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Abstract

Recent advancements in Retrieval-Augmented
Generation (RAG) have significantly enhanced
the ability of large language models to ground
their responses in external knowledge. How-
ever, solving complex future forecasting prob-
lems remains a challenge due to the need for re-
trieving supportive events. Current methods fo-
cusing on textual-similarity or entity-relevance
are not able to capture supportive events due
to incompleteness of the knowledge base and
the inherent nuanced nature of events. This
paper introduces EventRAG, an event-oriented
RAG framework specifically designed for fu-
ture forecasting tasks. Specifically, we first
propose the supportive event retrieval where
we construct the event hypergraph index on
the knowledge base. Based on that, we denote
the event supportiveness as random variables
and maximize the expectation. We establish
the maximum expected event cover program to
solve this maximization. Finally, EventRAG in-
tegrates the retrieval and reasoning into the
event-oriented agentic reasoning process. It
enables the framework to retrieve the needed in-
formation to perform complicated forecasting.
We conducted experiments and in-depth anal-
ysis to evaluate the effectiveness of EventRAG.
The results demonstrate that EventRAG signifi-
cantly outperforms competitive RAG baselines
in future forecasting. The code and dataset are
available on the ARR system.

1 Introduction

Retrieval-Augmented Generation (RAG) has
emerged as a transformative paradigm in natu-
ral language processing, addressing critical lim-
itations of large language models (LLMs), such as
knowledge cutoff issues (Gupta et al., 2024). By
integrating retrieval mechanisms with generative
models, RAG systems dynamically access exter-
nal knowledge to enhance response accuracy and
relevance in complex intelligent reasoning (Zhao
et al., 2024). Given a question, recent advanced
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Figure 1: An example of future forecasting tasks such
as event prediction. Retrieval abilities of each RAG
methodology. EventRAG is able to retrieve supportive
events even without explicit entity connections.

RAG systems aim to retrieve more relevant infor-
mation via: 1) improved textual semantic similar-
ity between query and knowledge such as query
enriching (Gao et al., 2023) and retrieval require-
ment understanding (Oh et al., 2024). 2) nuanced
entity-centric structured indexing as tree (Sarthi
et al.) and graph (Edge et al., 2024). These devel-
opments achieve great performance in numerous
applications in scenarios such as finance (Li et al.,
2023; Islam et al., 2023), medical (Dou et al., 2024),
law (Fei et al., 2023).

While current RAG performs well in problems
depending on external knowledge, answering the
complex future forecasting tasks remains a signifi-
cant challenge. These tasks require RAG systems
to retrieve happened events that are not only rel-
evant but supportive of answering the questions.
The supportiveness of an event for a question im-
plies that the event contains information that can
be used to answer the question, offering evidence
or reasoning to back up the response. An event
that is highly relevant may not necessarily provide
strong support and vice versa. However, effectively
retrieving events with high supportiveness poses



challenges. Firstly, real-world events and relations
are often incompletely observable. Many events
may have hidden details, unrecorded intermediate
steps, or ambiguous relationships. Moreover, the
complexity of event relationships themselves poses
a challenge. Events can be mutually affected in
complicated ways that are often difficult to repre-
sent accurately in a knowledge base.

These factors create restrictions for retrieval
methods to fully identify highly supportive events.
Currently, text-based RAG methods focus on
query-document similarity (Gao et al., 2023)
while structure-based RAG focuses on entity re-
lations (Edge et al., 2024). As a result, traditional
retrieval methods may either retrieve events that
are only textual-similar or entity-related but lack
the necessary support for answering the question
or miss important events that could provide strong
support. As shown in Figure 1, to solve this event
prediction task, text-based retrieval methods can
retrieve the first event through textual similarity.
Entity-centric structural methods find the second
event due to the core entities “Sunita Williams™ and
“Barry Wilmore”. However, retrieving the third
event requires deeper understanding that this event
can support answering the question.

To bridge this gap, we propose EventRAG, a new
event-centric RAG framework designed to retrieve
support and related events for future forecasting.
Our approach introduces two key innovations:

Supportive Event Retrieval EventRAG first con-
structs event hypergraph index on the knowledge
base. It extracts events from documents and repre-
sents them as a hypergraph. The nodes represent
the participants or actions of the event, whereas
the hyperedges model the events themselves. This
hypergraph structure offers a more natural and
holistic way to capture the complex relations be-
tween events. To retrieve supportive events and
knowledge on the hypergraph, we denote the event
supportiveness as random variables and maximize
the expectation. We introduce the Maximum Ex-
pected Event Cover to solve that, which establishes
an optimization program that jointly maximizes
event probabilistic supportiveness and structural
connectivity. Moreover, we prove that this program
bounds optimal supportive event retrieval. This
counteracts potential biases in the partial observ-
ability of event supportiveness.

Event-Oriented Agentic Reasoning We em-
ploy a multi-step, agentic generation process to
iteratively retrieve and reason about the answer.

This process seamlessly integrates our supportive
event retrieval and reasoning, allowing the system
to adaptively adjust its approach and search for the
knowledge it requires at each step.

