implementation details of 311

the PPR algorithm are in the Appendix A.4. Based 312

on C(v), we require that the selected events Ẽ can 313

cover the nodes with the highest total relevance 314

scores C(v). Last, to prevent it from selecting an 315

excessive number of events and preferring events 316

covering a large number of nodes, we add a regu- 317

larization term. Formally, the supportiveness mea- 318

surement of Ẽ is defined as: 319

f Ẽ =
1

β

∑
e∈Ẽ

X(e) +
∑

v∈
⋃

e∈Ẽ e

C(v)− 1

α

∑
e∈Ẽ

|e|.

(3) 320

α and β are hyper-parameters. |e| is the number of 321
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nodes in e. Note that f Ẽ is a random variable for322

any Ẽ. Its first term are random variables while the323

rest two are not. The expectation of f Ẽ is:324

Ef Ẽ =
1

β

∑
e∈Ẽ

P(e) +
∑

v∈
⋃

e∈Ẽ e

C(v)− 1

α

∑
e∈Ẽ

|e|.

(4)325

Our purpose is the select Ẽ that can maximize326

Ef Ẽ. To do that, we construct an integer program327

(IP) to get such desired Ẽ. For e ∈ E, the binary328

variable ye indicates whether the event e is selected329

(ye = 1) or not (ye = 0). Similarly, for v ∈330

V, the binary variable xv indicates whether the331

participant or action v is covered (xv = 1) or not332

(xv = 0). Thus, for any Ẽ, The corresponding333

binary variables are assigned as: for v ∈ V, xẼv = 1334

if v is covered by Ẽ, otherwise xẼ = 0; for e ∈ E,335

yẼe = 1 if e ∈ Ẽ, otherwise yẼe = 0. Then, Ef Ẽ in336

Eq.(4) can be re-writed as:337

Ef Ẽ =
1

β

∑
e∈E

yẼeP(e) +
∑
v∈V
C(v)xẼv −

1

α

∑
e∈E
|e|yẼe

(5)338

Thus, we solve the following IP:339

max
1

β

∑
e∈E

yeP(e) +
∑
v∈V
C(v)xv −

1

α

∑
e∈E
|e|ye

s.t. xv −
∑

e∈E,v∈e
ye ≤ 0, ∀v ∈ V;

xv ∈ {0, 1}, ∀v ∈ V; ye ∈ {0, 1}, ∀e ∈ E.
(6)340

For the optimal solution sol∗ of IP (6), where341

sol∗ is given by {x∗v | v ∈ V} ∪ {y∗e | e ∈ E},342

we choose Ẽ as {e | y∗e = 1}. In the following343

theorem, we give an upper bound for E(OPT −344

f(Ẽ)), where Ẽ is chosen by the IP (6).345

Theorem 1. For a single sampling of all X(e), e ∈346

E, there is a best f Ẽ. We denote OPT as the ran-347

dom variable representing this best f Ẽ. It is proved348

that E(OPT − f Ẽ) ≤ 2
β

∑
e∈E(P(e) − P2(e)),349

where Ẽ is chosen by IP (6).350

We leave the proof in the Appendix. Ensured by351

this upper bound, our method can retrieve events352

that are close to the optimal supportive events.353

3.2 Event-Oriented Agentic Reasoning354

In this section, we introduce our integrated event-355

oriented agentic reasoning. In the previous section,356

we describe the retrieval for events that require357

queried entities and actions. However, answering358

future forecasting tasks requires deep reasoning.359

In addition, LLMs should retrieve the information360

Algorithm 1 Event-Oriented Agentic Reasoning

Require: Question Q, max steps l
Ensure: Final answer

1: Initialize Ṙ← ∅, Ẽ← ∅, t← 0,
2: P̃← ParticipantsOf(Q)
3: Ã← ActionsOf(Q)
4: while t < l do
5: K ← M(Ṙ, Ė, Ṗ, Ȧ)
6: if K indicates Retrieval then
7: Ṗ, Ȧ,Rnew ← Parse(K)
8: R← R ∪ {Rnew}
9: (Ẽ, D̃) = Retrieve(H, Ṗ, Ȧ) ▷ Eq.2

10: Ė← Ė ∪ Ẽ, Ḋ← Ḋ ∪ D̃
11: Ṗ← Ṗ ∪

⋃
e∈Ẽ ParticipantsOf(e)

