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Abstract

Task vectors offer a compelling mechanism for accelerating inference in in-context1

learning (ICL) by distilling task-specific information into a single, reusable rep-2

resentation. Despite their empirical success, the underlying principles governing3

their emergence and functionality remain unclear. This work proposes the Linear4

Combination Conjecture, positing that task vectors act as single in-context demon-5

strations formed through linear combinations of the original ones. We provide6

both theoretical and empirical support for this conjecture. First, we show that task7

vectors naturally emerge in linear transformers trained on triplet-formatted prompts8

through loss landscape analysis. Next, we predict the failure of task vectors on9

representing high-rank mappings and confirm this on practical LLMs. Our findings10

are further validated through saliency analyses and parameter visualization, sug-11

gesting an enhancement of task vectors by injecting multiple ones into few-shot12

prompts. Together, our results advance the understanding of task vectors and shed13

light on the mechanisms underlying ICL in transformer-based models.14

1 Introduction15

In-context learning (ICL) is a core capability of large language models (LLMs), allowing them to16

perform new tasks without parameter updates by conditioning on a few input-output examples in17

the prompt [2]. Unlike traditional training, ICL relies on attention-based mechanisms to infer task18

structure directly from context. This surprising generalization ability has led to growing interest in19

uncovering the principles of learning purely from contextual examples [21, 3, 4, 15, 5].20

A recent work investigates the task vector method [7] (concurrent works include function vectors21

[16] and in-context vectors [13]), a technique that distills underlying task information from ICL22

demonstrations into a single vector. Typically, ICL prompts are structured as sequences of triplets,23

each encoding a semantic mapping, in addition to a query at the end (e.g., “hot→ cold, up→ down,24

day→ night, dark→”). Task vectors are then extracted from the hidden states of the last (→) token.25

Once obtained, these vectors can be injected into the same position in new prompts (e.g., “big→”),26

enabling the model to generalize to unseen inputs in a zero-shot fashion.27

Task vectors have been shown to naturally emerge even in small transformer models trained from28

scratch on synthetic data [24], suggesting that their formation is a general property of attention-based29

architectures. Recent studies further demonstrate that task vectors can be enhanced by aggregating30

hidden states across multiple layers and multiple arrow tokens [12]. Beyond language models, task31

vectors are also found effective in large-scale visual [8] and multi-modal [9] models.32

Despite their empirical effectiveness, the underlying mechanism of task vectors, especially how they33

emerge, function, and encode task information, remains poorly understood. This paper takes a step34

toward unveiling the principles behind it by introducing the following conjecture:35
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Figure 1: Overview of task vector and our main conjecture. (a) Task vector emerges during ICL as a
linear combination of preceding in-context demonstrations. (b) It can then be injected into zero-shot
prompts and functions as a single, representative demonstration, facilitating efficient prediction.

Linear Combination Conjecture
The injected task vector functions as a single in-context demonstration,

formed through a linear combination of the original demonstrations (hidden states).
36

Figure 1 provides an intuitive illustration for our conjecture. In the following sections, we validate this37

conjecture through various empirical and theoretical perspectives. These analyses comprehensively38

explain how task vectors naturally emerge within attention-based model architectures, effectively39

encode task-related information, and facilitate inference in zero-shot prompts. Our work advances the40

understanding of the underlying mechanisms behind ICL, clarifying both the efficacy and limitations41

of task vectors in transformer-based LLMs. The highlights of this paper are as follows:42

• Theoretical Justification in Linear Transformers: We theoretically characterize the critical43

points of linear-attention transformers and demonstrate how they solve random linear regression44

tasks through embedding concatenation and gradient descent. With a triplet-formatted input45

prompt structure, task vectors naturally emerge at arrow tokens as linear combinations of the46

in-context demonstrations. These vectors serve as redundancy against information loss induced by47

dropout, thereby improving robustness. Empirically, the learned linear model parameters closely48

align with the predicted structure and successfully replicate the task vector mechanism.49

• Empirical Verification in Practical LLMs: We visualize the information flow in LLMs with50

saliency analysis and observe patterns consistent with linear models, suggesting they share similar51

underlying mechanisms. According to our conjecture, inference with task vectors is analogous to52