We conduct experiments to testify the effec-
tiveness of EventRAG. Compared to state-of-the-
art RAG baselines among textual-based RAG and
graph-based RAG, EventRAG achieves significant
improvement. The results indicate the necessity
of developing event-oriented RAG systems and
demonstrate the validity of our method. We list
our contributions:

e We introduce EventRAG, an event-oriented
RAG system. It retrieves supportive events
via the hypergraph index and the solving of
the maximum expected event cover program.

e EventRAG integrates and retrieval and rea-
soning in an agentic RAG process. This
multi-step process iteratively retrieves needed
knowledge and answers the question.

o We conduct experiments to evaluate the effec-
tiveness of EventRAG. The results demonstrate
the validity of our method.

2 Preliminaries
2.1 Event Representation

In natural language processing (NLP) and knowl-
edge representation, an event e is typically defined
as a structured occurrence (Dolling et al., 2013).
Events comprise participants (or arguments) p € P,
representing entities involved in the event, and
one action a, often identified by a lexical trigger
word (Doddington et al., 2004).

In our implementation, events may include multi-
ple actions a € A to accommodate coarser-grained
event definitions, where a single action word in-
adequately captures the scope (e.g. “protest” and
“arrest” in a civil unrest event). Moreover, while
structural representations encode core components,
they risk information loss by omitting contextual
nuances. To mitigate this, we augment the structure
with a textual description X. Thus, our full event
representation is formalized as e = (P, A, X).

2.2 Future Forecasting

Future Forecasting is a critical research area within
the field of artificial intelligence and natural lan-
guage processing, aimed at anticipating future
events based on historical data and contextual infor-
mation. This task involves analyzing large volumes
of news articles, social media posts, or other tem-
poral data sources, to identify patterns and trends
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Figure 2: Overview of EventRAG. Given a question, our event-oriented agentic reasoning answers it in the multi-step
process. In each step, it first retrieves supportive events and documents via our supportive event retrieval, then

decides to answer or update states for the next step.

that can help forecast the occurrence of specific
events. Specifically, given a binary classification
prediction question Q, a large set of documents
D records all related information. The RAG sys-
tem should retrieve supportive information such
as events and documents from D and reason the
whether the event in Q will happen or not:

Y = Reason(Q, Retrieve(Q, D)), (1)
where ) € [0, 1] is the predicted probability of
how likely the event asked by Q would happen.

3 Method

Our EventRAG framework addresses future fore-
casting tasks as shown in Figure 2. The system
retrieves supportive events by indexing the knowl-
edge base as an event hypergraph and models the
event retrieval as the maximum expected event
cover program (Section §3.1). Then it integratedly
conducts iterative reasoning through an agentic rea-
soning process (Section §3.2).

3.1 Supportive Event Retrieval

Future forecasting tasks demand that RAG systems
retrieve not just relevant but also supportive past
events to answer questions. An event is considered
supportive if it contains information to answer the
question, providing evidence or rationales. Rele-
vance does not always imply strong support, and
vice versa. Effectively retrieving highly supportive
events is challenging. First, real-world events and

their relations are often not completely observable.
There may be hidden details and unrecorded inter-
mediate connections. Second, the complexity of
event relations themselves is a problem. Events
can interact intricately, and accurately represent-
ing them is difficult. These issues limit retrieval
methods from fully identifying highly supportive
events. Currently, text-based RAG methods focus
on query-document similarity (Ma et al., 2024),
while structure-based RAG emphasizes entity rela-
tions (Edge et al., 2024). As a result, these retrieval
methods may retrieve only superficially relevant
events lacking the required support.

To address this, EventRAG constructs an event
hypergraph index in the knowledge base. Events
are extracted from documents represented as hyper-
graphs. Nodes represent participants or actions of
the event, and hyperedges represent events. The
hypergraph structure captures the complex event
semantics more naturally and comprehensively. We
then introduce the maximum expected event cover
program for retrieval. This program formulates an
optimization problem to maximize both event struc-
tural connectivity and probabilistic supportiveness.
We also prove that this program bounds optimal
supportive event retrieval.

3.1.1 Event Graph Indexing

Specifically, to construct the hypergraph index, the
first step is to extract events from the knowledge



base. Given the knowledge base I, EventRAG be-
gins with event extraction in each document D € D
and constructs the event hypergraph. However,
directly extracting events would encounter entity
coreference problems where the same entity would
be in different wording between events. To miti-
gate this problem, we first extract named entities
then mining events based on them.

Entity Extraction The foundation of event ex-
traction lies in accurate entity recognition. Precise
entity identification reduces event extraction errors
through better argument binding. Given a docu-
ment D € D, we extract named entities with LLMs,
which are the event participants in the later stage.
We show the prompt in Appendix A.7 (a). We
provide several extraction examples in the prompt.

Event Extraction After harvesting the named en-
tities which are the event participants, we perform
event extraction based on them. We also imple-
ment this process using LLMs. The prompt is in
the Appendix A.7 (b). We describe each event in
sentences resulting in A" and also extract the date
and location. We provide demonstrations for few-
shot typing. We also resolve the event co-reference
by merging events that have large overlapped par-
ticipants and actions. We concatenate their descrip-
tions into the final description X. After this, we
acquire the structured event e.

Hypergraph Indexing We next construct the
event hypergraph index based on the extracted
events. An event hypergraph is a generalization
of a graph in which an edge (called a hyper-
edge) is an event. It can connect any number
of vertices, rather than being restricted to pair-
wise connections. Formally, a hypergraph H is
defined as a pair (V,E). The node set V =
(WPl oP o vt vA) represents all
participants and actions which is a finite set of
vertices of H!. E = {e1,ea,...,¢} is a family
of non-empty subsets of V, each representing a
hyperedge which is also the event”. In particular,
each hyperedge e in E corresponds to an event
e = (P,A, X, D). where P and A are participants
and actions of e. X is the event description gener-
ated before. D is the document where e sources.
Each edge e plays the role of indexing associated
with its source document D. Unlike structure-based

'We use v without superscripts to indicate node on { when
we don’t distinguish participants or actions.