12: Ȧ← Ȧ ∪
⋃

e∈ẼActionsOf(e)
13: t← t+ 1
14: else
15: Answer(Ṙ, Ė, Ḋ, Ṗ, Ã)
16: exit loop
17: if t ≥ l then ▷ Force final answer
18: Answer(Ṙ, Ė, Ḋ, Ṗ, Ȧ)

needed to answer the question. To achieve that, we 361

establish a multi-step agentic RAG process. We 362

show the whole process in Algorithm 1. 363

There are some key modules in this process. 364

• Reasoning History Ṙ. Previous reasoning 365

thoughtsR initialized with an empty set. 366

• Oberserved Events Ė. It stores the retrieved 367

events initialized with an empty set. The doc- 368

uments Ḋ that are the sources of these events. 369

• Observed Participants Ṗ and Actions Ȧ. It 370

contains observed participants and actions via 371

retrieving events. They are initialized by par- 372

ticipants and actions from the question. 373

After initialization, in each step, we provide cur- 374

rent Ṙ, Ė, and Ṗ to the LLM and harvest the re- 375

sponse K = M(R, Ė, Ṗ) where M represents the 376

LLM. K would tell that the LLM chooses to an- 377

swer the question or keep retrieving events. We 378

show this plan prompt in Appendix A.7 (d). If the 379

LLM chooses to answer, we call another prompt 380

to answer the question based on Ṙ, Ė,Ṗ and Ȧ3. 381

Prompt is in Appendix A.7 (e). 382

If the LLM chooses to keep retrieving, we parse 383

new P̃ and S̃ from K. We ask M consider states 384

Ṗ and Ȧ when generating the queries. The LLM 385

also generates thoughts on why it should conduct 386

3Either Ṙ, Ė,Ṗ and Ȧ can be abcent according to tasks.
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Method # D Brier Score ↓

GPT-4O Gemini-Pro

ScratchPAD (w.o. RAG) (Halawi et al., 2024) - 25.42 ± 0.09 25.39 ± 0.41

Text-Based RAG

Naive RAG
10.00 21.22 ± 0.30 (+4.20) 22.18 ± 0.39 (+3.21)
20.00 20.31 ± 0.48 (+5.11) 20.98 ± 0.06 (+4.41)

APP (Halawi et al., 2024) 10.00 20.02 ± 0.26 (+5.40) 21.76 ± 0.24 (+3.60)
20.00 19.79 ± 0.52 (+5.63) 21.06 ± 0.03 (+4.33)

HyDE (Gao et al., 2023) 20.00 20.59 ± 0.26 (+4.83) 20.87 ± 0.21 (+4.51)

RankLlama (Ma et al., 2024) 20.00 20.20 ± 1.44 (+5.22) 22.73 ± 0.08 (+2.66)

Structure-Based RAG

HippoRAG (Gutiérrez et al., 2024) 20.00 20.94 ± 0.28 (+4.48) 22.82 ± 0.13 (+2.56)
EventRAG (Ours) 22.36 18.48 ± 0.57 (+6.94) 20.10 ± 0.39 (+5.29)

Table 1: Main results. # D is the average number of retrieval documents. Brier score is the lower the better. Bold
stands for the best performance. Increments are compared w.o. RAG. We report mean and std values on twice runs.