1-shot ICL, which is inherently limited to rank-one meta-predictors under the gradient descent53

perspective. To validate this, we introduce a series of bijection tasks that are provably unsolvable54

by rank-one predictors, and empirically confirm this failure in real-world transformers. Building55

on these insights, we enhance the standard task vector method by injecting multiple vectors into56

few-shot prompts, resulting in consistent performance gains across a range of ICL tasks.57

2 Setting: Random Linear Regression with Linear-Attention Transformers58

Notations: We write [n] = {1, · · · , n}. The Hadamard product is denoted by ◦, and the Kronecker59

product by⊗. The identity matrix of dimension n is denoted by In, while 0n and 0m×n represent zero60

vectors or matrices of the corresponding dimensions. Subscripts are omitted when the dimensions are61

clear from context. We defineM(M) =
{
Λ ∈ Rdim(M)

∣∣ Λ = M ◦A, A ∈ Rdim(M)
}

as the set of62

masked matrices induced by the binary mask M . For a general matrix A, the element at the i-th row63

and j-th column is denoted by Ai,j , and the sub-block from rows i to k and columns j to l is denoted64

by Ai:k,j:l. diag(A1, · · · , An) represents the block-diagonal matrix constructed by {Ai}ni=1.65

Random Linear Regression: Following the settings in literature [6, 17, 1, 20], we consider training66

linear transformers on random instances of linear regression. Let {xi}n+1
i=1 , where xi ∈ Rd, denote67

covariates drawn i.i.d. from distribution Px, and let {wi}di=1, where wi ∈ Rd, denote coefficients68

drawn i.i.d. from distribution Pw. Define the coefficient matrix as W = [w1 · · · wd]⊤ ∈ Rd×d.69

The responses are then generated as yi = Wxi for i ∈ [n + 1]. We denote by X,Y ∈ Rd×n the70

matrices whose columns are xi and yi, respectively, for i ∈ [n]. The query covariate and response are71

denoted by xtest = xn+1 and ytest = yn+1 respectively.72
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Linear Self-Attention Transformer: Following prior works [17, 1, 20], we consider transformers73

composed of linear self-attention layers. Let Z0 ∈ R2d×dp denote the input matrix constructed from74

X , Y and xtest but excluding ytest, where dp denotes the number of tokens. The transformer is75

defined by stacking L attention blocks with skip connections, where the l-th layer is expressed as:76

Zl = Zl−1 +
1
n AttnVl,Ql

(Zl−1), AttnV,Q(Z) = V ZM
(
Z⊤QZ

)
. (1)

Here, the trainable parameters are {Vl, Ql}Ll=1, where Vl ∈ R2d×2d represents a reparameterization77

of the projection and value matrices, and Ql ∈ R2d×2d denotes the query and key matrices. Following78

the work [1], we adopt a masking matrix M = diag(Idp−1, 0) to prevent attention from earlier tokens79

to the final one. The output of the transformer is defined as TF
(
Z0; {Vl, Ql}Ll=1

)
= (ZL)(d+1:2d),dp

80

(i.e., the latter half of the last column). This definition aligns with the structure of the input Z0, which81

will be further discussed in subsequent sections. During training, the parameters are optimized to82

minimize the expected ICL risk over random linear regression instances:83

L
(
{Vl, Ql}Ll=1

)
= EZ0,W

∥∥TF(Z0; {Vl, Ql}Ll=1

)
+Wxtest

∥∥2
2
. (2)

3 Emergence of Task Vectors in Linear-Attention Transformers84

Firstly, we present theoretical evidence indicating that task vectors naturally arise even in simple85

linear transformers. Specifically, we analyze the loss landscape of the in-context risk, focusing on the86

properties of its critical points. As a startup, recall the standard linear regression setup [1, 20], where87

the (xi, yi) pairs for each demonstration are concatenated to form the input prompt:88

Z0 =

[
X xtest

Y 0

]
=

[
x1 x2 · · · xn xtest

y1 y2 · · · yn 0

]
∈ R2d×(n+1). (3)

According to existing analyses [1, 25, 14], each attention layer in this setting performs one step of89

gradient descent on the coefficient matrix W . Specifically, the theoretically optimal single-layer (pos-90

sibly nonlinear) attention [10] implements the following predictive function [1] when the covariates91

are drawn from Px = N (0, Id), by selecting V1 ∝ diag(0d×d, Id) and Q1 ∝ diag(Id, 0d×d):92

TF(Z0; (V1, Q1)) = − 1
nY σ(X)⊤σ(xtest), where σ : Rd 7→ Rr is a kernel function. (4)