We use e represents both hyperedge and event since they
are the same in our work. E is the set of them.

RAG indexing such as GraphRAG, hyperedges in
‘H can encompass two or more vertices, enabling
the retrieval of higher-order semantics of events
demonstrated in Figure 2.

3.1.2 Maximum Expected Event Cover

In this section, we elaborate on how we do re-
trieval on our constructed event hypergraph index.
Starting with the queried entities P and actions
A, we aim to retrieve query-relevant and question-
supportive events and the documents:

(E, D) = Retrieve(#, P, A). (2)
[ is the retrieved events while I is the retrieved
documents indexed by E. It first links P and A
to nodes V C V on the hypergraph. We model
the retrieval as selecting a set of supportive and
relevant events E C E.

To select supportive E, the first thing is to mea-
sure the supportiveness of events in 4. How-
ever, the precise supportiveness is hard to obtain
since the events are partially observed in the real
world. Therefore, we use Bernoulli random vari-
able X (e) ~ Bernoulli(P(e)) to represent whether
event e supports answering the question. P(e) is
the probability of X (e) = 1. We then use LLMs to
estimate a probability P(e). LLMs, pretrained on
broad semantic and reasoning patterns, can assess
the event against the query to measure its potential
usefulness (Bynum and Cho, 2024). Inspired by
Halawi et al. (2024), we calculate the supportive
probability of document D as that of e. The prompt
is in Appendix A.7 (c). Therefore, our retrieval is
equivalent to we can select E to have the maximum
total supportive probability.

Besides, we also consider the topology relevance
of events on /. This program should ensure that
the retrieved events |E are structurally related to V.
To do that, we assign a relevance score Cy for all
nodes v on H via the Personal Page Rank (Yang
and Wang, 2024). The implementation details of
the PPR algorithm are in the Appendix A.4. Based
on C(v), we require that the selected events [E can
cover the nodes with the highest total relevance
scores C(v). Last, to prevent it from selecting an
excessive number of events and preferring events
covering a large number of nodes, we add a regu-
larization term. Formally, the supportiveness mea-
surement of [E is defined as:
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nodes in e. Note that f® is a random variable for
any [E. Its first term are random variables while the

rest two are not. The expectation of f is:
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Our purpose is the select E that can maximize
EfE. To do that, we construct an integer program
(IP) to get such desired E. For e € E, the binary
variable 1, indicates whether the event e is selected
(ye = 1) or not (y. = 0). Similarly, for v €
V, the binary variable x, indicates whether the
participant or action v is covered (z, = 1) or not
(x, = 0). Thus, for any I~E, The correspor}ding
binary variables are assigned as: forv € V, zf = 1
if~v is covered by IE, otherwige 2B =0; fore € E,
yE =1lifec E, otherwise y® = 0. Then, Ef* in
Eq.(4) can be re-writed as:

BfE = 2 Y i) + 3 Cw)af - = 3 flu
eclk veV ecE
®)

Thus, we solve the following IP:

max ;ZyeP(e) + Zc(v)ﬂfu - é Z le]ye

ecE veV ecE
st Xy — Z Ye < 0,Vv € V;
ecE,vee
x, €4{0,1}, Vv € V;y. € {0,1}, Ve € E.

(6)

For the optimal solution sol* of IP (6), where

sol* is given by {x} | v € VI U {y} | e € E},

we choose | as {e | * = 1}. In the following

theorem, we give an upper bound for E(OPT —
f(E)), where E is chosen by the IP (6).

Theorem 1. For a single sampling of all X (e),e €
E, there is a best fIE. We denote OPT as the ran-
dom variable representing this best fE. Itis proved
that E(OPT — f*) < 237 z(P(e) — P*(e)),
where E is chosen by IP (6).

We leave the proof in the Appendix. Ensured by
this upper bound, our method can retrieve events
that are close to the optimal supportive events.

3.2 Event-Oriented Agentic Reasoning

In this section, we introduce our integrated event-
oriented agentic reasoning. In the previous section,
we describe the retrieval for events that require
queried entities and actions. However, answering
future forecasting tasks requires deep reasoning.
In addition, LLLMs should retrieve the information

Algorithm 1 Event-Oriented Agentic Reasoning

Require: Question (), max steps [
Ensure: Final answer
1: Initialize R « 0, E < 0, ¢ < 0,
2: P < ParticipantsOf(Q)
3: A < ActionsOf(Q)
4: whilet < [ do
5 K« MR E, P, A)
6 if /C indicates Retrieval then
7: P, A, Roew — Parse(K)
8: R+ RU{Runew}
9

: (E,D) = Retrieve(H,P,A) >Eq.2
10: E+ EUE D+ DUD
11 P+ PU U, e ParticipantsOf(e)
12: A« AU U, g ActionsOf(e)
13: t—t+1
14: else
15: Answer(R, E,D,P, A)
16: exit loop

17: if t > [ then N Force final answer
18: Answer(R,E, D, P, A)

needed to answer the question. To achieve that, we
establish a multi-step agentic RAG process. We
show the whole process in Algorithm 1.
There are some key modules in this process.
e Reasoning History R. Previous reasoning
thoughts R initialized with an empty set.

e Oberserved Events [E. It stores the retrieved
events initialized with an empty set. The doc-
uments [D that are the sources of these events.

e Observed Participants P and Actions A. It
contains observed participants and actions via
retrieving events. They are initialized by par-
ticipants and actions from the question.