this retrieval in the current step based on all the387

information. Then it retrieves events as Eq.2. After388

that, we update Ė by the retrieved events. The par-389

ticipants and actions of the newly retrieved events390

are used to update Ṗ and Ȧ. To avoid infinite steps,391

we set up a maximum step l. If the process step392

reaches l, we force the LLM to respond with the393

same answering prompt.394

4 Experiments395

This section comprehensively evaluates the pro-396

posed EventRAG through systematic experiments397

and analyses. We begin by introducing the dataset398

in Section §4.1and baselines in Section §4.2. The399

core findings are presented in Section §4.3, where400

we benchmark our approach against state-of-the-401

art baselines across multiple metrics. To quantify402

the contribution of individual components, Sec-403

tion §4.4 conducts ablation studies on key architec-404

tural choices. Finally, Section §4.5 provides mul-405

tifaceted discussions: (1) a Regularization Study406

analyzing optimization stability, (2) a Maximum407

Step Study exploring effects on maximum agen-408

tic reasoning steps. We show then Details Im-409

plementation specifics, including hyperparameter410

configurations and training protocols, ensuring re-411

producibility in Appendix A.2. We examine the412

structural statistics of event hypergraphs index in413

Appendix §A.3 to establish foundational insights414

into hypergraph properties. We also analysis the415

cost consumption in Appendix A.6.416

4.1 Dataset417

We use PROPHET as the test dataset4. This is a real-418

world future forecasting dataset. It consists of 99419

4https://github.com/TZWwww/PROPHET

binary classification forecasting questions mainly 420

in 2024 such as “Will Tim Walz win the VP de- 421

bate against J.D. Vance?”. Each question is paired 422

with 100 news articles as knowledge base. This 423

dataset is validated by a supportiveness estimation 424

to ensure its inferablity. The evaluation metric of 425

PROPHET is the Brier Score (Brier, 1950): 426

Brier Score =
1

N

N∑
n

(Yn − Ŷn)2, (7) 427

where Ŷ ∈ {0, 1} is the ground true indicating the 428

queried event happened or not. Y is the predicted 429

probability of the model. 430

4.2 Baselines 431

We compare our method to ScrathPAD which is the 432

zero-shot ScrathPAD prompting method without 433

RAG. The RAG baselines are Naive RAG, APP (Ha- 434

lawi et al., 2024), Rankllama (Ma et al., 2024), 435

HyDE (Gao et al., 2023). To ensure comparability, 436

we uniformly use this prompt for reasoning. We 437

show this prompt in the Appendix A.7 (f). We leave 438

the details of the baselines in the Appendix A.5. 439

4.3 Main Results 440

We compare EventRAG to the competitive baselines 441

and show the results in Table 1. EventRAG presents 442

the comparative performance against these base- 443

lines on the future forecasting task, measured by 444

the Brier Score (lower is better). Our method 445

performs best among all methods, demonstrating 446

its superior accuracy in predicting future events. 447

Specifically, EventRAG outperforms the strongest 448

text-based RAG baseline (APP) by 1.31 points 449

under GPT-4O and 2.68 points under Gemini- 450

Pro, and surpasses the best structure-based base- 451
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Method Brier Score ↓ # D

EventRAG 18.48 ± 0.41 22.36
w.o. EC 19.64 ± 1.32 (-1.16) 26.82
w.o. SS 20.60 ± 0.28 (-2.12) 16.48
w.o. AR 19.64 ± 0.21 (-1.16) 17.26

Table 2: Ablation study. # D stands for the average
number of retrieval documents. EC stands for Maximum
Expected Event Cover. AR is event-oriented agentic
reasoning. SS is supportive score of the event.

line (HippoRAG) by 2.46 and 2.72 points, respec-452

tively. These results validate the effectiveness of453

EventRAG and its motivation of event-centric RAG.454

Compared with text-based RAG, methods like455

Naive RAG and HyDE show moderate improve-456

ments over direct prompting but plateau due to their457

reliance on surface-level semantics. RankLlama,458

despite its instruction-aware retrieval, underper-459

forms EventRAG, emphasizing the need for event-460

aware structuring. In the structure-based RAG,461

HippoRAG’s knowledge graph approach improves462

over text-based methods but remains inferior to463

EventRAG, as entity-centric graphs fail to encode464

multi-participant events or latent dependencies.465

EventRAG’s consistent superiority across both466

GPT-4O and Gemini-Pro underscores its model-467

agnostic design. The framework’s reliance on468

event hypergraph index and probabilistic support-469

ive event retrieval reduces dependency on the gen-470

erative capabilities of LLMs, making it versatile471

for different backbone models.472

4.4 Ablation Experiments473

To further investigate the contributions of differ-474

ent components in EventRAG, we conducted abla-475

tion studies by selectively removing key modules476

from the full model. The results are summarized477

in Table 2. w.o. EC stands for ablating Maximum478

Expected Event Cover where we directly retrieve479

events covering the queried entities and actions480

from the event hypergraph. w.o. SS doesn’t lever-481

age the supportive score of the event where we482

uniformly treat all events to the same score. w.o.483

AR is without event-oriented agentic reasoning in484

which we solve the task in a one-step Maximum485

Expected Event Cover program retrieval.486

The removal of the Maximum Expected Event487

Cover (w.o. EC) led to a significant degradation in488

performance, with the Brier Score increasing by489

1.16 points(from 18.48 to 19.64). This indicates490

that the event cover program is crucial for selecting491

the most relevant events for reasoning. Disabling492

the Supportive Score (w.o. SS) of events led to493

30 60 80 120 20018.0
18.5
19.0
19.5
20.0
20.5
21.0

20.79
20.18

18.48
19.61

20.66

(a) Regularization Study
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#
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18.8
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(b) Maximum Step Study

