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Abstract

Task vectors offer a compelling mechanism for accelerating inference in in-context
learning (ICL) by distilling task-specific information into a single, reusable rep-
resentation. Despite their empirical success, the underlying principles governing
their emergence and functionality remain unclear. This work proposes the Linear
Combination Conjecture, positing that task vectors act as single in-context demon-
strations formed through linear combinations of the original ones. We provide
both theoretical and empirical support for this conjecture. First, we show that task
vectors naturally emerge in linear transformers trained on triplet-formatted prompts
through loss landscape analysis. Next, we predict the failure of task vectors on
representing high-rank mappings and confirm this on practical LLMs. Our findings
are further validated through saliency analyses and parameter visualization, sug-
gesting an enhancement of task vectors by injecting multiple ones into few-shot
prompts. Together, our results advance the understanding of task vectors and shed
light on the mechanisms underlying ICL in transformer-based models.

1 Introduction

In-context learning (ICL) is a core capability of large language models (LLMs), allowing them to
perform new tasks without parameter updates by conditioning on a few input-output examples in
the prompt [2]. Unlike traditional training, ICL relies on attention-based mechanisms to infer task
structure directly from context. This surprising generalization ability has led to growing interest in
uncovering the principles of learning purely from contextual examples [21} 3} 14 [15] 5]

A recent work investigates the task vector method [7] (concurrent works include function vectors
[L6] and in-context vectors [13]), a technique that distills underlying task information from ICL
demonstrations into a single vector. Typically, ICL prompts are structured as sequences of triplets,
each encoding a semantic mapping, in addition to a query at the end (e.g., “hot — cold, up — down,
day — night, dark —”). Task vectors are then extracted from the hidden states of the last (—) token.
Once obtained, these vectors can be injected into the same position in new prompts (e.g., “big — ),
enabling the model to generalize to unseen inputs in a zero-shot fashion.

Task vectors have been shown to naturally emerge even in small transformer models trained from
scratch on synthetic data [24], suggesting that their formation is a general property of attention-based
architectures. Recent studies further demonstrate that task vectors can be enhanced by aggregating
hidden states across multiple layers and multiple arrow tokens [12]. Beyond language models, task
vectors are also found effective in large-scale visual [8]] and multi-modal [9] models.

Despite their empirical effectiveness, the underlying mechanism of task vectors, especially how they
emerge, function, and encode task information, remains poorly understood. This paper takes a step
toward unveiling the principles behind it by introducing the following conjecture:
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Figure 1: Overview of task vector and our main conjecture. (a) Task vector emerges during ICL as a
linear combination of preceding in-context demonstrations. (b) It can then be injected into zero-shot
prompts and functions as a single, representative demonstration, facilitating efficient prediction.

Linear Combination Conjecture

The injected task vector functions as a single in-context demonstration,
formed through a linear combination of the original demonstrations (hidden states).

Figure[T|provides an intuitive illustration for our conjecture. In the following sections, we validate this
conjecture through various empirical and theoretical perspectives. These analyses comprehensively
explain how task vectors naturally emerge within attention-based model architectures, effectively
encode task-related information, and facilitate inference in zero-shot prompts. Our work advances the
understanding of the underlying mechanisms behind ICL, clarifying both the efficacy and limitations
of task vectors in transformer-based LLMs. The highlights of this paper are as follows:

* Theoretical Justification in Linear Transformers: We theoretically characterize the critical
points of linear-attention transformers and demonstrate how they solve random linear regression
tasks through embedding concatenation and gradient descent. With a triplet-formatted input
prompt structure, task vectors naturally emerge at arrow tokens as linear combinations of the
in-context demonstrations. These vectors serve as redundancy against information loss induced by
dropout, thereby improving robustness. Empirically, the learned linear model parameters closely
align with the predicted structure and successfully replicate the task vector mechanism.

* Empirical Verification in Practical LLMs: We visualize the information flow in LLMs with
saliency analysis and observe patterns consistent with linear models, suggesting they share similar
underlying mechanisms. According to our conjecture, inference with task vectors is analogous to
1-shot ICL, which is inherently limited to rank-one meta-predictors under the gradient descent
perspective. To validate this, we introduce a series of bijection tasks that are provably unsolvable
by rank-one predictors, and empirically confirm this failure in real-world transformers. Building
on these insights, we enhance the standard task vector method by injecting multiple vectors into
few-shot prompts, resulting in consistent performance gains across a range of ICL tasks.

2 Setting: Random Linear Regression with Linear-Attention Transformers

Notations: We write [n] = {1,--- ,n}. The Hadamard product is denoted by o, and the Kronecker
product by ®. The identity matrix of dimension n is denoted by I,,, while 0,, and 0, »», represent zero
vectors or matrices of the corresponding dimensions. Subscripts are omitted when the dimensions are
clear from context. We define M(M) = {A € RAim(M) | A=MoA Ac Rdim(M)} as the set of
masked matrices induced by the binary mask M. For a general matrix A, the element at the i-th row
and j-th column is denoted by A; ;, and the sub-block from rows ¢ to & and columns j to [ is denoted
by A ju. diag(Aq, - - -, A,) represents the block-diagonal matrix constructed by {A;}7 ;.

Random Linear Regression: Following the settings in literature [6}[17, [1} 20]], we consider training
linear transformers on random instances of linear regression. Let {x; }7 !, where x; € R?, denote
covariates drawn i.i.d. from distribution P,, and let {w; }¢_,, where w; € RY, denote coefficients
drawn i.i.d. from distribution P,,. Define the coefficient matrix as W = [wy -+ wq] T € RIX9,
The responses are then generated as y; = Waz; fori € [n + 1]. We denote by X,V € R¥*" the
matrices whose columns are z; and y;, respectively, for ¢ € [n]. The query covariate and response are
denoted by Zyest = Tp41 and Yeest = Yn+1 respectively.
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Linear Self-Attention Transformer: Following prior works [[17, [1,[20], we consider transformers
composed of linear self-attention layers. Let Z, € R?¢X9» denote the input matrix constructed from
X, Y and iy, but excluding ycst, Where d,, denotes the number of tokens. The transformer is
defined by stacking L attention blocks with skip connections, where the /-th layer is expressed as:

Zy=Z_1 + L Attny, 0, (Z1-1), Attny,q(2) =VZM(Z'QZ). (D)

Here, the trainable parameters are {V}, Q;}/,, where V; € R24%2d represents a reparameterization

of the projection and value matrices, and @; € R2?*24 denotes the query and key matrices. Following
the work [1], we adopt a masking matrix M = diag([dp,l, 0) to prevent attention from earlier tokens
to the final one. The output of the transformer is defined as TF(Zo; {V;, Qi}~,) = (Z1) (a+1:24) 4,
(i.e., the latter half of the last column). This definition aligns with the structure of the input Z;, which
will be further discussed in subsequent sections. During training, the parameters are optimized to
minimize the expected ICL risk over random linear regression instances:

LOUVLQYEL) = Ezow | TF(Zo3 {Vi, QY y) + Wetiest |- )

3 Emergence of Task Vectors in Linear-Attention Transformers

Firstly, we present theoretical evidence indicating that task vectors naturally arise even in simple
linear transformers. Specifically, we analyze the loss landscape of the in-context risk, focusing on the
properties of its critical points. As a startup, recall the standard linear regression setup [1,20], where
the (z;, y;) pairs for each demonstration are concatenated to form the input prompt:

X Ttest Ty T2 - Tp  Ttest 2dx (n+1)
T = = R . 3
0 {Y 0] Lh v oy 0 ]S ©
According to existing analyses [[1,[25} 14], each attention layer in this setting performs one step of
gradient descent on the coefficient matrix W. Specifically, the theoretically optimal single-layer (pos-
sibly nonlinear) attention [10] implements the following predictive function [1]] when the covariates
are drawn from P, = N(0, 1), by selecting V; o< diag(0gxq, I4) and Q1 o diag(lg, 0gxa):

TF(Zo; (V1,@1)) = =LY 0(X) "0 (4est), where o : R? 5 R” is a kernel function.  (4)

Here, we abbreviate [0(z1) -+ o(z,)] as o(X). Equation (4) employs W’ o< Yo(X)T as an
estimate of coefficient matrix W, yielding prediction gest = W/ (x4est ). In this paper, we consider
alternative settings more reflective of practical scenarios, where x; and y; are separated as distinct
tokens. As noted [26]], such separation necessitates the usage of position encodings for bi-directional
attention. Following prior analysis [L1], we assume that position encodings are appended to the input
tokens, and reformulate the layer-wise update rule of self-attention as:

VA

Attny,q(Z2) =VZM [ZT PT]Q [ P

] ., where P € R%*d, 5)
For analytical tractability, we take P> = I, as one-hot position encodings. Inspired by the parameter
structure in [1]] and eq. @), we further impose the following constraints on the trainable parameters:

V; = diag(A;, By), Q; = diag(Cy,04x4,D;), where A, B;,C; € R4 D; € R%»>d - (6)

These parameterizations ensure that the projection and attention operations act independently on the
covariate, response, and positional components of the input. This structural decoupling is essential for
understanding how the transformer identifies the dependency between each (z;, y;) pair and revealing
the actual optimization algorithm being executed by the model. The proofs for the main theoretical
results in this paper are available in Appendix [B]

3.1 Warm-up: Learning with Pairwise Demonstrations

We begin by analyzing the optimization of linear transformers on pairwise demonstrations. Following
previous approach [6, [19, [22], we decompose each demonstration in eq. (3) into a pair of tokens
Zy = H{ 12- ] € R24%2 o better reflect the practical ICL prompt structure:

n es z 0 o T 0 Ltes 0 l n
Zo=1[25 - Zy Zgt] = 01 vioc- 0 yn t()t 0 € REIxCnt2) (7
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Figure 2: Visualization of learned D; weights. (a) Pairwise demonstrations yield a block-diagonal
structure aligned with Theorem [T} (b) Triplet demonstrations yield a richer structure aligned with
Theorem (¢) The learned matrix A4 has nearly orthonormal rows as suggested by Proposition

The following theorem suggests that certain critical points of the in-context risk effectively solve
the regression problem by first concatenating each pair of (x;,y;) into the same tokens, and then
executing a variant of the gradient descent algorithm to compute the prediction. To simplify notation,
we denote A = {Al}lL:1 (similarly for B, C, and D) and present:

Theorem 1 (Critical Points; Pairwise Demonstrations). Assume P, = N'(0,%), P, = N(0,571)
with some ¥ € R? satisfying ¥ > 0. Define Sy, Sy, C R*? and Sp € R%*% as

Sr={Mg|AeR}, Ss={A2"'|XeR}, Sp={diag(l, ® A1,As) | A, Ay € R¥*?}.

Consider optimizing an L-layer linear transformer with pairwise demonstrations and parameter
configuration given in eq. (0)), we then have

infy pesr, cesk, pesk ZHeAuBucuD HVH'C({Vlv Ql}lel) Hi =0

To understand the behavior of these critical points within a self-attention layer, we fix ¥ = I; and
take A;, By = I3, C; = —\Iy, and D; = diag(I, ® A1, As). Let the first and last d rows of Z; be
denoted by X, and Y}, respectively. Under these settings, the update rule of each layer becomes:

Zi =211 — N2 MX L X+ [Z0 A - ZP Ay Zie diag(1,0)A] . (8)
The above update can be decomposed into the following two distinct components:

¢ Gradient Descent: The first component, Z; < Z;_1 — A\Z;_1MX le 1X1—1, implements the
GD++ algorithm [17]]. This variant enhances convergence speed over standard gradient descent by
improving the condition number of the Gram matrix X lt 1X1—1. Notably, this operation modifies
only X; but not Y; for the first layer, as implied by the structure of Q; (eq. (6)).