Here, we abbreviate [σ(x1) · · · σ(xn)] as σ(X). Equation (4) employs W ′ ∝ Y σ(X)⊤ as an93

estimate of coefficient matrix W , yielding prediction ŷtest = W ′σ(xtest). In this paper, we consider94

alternative settings more reflective of practical scenarios, where xi and yi are separated as distinct95

tokens. As noted [26], such separation necessitates the usage of position encodings for bi-directional96

attention. Following prior analysis [11], we assume that position encodings are appended to the input97

tokens, and reformulate the layer-wise update rule of self-attention as:98

AttnV,Q(Z) = V ZM
[
Z⊤ P⊤]Q [Z

P

]
, where P ∈ Rdp×dp . (5)

For analytical tractability, we take P = Idp
as one-hot position encodings. Inspired by the parameter99

structure in [1] and eq. (4), we further impose the following constraints on the trainable parameters:100

Vl = diag(Al, Bl), Ql = diag(Cl, 0d×d, Dl), where Al, Bl, Cl ∈ Rd×d, Dl ∈ Rdp×dp . (6)

These parameterizations ensure that the projection and attention operations act independently on the101

covariate, response, and positional components of the input. This structural decoupling is essential for102

understanding how the transformer identifies the dependency between each (xi, yi) pair and revealing103

the actual optimization algorithm being executed by the model. The proofs for the main theoretical104

results in this paper are available in Appendix B.105

3.1 Warm-up: Learning with Pairwise Demonstrations106

We begin by analyzing the optimization of linear transformers on pairwise demonstrations. Following107

previous approach [6, 19, 22], we decompose each demonstration in eq. (3) into a pair of tokens108

Zi
0 =

[
xi 0
0 yi

]
∈ R2d×2 to better reflect the practical ICL prompt structure:109

Z0 =
[
Z1
0 · · · Zn

0 Ztest
0

]
=

[
x1 0 · · · xn 0 xtest 0
0 y1 · · · 0 yn 0 0

]
∈ R(2d)×(2n+2). (7)
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Figure 2: Visualization of learned Dl weights. (a) Pairwise demonstrations yield a block-diagonal
structure aligned with Theorem 1. (b) Triplet demonstrations yield a richer structure aligned with
Theorem 2. (c) The learned matrix Λ4 has nearly orthonormal rows as suggested by Proposition 3.

The following theorem suggests that certain critical points of the in-context risk effectively solve110

the regression problem by first concatenating each pair of (xi, yi) into the same tokens, and then111

executing a variant of the gradient descent algorithm to compute the prediction. To simplify notation,112

we denote A = {Al}Ll=1 (similarly for B, C, and D) and present:113

Theorem 1 (Critical Points; Pairwise Demonstrations). Assume Px = N (0,Σ), Pw = N (0,Σ−1)114

with some Σ ∈ Rd×d satisfying Σ ≻ 0. Define SI ,SΣ ⊂ Rd×d and SP ⊂ Rdp×dp as115

SI = {λId | λ ∈ R}, SΣ =
{
λΣ−1

∣∣ λ ∈ R
}
, SP =

{
diag(In ⊗ Λ1,Λ2)

∣∣ Λ1,Λ2 ∈ R2×2
}
.

Consider optimizing an L-layer linear transformer with pairwise demonstrations and parameter116

configuration given in eq. (6), we then have117

infA,B∈SL
I , C∈SL

Σ , D∈SL
P

∑
H∈A∪B∪C∪D

∥∥∇HL
(
{Vl, Ql}Ll=1

)∥∥2
F
= 0.

To understand the behavior of these critical points within a self-attention layer, we fix Σ = Id and118

take Al, Bl = Id, Cl = −λId, and Dl = diag(In ⊗ Λ1,Λ2). Let the first and last d rows of Zl be119

denoted by Xl and Yl, respectively. Under these settings, the update rule of each layer becomes:120

Zl = Zl−1 − λZl−1MX⊤
l−1Xl−1 +

[
Z1
l−1Λ1 · · · Zn

l−1Λ1 Ztest
l−1 diag(1, 0)Λ2

]
. (8)

The above update can be decomposed into the following two distinct components:121

• Gradient Descent: The first component, Zl ← Zl−1 − λZl−1MX⊤
l−1Xl−1, implements the122