Brier Score10
20
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70

5.93
13.65

22.36

39.91

65.66

Figure 3: Regularization study and maximum step study.

a more substantial drop in performance, with the 494

Brier Score increasing by 2.12 points (from 18.48 495

to 20.60). This suggests that the probabilistic scor- 496

ing of events is critical for evaluating their support- 497

ive and utility in answering the question. Similarly, 498

removing the Event-Oriented Agentic Reasoning 499

(w.o. AR) process also resulted in a 1.16-point in- 500

crease in Brier Score (from 18.48 to 19.64). This 501

highlights the importance of the iterative reason- 502

ing process in refining the answer through multiple 503

steps of retrieval and reasoning. 504

In all, the combined effect of all these compo- 505

nents is evident in the superior performance of 506

the full EventRAG model compared to its ablations. 507

The results demonstrate that the integration of all 508

modules is essential for achieving robust and accu- 509

rate performances in future forecasting. 510

4.5 Discussions 511

Regularization Study The regularization param- 512

eter α governs the balance between event coverage 513

and retrieval specificity in the Maximum Expected 514

Event Cover program. As shown in Figure 3 (a), in- 515

creasing α initially increase the number of retrieved 516

events by prioritizing structurally coherent path- 517

ways, leading to improved Brier Scores (optimal at 518

α = 120). Beyond this point, overly relax regular- 519

ization causes performance degradation. Large α 520

would incurs noisy information for retrieval. This 521

demonstrates that moderate regularization ensures 522

a synergistic balance between event supportiveness 523

and structural relevance, countering noise while 524

preserving forecasting utilities. 525

Maximum Step Study The maximum reason- 526

ing step l in the agentic process directly impacts 527

reasoning depth. Figure 3 (b) reveals that increas- 528

ing l from 1 to 5 progressively improves perfor- 529

mances, as iterative retrieval enables the system 530

to resolve ambiguities and incorporate supportive 531

events. However, performance plateaus beyond l = 532

5, suggesting diminishing returns from additional 533

steps. Notably, excessive steps (l > 5) marginally 534

degrade results due to noise accumulation or re- 535

dundant retrievals. These findings highlight the 536

effectiveness of multi-step agentic reasoning. It 537
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Method Brier Score ↓

IP (6) 18.48 ± 0.41
IP (8) 19.63 ± 0.99

Table 3: Diversity inspectation of program Eq.(6).