+ Embedding Concatenation: The second component, Z} < Z} ; + Z} ;A fori € [n], mixes
each pair of (x;,y;) tokens. Given that z; and y; tokens are initially linearly separable as in
our formulation, this operation concatenates each (x;,y;) pair, thereby transforming pairwise
demonstrations into the original single-token format. For the query token Z[***, this operation
copies Zest into the final token, reconstructing the structure in eq. (E]) where each non-final token
directly concatenates (x;, y;) of a demonstration, and the final token contains only Ztest.

In summary, our analysis reveals that for pairwise demonstrations, the first attention layer leverages
position encodings to distinguish between covariate and response tokens, subsequently concatenating
them to form a single-token prompt structure. The remaining layers then apply the GD++ algorithm,
mirroring the learning dynamics on single-token demonstrations. As a result, an L-layer linear
transformer allocates one layer for embedding concatenation and utilizes the remaining . — 1
layers to perform gradient descent. In Figure[2al we visualize the learned D; weights under the
setting of Theorem [I} and observe that they closely match the critical point structure of Sp.

3.2 Emergence of Task Vectors with Triplet Demonstrations

Next, to better reflect the prompt structure of practical ICL, we insert additional zero tokens between
each pair of (x;,y;) to simulate the arrow (—) tokens. This reformulates each demonstration as a
triplet (x;, —, y;), enabling us to analyze the critical points with these triplet demonstrations:

_Jz1 0 0 -z 0 0 @yt O O (2d) x (3n+3)
Z20=10 0 4y - 0 0wy, 0 0 o0FER : ®)
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Theorem 2 (Critical Points; Triplet Demonstrations). Assume P, = N(0,%), P, = N'(0,571)
with some ¥ € R satisfying ¥ > 0. Define S, Sy, C R¥™? and Sp € R%*% g5

Sr={Mg|AeR}, Sy ={AT7'|AeR},
Sp = {diag([n ® A1, As) + It @ Ag + Ay ® As

101 000 010
Ai Mg € M(o 0 0>,A3 € M(o ! 0),/\4 e RHDX(n4D) A e M(o 8 o)}
101 000 010
Consider optimizing an L-layer linear transformer with triplet demonstrations and parameter config-
uration given in eq. (6), we then have

infy pest, cest, pest ZHGAUBUCUD [V L({Vi, Qih) va =0.

To analyze the behavior of each attention layer, we note that the critical points for the matrices A;,
By, and C; remain consistent with Theorem[I] thereby implementing the GD++ algorithm. For the
matrix D;, we decompose its structure into three distinct components:

* Embedding Concatenation: The first component, diag(,, ® A1, As), mixes each pair of (z;, y;)
tokens, effectively concatenating them — analogous to the operation analyzed in the previous
section. This converts all non-arrow tokens into single-token demonstrations.

* Self Magnification: The second component, I,, 11 ® A3, scales the embeddings corresponding to
each arrow (—) token by a fixed constant and adds them back to themselves.

* Task Vector Formation: The third component, A4 ® A5, performs a weighted summation across
all demonstrations in the prompt. This operation is central to the emergence of task vectors. Let
[B1 -+ Bnti1] € R denote the first n rows of A4 (we will soon show that the last row
of A4 converges to zero), the first self-attention layer then outputs n + 1 linear combinations of
the demonstrations as the hidden states for the arrow tokens, expressed as z{, = [Z;);gz] for

i € [n+ 1], where ay, a2 € R are the two non-zero entries of As. These vectors can then be
injected into zero-shot prompts and function as single-token demonstrations.

This mechanism provides strong theoretical evidence for our linear combination conjecture, demon-
strating that task vectors naturally emerge from the optimization dynamics of linear-attention
transformers operating on triplet-formatted prompts. Notably, the structure of Sp closely aligns
with our visualization of D; in Figure [2b] confirming our theoretical analysis. We now further
investigate the structure of the weight matrix A4, and present the following result:

Proposition 3 (Optimal Task Vector Weights). Assume P, P,, = N(0, I). Consider optimizing
a 2-layer linear-attention transformer with triplet demonstrations and parameter configuration given
in eq. (0), and assume Cy = 0. Let

Dy = diag(l, ® Ay, A2) + L1 @ A3 + Ay ® As € Sp
be any minimizer of the in-context risk ﬁ({Vl, Ql}lel), we then have Ay € Sy, where
Sy ={A | AAT = Xdiag(I,,0),\ € R}.

This result suggests that the optimal A, weight matrix satisfies two key properties: (1) the last row
is zero, and (2) the first n rows are mutually orthonormal. These conditions imply that the learned
weight vectors 31, - -, B,41 are likely to be distinct. Therefore, the n + 1 task vectors produce
diverse linear combinations of the demonstrations, thereby enriching the representation within the
input prompt. This implication is verified in Figure While task vectors are typically extracted
from the final arrow (—) token in standard usage, here we consider all arrow tokens as task vectors
as bi-directional attention allows each to aggregate information from the full prompt.

4 Validating the Linear Combination Conjecture on Bijection Tasks

We then present an empirical observation that supports our conjecture. Consider the setting where
task vectors are injected into zero-shot prompts. Based on our prior analysis, the injected task vector
zy 1s formed as a linear combination of the original demonstrations. As a result, we show that the
injected prompt reconstructs the single-token structure in eq. (3)) with only 1 demonstration:

es v 0 es X 0
Zo = [Zrest 2v 0] = |:-73t0 t sz O:| - [%O t Yg 0:| € R24%3, (10)
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Figure 3: Visualization of saliency matrices as bipartite graphs between layer [ (o) and [ + 1 (e),
where edge widths indicate saliency magnitude; and variations in the extracted task vector after
perturbing the ¢-th demonstration (), alongside the predicted weights (—) obtained by optimizing
Proposition@ (a) Each y; token is primarily attending to its corresponding (x;, y;) pair, reflecting
embedding concatenation. (b) The final (—) token attends broadly to all y; tokens, indicating task
vector formation — this occurs just before the optimal injection layer (I = 13). (c¢) The predicted
task vector weights closely match the trend of empirical results, validating our theoretical model.

where the weight vector 3 € R™ comes from the last column of A4 (Theorem [2). After the first layer,
the Ao matrix of Sp moves T st to the last token, reducing the prompt to a single-shot, single-token
demonstration. According to the optimal single-layer transformer (eq. (@), the estimated coefficient
matrix is now W’ = Y 3(X3) T, which is rank-one. Therefore, if our main conjecture holds, task
vectors will be inherently limited in their expressiveness: they can only realize rank-one coefficient
matrices. This implication also naturally extends to multi-layer transformers.

While our analysis is conducted on linear-attention transformers, we demonstrate that similar learning
patterns also emerge within practical LLMs. Specifically, we visualize the layer-wise information
flow between tokens using saliency maps [18], where the saliency score for each attention matrix
is computed as S(A4;) = >, [Ain - 0L/0A; 1|, Ay, denotes the attention matrix of the h-th head
at layer [, and L is the ICL loss (i.e., the cross-entropy loss for predicting yest). As demonstrated
in Figures [3a] and 3B] the saliency maps reveal certain patterns matching the ones of embedding
concatenation and weighted summation. Importantly, the latter occurs immediately before the optimal
task vector injection layer. This suggests that real-world models implement a similar algorithm to
solve ICL tasks and, consequently, inherit the same expressiveness limitation.

To verify this, we construct a specialized class of ICL tasks, named bijection tasks. Specifically, given
a bijective mapping from domain X to codomain )/, one can combine it with its inverse mapping
to form a new task that maps X U ) onto itself. For instance, combining the "to uppercase" task
with its inverse "to lowercase" yields a bijection task that maps each letter to its opposite case, and a
valid ICL prompt takes the form: “a — A, B — b, ¢ — C, D —”. Note that this differs from task
superposition [23]], as each input corresponds to a unique, well-defined output. We then establish a
key limitation of rank-one coefficient matrices in addressing such tasks:

Proposition 4. Let z,y € R? be non-zero vectors. Then the following are equivalent: (1) There
exists a rank-one matrix W € R4 such that y = Wx and x = Wy; (2) x =y or x = —y.

This result highlights that rank-one coefficient matrices cannot solve general bijection tasks, and
are restricted to only the identity mapping (x = y) or the negation mapping (r = —y). We further
verify this implication in real-world LLMs: as summarized in Table[T] both ICL and the task vector
method perform well on the original tasks and their inverses. Nevertheless, for the bijection tasks,
while ICL preserves performance in many cases, the task vector method consistently fails, confusing
examples from the two domains and yielding near-random predictions (50%). For instance, in the "to
uppercase" task, task vectors can predict the correct letter but fail to distinguish between uppercase
and lowercase. The only notable exceptions are the copy task (corresponding to the x = y case in
Proposition d) and the antonym task (corresponding to z = —y).

Together, these findings empirically validate our conjecture: the task vector approach, which is
restricted to rank-one coefficient matrices, cannot solve general bijection tasks. While a variety
of ICL tasks have been explored to assess the capabilities of task vectors [[7, (16} 12], the fundamental
limitation of task vectors in addressing these bijection tasks has not been previously identified.
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Table 1: Comparison of the accuracies of ICL and task vector on bijection tasks (Llama-7B, n = 10).
We use gray text to indicate accuracies lower than 60%.

. . X =Y Yy =X X <)Y

Task Domain X Domain ) Example
IcL Tv ICL TV ICL TV
To Upper {a,---,2z} {A,---,Z} a— A 1.00 091 1.00 099 1.00 055
English French hello — bonjour 0.83 084 082 0.70 054 0.35
Translation English Italian hello — ciao 0.84 0.78 0.82 0.74 0.70 047
English Spanish hello — hola 092 0.88 089 075 0.64 043
Present Gerund go — going 099 095 1.00 097 080 041
Lincuistic Present Past go — went 098 091 099 096 052 033
& Present Past Perfect g0 — gone 0.82 0.82 094 065 055 033
Singular Plural dog — dogs 0.88 0.78 094 089 076 0.51
Copy {a,-+- ,z,A,--- ,Z} A—A - - 1.00  0.98
Antonym Adjectives happy — sad 0.89 0.83 - 0.83 0.73

5 Further Discussions

Inseparable Covariates and Responses. In our main analysis, we assume that x; and y; embeddings
are linearly separable, allowing the addition z; + y; to act a concatenation operation. However,
recognizing that this assumption does not generally hold for real-world transformers, we extend our
analysis to the following setting, where z; and y; are no longer linearly separable. While this still
imposes a 2d-dimensional requirement on the hidden space, such a constraint is easily satisfied in
practical transformers, given the high dimensionality of their internal representations.