After initialization, in each step, we provide cur-
rent ]R, E, and P to the LLM and harvest the re-
sponse K = M(R, E, P) where M represents the
LLM. K would tell that the LLM chooses to an-
swer the question or keep retrieving events. We
show this plan prompt in Appendix A.7 (d). If the
LLM chooses to answer, we call another prompt
to answer the question based on R, E,P and AS.
Prompt is in Appendix A.7 (e).

If the LLM chooses to keep retrieving, we parse
new P and S from K. We ask M consider states
P and A when generating the queries. The LLM
also generates thoughts on why it should conduct

*Either R, P and A can be abcent according to tasks.



Method #D

Brier Score |

GPT-40

Gemini-Pro

ScratchPAD (w.o. RAG) (Halawi et al., 2024) -

25.42 £ 0.09

25.39 £ 0.41

21.22 £0.30 (+4.20)
20.31 £0.48 (+5.11)

22.18 £ 0.39 (+3.21)
20.98 £ 0.06 (+4.41)

20.02 £ 0.26 (+5.40)
19.79 £ 0.52 (+5.63)

21.76 £ 0.24 (+3.60)
21.06 + 0.03 (+4.33)

20.59 £ 0.26 (+4.83)

20.87 £ 0.21 (+4.51)

Text-Based RAG
. 10.00
Naive RAG 20.00
. 10.00
APP (Halawi et al., 2024) 20.00
HyDE (Gao et al., 2023) 20.00
RankLlama (Ma et al., 2024) 20.00

20.20 = 1.44 (+5.22)

22.73 £ 0.08 (+2.66)

Structure-Based RAG

20.00
22.36

HippoRAG (Gutiérrez et al., 2024)
EventRAG (Ours)

20.94 £+ 0.28 (+4.48)
18.48 £ 0.57 (+6.94)

22.82 £ 0.13 (+2.56)
20.10 + 0.39 (+5.29)

Table 1: Main results. # D is the average number of retrieval documents. Brier score is the lower the better. Bold
stands for the best performance. Increments are compared w.o. RAG. We report mean and std values on twice runs.

this retrieval in the current step based on all the
information. Then it retrieves events as Eq.2. After
that, we update E by the retrieved events. The par-
ticipants and actions of the newly retrieved events
are used to update PP and A. To avoid infinite steps,
we set up a maximum step [. If the process step
reaches [, we force the LLM to respond with the
same answering prompt.

4 [Experiments

This section comprehensively evaluates the pro-
posed EventRAG through systematic experiments
and analyses. We begin by introducing the dataset
in Section §4.1and baselines in Section §4.2. The
core findings are presented in Section §4.3, where
we benchmark our approach against state-of-the-
art baselines across multiple metrics. To quantify
the contribution of individual components, Sec-
tion §4.4 conducts ablation studies on key architec-
tural choices. Finally, Section §4.5 provides mul-
tifaceted discussions: (1) a Regularization Study
analyzing optimization stability, (2) a Maximum
Step Study exploring effects on maximum agen-
tic reasoning steps. We show then Details Im-
plementation specifics, including hyperparameter
configurations and training protocols, ensuring re-
producibility in Appendix A.2. We examine the
structural statistics of event hypergraphs index in
Appendix §A.3 to establish foundational insights
into hypergraph properties. We also analysis the
cost consumption in Appendix A.6.

4.1 Dataset

We use PROPHET as the test dataset*. This is a real-
world future forecasting dataset. It consists of 99

*https://github.com/TZWwww/PROPHET

binary classification forecasting questions mainly
in 2024 such as “Will Tim Walz win the VP de-
bate against J.D. Vance?”. Each question is paired
with 100 news articles as knowledge base. This
dataset is validated by a supportiveness estimation
to ensure its inferablity. The evaluation metric of

PROPHET is the Brier Score (Brier, 1950):
N

) 1 S
Brier Score = N ;(yn ~W)% (D

where ) € {0, 1} is the ground true indicating the
queried event happened or not. ) is the predicted
probability of the model.

4.2 Baselines

We compare our method to ScrathPAD which is the
zero-shot ScrathPAD prompting method without
RAG. The RAG baselines are Naive RAG, APP (Ha-
lawi et al., 2024), Rankllama (Ma et al., 2024),
HyDE (Gao et al., 2023). To ensure comparability,
we uniformly use this prompt for reasoning. We
show this prompt in the Appendix A.7 (f). We leave
the details of the baselines in the Appendix A.S.
4.3 Main Results

We compare EventRAG to the competitive baselines
and show the results in Table 1. EventRAG presents
the comparative performance against these base-
lines on the future forecasting task, measured by
the Brier Score (lower is better). Our method
performs best among all methods, demonstrating
its superior accuracy in predicting future events.
Specifically, EventRAG outperforms the strongest
text-based RAG baseline (APP) by 1.31 points
under GPT-40 and 2.68 points under Gemini-
Pro, and surpasses the best structure-based base-



Method Brier Score | #D
EventRAG 18.48 +0.41 22.36
w.o. EC 19.64 + 1.32 (-1.16) 26.82
w.o. SS 20.60 4+ 0.28 (-2.12) 16.48
w.o. AR 19.64 + 0.21 (-1.16) 17.26