also shows the necessity of setting l to balance538

thoroughness and efficiency, with l = 5 achieving539

optimal trade-offs in our experiments.540

Event Diversity The retrieved events are desired541

to be diversified leading to more supportive infor-542

mation. In this part, we further inspect retrieved543

event diversity by IP (6). We add additional the544

following constraints to adapt it into a new IP:545 ∑
e∈E,v∈e

ye ≤ 3,∀v ∈ V. (8)546

These constraints restrict the number of nodes from547

the same event should not exceed 3. And rerun the548

experiments. The results are in Table 3. We find the549

performances drops indicating the sufficient event550

diversity of our method.551

5 Related Work552

5.1 Retrieval-Augmented Generation (RAG)553

Text-based methods focus on retrieving knowledge554

through textual signals, prioritizing similarity. Re-555

cent advancements include query refinement (Gao556

et al., 2023), self-reflection mechanisms in SELF-557

RAG (Asai et al., 2024), and iterative error correc-558

tion in Corrective RAG (Liu et al., 2024). However,559

these methods often overlook structural or interac-560

tive aspects of knowledge organization.561

Structure-based approaches address this by lever-562

aging hierarchical or graph-based structures. RAP-563

TOR (Sarthi et al., 2024) introduces recursive564

abstraction for tree-structured retrieval, enhanc-565

ing multi-scale document representation. Graph-566

based methods, such as query-focused summariza-567

tion (Edge et al., 2024) and HippoRAG (Teyler568

et al., 2024) integrates graph traversals to capture569

global context and long-term dependencies (Procko570

and Ochoa, 2024).571

Agentic RAG integrates autonomous agents to or-572

chestrate retrieval and generation. AMOR (Guan573

et al., 2024a) employs modular knowledge agents574

trained via process feedback, while GEAR (Shen575

et al., 2024) combines graph reasoning with agentic576

decision-making. Agent-G (Lee et al.) proposes577

a unified framework with an agent, retriever bank,578

and critic module, solving questions using hybrid579

knowledge sources.580

Among these advanced RAG methods, we are581

the first to propose event-oriented RAG systems 582

for complex knowledge-grounded event reasoning 583

such as future forecasting. 584

5.2 Event Graph 585

As a event-centric knowledge base, event graph is 586

constructed for storing abstract-level (Zhang et al., 587

2020) or instance-level (Gottschalk and Demidova, 588

2018) events and their relations. It can be used 589

for future forecasting (Li et al.) or causality track- 590

ing (Tao et al., 2023). Although similar as previous 591

event graph methods that are knowledge bases, our 592

method firstly construct event hypergraph running 593

as index for retrieval. 594

5.3 Future Forecasting 595

Forecasting on Event Graphs A foundational ap- 596

proach involves modeling event relations to pre- 597

dict downstream consequences. Zhan et al. (2024) 598

leverage event causality graphs to simulate chains 599

of cause-effect relationships, enabling structured 600

reasoning about future scenarios. Similarly, Tao 601

et al. (2024) enhance prediction by event schema 602

graph guidance. These methods construct the event 603

graph as knowledge to improve prediction. 604

Forecasting by LLMs Methods forecast future 605

events by retrieving external information such as 606

news, then reasoning the answer (Halawi et al., 607

2024; Guan et al., 2024b). Ye et al. (2024) establish 608

a multi-agent framework where each agent has its 609

role in utility of forecasting. Wang et al. (2024) 610

introduce the future time series prediction driven 611

by LLMs assisted by external information. 612

Compared with these methods, we propose 613

an event-oriented RAG framework which can be 614

plugged in other form of future forecasting system. 615

616

6 Conclusion 617

We introduced EventRAG, an event-oriented RAG 618

framework tailored for future forecasting. By 619

constructing an event hypergraph index and em- 620

ploying the Maximum Expected Event Cover Pro- 621

gram, EventRAG effectively retrieves supportive 622

events that are crucial for answering. Addition- 623

ally, EventRAG integrates retrieval and reasoning 624

through a multi-step, event-oriented agentic rea- 625

soning process, enabling adaptive knowledge ac- 626

quisition and robust reasoning. Our experiments 627

demonstrate significant improvements over state- 628

of-the-art RAG baselines, highlighting the effec- 629

tiveness of our method and the necessity of devel- 630

oping event-oriented RAG systems. 631
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Limitations632

In this work, we use close-source LLMs for rea-633

soning and agentic operations. However, training634

LLMs on this would further benefit this process.635

We leave it to future work.636

Ethics Statement637

Research-Only Purpose Our algorithm is strictly638

designed for academic and research purposes. Any639

commercial exploitation, malicious intent (includ-640

ing but not limited to defamation, harassment, or641

discriminatory practices), or misuse beyond its in-642

tended scope is explicitly prohibited. Data Ac-643

countability Disclaimer The creators of this algo-644

rithm bear no responsibility for any financial, unau-645

thorized, unethical, or harmful application of the al-646

gorithm. Prohibition of Harmful Outcomes Any647

deployment of this algorithm that leads to financial,648

physical, psychological, or socio-economic harm649

is categorically condemned. Users are urged to650

implement safeguards against such risks.651
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A Appendix813

A.1 Proof of Theorem 1814

We show the proof of Theorem 1 as the following:815

Proof. Consider a single sample s = {se | e ∈816

E} of all X(e), where e ∈ E. Let Ẽs be the set817

that maximizes f Ẽs under this sample. Recall that818

sol∗ = {x∗v | v ∈ V} ∪ {y∗e | e ∈ E} is an optimal819

solution of IP (6), and Ẽ = {e | y∗e = 1}. For a820

feasible solution sol = {x′v | v ∈ V} ∪ {y′e | e ∈821

E}, denote g(sol) as the objective value of sol in822

IP (6).823

For v ∈ V, let xsv = 1 if there exists an event824

in Ẽs covering xv, otherwise, let xsv = 0. Simi-825

larly, let yse = 1 if e ∈ Ẽs, otherwise, let yse = 0.826

Notably, sols = {xsv | v ∈ V} ∪ {yse | e ∈ E} is827

a feasible solution of IP (6). Since sols and sol∗828

are a feasible and an optimal solution of IP (6),829

respectively, it follows that g(sols)− g(sol∗) ≤ 0.830

Furthermore, we have831

f Ẽs − f Ẽ

=f Ẽs − g(sols)− (f Ẽ − g(sol∗))