Zy = 0 o --- 0 0 0 0 6R<2d)x(2n+2). (11)
Tl Y1 o Tp Yn  Trest O

We slightly modify the sparsity constraints for the first layer, and require (Dyg)2;. = 0for¢ € [n+1]:

0 A 0 0
Vo = [ded 00] . Qo= { QdO“d Do} . where 4y € R Dy e R»>% . (12)

With these conditions, we are ready to establish the critical points for inseparable demonstrations.
Note that V{y and @)y do not involve By and Cy, so the sequences B and C' have size L — 1.

Theorem 5. Under the same settings as Theorem define 51, Sy, C R gnd Sp C R¥*dp gg
Si={Ma|AeR}, Sg={AZ7'|XeR}, Sp={diag(l, ® A1, Az) | A1, Ay € RZ?

Consider optimizing an L-layer linear transformer with inseparable pairwise demonstrations and
parameter configuration given in eq. (12)) for the first layer and eq. (0) for the remaining layers, then

. 2
infy s pest-1, cest~t, pesk ZHGAUBucUD [VaL({Vi. Qutizh) || = 0.

This result suggests that for inseparable demonstrations, the first layer performs a functionally similar
concatenation operation by "moving" the embedding of each z; to the corresponding ¥; position.
This enables the model to reconstruct the single-token structure without linear separability.

Optimal Weights for Causal Task Vectors. While task vectors naturally emerge in linear trans-
formers, their embeddings do not directly help minimize the ICL risk, as evidenced by the identical
performance between pairwise and triplet formatted prompts (Figures [#a]and D). Instead, we show
that task vectors contribute to minimizing the training (i.e., LLM pretraining) risk when token-wise
dropout is applied, acting as redundancies for in-context demonstrations that may be randomly
dropped during training. This redundancy ensures that essential task information is preserved and
continues to facilitate accurate prediction despite partial context loss.

Proposition 6. Under the same settings as Proposition[3| consider adding token-wise dropouts Oy:

Zy = 72,10, + %Atthth(Zl_l)Ol, where O; = diag(oll, cee ,072”)7 0; iid. Bern(p).
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Figure 4: (a, b) Comparison of the best ICL risk achieved using single (S), pairwise (P), and triplet
(T) formatted prompts. (c) Performance comparison between 1-shot ICL and task vector.

Then any minimizer A4 of the in-context risk E({Vl, Ql}le) satisfies (A4)n+1,: = 0 and:

. 4 n 4 n+l1 4 T2 2
(Ag)n; ox amgmin x| Alli+es 3 Aicllates 1A [pteal AAT|[ s AN = 1.
where ¢y, -+ , ¢4 are non-negative constants depending on V;, Q;, and p.

This result suggests that dropout introduces additional higher-order regularization on the task vec-
tor weights, encouraging them to distribute more uniformly across demonstrations. Furthermore,
when considering causal attention (i.e., enforcing A4 to be upper-triangular), it induces a decaying
weight pattern from later to earlier demonstrations, which is also consistently observed in practical
transformer models as evidenced in Figure|3c| While dropout is not always applied during LLM pre-
training or fine-tuning, the injection of position encodings and use of normalization act as alternative
sources of perturbation, thereby promoting the emergence of such redundancy.

Extra EOS Tokens. In our theoretical analysis, we consistently impose an additional zero token at
the end of the input prompt. While this token can be interpreted as an EOS token in practical models,
such a design choice is uncommon in standard ICL tasks. We justify this modeling decision with:

Proposition 7 (Informal). Given any L-layer, single-head, d-dimensional linear-attention trans-
Sformer with EOS tokens, there exists an equivalent L-layer, two-head, 2d-dimensional linear-attention
transformer operating without EOS tokens.

This equivalence suggests that the same learning dynamics can be realized through multi-head
architectures without relying on explicit EOS tokens. Specifically, one head in this setting is dedicated
to task vector formation, while the other handles ICL prediction. This separation allows the model to
retain the functional role of the EOS token implicitly within its hidden states. Consequently, our prior
theoretical analysis can be naturally extended to practical models that omit explicit EOS tokens.

6 Experimental Studies

6.1 Synthetic Results with Random Linear Regression

In this section, we validate our critical points analysis with synthetic linear regression tasks. Specifi-
cally, we examine the achievable ICL risk of linear transformers trained with single-token (eq. @)
pairwise (eq. (7)), and triplet (eq. (9)) demonstrations. We set the input dimension to d = 4 and
P, = P, = N(0, ;). For each setting, we train multiple models with different random seeds and
report the minimum ICL risk achieved as a proxy for the global optimum. The comparative results
across different numbers of layers L and demonstration formats are shown in Figures fa) and [4b]

These results support our theoretical analysis: when trained with pairwise or triplet demonstrations, the
transformer recovers the GD++ algorithm similar to the single-token case. Notably, the performance
of L-layer transformers with pairwise (P) and triplet (T) demonstrations closely aligns, indicating
a shared underlying learning pattern. Moreover, their performance consistently lies between that
of single-token (S) case L-layer and (L — 1)-layer models. The observed improvement over the
(L — 1)-layer single-token baselines comes from the additional GD++ performed solely on x; tokens
in the first layer, effectively acting as a "half-step" of gradient descent.
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Table 2: Accuracy comparison between standard ICL (Baseline), the task vector method (TaskV),
and our strategy (TaskV-M). The experiment is conducted on Llama-13B with n = 10.

Method \Knowledge Algorithmic  Translation Linguistic Bijection \ Average

Baseline 6.90 +2.08 15.60 +1.72 7.00 + 1.65 1244 £ 174 827 £1.33 10.28 £ 0.98
TaskV 68.80 +266 86.20 + 1.61 73.53 +091 8524 +180 50.67 +£232 | 72.26 +1.01

Baseline 69.50 +£386  73.67 £156  57.80+201 5622 +157 44776 +244 | 58.11 £0.63
1-shot  TaskV 79.50 £235 88.47 +075 80.67 +256 89.11 +0.84 60.44 £2.07 | 78.79 +0.77
TaskV-M | 81.30 £280 89.53 +065 80.13 +2.14 88.71 £062 61.78 £096 | 79.34 +0.37

Baseline 78.80 £330  85.07 +1.37 75.67 £264 76.80 £1.18 56.49 +£287 | 72.92 +0.59
2-shot  TaskV 84.60 +2.11 88.40 +0.68 8433 £092 90.13 £092 6244 +2.16 | 80.82 +0.42
TaskV-M | 85.70 £1.63 89.27 +1.10 84.13+1.15 89.64 +08 64.49 +2.02 | 81.48 +0.37

Baseline 86.20 +2.69  88.07 +1.06 80.00 +1.67 84.04 +1.19 62.18 +152 | 78.51 £042
3-shot  TaskV 90.20 +£223 88.67 £089  86.27 +231 9231 +048 66.53 £094 | 83.53 £ 041
TaskV-M | 90.30 150 89.87 +0.83 86.07 +£2.17 9236 +£0.72 68.13 +0.76 | 84.15 +0.52

Baseline 84.80 £2.06  88.07 £ 0.61 8327 +182 8889 +191 67.16 +147 | 81.52 +0.66
4-shot  TaskV 88.70 £ 1.69  89.53 +1.34 86.27 +£1.08 9276 +054 70.44 +135 | 84.66 +0.39
TaskV-M | 89.60 +1.43  91.00 + 1.01 87.20 +062 9236 +1.44 72.53 +£094 | 85.64 +0.29

0-shot

Additionally, we successfully reproduce the task vector method in linear transformers. Specifically,
we extract the hidden state of the final (—) token from triplet demonstrations after the first layer,
and inject this vector into zero-shot prompts consisting of only zs;. To simulate the effect of layer
normalization used in practical transformers, we normalize the task vectors before inference and the
output vectors before ICL risk evaluation. As shown in Figure 4c| the performance of task vectors is
parallel to that of standard ICL with a single in-context example. This validates our conjecture that
the injected task vector effectively acts as a single demonstration.

6.2 Enhancing the Task Vector Method

We further explore an enhancement to the original task vector method. According to our previous
analysis, a single injected task vector may not provide sufficient information for inference on complex
tasks (e.g., bijection tasks). Moreover, in linear-attention models, each (—) token functions as an
individual in-context demonstration during the gradient descent phase and thus contributes equally
to the ICL risk. Motivated by this, we extend the standard task vector method, which modifies only
the final arrow token, and propose a multi-vector variant that injects into every single arrow token
in few-shot prompts. This enriched injection scheme enables the model to leverage multiple new
demonstrations, thereby providing a more informative and distributed context for prediction.

We compare our multi-vector injection strategy (TaskV-M) against standard N-shot ICL (Baseline)
and the original task vector method (TaskV). For each N-shot prompt, we generate N + 1 distinct
ICL prompts to produce N + 1 task vectors, which are then used to replace the embeddings of
all arrow tokens in the input. For each task, performance is evaluated over 50 randomly sampled
prompts, with mean accuracy and standard deviation reported across 5 independent trials. The
final results, summarized in Table [2| span a diverse set of ICL task types, including Knowledge,
Algorithmic, Translation, Linguistic, and Bijection, showing that TaskV-M consistently outperforms
TaskV, especially on the more challenging bijection tasks. These findings support our analysis that
every arrow token contributes meaningfully to the model’s ICL capability.

7 Conclusion

This paper proposes the linear combination conjecture as a plausible explanation for the emergence
and functionality of task vectors in ICL. We support this conjecture with both empirical observations
and theoretical analysis, demonstrating how task vectors naturally arise under triplet-formatted
demonstrations in simple linear transformer models, and why this method inherently fails on general
bijection tasks. While the conjecture may not yet offer a complete characterization of ICL dynamics,
it provides a new perspective on the underlying mechanisms and offers a promising direction for
interpreting intermediate hidden states in modern transformer-based language models.
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A Auxiliary Lemmas

Lemma 8 (Proposed in [[Il]). Given positive objective function f(A) taking parameters A = {A;}7_4,
where A; € R4*di Lot S =TI | S; C I R%*%i pe a predefined parameter subspace. Define
A(t,R;) = {Ay, -+, Aj+tRy, -, Ay} giveni € [1,n], R; € R%*% and t € R. If forany A € S
and R; € R%*dithere exists EZ € S; such that

%f(ﬁ(t,fzi))

)

t=0

< S7(AwRy)

t=0
then we have

. 2
1‘1‘2221 IV 4 f(A) = 0.

Proof. This lemma is proved as part of the main theorems in [[1]]. We rearrange the proof here to
accommodate arbitrary function of matrices. Firstly, notice that for any R = {R;}1", € IR

i: %f(g(t’éiw

i=1

d
= Zf(A+tR)

t=0 t=0

Therefore, the provided precondition is equivalent to stating that for any A € S and R € TT7_ R4 * i
there exists R € S such that:

d ~
SF(A+1R)
Let R = —V 4 f(A), we then have

_ <df(A —tVAf(4) d(A—tVaf(4)) >
o\ d(A—tV4f(4))” t

= (Vaf(A), ~Vaf(A)) = —|Vaf(A).

If the infimum of ||V 4 f (A)]|% is not zero but some positive value p, then the S-constrained gradient

d
< &f(A+tR)

t=0 t=0

d
g /A+tR)

t=0

flow induced by R will lead to unbounded descent:
d ~
Sr(a+eR)| <-p.
a’ ( ) =T

This contradicts the fact that f(A) > 0 and concludes the proof. O

The following lemma is an extension of Lemma 5 in [1] by accommodating multivariate y samples as
well as enabling a wider range of demonstration and transformer parameter configurations.