Table 2: Ablation study. # D stands for the average
number of retrieval documents. EC stands for Maximum
Expected Event Cover. AR is event-oriented agentic
reasoning. SS is supportive score of the event.

line (HippoRAG) by 2.46 and 2.72 points, respec-
tively. These results validate the effectiveness of
EventRAG and its motivation of event-centric RAG.
Compared with text-based RAG, methods like
Naive RAG and HyDE show moderate improve-
ments over direct prompting but plateau due to their
reliance on surface-level semantics. RankLlama,
despite its instruction-aware retrieval, underper-
forms EventRAG, emphasizing the need for event-
aware structuring. In the structure-based RAG,
HippoRAG’s knowledge graph approach improves
over text-based methods but remains inferior to
EventRAG, as entity-centric graphs fail to encode
multi-participant events or latent dependencies.
EventRAG’s consistent superiority across both
GPT-40 and Gemini-Pro underscores its model-
agnostic design. The framework’s reliance on
event hypergraph index and probabilistic support-
ive event retrieval reduces dependency on the gen-
erative capabilities of LLMs, making it versatile
for different backbone models.
4.4 Ablation Experiments

To further investigate the contributions of differ-
ent components in EventRAG, we conducted abla-
tion studies by selectively removing key modules
from the full model. The results are summarized
in Table 2. w.o. EC stands for ablating Maximum
Expected Event Cover where we directly retrieve
events covering the queried entities and actions
from the event hypergraph. w.o. SS doesn’t lever-
age the supportive score of the event where we
uniformly treat all events to the same score. w.o.
AR is without event-oriented agentic reasoning in
which we solve the task in a one-step Maximum
Expected Event Cover program retrieval.

The removal of the Maximum Expected Event
Cover (w.o. EC) led to a significant degradation in
performance, with the Brier Score increasing by
1.16 points(from 18.48 to 19.64). This indicates
that the event cover program is crucial for selecting
the most relevant events for reasoning. Disabling
the Supportive Score (w.0. SS) of events led to

. 65.6670
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(a) Regularization Study (b) Maximum Step Study
Figure 3: Regularization study and maximum step study.

a more substantial drop in performance, with the
Brier Score increasing by 2.12 points (from 18.48
to 20.60). This suggests that the probabilistic scor-
ing of events is critical for evaluating their support-
ive and utility in answering the question. Similarly,
removing the Event-Oriented Agentic Reasoning
(w.0. AR) process also resulted in a 1.16-point in-
crease in Brier Score (from 18.48 to 19.64). This
highlights the importance of the iterative reason-
ing process in refining the answer through multiple
steps of retrieval and reasoning.

In all, the combined effect of all these compo-
nents is evident in the superior performance of
the full EventRAG model compared to its ablations.
The results demonstrate that the integration of all
modules is essential for achieving robust and accu-
rate performances in future forecasting.

4.5 Discussions

Regularization Study The regularization param-
eter o governs the balance between event coverage
and retrieval specificity in the Maximum Expected
Event Cover program. As shown in Figure 3 (a), in-
creasing « initially increase the number of retrieved
events by prioritizing structurally coherent path-
ways, leading to improved Brier Scores (optimal at
a = 120). Beyond this point, overly relax regular-
ization causes performance degradation. Large «
would incurs noisy information for retrieval. This
demonstrates that moderate regularization ensures
a synergistic balance between event supportiveness
and structural relevance, countering noise while
preserving forecasting utilities.

Maximum Step Study The maximum reason-
ing step [ in the agentic process directly impacts
reasoning depth. Figure 3 (b) reveals that increas-
ing [ from 1 to 5 progressively improves perfor-
mances, as iterative retrieval enables the system
to resolve ambiguities and incorporate supportive
events. However, performance plateaus beyond [ =
5, suggesting diminishing returns from additional
steps. Notably, excessive steps (I > 5) marginally
degrade results due to noise accumulation or re-
dundant retrievals. These findings highlight the
effectiveness of multi-step agentic reasoning. It



Method Brier Score |
1P (6) 18.48 +£ 0.41
1P (8) 19.63 + 0.99

Table 3: Diversity inspectation of program Eq.(6).

also shows the necessity of setting [ to balance
thoroughness and efficiency, with [ = 5 achieving
optimal trade-offs in our experiments.

Event Diversity The retrieved events are desired
to be diversified leading to more supportive infor-
mation. In this part, we further inspect retrieved
event diversity by IP (6). We add additional the
following constraints to adapt it into a new IP:

Sy <3 eV (8)
ecEvce
These constraints restrict the number of nodes from
the same event should not exceed 3. And rerun the
experiments. The results are in Table 3. We find the
performances drops indicating the sufficient event
diversity of our method.