+ g(sols)− g(sol∗)

≤f Ẽs − g(sols)− (f Ẽ − g(sol∗))

(9)832

In this sample, by the definition of f Ẽ, we have833

f Ẽs =
1

β

∑
e∈E

ysese +
∑
v∈V
C(v)xsv −

1

α

∑
e∈E
|e|yse834

Thus, it deduces that835

f Ẽs − g(sols) =
1

β

∑
e∈E

yse(se − P(e)) (10)836

Similarly, we have837

f Ẽ − g(sol∗) =
1

β

∑
e∈E

y∗e(se − P(e)) (11)838

Then by Equations (9)-(11), we have839

f Ẽs − f Ẽ

≤f Ẽs − g(sols)− (f Ẽ − g(sol∗))

=
1

β

∑
e∈E

(yse − y∗e)(se − P(e))
(12)840

Since 0 ≤ P(e) ≤ 1 and yse, y
∗
e , se ∈ {0, 1}, it841

follows that (yse − y∗e)(se − P(e)) ≤ se − (2se −842

1)P(e). Thus by Eqaution (12), we have843

f Ẽs − f Ẽ ≤ 1

β

∑
e∈E

(se − (2se − 1)P(e)) (13)844

By Equation (13), and by enumerating all samples845

on random variables X(e) where e ∈ E, it follows846

that 847

E(OPT − f Ẽ) ≤ 2

β

∑
e∈E
P(e)− P2(e). 848

849

A.2 Implementation Details 850

Event Hypergraph In Event Hypergraph Index- 851

ing, we use gpt-4o-mini-2024-07-18 for Entity 852

Extraction, Event Extraction, and Event Typing. 853

We use networkx5 toolkit for hypergraph implemen- 854

tation. Since networkx doesn’t have hypergraph 855

operation, we use DiGraph to implement hyper- 856

graph. In our implementation, the event hyperedge 857

is a node in the DiGraph, and its participant nodes 858

and action nodes connect to it. 859

Event-Oriented Agentic Reasoning We use 860

LangGraph6 framework to implement the event- 861

oriented agentic reasoning. We wrap the support- 862

ive events retrieval as a tool in LangGraph, and 863

use the function call module of LLMs to call this 864

tool. We show the tool implementation in Figure 5. 865

When do entity linking on the hypergraph, we find 866

two most similar nodes of each query participant 867

or action. We use all-MiniLM-L6-v2 model in 868

similarity computing. 869

In maximum expected event cover retrieval, 870

we set regularization parameter α = 80, and 871

supportive encouraging parameter β = 200 in 872

Eq. 6. In event-oriented agentic reasoning, we 873

set the maximum step l = 5. All experiments 874

in this work are under twice runs. We report 875

the mean and std values. The version for GPT- 876

4O is gpt-4o-2024-08-06 while Gemini-Pro is 877

gemini-1.5-pro-latest. 878

A.3 Event Hypergraph Statistics 879

The statistical profile of event hypergraphs, in Ta- 880

ble 4, reveals three key structural properties. First, 881

the average of 1.98 participants a per event e in- 882

dicates frequent multi-nodes interactions. Second, 883

the moderate action A multiplicity (1.33 a/e). 884

Notably, the scale statistics demonstrate signifi- 885

cant complexity: each question Q contains 461.30 886

events (e/Q) implying high-frequency of event pat- 887

terns. The participant-event ratio (324.42 p/Q vs. 888

2.82 e/p) further reveals asymmetric role distribu- 889

tions: while most participants engage in 2-3 events, 890

5https://networkx.org/
6https://www.langchain.com/langgraph
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Event e Participant p Action a

p / e a / e e / Q e / p p / Q e / a a / Q
1.98 1.33 461.30 2.82 324.42 1.29 476.52

Table 4: Statistics of event hypergraph. e, p, a, Q
stand for event, event participant, event action, and the
question. We report the average numbers.