Lemma9. Let xq,--- 2,41 be i.i.d. samples from an input distribution, and let W be sampled
independently of {x;}!1!. Let Zy € RCDXN ywhere N € Z, be constructed of form
o kX (2d)x N
Zy = |:* . Od:| eR R

where the * parts can be arbitrarily constructed from {x; ?:'11 and W. Let Zo be defined as replacing
the zero part of Zy by Yn+1:

7 o oo * (2d)x N
ZO[* - yn+1]€R .

Let Z be the output of the l-th layer of the linear transformer, and let )?l, f/l € RN bpe the first and
last d rows of Z, respectively. Suppose that the {Ql}lL:l matrices are of form

P

)
d columns dyp columns

Then the in-context risk of this L-layer linear transformer is equivalent to

LV QM) =Bz, [ty = M)V V(I — 2D)) |- (1)

12



418

419
420

421
422

423

424

425

426

427

428

429
430
431

432

433

434

435

436

Proof. Let the V; and ); matrices be represented as:
Vl
‘/l = |:‘/§2:| ’ Ql = [Qll 0 QIQ] ’

where V1, V2 € R¥*24 Q1 € RRd+dp)xd ()2 ¢ R(2d+dp)xdy Then the update rule in eq. (5) can
be rephrased as

X =X, 1+ %Vllzl,lM[ZL,P] (QI Xi1-1+Q7P),
Yi=Yia+ VP2 M[Z0, Pl (@K + Q).
Let Ay = Z) — Zy, 1.e. an all-zero matrix except that the last half of the last column is ¥,,4;. Let
Ax and A~y be its first and last d rows respectively, then Ax =0and Ay =[0 --- 0 yp41].
Note that Z; = Z; + Az holds for [ = 0 trivially. Now suppose it holds for some [ = k£ — 1, then
Xp= Xp 1 + %V;Zk_lM[Z,I_l, P} (Q,{.f(k_l T Qﬁp)
= X1+ %V,jZk_lM[Z,j_l, Pl(QpXk-1+ QiP)
+ %VklAZM[ZII—hP] (Qlchk—l + Qip)
bV Ze A MAL, O} (@4 Xk + @1P)
+ %VklAZM[Aga 0d,xa,] (QkXk—1+ Q% P)
= Xi1 + V2 M2, P (QEXe + QFP) = X4,
where the last step holds by noticing that Az M = 0. Similarly, one can prove that
V= Vioa+ Ay + V22 M[Z 0, P) (@41 + QFP) = Yi+ Ay
Therefore, it holds that for any ! € [1, L], Z = Z; + Az. Recall the in-context risk in eq. :

LV, Qb)) =Ezow [|(ZL) (@4 12005 + yn+1H§
=Ezw |V + Ay)(Iy = M)
= Eg, w|tr((Iv = M)V Vi (Iy - M)

The proof is complete. ]

B Proof of Theoretical Results

B.1 Proof of Proposition[d]

Proof. We will first prove sufficiency. Let W = ab' be a rank-one matrix, where a, b € R%. The
given conditions imply that z = Wy = WWax = ab"ab' 2, we thenhave b' 2 = b ab ab'x =
(b"a)%b" . Since b z # 0, we can conclude that b" @ = +1. Then,z = ab'ab'x = +ab’x = +y,.

To prove the necessity, it suffices to show that selecting W = xz "/ ||x||§ when z = y satisfies the
given conditions (alternatively, select W = —zx T / ||;v\|§ when x = —y). O

B.2 Proof of Theorem[]

Proof. To enhance the readability of the notations in this proof, we will drop the constant % factor
in linear attention. Furthermore, we will simplify Zj, X and Yj in Lemma |§I as Zy, Xp and Y

13
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respectively. This results in different definitions compared to the original ones, but we will not refer
to the original definitions in the remainder of this proof.

Xo z1 0 - xm 0 Tpest O (2d)x (2n+2)
0 [YJ [0 v 0 yn 0 Ye|

Let Z; be the output of the I-th layer of the transformer, and let X;,Y; € R4*(27+2) denote the first
and last d rows of Z;, respectively. Under the constraint in eq. (6), we can verify that

X;=Xio1 + AXiM(X,D L CiXoo1 + Dy),

- (14)
Y=Y 1+ BY_1M(X,_,CiX;—1 + Dy).

In the following analysis, we will use f(A + B) to denote the result of the function f of A when
replacing the value of A with B. Additionally, we denote f(A < B % A) as f(A <~ B) for any
operator x. Therefore, f(A <~ B) = f(A < A+ B). We also denote f(A & B) = f(A + BA)
and f(A < B) = f(A « AB) for convenience.

Our goal is proving that, for any '€ AU B U C U D and an arbitrary matrix R € Rxd (R ¥ ds
for D), there exists R € Sy (Sx; for C, Sp for D) such that
d + = d +
—L(E +—tR < —L(E <+ tR . 15
FEEEW| < GeEdm) (1s)

t=0

Let Xo = [0, 21, - ,0, Ztest] be a function of X, we then have Yy = WX,. Let U; € R™*?bea
uniformly sampled random orthonormal matrix, and let Uy, = /20U /2. One can verify that

Uy! = 212U %~1/2, By applying Lemma|§|and the fact that X, = Us, X, we have that for any
given matrix R,

d +
&E(E — tR)

t=0

~dEe W (1= M)y, (B & tR)YL(E & tR)(I - M) |

at
L))

d
=2Ex, w.u, {tr(([ — M)Y, (Xo & Us) e (Xo & Us,E & tR)

t=0
d
=2Ex,.w [u(([ — M)Y, GYL(E &£ tR)

- )|

Next, we will show that eq. holds for each one of A;, B;, C;, D; forany i € [1, L].
1. Equation (I5) holds for A,.

We first show that for any [ € [1, L], the following equations hold:
Xi(Xo < Us) = UsX, (16)
a7

d d
(X EUs, A; EtR)|  =Us e & tU5 RUY)

t=0 t=0

It is straightforward to verify that eq. holds for [ = 0. Now suppose that eq. (I6) holds for some
{ =k — 1, we then have

Xi(Xo & Us)
= X1 (Xo & Us) + A X1 (Xo & UE)M(X,I_l(X0 E U)X o1 (Xo & Us) + Dl>

= UsXp-1 + AUs X1 M (X[ Us, ClUs Xi—1 + D))
= Us (Xjm1 + AXm 1 M (X, Ci X1 + Dy)) = Us X,

AUy = UsA; and UZTC’I Us, = (). This concludes the proof of eq. (

where the third equality follows by noticing that when A; = alInd C; = X7, we have
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458 We now turn to the proof of eq. (I7). Notice that when [ < i, we naturally have

d
—X1(Xo & Us, A; &£ tR)|  =TUs Xl(A & U RUs)| =0,
d t=0 dt t=0
459 When [ = 4, it is easy to verify that
d
3N(Xo LU, A; & tR)|  =RUsX,_ 1 M(X," ,Us CUs X1 + D))
t=0

=Us -Ug'RUsM(X," 11X, + D))

d
=Ux - Xi(4; & U5 RUY)

t=0
460 Now suppose that eq. holds for some | = k£ — 1 > 4, one can verify that:

d
an(XO <— UZ,A <— tR)

t=0
d d
= o Xk1(Xo EUs, A £ tR)| + AR Xk1(Xo EUs, A EtR)M
t=0
- (X,I,I(Xo & Uy, Ay & tR)Cy X1 (Xo & U, A; & tR) + Dk)
t=0
d
= ka 1(X0 <— UZ,A <— tR)
dt o
d
+ A X1 (Xo & Us, A & tR) M(X,j_l(Xo & Us) O X1 (Xo & Us) + Dk>
t=0
d
+ Ap X1 (Xo & Ug)M thk [(Xo & Us, A S tR)|  CpXio1(Xo & Us)
t=0
+ Ap X1 (Xo £ Us)MX, (X & )Ck Xk (X & Us, A; £ tR)
t=0

=Us 5 Xk 1(4; & tUS RUY)

t=0

+ Us Ay, ka 1 (4; & tUS ' RUY)

M(Xl;r—1Cka—1 + D)
=0

ka (A & U5 RUY)

Us A X1 M
+ UsAp X1 at

CrXk—1
t=0

+ Us A X 1 MX, 10k 5 Xk 1(4; & tUS RUY)

t=0

d
= Us —Xp_1(A; & tUS'RUs)|  + UE&Aka_l(Ai & UG RUg )M

dt

t=0

- (X,j,l(Ai & UG RUS)Cu X1 (A; <= tUS RUs) + Dk)

t=0

d
= Us, — X(A; & tU5 ' RUY)
dt o

a6t This completes the proof of eq. (I7).

462 Under the condition that B; = b; I, for some b; € R, we can simplify eq. as
Y =Y+ Y M(X,,CiX .y + D))
=Y (I +bM(X,,Ci X1 + D))

l
H [+b M JT_leXj_l +D]))
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468

469

Define Gy = Xo[]_, (I +b;M(X] ,C;X;_1 + D;)). then it satisfies that ¥; = WG). We are
ready to prove that similar results to eqs. and also hold for Gy, 1 € [1, L]:

Gi(Xo & Us) = UG, (18)
19)

d d
3 C1(Xo EUs, A £tR)|  =Us 3G & UG RUY)

t=0 t=0

Notice that eq. holds trivially for I = 0 as Gy = X . Now suppose that eq. holds for some
| =k — 1, we then have

Gr(Xo & Us) = G_1(Xo & Us) (1 b M(X] 4 (Xo & Us)CrXp_1(Xo & Us) + Dk))
= UsGr_1(I +beM(X,_1CxX—1 + Dy)) = Us,Gy.

This concludes eq. (I8). As for eq. (T9), notice that both sides equal 0 when ! < i. Now suppose that
eq. (I9) holds for some [ = k — 1 > 4, we then have:

d
aGk(X0 & Us, A; £ tR)

t=0

%Gk_l(Xo & Us, A; £ tR)

+ %kak_l(Xo EUs, Ay EtR)M

t=0

: (X,:Ll(XO & Us, Ay & tR)Ou X1 (Xo & Usy, A; & tR) + Dk)

t=0

d
- &kal(XO (i UE7A1' (i tR)

t=0

d
+ by, &Gk_l(xo & Us, A; £ tR)

M<XJ—1(X0 & Us)CrpXp_1(Xo & Us) + Dk>
t=0

+ 0p G (Xo & Us)M ixk (Xo & Us, A £ tR)| ChXio1(Xo & Us)
t=0
+ 0pGr1 (X & Us)M X, (X & Us)Cr 5 Xk 1(Xo & Us, A; < tR)
t=0

d
=Us 5, Gr1(4; & UG RUY)

t=0

d
+0eUs 4 Groa (4 & U RUY)

M (X,_1CxXp—1 + Dy)
t=0

d
+ 0 UsGr 1M — X, (A; & tU5 ' RUY)

Xi_
& CrXk—1

t=0

+ b UsGr_ 1 MX, 10 5 Xk 1(A; & tUS ' RUY)

t=0

d
= Ux 4 Gi(4i & U5 RUY)

t=0

This concludes the proof of eq. (T9). Consider the in-context risk:

—E(A EtR

t=0

)
X d X +
= 2EX0 W, U, tr I M YL 0 < UE) &YL(XO — Uz,Ai «— tR)

L))
L))
L))

(I — M)GLUSW T WUy tGL(AMitUglRUg)

= 2EXO,WUJ_ tr

— 2dEx, [u(([ M)GIz ! %EUL [GL(Ai & tUz_lRUg)]
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= ZdEXO |:t1" (I — M)GZE‘l %G'L(AZ (i EUL [tU{:lRUE])

L))
L))

_ %EXO,W (o (01 = MY (A & trL)Yi(A; & tra)(T - M)

=2dEy, [m(([ —-M)G[x™ %GL(Ai & trly)

t=0
d +

= —L(4; I
dtL( i < trly)

t=0
a0 where r = Ey [Us;'RUs] = % tr(£7Y/2RXY/2), and we used the fact that Uyl 71Uy, = £71,
a1 and £G4 & tR)‘ is affine in R. This concludes that eq. holds for A;, i € [1, L.

t=0

472 2. Equation (15) holds for B;.