5 Related Work
5.1 Retrieval-Augmented Generation (RAG)

Text-based methods focus on retrieving knowledge
through textual signals, prioritizing similarity. Re-
cent advancements include query refinement (Gao
et al., 2023), self-reflection mechanisms in SELF-
RAG (Asai et al., 2024), and iterative error correc-
tion in Corrective RAG (Liu et al., 2024). However,
these methods often overlook structural or interac-
tive aspects of knowledge organization.
Structure-based approaches address this by lever-
aging hierarchical or graph-based structures. RAP-
TOR (Sarthi et al., 2024) introduces recursive
abstraction for tree-structured retrieval, enhanc-
ing multi-scale document representation. Graph-
based methods, such as query-focused summariza-
tion (Edge et al., 2024) and HippoRAG (Teyler
et al., 2024) integrates graph traversals to capture
global context and long-term dependencies (Procko
and Ochoa, 2024).
Agentic RAG integrates autonomous agents to or-
chestrate retrieval and generation. AMOR (Guan
et al., 2024a) employs modular knowledge agents
trained via process feedback, while GEAR (Shen
et al., 2024) combines graph reasoning with agentic
decision-making. Agent-G (Lee et al.) proposes
a unified framework with an agent, retriever bank,
and critic module, solving questions using hybrid
knowledge sources.

Among these advanced RAG methods, we are

the first to propose event-oriented RAG systems
for complex knowledge-grounded event reasoning
such as future forecasting.

5.2 Event Graph

As a event-centric knowledge base, event graph is
constructed for storing abstract-level (Zhang et al.,
2020) or instance-level (Gottschalk and Demidova,
2018) events and their relations. It can be used
for future forecasting (Li et al.) or causality track-
ing (Tao et al., 2023). Although similar as previous
event graph methods that are knowledge bases, our
method firstly construct event hypergraph running
as index for retrieval.

5.3 Future Forecasting

Forecasting on Event Graphs A foundational ap-
proach involves modeling event relations to pre-
dict downstream consequences. Zhan et al. (2024)
leverage event causality graphs to simulate chains
of cause-effect relationships, enabling structured
reasoning about future scenarios. Similarly, Tao
et al. (2024) enhance prediction by event schema
graph guidance. These methods construct the event
graph as knowledge to improve prediction.
Forecasting by LLLMs Methods forecast future
events by retrieving external information such as
news, then reasoning the answer (Halawi et al.,
2024; Guan et al., 2024b). Ye et al. (2024) establish
a multi-agent framework where each agent has its
role in utility of forecasting. Wang et al. (2024)
introduce the future time series prediction driven
by LLMs assisted by external information.
Compared with these methods, we propose
an event-oriented RAG framework which can be
plugged in other form of future forecasting system.

6 Conclusion

We introduced EventRAG, an event-oriented RAG
framework tailored for future forecasting. By
constructing an event hypergraph index and em-
ploying the Maximum Expected Event Cover Pro-
gram, EventRAG effectively retrieves supportive
events that are crucial for answering. Addition-
ally, EventRAG integrates retrieval and reasoning
through a multi-step, event-oriented agentic rea-
soning process, enabling adaptive knowledge ac-
quisition and robust reasoning. Our experiments
demonstrate significant improvements over state-
of-the-art RAG baselines, highlighting the effec-
tiveness of our method and the necessity of devel-
oping event-oriented RAG systems.



Limitations

In this work, we use close-source LLMs for rea-
soning and agentic operations. However, training
LLMs on this would further benefit this process.
We leave it to future work.

Ethics Statement

Research-Only Purpose Our algorithm is strictly
designed for academic and research purposes. Any
commercial exploitation, malicious intent (includ-
ing but not limited to defamation, harassment, or
discriminatory practices), or misuse beyond its in-
tended scope is explicitly prohibited. Data Ac-
countability Disclaimer The creators of this algo-
rithm bear no responsibility for any financial, unau-
thorized, unethical, or harmful application of the al-
gorithm. Prohibition of Harmful Outcomes Any
deployment of this algorithm that leads to financial,
physical, psychological, or socio-economic harm
is categorically condemned. Users are urged to
implement safeguards against such risks.
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A Appendix

A.1 Proof of Theorem 1

We show the proof of Theorem 1 as the following:

Proof. Consider a single sample s = {s. | e €
E} of all X (e), where e € E. Let E, be the set
that maximizes f™ under this sample. Recall that
sol* = {z} |ve V}U{y! | e € E} is an optimal
solution of IP (6), and E = {e | 3* = 1}. Fora
feasible solution sol = {a} | v € V}U{y. | e €
E}, denote g(sol) as the objective value of sol in
IP (6).

For v € V, let 25 = 1 if there exists an event
in I~ES covering x,,, otherwise, let z; = 0. Simi-
larly, lety; = 1ife € E,, otherwise, let ys = 0.
Notably, sols = {z; |v € V}U{y | e € E} is
a feasible solution of IP (6). Since sols and sol*
are a feasible and an optimal solution of IP (6),

respectively, it follows that g(sols) — g(sol*) < 0.
Furthermore, we have
flEs _ f]E
=% glsol) = (fF = glsol) o
+ g(sols) — g(sol™)

<[5 = g(sols) — (fF — g(sol*))
In this sample by the definition of f¥, we have

fB= 2 ZyeseJrZC x—*ZIdye

eGE veV eckE
Thus, it deduces that
75+ — g(sol,) 52% () (10)
eck
Simila.rly, we have
1% = g(sol*) Zye ~Ple)) (D)
B ecE
Then by Equations (9)-(11), we have
ffEs - fIE
<f% — g(soly) = (f* = g(sol))
(12)

Bzye_ye

—P(e))
ecE

Since 0 < P(e) < 1 and y2,y,se € {0,1}, it
follows that (y5 — y})(se — P(e)) < se — (28e —
1)77( ). Thus by Eqaution (12), we have

fo - fE < ﬁz se — (25 — 1)P(e)) (13)

eclE
By Equation (13), and by enumerating all samples

on random variables X (e) where e € E, it follows
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A.2 Implementation Details

Event Hypergraph In Event Hypergraph Index-
ing, we use gpt-40-mini-2024-07-18 for Entity
Extraction, Event Extraction, and Event Typing.
We use networkx> toolkit for hypergraph implemen-
tation. Since networkx doesn’t have hypergraph
operation, we use DiGraph to implement hyper-
graph. In our implementation, the event hyperedge
is a node in the DiGraph, and its participant nodes
and action nodes connect to it.