a minority serve as hubs across dozens of interac-891

tions. These characteristics collectively justify our892

EventRAG’s capacity for indexing events.893

A.4 Personal Page Rank894

The Personal PageRank (PPR) algorithm is imple-895

mented as follows to acquire the relevance scores896

C(v) of each node v on the hypergraphH.897

Let M be the transition probability matrix of the898

hypergraphH. For a hypergraph with n nodes, M899

is an n × n matrix, where the element Mij repre-900

sents the probability of transitioning from node i901

to node j.902

We start by initializing the relevance scores of903

all nodes. Let C(0)(v) be the initial relevance score904

of node v. We set C(0)(v) based on the initial as-905

signment of relevance score CV for all nodes v on906

H. That is, C(0)(v) = CV(v).907

The PPR algorithm then iteratively updates the908

relevance scores. In the tth iteration, the relevance909

score of node v, C(t)(v), is calculated as follows:910

C(t)(v) =(1− α)
∑

u∈In(v)

MuvC(t−1)(u)

+ αC(0)(v)
(14)911

where In(v) is the set of in-neighbors of node912

v, α is a teleportation probability (a scalar value913

between 0 and 1, we set α = 0.15). The first914

term (1−α)
∑

u∈In(v)MuvC(t−1)(u) represents the915

contribution from the in-neighbors of node v, and916

the second term αC(0)(v) is the teleportation term,917

which helps to prevent the algorithm from getting918

trapped in cycles.919

We repeat this iterative process until the change920

in the relevance scores between two consecutive921

iterations is below a certain threshold ϵ = 1−6.922

That is, we stop when923 ∑
v∈V
|C(t)(v)− C(t−1)(v)| < ϵ (15)924

where V is the set of all nodes in the hypergraph925

H. At the end of the iteration process, the final926

relevance score of each node v is C(v) = C(t)(v),927

which will be used in the maximum expected event928

cover program for event retrieval.929

Participant 
Extraction

94.47 (25%)

Event 
Extraction

148.89 
(40%)

Relevance 
Score

45.86 (12%)

Summariza
tion

88.43 (23%)

Figure 4: Cost analysis. The amount of token consumed
per unit of data, measured in thousands.

A.5 Baselines 930

ScrathPAD: This is the zero-shot ScrathPAD 931

prompting method without RAG. We adopt the 932

scratchpad prompt introduced by Halawi et al. 933

(2024). For other RAG methods, to ensure com- 934

parability, we uniformly use this prompt for rea- 935

soning. We show this prompt in the Appendix A.7 936

(f). 937

Naive RAG: Given the length of news articles, we 938

perform summarization of these articles in advance. 939

The RAG method then retrieves relevant news ar- 940

ticles by calculating the embedding similarity be- 941

tween the question and the news summaries. For 942

this purpose, we employ all-MiniLM-L6-v2 mod- 943

els in SentenceTransformer7. After retrieving the 944

news, we utilize the scratchpad prompt for reason- 945

ing. 946

APP: This method, introduced by Halawi et al. 947

(2024), is specifically text-based RAG designed 948

for future forecasting. It also begins with summa- 949

rizing the news articles. Subsequently, it uses an 950

LLM to compute the relevance score. Following 951

this, it too makes use of the scratchpad prompt for 952

the reasoning process. 953

Rankllama: Rankllama is a retrieval method ca- 954

pable of understanding complex retrieval instruc- 955

tions (Ma et al., 2024). It encodes both the question 956

and the news articles (using summaries of the news) 957

with the model. After the retrieval step, it provides 958

answers in the format of the scratchpad prompt. 959

HyDE: For a given query, this method leverages an 960

instruction - following language model (such as In- 961

structGPT) to generate a "hypothetical document" 962

that captures relevance patterns (Gao et al., 2023). 963

This is a query refinement method. In the event 964

prediction scenario, we generate potential future 965

events that could influence the answer. Then, rele- 966

7https://sbert.net
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class FindEventsByEntitiesAndActionsInput(BaseModel):
entities: list[str] = Field(description=“Names of the 

input named entities rather than date or time. It 
must be directly a list of string of entities. 
They can not be dates or time. Eg. [‘A’, ‘B’, 
‘C’].”, 
required = True)

actions: list[str] = Field(description=“Names of the 
input actions. It must be directly a list of 
string of actions. Eg. [‘A’, ‘B’, ‘C’].”, 
required = True)

tool = StructuredTool.from_function(
Func = _find_events_by_paricipants_and_actions,
Name = "FindEventsByEntitiesAndActions",
Description = "Find events of a certain event type on 

the graph which are simultaneously related to the 
input named entities and actions.",

args_schema = FindEventsByEntitiesAndActionsInput,)