473 From the recursive expressions in eq. (T4), we can conclude that the values of X; do not depend on
474  B;. Therefore, we naturally have

X,(B; & tR) = X,. (20)
475 Next, we would like to show that for any [ € [1, L],
d d
Ew {WT —Y(B; < tR) } =2 26 b & tie(R))| . 1)
dt —0 dt —o

476 When | < 4, we can easily verify eq. (2I) since both sides equal 0. When I = 4, we can get

d
Ew {WT B &£ tR)

} =Ew [W'RYi_ M (X,"1CiXi—1 + Dy)]
t=0

=Ew [WTRW|G.1M(X,1,C1 X1 + D))
= tr(R)EilGl_lM(Xltlchl_l + Dl)

S %Gl(bi & ttr(R))

t=0
477 Suppose that eq. holds for some = k — 1 > i. One can then verify

o

d
= EW |:I/V—r &Yk—l(Bi <i tR) (I + bkM(X];r_lcka—l + Dk))

Ew [WT %Yk(Bi &ER)

N

] (I +bM(X,_,Cr X1+ Dy))
t=0

d
= EW |:I/I/T &Yk_l(Bi <i tR)

(I + b M(X,_1Cx Xp—1 + Dy))

=xn! %Gk,l(bi & tir(R))
t=0

=xn! %Gk(bi & tir(R))

t=0
478 The proof of eq. (ZT) is complete. Now, look at the in-context risk, we have

L))
)

0
. (I M)>

L 0=m)]

d +
= (B
SL(B: & tR)

d
=2Ex, w [m«(([ - MY, aYL(Bi & tR)

t=0

=2Ey, {u«((] — M)G] Ey [WT %YL(BZ- & tR)

=2Ey, {tr(([ ~M)GLx ! %GL(b,; & tir(R))

= QEXD,W [tr(([ - ]\4)}/[/T %YL(BZ <i ttI’(R)Id)
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479

481

482

483
484

486
487

488

489

490
491

d
= *ﬁ(BZ (i ttI‘(R)Id)
dt =0
This concludes that eq. holds for B, ¢ € [1, L.
3. Equation (15) holds for C;.

Similar to the A; case, we will first prove that for any [ € [1, L],

ixl(ci & U RUY)

d
—X,(Xo & Us, C; &~ tR) "

—U
dt =

t=0

(22)

t=0

The equation above holds trivially for [ < 7. For the case [ = ¢, we have

d
— X (Xo & Uy, C; £ tR)
dt t=0

= A; X 1(Xo & Us)MX," (Xo & Us)RX,_1(Xo & Us)

d
= Usd; X1 MX,US RUs X1 = Us . X0(C & tUy RUy)

t=0

One can conclude the proof of eq. through a similar reduction as eq. for I > i layers. Next,
we establish the corresponding result for G;:

QGI(XO & Us,C; ¢ tR)

_ g d + T
aQ =Us EGZ(CZ — tUZ RUE)

(23)

t=0 t=0

This equation holds trivially for [ < . When taking [ = ¢, we can verify that

=G 1(Xo € Us)MX," [(Xo & Us)RX;_1(Xo & Us)
t=0

= bUsG_1(Xo & Us)MX," U RUs X,y

%GZ(XO & Us,C; < tR)

d
=Us Gi(C; & UL RUY)

t=0

For [ > i layers, one can follow similar reductions as eq. (I9) to finish the proof. We then consider
the in-context risk:

£

t=0

X

tR)
d
—2]EX07WUL{H(I M)Y,[ (Xo & Us) = Yi(Xo & Ux, Ci € tR)

L))
L)]
=)
L))

- %EXO,W [tr((] — MY, (C; & tre YL (0 & tre (1 - M))}

= 2Ex, wu, |tr| (I — M)GLUSWTWUs, —GL(C EtR)

— 2dEy, [tr(([ mars—t Lg, [GL(Ci & tUETRUg)}

dt

= 2dEx, [tr((f —- MG 2! %GL(Q E el

t=0

3

d
d
d t=0

LG Etryzh

where r = Ey, [Uy! RUs] = 4 tr(£/2R¥Y/2). This concludes that eq. holds for C;.
4. Equation (15) holds for D;.

Let U, € R™*"™ be a uniformly sampled permutation matrix, i.e., a binary matrix that has exactly one 1
entry in each row and column with all other entries 0. Let U, = diag(U, ® I, I,) € R(Zn+2)x(2n+2),
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492
493

494

495
496

497

498

499
500
501

503

504

505

506

507
508

509
510

511
512

One can verify that by multiplying XU, it is equal to shuffling the first n 2-column sub-blocks of
Xy and keeping the last 2 columns unchanged.

Then, consider a matrix Ug = diag(¢y, ..., &ur1) € ROFDX(HD) where ¢; £ Unif{+1},ie., a
diagonal matrix with random +1 entries. Let Uy = Ur ® I, € R +2)x@n+2) Thys, U, = U]
and XUy is randomly flipping the sign of each 2-column sub-block in X.

We are going to prove that for any | € [1, L], recalling that f(A < B) = f(A < AB),
Xi(Xo < UsUs) = XU Us, (24)
Gi1(Xo & ULU,) = GULU.. (25)
Equation (24) holds trivially for [ = 0. When eq. (24) holds for some | = k — 1, we can verify that
Xp(Xo & ULUL)
= X 1UrUs + Ap X1 Up UM (UJ UL X} O X1 U Us + Dy,)
= X 1UpUs + Ap X1 UrUs MU, UL (X1 CrXpo1 + UrUs DU UL ULU
= X 1UrUs + Ap X1 M (X1 O Xp—1 + Dy )UsUs
= (Xp—1 + A X1 M (X, Cp Xp—1 + Dy) ) UsUs = XU Us.

It uses the fact that there exists some D}, D? € R?*? such that D; = diag(l, ® D}, D?), so
shuffling the first n 2 x 2 diagonal sub-blocks of D; does not change the matrix, and we have
UoD;U. = D;. Similarly, we have Uy DU = Dj. This concludes eq. , and eq. could be
acquired similarly.

Next, we will establish the following equalities for X; and G:

d d

—X/(Xo & ULU,, D; &tR)| = —X,(D; &< tULU,RUJUL)|  ULU,,  (26)

dt At —o

%GZ(XO L ULU,, D; £tR)| = %Gl(Di S WLURUTULD)|  ULU,. (7
t=0 t=0

The proof follows by similar reductions as proving eqgs. (I7) and (T9).
Finally, we consider the in-context risk under the permutation of U,, and U,. Since each pair of

. . . C d
(24, y;) is equivalently sampled from Gaussian distributions, we have Xq = XoULU,. Therefore,

L0=m)]

d
=2Ex, w,u, U [u((I—M)YJ(XO L ULU,) EYL(XO & ULU,,D; & tR)

d +
—L(D; <t
dtﬁ( < tR)

t=0
d
=2Ex, w {tr(([ - MY, &YL(Di ER)

L))

g vvn(1-)|

L))

(I—M))} = %E(Di &£ R)

d
=2dEx, v, v, {tr((IM)UOT vlgiyx! &GL(DiitUiUORUJ Ul)

dt
4
dt

— 2dEy, [u(([ ~weist LEy [GL(DZ» & tUiUOTRUoUi)}

GL(D; & tR)

)

= 2dEx, [tr((] —-M)G[x!
t=0

t=0

where R = Ev, v [U+U] RU U] = diag(I, ® R*, R?), R = 1 Z;—Ll Rj, R*> = R, 41, and R,
is the j-th 2 x 2 diagonal block of R. The 4th equality uses the fact that tr[(] — M)A(I — M)] is ex-

tracting the right-bottom element of A, so it should be equal to tr[(I — M)U, UL AULUo(I — M)]
for any matrix A. This concludes that eq. (T3)) holds for D;.

Till now, we have proved that eq. @ holds for each one of A;, B;, C;, D;. The proof of the whole
theorem is then completed by applying Lemma 8] O
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528
529
530

531

532

B.3 Proof of Theorem 2|

Proof. In this proof, we follow the same notations as the proof of Theorem where the constant %
factor is dropped and Zj, Xy, Yy are simplified as Zy, X, Y| respectively.

_lzr 0 0 - oz, 0 0 Tgest O O (2d) % (3n+3)
2=10 0y - 0 0y 0 0 ytest]ER ' (28)

Let Z; € R2#*(37+3) pe the I-th layer’s output and let X;,Y; € R¥*(37+3) be its first and last d
rows. Our goal is to prove that, for any £ € AU BUC U D and an arbitrary matrix R € R%*

(R% >4 for D), there exists R € Sy (Ss; for C, Sp for D) such that

% cEER)| <Lremdin (29)

o dt

t=0

The proofs of eq. (29) for A;, B; and C; are identical with the proof of Theorem[I]so we omit them.
We will be focusing on D; for the rest of the proof.

Let U3 € R™™ and U} € R("D*("+1) be uniformly sampled permutation matrices. Let U =
diag(Uy,1) ® diag(1,0,1) and U} = U} ® diag(0, 1,0). Therefore, XoUy is shuffling the 1-st
and 3-rd columns among each 3-column sub-block of X (except for the last 3-column sub-block),
and XoU; is shuffling the 2-nd column among each 3-column sub-block. Next, let Ug, Ug €

R(+1x(n+1) pe diagonal matrices with uniformly sampled +1 entries. Define Ui =U;®
diag(1,0,1) and U{ = U} @ diag(0, 1,0). It can then be verified that XoU3$ UL 2 X,.