Event-Oriented Agentic Reasoning We use
LangGraph® framework to implement the event-
oriented agentic reasoning. We wrap the support-
ive events retrieval as a tool in LangGraph, and
use the function call module of LLMs to call this
tool. We show the tool implementation in Figure 5.
When do entity linking on the hypergraph, we find
two most similar nodes of each query participant
or action. We use all-MiniLM-L6-v2 model in
similarity computing.

In maximum expected event cover retrieval,
we set regularization parameter o 80, and
supportive encouraging parameter 3 200 in
Eq. 6. In event-oriented agentic reasoning, we
set the maximum step [ = 5. All experiments
in this work are under twice runs. We report
the mean and std values. The version for GPT-
40 is gpt-40-2024-08-06 while Gemini-Pro is
gemini-1.5-pro-latest.

A.3 Event Hypergraph Statistics

The statistical profile of event hypergraphs, in Ta-
ble 4, reveals three key structural properties. First,
the average of 1.98 participants a per event e in-
dicates frequent multi-nodes interactions. Second,
the moderate action .A multiplicity (1.33 a/e).
Notably, the scale statistics demonstrate signifi-
cant complexity: each question Q contains 461.30
events (e/Q) implying high-frequency of event pat-
terns. The participant-event ratio (324.42 p/Q vs.
2.82 elp) further reveals asymmetric role distribu-
tions: while most participants engage in 2-3 events,

Shttps://networkx.org/
®https://www.langchain.com/langgraph



Event e Participant p Actiona
ple ale el Q elp plQ ela alQ
1.98 133 46130 2.82 32442 129 476.52

Table 4: Statistics of event hypergraph. e, p, a, Q
stand for event, event participant, event action, and the
question. We report the average numbers.

a minority serve as hubs across dozens of interac-
tions. These characteristics collectively justify our
EventRAG’s capacity for indexing events.

A.4 Personal Page Rank

The Personal PageRank (PPR) algorithm is imple-
mented as follows to acquire the relevance scores
C(v) of each node v on the hypergraph #.

Let M be the transition probability matrix of the
hypergraph ‘H. For a hypergraph with n nodes, M
is an n x n matrix, where the element M;; repre-
sents the probability of transitioning from node ¢
to node j.

We start by initializing the relevance scores of
all nodes. Let C(9)(v) be the initial relevance score
of node v. We set C(¥) (v) based on the initial as-
signment of relevance score Cy for all nodes v on
H. That is, (9 (v) = Cy(v).

The PPR algorithm then iteratively updates the
relevance scores. In the ¢/ iteration, the relevance
score of node v, C™*) (v), is calculated as follows:

COw)=1-a) > MuCV(u)
u€ln(v)
+aC® (v)

where In(v) is the set of in-neighbors of node
v, « is a teleportation probability (a scalar value
between 0 and 1, we set & = 0.15). The first
term (1—a) 3= cmn(v) M,,,C*~1) () represents the
contribution from the in-neighbors of node v, and
the second term aC(?)(v) is the teleportation term,
which helps to prevent the algorithm from getting
trapped in cycles.

We repeat this iterative process until the change
in the relevance scores between two consecutive
iterations is below a certain threshold ¢ = 176,
That is, we stop when

1D (w) = D ()| < e

veV
where V is the set of all nodes in the hypergraph

‘H. At the end of the iteration process, the final
relevance score of each node v is C(v) = C)(v),
which will be used in the maximum expected event
cover program for event retrieval.

(14)

15)
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Participant

Extraction
94.47 (25%)

Figure 4: Cost analysis. The amount of token consumed
per unit of data, measured in thousands.

A.5 Baselines

ScrathPAD: This is the zero-shot ScrathPAD
prompting method without RAG. We adopt the
scratchpad prompt introduced by Halawi et al.
(2024). For other RAG methods, to ensure com-
parability, we uniformly use this prompt for rea-
soning. We show this prompt in the Appendix A.7
®.

Naive RAG: Given the length of news articles, we
perform summarization of these articles in advance.
The RAG method then retrieves relevant news ar-
ticles by calculating the embedding similarity be-
tween the question and the news summaries. For
this purpose, we employ all-MiniLM-L6-v2 mod-
els in SentenceTransformer’. After retrieving the
news, we utilize the scratchpad prompt for reason-
ing.

APP: This method, introduced by Halawi et al.
(2024), is specifically text-based RAG designed
for future forecasting. It also begins with summa-
rizing the news articles. Subsequently, it uses an
LLM to compute the relevance score. Following
this, it too makes use of the scratchpad prompt for
the reasoning process.