Figure 5: Core code for retrieval tool and its inputs.

vant news articles are retrieved.967

HippoRAG: This is a representative graphrag frame-968

work inspired by the human brain’s long-term mem-969

ory system. It enhances large language models970

(LLMs) by enabling efficient multi-hop reason-971

ing and knowledge integration from external docu-972

ments, using a knowledge graph and personalized973

PageRank algorithm (Gutiérrez et al., 2024).974

A.6 Cost Analysis975

We analyze the cost consumption of our method. In976

the process of hypergraph construction, the token977

consumption are mainly in four steps: participant978

extraction, event extraction, relevance score, and979

summarization. We show the consumption in Fig-980

ure 4. Th total consumption of a data is 337,760981

tokens. We use gpt-4o-mini-2024-07-18 model,982

that only cost 0.2266 $.983

A.7 Prompts984

We show all prompts (a-f) as the following.985
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(a) Named Entity Extraction

Your task is to extract named entities from the given paragraph. Don’t extract date, time. Respond with a list
of entities.
Document: D
Output:

(b) Event Extraction

Your task is to extract all events about the given named entities from the given passages. Each event contains
at least one participant and one action. Also, summarize the event.
Pay attention to the following requirements:
- Each event is in the JSON format as ["participants": ["", "", "", ...], "action": "", "time": "", "location": "",
"text": "", ...].
Document: D
Named Entities: P
Output:

(c) Supportive Probability

Please consider the following forecasting question and its background information. After that, I will give you a
news article and ask you to rate its relevance with respect to the forecasting question.
### Question: Q
### Question Background: background
### Resolution Criteria: resolution criteria
### Article: D
Please rate the relevance of the article to the question, at the scale of 1-6
1 – irrelevant
2 – slightly relevant
3 – somewhat relevant
4 – relevant
5 – highly relevant
6 – most relevant
Guidelines:
- If the article has events of similar types which may happened on different subjects, it also consider relevant
to the question.
- You don’t need to access any external sources. Just consider the information provided.
- If the text content is an error message about JavaScript, paywall, cookies or other technical issues, output a
score of 1.
Rating:

(d) Agentic Plan

Your task is to answer the question about reasoning and predicting a future event in several turns via operation
on an event graph. You need to answer the question step by step. In each step, you can answer the question
or retrieve more events from a pre-built event graph via calling tools. Previous Memory records summarization
of all previous retrieved information and thoughts. Observed Entities and Observed actions store named entities
and actions you already retrieved. You must take next step by considering Previous Memory, Observed Entities,
and Observed Actions. Answer the question know when you think the information is enough for reasoning the
answer. You must generate the thought of calling the tools. You can only use observed entities and actions
as arguments of the tool call. Previous Tool Calls records previous tool calling you have made. Don’t make
duplicated tool call with the same arguments that have been made before. Don’t mention in the output words.
### Question: Q
### Question Background: background
### Previous Memory (could be empty): R
### ALL Observed Entities (could be empty): P
### ALL Observed Actions (could be empty): A
### Previous Tool Calls: tool calls
### Your Thought:

14



(e) Answer

### Question: Q
### Question Background: background
### Resolution Criteria: resolution criteria
I have observed events related to the question.
### Observed Events: E
Instructions:
Your goal is to aggregate the information and make a final prediction.
1. Provide at least 3 reasons why the answer might be no: {Insert your thoughts}
2. Provide at least 3 reasons why the answer might be yes: {Insert your thoughts}
3. Rate the strength of each of the reasons given in the last two responses: { Insert your rating of the strength
of each reason }
4. Aggregate your considerations: {Insert your aggregated considerations}
5. Output your answer (a number between 0 and 1) with an asterisk at the beginning and end of the decimal:
{Insert your answer}

(f) ScratchPAD

Question: Q
### Question Background: background
### Resolution Criteria: resolution criteria
We have retrieved the following information for this question: retrieved articles
Instructions:
1. Provide at least 3 reasons why the answer might be no: { Insert your thoughts }
2. Provide at least 3 reasons why the answer might be yes: { Insert your thoughts }
3. Rate the strength of each of the reasons given in the last two responses: { Insert your rating of the strength
of each reason }
4. Aggregate your considerations: { Insert your aggregated considerations }
5. Output your answer (a number between 0 and 1) with an asterisk at the beginning and end of the decimal:
{ Insert your answer }
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