To simplify the notations, let U= denote U5 ULUSU!. We will focus on a subset of Sp:

Sp = {diag([n QA1,A2) +Tn1 @ A3 | Ay, As € M(o 0 0) As € M(§ g §)}
Assume Dy, = diag(l, ® A1, As) + I,41 ® Az € S} as defined above, one can verify that it is
a block-diagonal matrix constructed from the same 3 x 3 sub-blocks, and thus is invariant under
U=D;U.. We will then prove that for any [ € [1, L],

X)(Xo & U=) = XUz, (30)
Gi(Xo & U=) = GU=, 31)
gXl(XO LU-, D, EtR)| = gXl(D &w-RUD)| U=, (32)
dt +=0 dt t=0
—Gl(Xo & U_,D; &tR)| = —Gl(Di &w_rUD)| U= (33)
dt =0 dt B P

These results can be acquired by similar proofs as eqs. (24) to (27). We then consider the in-context
risk under the permutations of U=. Similarly, we have X 4 XoU= and

—E(D &tR)
~ 2B [u ( vl o )| )]
=2dEx, v [n( I—M)GL (X, & U=)n™! %GL(XO & U_,D; & tR) . (I - M))}

=2dEx, v_ [tr< (I-MUIG[x™! tGL(Di & w_rul)

=)

L))

= 2dEx, [tr( (I-MG[x™! dtGL(D,» & tEy_[U=RUI])
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550

551

LetR-bethej-th3><3diagonalblockofR then R! = 1 Z; 1 R 0(00(1)) R? —RnHO((i)%(i)),

n 0
= X Ryo (§19) and B = Eu_ [U=RUT] = diag(l, @ R, B) + L1 @ R°. This

indicates that eq. (29) holds for each D; € S, and thus the proof of the whole theorem completes by
applying Lemma [§[and noticing that S, C Sp. O

B.4 Proof of Theorem[3

Proof. We keep the same notations as the proof of Theorem m dropping the % factor and simplifying
Xo, Yo, Zg as X, Yy, Zg, as follows:

T L =
Note that we now have X and Y|, containing both xz; and y;. Define
X=[z1 0 -+ zp 0 gt O],
X=[0 2z -+ 0 @, 0 Ttest],
Y=0 v - 0 yn 0 Yest.

we then have Yy = X +Y = X + W X. From the parameter configuration in eq. , the update
rule of the first attention layer is

X, =AYoMD, = A XMD,, Yi=Yy=X+WX. (35)

The update rule for the following layers is the same as eq. (T4). We are going to prove that, for any

E € AUBUC U D and an arbitrary matrix R € R4*¢ (R% > for D), there exists R € S; (Sx
for C, Sp for D) such that

<drmem)| (36)

ic(E &ELR)
dt t=0

dt

t=0

Similarly to Theorem we uniformly sample U, € R%*? as an orthonormal random matrix, and let
Us, = X120, ¥ ~Y/2, Under the condition that B; = b, for some b; € R, we have

l
H I+b M JT—lchj_l +DJ))

Let Fy = X [Ty (I+b;M (X[, C; X;_14D;)), G = X1y (T+b;M (X ,C; X, + D)),
we then have Y; = F; + WG,. Accordmg to LemmaEL
dtﬁ( tR) =0
_d Tim & +
= SExw [tr((l — M)Y, (E & tR)Y,(E & tR)(I — M))}
dt ' t=0
_d Tim A +
= SEx,w {tr(([ ~ M)F](E & tR)FL(E & tR)(I — M))]
dt ’ =0

+ %]EXO’W {tr((] — M)GL(E S tRYWTWGL(E & tR)(I — M))]

0 0)
- M))].

Next, we will show that eq. holds for each one of A;, B;, C;, D; for any i € [1, L].
1. Equation (36) holds for A;.

t=0

d
= 2Ry, [u((] M)F] GluE s & tR)

+2dEx, [tr(([ - MG et éGL(E & tR)
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ss2 One can easily verify that eqs. (T6) and (T7) still hold. Furthermore, egs. (I8) and (T9) hold for both
553 Fj and GG;. With these observations, we can then verify

ic(Ai &£ tR)
dt o

I d
=2Ex, v, tr(([ — M)F] (X & Us) aFL(X & Us, A; £ tR)

(I—M))}
) =0
+2dEx, v, tr((f — M)G[ (X < Ug)s™? %GL(X & Us, A; £ tR)

L))
L))
L))

[ d
=2Ex, v, tr((I — M)F} Us Us, 3P4 & tU; ' RUY)

d
+2dEx, v, [m(([ ~ M)G[ULYUs 7O (A & tUS RUY)

L))
L))

Td

= QEXO {tr(([ — M)FL &FWL(14Z (i t?"[d)

+2dEx, [tr(([ - M)GLx! %GL(AZ- Erly)

_d

= L &Ewrly)

)
t=0

sss  where r = Ey, [Ug 'RUs] = % tr(S71/2R%1/2).

s55 2. Equation (36) holds for B;.

556 From the definition of Fj and GG;, we can verify that
d +

aYl(Bi < tR)

t=0
l
=R(Fio1 + WGi)M(X, CiXia + Dy) [] (I+6;M(X],C;X;-1 4 Dy)).
j=i+1
557 Define
l
Ff = (Fz'—l + BiFi_lM(XiT_lc’iXi_l + Dz)) H (I + bjM(X]—-r_lchj_l + Dj)),
j=i+1
Gi=(WGis1+ BWG, 1 M(X," \CiX; 1+ Dy)) [[ (I+b;M(X],C;X;-1 4 D;)),

558 We then have

iFf(Bi EtR)

Sy Zm)| = O

dt

t=0 t=0

ss9  Similar to eqs. (T9) and (Z1I), we can prove that

d —.
= Uy —Fi(B; & tUg 'RUY))

d —.
—Fi(X & Us, B; < tR) "

dt

)

t=0

t=0

Ew [WT %é}'(& & tR) } =x! %éf(Bi & tir(R) 1)

t=0 t=0

seo  Without loss of generality, we assume that r = % tr(S71/2R%1/2) < Ltr(R), and let v =
set rd/tr(R) < 1. Then, one can verify that
d

(B &
dt'c( i < tR)

t=0
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562
563
564

565

566
567

568

569

571

572

573

574

575

576

d —.
=2Ex, v, {u(([ —~ M)F" (X & Us) aF;(X & Uy, B; £ tR)

o)
)
)
o)
o)

L))

+2Ex, w [u((l - M)GIWT %éf(Bi & tR)

=2Ey, {tr((f — M)E" %F}(Bi & trly)

+2Ex, {tr(([ — MG S d 3 Gi(B; & tr(R)I,)

d
= 2Ex, [tr((l ~M)F ZFi(B; & triy)

+ l2dEX0 {tr(([ - M)szfl Gl(B & trly)
Y

1
= < - 1) 2dEx, {u(([ — MG ! Yaus Eory| (- M))}
~ dt =0
+d£(B & trly) >d,c(B & trly)
12 % d = 7, % d
de t=0 de t=0

The last inequality assumes the positivity of the term involving ;. Otherwise, one can simply flip
the numerator and denominator of v and scale the derivative of F} instead of (G; to yield an additional
positive term besides the risk term to finish the proof.

3. Equation (36) holds for C;, D;.

Similarly, one can verify that eqs. (22) and still hold (also egs. (24) to (27)), and finish the proof
by following the same reductions as Theorem [T with F} and Gj. O

B.5 Proof of Proposition[3]

Proof. Let A; = a;lq4, B, = bj14, C) = ¢;Igand D; = diag(I,,® D}, D?)+1,,41®D}+D}® D} for
1 €[1,2]. Let Z; € R?4*(37+3) be the output of the I-th attention layer, and let X;, Y; € RZx(3n+3)
be its first and last d rows respectively. Note that Y; in this proof does not contain et .

dz 0 dy N
LetD} = ( 000 ,D%:((f
dz 0 dy 0

Sq

) ) (note that the last row of D? is masked out by M, so we

6
simply set it to 0), and D} = (§ Z@: g) We use D as an abbreviation for D, and use d; ; to denote
the elements in D. One can verify that

X1 = Xo + a1 XoM (diag(I, ® D, D}) + I,41 ® D} + Df ® DY)

[ (1 +ald£)171 altz Zi:l 7;711‘7; aldzzl

(1+ ard®)z, a1ty Z?:ll dinT; ajddxy,

(1 + aldi)xtest altz Z?jll di,n—‘—laji ald:gggxtest ]

Similarly, we have
Y1 =Yy + b1 YoM (diag(I, ® D1, D?) + In41 ® D} + D ® DY)
[ b1d§’jy1 blty Z?:l di,lyi (1 + b1d§j)y1
bld;yn blty Z;L?:l dl,nyl (1 + bldg)yn
0 bty >y dint1yi 0 ]

By the definition of linear attention, we can show that

TF(Zo; {V, Ql}zz:1) = (Y2)3n43 = b2Y1M(C2X;—(X1)3n+3 + (D2)3n+3)

3n+2
= 52626110@ < Z (Y1) (Xl) >xtest~

i=1
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577 Define AX; = [0 a1tydni11%test 0 -+ 0 aitednt1nt1test 0], and let X1 = X7 —
s7s - AXy, then TF(Zp; {Vl»Ql}lQ:l) = TF(Zo; {Vinl}lz:le — X1) + TF(Zy; {Wan}lz:th —
579 AXl) Let ble(l + aldi) + (1 + bld;)aldﬁ =a, bltyaltw =, bQCQGld% = ¢, we then have

n n+1 n n
TF(Zo; {Vi, Quicr, Xa = X1) =l ad wiw] +0> [ D djay; | | D diiz] | | 2rest
i=1 i=1 \ j=1 7j=1

n n o n n+1
=c|a Z yixr] + bz Z (Z dj,idk,i> Yizh | Trest, (37)
i=1

Jj=1k=1 \i=1
n+l n

TF(Zo; AV, Qubier, X1 = AX1) =be > D djityjdn i1, rest
i=1 j=1
n+1

= be Z <Z dj,idn-s-l,i) ijtTestl”test- (38)
j=1

i=1
580 Now consider the in-context risk,
L(V,Q) = Ezow [ TF(Zo: {V.Q}) + W3
= Ezyw | (TF(Zoi{V. Q1) + Wareew)  (TF(Z0: {V,Q}) + Were)|
=Ezw {(TF(Zo; {V,Q}, X1 + X1) + Wxtcst)T(TF(ZO; {V,Q}, X1 + X1) + thcst)]
+2E 7, w[TF(Zo; {V,Q}, X1 + AX1) " (TF(Zo; {V, Q}, X1 < X1) + Wgest) ]
+Ezw [TF(Z0; {V,Q}, X1 + AX1) T TF(Zo; {V, Q}, X1 + AXy)].
ss1  In the equation above, the 3-rd part is always positive. We then examine the second part:
Ezow [TF(Z0; {V,Q}, X1 + AX1) T (TF(Zo; {V,Q}, X1 + X1) + Wapest)]

T T
= ]EZO,W [xtestxtestletest + xtestmtestUthest} =0,

582 where vq =bc Z?:l (Z?jll djyidnﬂ,i)y;c(a Z?:l ylx;r—&-b E?:l ZZ:1 (Z?jll dj)idkﬂ')yjl‘];r)
ses  and vy = be Z?:I (Z?;l dj7idn+1,i)ijW are independent of z.s;. Therefore, £(V, Q) attains its
ss«  minimum only if TF(Zy; {V,Q}, X1 < AX;) =0, implying d,,+1;, = 0fori € [1,n + 1].

ss5 In the following analysis, we will assume that the last row of D is 0, and let M € RX(n+D) pe
sso  the first n rows of D. Additionally, we will drop the ¢ factor in eq. (37), since its position could be