Rankllama: Rankllama is a retrieval method ca-
pable of understanding complex retrieval instruc-
tions (Ma et al., 2024). It encodes both the question
and the news articles (using summaries of the news)
with the model. After the retrieval step, it provides
answers in the format of the scratchpad prompt.
HyDE: For a given query, this method leverages an
instruction - following language model (such as In-
structGPT) to generate a "hypothetical document"
that captures relevance patterns (Gao et al., 2023).
This is a query refinement method. In the event
prediction scenario, we generate potential future
events that could influence the answer. Then, rele-

"https://sbert.net



f class FindEventsByEntitiesAndActionsInput(BaseModel):
: entities: list[str] = Field(description=“Names of the
! input named entities rather than date or time. It
I must be directly a list of string of entities.
| They can not be dates or time. Eg. [‘A’, ‘B’,
1 ICI]."

1 ’

! required = True)

i actions: list[str] = Field(description=“Names of the
: input actions. It must be directly a list of
! string of actions. Eg. [‘A’, ‘B’, ‘C’'].”,
| required = True)

:

1

1

1

1

1

1

1

1

1

1

1

1

1

1

tool = StructuredTool.from_function(

Func = _find_events_by_paricipants_and_actions,
Name = "FindEventsByEntitiesAndActions",
Description = "Find events of a certain event type on

the graph which are simultaneously related to the
input named entities and actions.",
args_schema = FindEventsByEntitiesAndActionsInput,)

Figure 5: Core code for retrieval tool and its inputs.

vant news articles are retrieved.

HippoRAG: This is a representative graphrag frame-
work inspired by the human brain’s long-term mem-
ory system. It enhances large language models
(LLMs) by enabling efficient multi-hop reason-
ing and knowledge integration from external docu-
ments, using a knowledge graph and personalized
PageRank algorithm (Gutiérrez et al., 2024).

A.6 Cost Analysis

We analyze the cost consumption of our method. In
the process of hypergraph construction, the token
consumption are mainly in four steps: participant
extraction, event extraction, relevance score, and
summarization. We show the consumption in Fig-
ure 4. Th total consumption of a data is 337,760
tokens. We use gpt-40-mini-2024-07-18 model,
that only cost 0.2266 $.

A.7 Prompts
We show all prompts (a-f) as the following.
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(a) Named Entity Extraction

Your task is to extract named entities from the given paragraph. Don’t extract date, time. Respond with a list
of entities.

Document: D

Output:

(b) Event Extraction

Your task is to extract all events about the given named entities from the given passages. Each event contains
at least one participant and one action. Also, summarize the event.

Pay attention to the following requirements:

- Each event is in the JSON format as ["participants": ["", "", "", ...], "action":
"text": "', ..].

Document: D

Named Entities: P

Output:

nn nn nn
)

, "time": "", "location":

(c) Supportive Probability

Please consider the following forecasting question and its background information. After that, I will give you a
news article and ask you to rate its relevance with respect to the forecasting question.

### Question: Q

### Question Background: background

### Resolution Criteria: resolution criteria

### Article: D

Please rate the relevance of the article to the question, at the scale of 1-6

1 — irrelevant

2 — slightly relevant

3 — somewhat relevant

4 — relevant

5 — highly relevant

6 — most relevant

Guidelines:

- If the article has events of similar types which may happened on different subjects, it also consider relevant
to the question.

- You don’t need to access any external sources. Just consider the information provided.

- If the text content is an error message about JavaScript, paywall, cookies or other technical issues, output a
score of 1.

Rating:

(d) Agentic Plan

Your task is to answer the question about reasoning and predicting a future event in several turns via operation
on an event graph. You need to answer the question step by step. In each step, you can answer the question
or retrieve more events from a pre-built event graph via calling tools. Previous Memory records summarization
of all previous retrieved information and thoughts. Observed Entities and Observed actions store named entities
and actions you already retrieved. You must take next step by considering Previous Memory, Observed Entities,
and Observed Actions. Answer the question know when you think the information is enough for reasoning the
answer. You must generate the thought of calling the tools. You can only use observed entities and actions
as arguments of the tool call. Previous Tool Calls records previous tool calling you have made. Don’t make
duplicated tool call with the same arguments that have been made before. Don’t mention in the output words.
### Question: Q

### Question Background: background

### Previous Memory (could be empty): R

### ALL Observed Entities (could be empty): P

### ALL Observed Actions (could be empty): A

### Previous Tool Calls: tool calls

### Your Thought:
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### Question: Q

### Question Background: background

### Resolution Criteria: resolution criteria

I have observed events related to the question.

### Observed Events: E

Instructions:

Your goal is to aggregate the information and make a final prediction.

1. Provide at least 3 reasons why the answer might be no: {Insert your thoughts}

2. Provide at least 3 reasons why the answer might be yes: {Insert your thoughts}

3. Rate the strength of each of the reasons given in the last two responses: { Insert your rating of the strength
of each reason }

4. Aggregate your considerations: {Insert your aggregated considerations}

5. Output your answer (a number between 0 and 1) with an asterisk at the beginning and end of the decimal:
{Insert your answer}

(f) ScratchPAD

Question: Q

### Question Background: background

### Resolution Criteria: resolution criteria

We have retrieved the following information for this question: retrieved articles

Instructions:

1. Provide at least 3 reasons why the answer might be no: { Insert your thoughts }

2. Provide at least 3 reasons why the answer might be yes: { Insert your thoughts }

3. Rate the strength of each of the reasons given in the last two responses: { Insert your rating of the strength
of each reason }

4. Aggregate your considerations: { Insert your aggregated considerations }

5. Output your answer (a number between 0 and 1) with an asterisk at the beginning and end of the decimal:
{ Insert your answer }
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