GD++ algorithm [17]. This variant enhances convergence speed over standard gradient descent by123

improving the condition number of the Gram matrix X⊤
l−1Xl−1. Notably, this operation modifies124

only Xl but not Yl for the first layer, as implied by the structure of Ql (eq. (6)).125

• Embedding Concatenation: The second component, Zi
l ← Zi

l−1 + Zi
l−1Λ1 for i ∈ [n], mixes126

each pair of (xi, yi) tokens. Given that xi and yi tokens are initially linearly separable as in127

our formulation, this operation concatenates each (xi, yi) pair, thereby transforming pairwise128

demonstrations into the original single-token format. For the query token Ztest
l , this operation129

copies xtest into the final token, reconstructing the structure in eq. (3), where each non-final token130

directly concatenates (xi, yi) of a demonstration, and the final token contains only xtest.131

In summary, our analysis reveals that for pairwise demonstrations, the first attention layer leverages132

position encodings to distinguish between covariate and response tokens, subsequently concatenating133

them to form a single-token prompt structure. The remaining layers then apply the GD++ algorithm,134

mirroring the learning dynamics on single-token demonstrations. As a result, an L-layer linear135

transformer allocates one layer for embedding concatenation and utilizes the remaining L− 1136

layers to perform gradient descent. In Figure 2a, we visualize the learned Dl weights under the137

setting of Theorem 1, and observe that they closely match the critical point structure of SP .138

3.2 Emergence of Task Vectors with Triplet Demonstrations139

Next, to better reflect the prompt structure of practical ICL, we insert additional zero tokens between140

each pair of (xi, yi) to simulate the arrow (→) tokens. This reformulates each demonstration as a141

triplet (xi,→, yi), enabling us to analyze the critical points with these triplet demonstrations:142

Z0 =

[
x1 0 0 · · · xn 0 0 xtest 0 0
0 0 y1 · · · 0 0 yn 0 0 0

]
∈ R(2d)×(3n+3). (9)

143
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Theorem 2 (Critical Points; Triplet Demonstrations). Assume Px = N (0,Σ), Pw = N (0,Σ−1)144

with some Σ ∈ Rd×d satisfying Σ ≻ 0. Define SI ,SΣ ⊂ Rd×d and SP ⊂ Rdp×dp as145

SI = {λId | λ ∈ R}, SΣ =
{
λΣ−1

∣∣ λ ∈ R
}
,

SP =
{
diag(In ⊗ Λ1,Λ2) + In+1 ⊗ Λ3 + Λ4 ⊗ Λ5

∣∣∣
Λ1,Λ2 ∈M

(
1 0 1
0 0 0
1 0 1

)
,Λ3 ∈M

(
0 0 0
0 1 0
0 0 0

)
,Λ4 ∈ R(n+1)×(n+1),Λ5 ∈M

(
0 1 0
0 0 0
0 1 0

)}
.

Consider optimizing an L-layer linear transformer with triplet demonstrations and parameter config-146

uration given in eq. (6), we then have147

infA,B∈SL
I , C∈SL

Σ , D∈SL
P

∑
H∈A∪B∪C∪D

∥∥∇HL
(
{Vl, Ql}Ll=1

)∥∥2
F
= 0.

To analyze the behavior of each attention layer, we note that the critical points for the matrices Al,148

Bl, and Cl remain consistent with Theorem 1, thereby implementing the GD++ algorithm. For the149

matrix Dl, we decompose its structure into three distinct components:150

• Embedding Concatenation: The first component, diag(In ⊗ Λ1,Λ2), mixes each pair of (xi, yi)151

tokens, effectively concatenating them — analogous to the operation analyzed in the previous152

section. This converts all non-arrow tokens into single-token demonstrations.153

• Self Magnification: The second component, In+1 ⊗ Λ3, scales the embeddings corresponding to154

each arrow (→) token by a fixed constant and adds them back to themselves.155

• Task Vector Formation: The third component, Λ4 ⊗ Λ5, performs a weighted summation across156

all demonstrations in the prompt. This operation is central to the emergence of task vectors. Let157

[β1 · · · βn+1] ∈ Rn×(n+1) denote the first n rows of Λ4 (we will soon show that the last row158

of Λ4 converges to zero), the first self-attention layer then outputs n+ 1 linear combinations of159

the demonstrations as the hidden states for the arrow tokens, expressed as zitv = [ α1Xβi