567 substituted by a and b. We then define W = a Y7, y;z] +b D el Yok (27.”11 dj’idk}i)ij;,

1=

ss8 X =[r1 -+ zp]JandY =[y1 -+ yYn). One can verify that
W=aVYX T +bVYMM X" =aWXXT +0WXMM X", (39)

589 Furthermore, the in-context risk could be expanded as

—~ 2 —~ —~
E(V, Q) = IEZ(,,W “Wxtest 4+ W Zest ) = EZO,W [xtTest(W + W)T(W + W)xtest]

= B |tr((W + W) T (W +W))]

=Bz [tx(WTW) +2t0(WTW) 4 tr(WTW)].
sso  We will use the identity Ex [XAX TXBX "] = (tr(A) tr(B) + tr(AB") + d tr(AB))I, for any
so1 A, B € R™*", which can be acquired by expanding each element and applying Isserlis’ theorem. Let

s2 17 = tr(MMT) and Ts = tr(MMTMMT),then

Ezow [tr((@aWXXT +bWXMMTX )T (aWXXT +bWXMMTX"))]
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=Ezow[a® tr(XXTW WXXT) 4+ 2abtr(XX W WXMM'XT)]
+Ezow [P tr(XMMTX " WTWXMMTXT)]
=dEz [a®tr(XXTXX ") +2abtr( XX XMM X ") + 0> tr(XMM X" XMM"XT")]
= a’d®*n(n + 1+ d) + 2abd*(n + 1 + d)Ty + *d*(T? + (1 + d)T3).
Simultaneously, we can verify that Ez, w [tr (W TW)] = d* and
Bz [tr(WTW) | = By [aW T WXXT +0W TWXMMTXT] = ad®n + b1,

Combining the results above, we aim to find the optimal a, b, M that minimize

1
ﬁﬁ(v, Q) =co+ 1Ty + coT?E + 3T,
where
co=a’n(n+1+d)+1+2an, ¢ =2ab(n+1+d)+ 20,
02:b2, 63:b2(1+d).

Since ¢3 > 0, to minimize £(V, )) we need to minimize T5. Given that M M Tis symmetric, we
denote its n eigenvalues as \;, i € [1,n]. Then by Cauchy—Schwarz inequality,

2
" 1< 1
tr(MMTMM") = ;A? >~ (; >\Z-> = EtrQ(MMT).

Therefore, £(V, Q) is minimized only if the inequality above holds with equality, which implies
that A; = \; for any ¢ # j. This concludes the proof by showing that there exists A € R such that
MM?" = X, and thus DD = diag(A1y, 0). O

B.6 Proof of Proposition [§]

Proof. We will continue from egs. and (38). After applying token-wise dropout, we have

n
TF(Zos {Vi, Qu}ioy, X1 = X1) = ) _(a0y™> + bo3")o}' 20"y 0" 05" vy

i=1

n n+1
3i—1 3j 3k—2 T 3n+1 3 +3
+c g E E OQZ d] zdk i |01 01 YjZp 01 " " Ttest s (40)

j=1k=1
n n+1
3n+3 3n+1
(ZO7{Wan}l 17X1 — AXI) = CO nt Z Zdj zdn+1 7 Olj s ijtestxtest;
j=1

where a = bgCgaldgbld”;(l +a1d%), b = bacoard¥(1 —&—bldg)aldfc and ¢ = bacoa1d¥bityait,. One
can verify that our previous analysis about TF(Zo; {V;, Qi }7_,, X1 + AX;) still holds and we thus
have d,,11,. = 0. We then define:

O} = diag(oj, -+ ,0" %) € R™"  OF = diag(o},- - ,0}") € R™", forl € [2],

O3 = diag(o3,--- ,05""%) € R(""’l)x("ﬂ).

By defining

n n n n+1
774 3i—2 2 1 3j 3k—2 T
= Z a0y ™2 + bos oy 2oy, + CZ Z Z 03 N idy i |03 032y )
i=1 j=1k=1
One can verify that

W=A+B+C2aY0?0L0!XT +bYO2020!XT + cYO?MOIMTOIXT.
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eos Then, we will compute the expectation of each term in the following decomposition:

L(V,Q) =Ez w [tr(WTW) + 2u~(WT’m7) +tr(WTw)},

sos  Specifically, let Ty = tr(MMT), Ty = tr(MMTMMT), Ty = |[M|3, Ts = S0, | M]3
o0 Ty = Z"'H | M._;||3, we then have
Eftr(ATA)] = a®d*(np® + n(n — 1)p® + (1 + d)np®),
E[tr(BT B)] = b*d*(np® + n(n — 1)p° + (1 + d)np?),
Eltr(CTO)] = d*(p°T7 + 1+ d)(p* = p°)Ta + (1 + d)(p° — p°) T
+ (1 +d)®* —p* —p° + )5+ (p° — p")Tu + p*To + dp°Ty),
Eftr(A' B)] = abdz(np4 +n(n —1)p° + (1 + d)np*),
E[tr(ATC)] = acd®((p" + (n — Dp°)Ti + (1 + d)p'Th),
Eltr (BTC)] = bed? (5 + (n — Dp*)T: + (1 + dp'Th),
[tr(WTA)] = ad’*np?, [tr(WTB)] = bd*np?, E[tr(WTC’)] = cd*p*T).
611 Summarizing our analysis above, miny; £(V, Q) is equivalent to:
mj\}n{co + 111 + 15 4+ 313 + csTy + 515 + cGTf},
612 where
co =14+n(2+d)p?(a® +b?) + 2np>(a + b) + 2n(2 + d)p*ab + n(n — 1)pS(a + b)?,
c1 = 2(a+b)e(p* + (n — 1)pb + (1 + d)p*) + 2¢p?,
co = A(p* + dp°),
c3 =1+ d) P’ —p' —p° +1°),
c =L+ —p°) + (0° — ),
cs = c*(1+d)(p” - p°),
cg = 2pS.
613 It is easy to verify that cg, c3, ¢4, c5,c6 > 0. O

614 B.7 Proof of Proposition[7]

615 Propositi0n|Z| (Restate). Let d,, denote the number of non-EOS tokens. Given any L-layer, single-
616 head, d-dimensional linear-attention transformer with EOS tokens:

TF(Zo; {1, Qi Pihien)) = (Zn)say+1,  (Z0):d,41 =0,
617 where
Zl c Rdx(dp+1)7 ‘/lle c Rdxd7 })l c R(dp+1)><(dp+1)’
Zy =21 +ViZiM(Z,QuiZ" + P), M = diag(I,,0).

618 There exists an L-layer, two-head, 2d-dimensional linear-attention transformer operating without
619 EOS tokens:

TF(Zo; (V1. Q1 Pl hieinyne) = (ZL)a2d.a,
620 where

Z, € R¥xdo Th Oh ¢ R24x% | Ph ¢ Ripxdy

2
Zi=Z1a+ Y ViZi4(Z,Q1 21, + P}).
h=1

621 Such that for any Z € R%*% by letting Zo = [Z 0] and Zo = {g} we have

TF(Zo; {Vi, Qi, Phieiy) = TF(Zo; {V", QL P} hien)nep)) -
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Proof. We construct V', QI and P! as follows:
o0 A o] -
Vll = |:Ol 0:| ) Ql1 = |:Ol 0]’ Pll = (Pl)lidp»lidp’
= 0 O — 0
Vi= {Vl 0} . Qf = [0 %l} . Pi=10 (P).d,+1]-

(Z1):ay—1)  (Z1).a,
0 (Zl):,dp+1
it holds trivially for [ = 0. Then, suppose it holds for some [ = k — 1, we have

Zy = Zir + ViZes(Zg 1 Qi Zy o + P) + ViZooi(Zx 1 Qi Zg o + PY)

Vi(Zr-1):1:4, ((Zk—1)fl:dka(Zk—1);,1:d,, + (Pk)l:dp,l:dp)
0

We will show that for any [ € [L], it satisfies Z; = } . One can verify that

=Zk-1+

* |:Vk(Zk01):,1:dp:| (0 (Ze-1)10, Qu(Zk-1)ity 1] + [0 (Pr):a,41])

[ViZer M (2, Qr(Z1-1): 1.0, + (Pk):,lzdp):|
0

=Zr1+

0 0
+ {0 Vi1 M (Z)_ 1 Qi(Zr—1):d,+1 + (Pk):,derl):l

_ {(Z’“)d’lid”} + [8 (Zk)?dﬁl} '

The proof is complete. O

C Experiment Details and Additional Results

In this section, we present experiment details and additional results not included in the main text due
to space limitations. Our experiments are conducted on an A100 40G GPU. It takes around 30 GPU
hours to fully reproduce our results]

C.1 Synthetic Experiments on Linear Transformers

We consider training linear-attention transformers on random linear regression instances. We take
embedding dimension d = 4, and the distributions for generating x; and w; are both P, = P,, =
N(0, I;). We optimize the ICL risk for L-layer linear transformers with n in-context demonstrations
using AdamW, where L € [3] and n € [5, 30]. Each gradient step is computed from a batch size of
1000. We additionally apply ¢; regularization to simplify the found solutions. For training efficiency
and stability, we restrict the A;, B;, and C; matrices to S; during training, and initialize D; € R% >
with i.i.d. Gaussian matrices. For each case, we train 40 models with different random seeds, and
report the minimum achieved ICL risk to approximate the global minimum.

To reproduce the task vector mechanism, we focus on transformers trained with triplet-formatted
prompts. The training procedure is identical to the above. For inference, we restrict P, to rank-one
coefficient matrices, by letting W = wywy , where wy, ws ~ N(0, I;). We first generate normal ICL
prompts to generate task vectors as the hidden states of the last arrow token after the first attention
layer, and then inject them into zero-shot prompts after normalization. The final outputs g5t are taken
as the output of these injected zero-shot prompts after being processed with the same transformer

model. We compute the final risk as E H ng*ﬁz T+ szﬁ H to simulate the layer normalization blocks

in practical LLMs. The reported scores are averaged for n € [5, 30].

C.2 Experiments on Practical LLMs

Datasets. Following the settings of the original task vector method [[7]], our study covers 33 tasks in 5
categories. The detailed description for each task is provided in Table

'The source code is available in supplementary materials.
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Table 3: Descriptions of the tasks used in our empirical studies.

Category Task Example Description
Contry to Capital France — Paris Output the capital city of the given country.
Person to Language Macron — French ~ Output the native language of the given person.
Location to Continent Paris — Europe  Output the corresponding continent of the given
Knowledge location
Religion Saladin — Muslim  Output the associated religion of the given loca-
tion or person.
List First [a,b,c] — a Output the first item in the given list.
List Last [a,b,c] — ¢ Output the last item in the given list.
Next Letter a—b Output the next letter of the given letter in the
alphabet.
Algorithmic Prev Letter b—a Output the previous letter of the given letter in
the alphabet.
To Upper a— A Output the corresponding uppercase letter of the
given lowercase letter.
To Lower A —a Output the corresponding lowercase letter of the

given uppercase letter.

Translation

English to French
English to Italian
English to Spanish
French to English
Italian to English

hello — bonjour
hello — ciao
hello — hola
bonjour — hello
ciao — hello

Translate the given word in English to French.
Translate the given word in English to Italian.
Translate the given word in English to Spanish.
Translate the given word in French to English.
Translate the given word in Italian to English.

Spanish to English hola — hello Translate the given word in Spanish to English.

Present to Gerund go — going Output the corresponding gerund form of the
given verb in present simple tense.

Present to Past go — went Output the corresponding past simple form of
the given verb in present simple tense.

Present to Past Perfect g0 — gone Output the corresponding past perfect form of
the given verb in present simple tense.

Gerund to Present going — go Output the corresponding present simple form
of the given verb in gerund form.

Linguistic Past to Present went — go Output the corresponding present simple form

of the given verb in past simple tense.

Past Perfect to Present gone — go Output the corresponding present simple form
of the given verb in past perfect tense.

Singular to Plural dog — dogs Output the corresponding plural form of the
given noun in singular form.

Plural to Singular dogs — dog Output the corresponding singular form of the
given noun in plural form.

Antonym happy — sad Output the antonym of the given adjective.

To Upper & Lower as A Output the given letter in uppercase if it is in
lowercase, and vice versa.

English & French hello <+ bonjour  Translate the given word to French if it is in
English, and vice versa.

English & Italian hello <> ciao Translate the given word to Italian if it is in
English, and vice versa.

English & Spanish hello <+ hola Translate the given word to Spanish if it is in

Bijection English, and vice versa.

Present & Gerund g0 <> going Output the given verb in gerund form if it is in
present simple tense, and vice versa.

Present & Past 20 > went Output the given verb in past simple form if it is
in present simple tense, and vice versa.

Present & Past Perfect g0 ¢+ gone Output the given verb in past perfect form if it
is in present simple tense, and vice versa.

Singular & Plural dog <> dogs Output the given noun in plural form if it is in

singular form, and vice versa.
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Table 4: Accuracy comparison between standard ICL (Baseline), the task vector method (TaskV),
and our strategy (TaskV-M). The experiment is conducted on Pythia-12B with n = 10.

Method \Knowledge Algorithmic  Translation Linguistic Bijection \ Average

Baseline 6.60 +1.59 14.07 £ 1.45 8.60 £ 0.68 1253 £157  10.31 +£0.70 | 10.82 +0.48
TaskV 63.30 +262 8473 +122  62.07 +£098 82.58 + 122 42.27 +092 | 66.40 +0.96

Baseline 61.80 £545 72804115 4327 +292 57.07+115 4191 +283 | 53.95 +1.02
1-shot  TaskV 76.40 £240 8420 £105 7147 +141 87.16 £2.04 53.11 £237 | 73.59 +0.79
TaskV-M | 77.70 £252  83.73 +£137 71.00 £148 86.80 +1.59 53.87 £290 | 73.68 +0.90

Baseline 70.30 £3.71 82.13+054 60.80+181 81.16 +157 50.76 +£2.17 | 68.41 +0.64
2-shot  TaskV 80.30 +246  87.00 + 1.63 76.13 £377 89.33 £0.70 58.67 £244 | 77.41 +0.50
TaskV-M | 81.60 +156 86.47 +£040 7727 £253 89.51 +088 59.24 +248 | 77.87 £0.76

Baseline 77.60 £240  81.87 +0.81 68.13 £2.02 8631 +£1.93 55.73 +£1.60 | 73.20 4 0.31
3-shot  TaskV 84.00 +276  86.33 £1.17 79.53 £227 92.00 £067 58.76 £1.53 | 79.06 + 0.67
TaskV-M | 85.40 + 231 87.07 £1.18 78.13 £ 186 92.84 +£068 59.56 +1.27 | 79.54 +0.35

Baseline 78.40 +1.83 82.73 £ 0.44 7240 £124 88.89+125 5791 +146 | 75.46 +0.64
4-shot  TaskV 83.80 +1.12  87.60 +1.81 80.20 +£239 92.18 +£096 59.38 +£0.47 | 79.59 +0.62
TaskV-M | 84.30 150 88.13 +0.81 80.00 +267 91.87+125 60.31 +086 | 79.87 +0.51

0-shot

Prompt Template. The template used to construct ICL demonstrations is “Example:{x;} — {y;},
where x; and y; are subsequently replaced by the input and output of the semantic mapping. For
the query part, y; is omitted from the prompt. After concatenating each demonstration with “\n”, an
example of the full input prompt is:

Example:{z1} — {y1 }\n- - - Example:{x,,} — {y, }\nExample:{xtcst } —

Evaluation. To evaluate the N-shot performance, we generate 50 x (N + 1) i.i.d. prompts for each
task with number of demonstrations n = 10 for task vector extraction. The hidden states of the
last — token, which is also literally the last token in the prompt, are recorded for every layer in the
transformer. Thereafter, we generate another 50 i.i.d. prompts with N demonstrations, where Xeg 1S
selected to be distinct from the previous chosen ones. The final accuracy is measured by whether
the next word predicted matches the expected answer. The performance of the standard ICL method
(Baseline) is acquired by inferring without interference. For the task vector method (TaskV) and our
multi-vector variant (TaskV-M), the extracted task vectors are injected to replace the hidden states of
the arrow — tokens at a specified layer {. For TaskV, only the last arrow token is injected, while for
TaskV-M, each of the N + 1 arrow tokens is injected with the N + 1 extracted task vectors for the
same task. The performance is reported for the one layer I € L achieving the highest accuracy. For
each case, the mean and standard deviation are evaluated through 5 independent trials.

Additional Results. Besides Llama-13B, we also observe consistent accuracy improvement of our
TaskV-M method on the Pythia-12B model, as reported in Table 4]

D Additional Discussions

D.1 Last Task Vector Weights the Most

While our analysis of linear-attention models suggests that each formed task vector (i.e., the hidden
state at each arrow token) contributes equally to the final prediction, this assumption does not fully
hold in practical LLMs. As demonstrated by the conflicting tasks experiment in [[7], injecting a
task vector from task B into an ICL prompt designed for task A causes the model to predominantly
perform task B. This behavior indicates that LLMs largely rely on the last arrow token to determine
the task identity. We attribute this to the causal attention mechanism used in practical LLMs, which
is not captured by our current theoretical analysis. In causal attention, only the final arrow token
can aggregate information from the entire preceding context, making it the most informative and
influential for prediction. This explains why our multi-vector strategy offers modest, though consistent,
performance gains. The improvement suggests that intermediate arrow tokens do participate in the
inference process, albeit less effectively. Enhancing how LLMs utilize information from all arrow
tokens remains a promising direction for improving task vector accuracy and robustness.
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D.2 Decoding the Vocabulary of Task Vectors

Multiple prior works [7} [16] have observed an interesting phenomenon: when task vectors are
extracted and passed through the final classification layer, the top predicted tokens often belong to
the output space of the corresponding task. This effect is particularly prominent in the GPT-J model.
Interestingly, we find that this behavior can be naturally explained by our analysis of linear models.
Specifically, we assume that the hidden state space has dimensionality at least 2d, where the first d
dimensions represent the input (z;) and the last d dimensions represent the output (y;). Task vectors
constructed under this architecture preserve this layout: the first half encodes a linear combination
of z;, and the second half encodes a linear combination of y;. In the final layer, the model predicts
Ytest DY extracting the last d dimensions of the final token. When this same mechanism is applied to
a task vector, it naturally produces a linear combination of the y; values, thereby generating outputs
aligned with the task’s output space. This indicates that practical LLMs adopt a similar partition in
the hidden state space, justifying our prompt structure for linear model analysis.

D.3 Limitations

While our analysis provides new insights into the emergence and functionality of task vectors, it is
primarily conducted on simplified linear-attention transformers and synthetic tasks, which may not
fully capture the complexity of real-world LLMs. Moreover, our theoretical framework focuses on
middle-layer representations and does not fully account for deeper interactions across layers or the
role of fine-tuned components such as layer normalization and multi-head attention.

D.4 Broader Impacts

This work advances the theoretical understanding of in-context learning and task vector mechanisms,
which can lead to more efficient and interpretable language models. By enabling faster inference
through task vectors, it may reduce the computational cost and energy consumption of large-scale
deployment, thereby making Al systems more accessible and environmentally sustainable. Im-
proved interpretability could also enhance trust and transparency in Al applications across education,
healthcare, and other socially beneficial domains.

As task vector methods improve efficiency and transferability, they may also be misused to replicate
or extract functionality from proprietary models without authorization, raising concerns around model
intellectual property. Additionally, while interpretability is often framed as a benefit, deeper insights
into model internals could be exploited to engineer adversarial inputs or extract sensitive training
data. Careful consideration and mitigation strategies are essential to ensure that such work aligns
with the broader goals of safe and beneficial Al
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4 NeurIPS Paper Checklist

7

715 1. Claims

716 Question: Do the main claims made in the abstract and introduction accurately reflect the
717 paper’s contributions and scope?

718 Answer: [Yes]

719 Guidelines:

720 * The answer NA means that the abstract and introduction do not include the claims
721 made in the paper.

722 * The abstract and/or introduction should clearly state the claims made, including the
723 contributions made in the paper and important assumptions and limitations. A No or
724 NA answer to this question will not be perceived well by the reviewers.

725 * The claims made should match theoretical and experimental results, and reflect how
726 much the results can be expected to generalize to other settings.

727 * It is fine to include aspirational goals as motivation as long as it is clear that these goals
728 are not attained by the paper.

729 2. Limitations

730 Question: Does the paper discuss the limitations of the work performed by the authors?

731 Answer: [Yes]

732 Guidelines:

733 * The answer NA means that the paper has no limitation while the answer No means that
734 the paper has limitations, but those are not discussed in the paper.

735  The authors are encouraged to create a separate "Limitations" section in their paper.
736 * The paper should point out any strong assumptions and how robust the results are to
737 violations of these assumptions (e.g., independence assumptions, noiseless settings,
738 model well-specification, asymptotic approximations only holding locally). The authors
739 should reflect on how these assumptions might be violated in practice and what the
740 implications would be.

741 * The authors should reflect on the scope of the claims made, e.g., if the approach was
742 only tested on a few datasets or with a few runs. In general, empirical results often
743 depend on implicit assumptions, which should be articulated.

744 * The authors should reflect on the factors that influence the performance of the approach.
745 For example, a facial recognition algorithm may perform poorly when image resolution
746 is low or images are taken in low lighting. Or a speech-to-text system might not be
747 used reliably to provide closed captions for online lectures because it fails to handle
748 technical jargon.

749 * The authors should discuss the computational efficiency of the proposed algorithms
750 and how they scale with dataset size.

751 * If applicable, the authors should discuss possible limitations of their approach to
752 address problems of privacy and fairness.

753 * While the authors might fear that complete honesty about limitations might be used by
754 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
755 limitations that aren’t acknowledged in the paper. The authors should use their best
756 judgment and recognize that individual actions in favor of transparency play an impor-
757 tant role in developing norms that preserve the integrity of the community. Reviewers
758 will be specifically instructed to not penalize honesty concerning limitations.

759 3. Theory assumptions and proofs

760 Question: For each theoretical result, does the paper provide the full set of assumptions and
761 a complete (and correct) proof?

762 Answer: [Yes]

763 Guidelines:

764 » The answer NA means that the paper does not include theoretical results.
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* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
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¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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8.

10.

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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14.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects
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16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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