α2Y βi
] for160

i ∈ [n + 1], where α1, α2 ∈ R are the two non-zero entries of Λ5. These vectors can then be161

injected into zero-shot prompts and function as single-token demonstrations.162

This mechanism provides strong theoretical evidence for our linear combination conjecture, demon-163

strating that task vectors naturally emerge from the optimization dynamics of linear-attention164

transformers operating on triplet-formatted prompts. Notably, the structure of SP closely aligns165

with our visualization of Dl in Figure 2b, confirming our theoretical analysis. We now further166

investigate the structure of the weight matrix Λ4, and present the following result:167

Proposition 3 (Optimal Task Vector Weights). Assume Px, Pw = N (0, Id). Consider optimizing168

a 2-layer linear-attention transformer with triplet demonstrations and parameter configuration given169

in eq. (6), and assume C1 = 0. Let170

D1 = diag(In ⊗ Λ1,Λ2) + In+1 ⊗ Λ3 + Λ4 ⊗ Λ5 ∈ SP
be any minimizer of the in-context risk L

(
{Vl, Ql}Ll=1

)
, we then have Λ4 ∈ SU , where171

SU =
{
Λ
∣∣ ΛΛ⊤ = λ diag(In, 0), λ ∈ R

}
.

This result suggests that the optimal Λ4 weight matrix satisfies two key properties: (1) the last row172

is zero, and (2) the first n rows are mutually orthonormal. These conditions imply that the learned173

weight vectors β1, · · · , βn+1 are likely to be distinct. Therefore, the n + 1 task vectors produce174

diverse linear combinations of the demonstrations, thereby enriching the representation within the175

input prompt. This implication is verified in Figure 2c. While task vectors are typically extracted176

from the final arrow (→) token in standard usage, here we consider all arrow tokens as task vectors177

as bi-directional attention allows each to aggregate information from the full prompt.178

4 Validating the Linear Combination Conjecture on Bijection Tasks179

We then present an empirical observation that supports our conjecture. Consider the setting where180

task vectors are injected into zero-shot prompts. Based on our prior analysis, the injected task vector181

ztv is formed as a linear combination of the original demonstrations. As a result, we show that the182

injected prompt reconstructs the single-token structure in eq. (3) with only 1 demonstration:183

Z0 = [ztest ztv 0] =

[
xtest xtv 0
0 ytv 0

]
=

[
xtest Xβ 0
0 Y β 0

]
∈ R2d×3, (10)
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Figure 3: Visualization of saliency matrices as bipartite graphs between layer l ( ) and l + 1 ( ),
where edge widths indicate saliency magnitude; and variations in the extracted task vector after
perturbing the i-th demonstration ( ), alongside the predicted weights ( ) obtained by optimizing
Proposition 6. (a) Each yi token is primarily attending to its corresponding (xi, yi) pair, reflecting
embedding concatenation. (b) The final (→) token attends broadly to all yi tokens, indicating task
vector formation — this occurs just before the optimal injection layer (l = 13). (c) The predicted
task vector weights closely match the trend of empirical results, validating our theoretical model.

where the weight vector β ∈ Rn comes from the last column of Λ4 (Theorem 2). After the first layer,184

the Λ2 matrix of SP moves xtest to the last token, reducing the prompt to a single-shot, single-token185

demonstration. According to the optimal single-layer transformer (eq. (4)), the estimated coefficient186

matrix is now W ′ = Y β(Xβ)⊤, which is rank-one. Therefore, if our main conjecture holds, task187

vectors will be inherently limited in their expressiveness: they can only realize rank-one coefficient188

matrices. This implication also naturally extends to multi-layer transformers.189

While our analysis is conducted on linear-attention transformers, we demonstrate that similar learning190

patterns also emerge within practical LLMs. Specifically, we visualize the layer-wise information191

flow between tokens using saliency maps [18], where the saliency score for each attention matrix192

is computed as S(Al) =
∑

h |Al,h · ∂L/∂Al,h|, Al,h denotes the attention matrix of the h-th head193

at layer l, and L is the ICL loss (i.e., the cross-entropy loss for predicting ytest). As demonstrated194

in Figures 3a and 3b, the saliency maps reveal certain patterns matching the ones of embedding195

concatenation and weighted summation. Importantly, the latter occurs immediately before the optimal196

task vector injection layer. This suggests that real-world models implement a similar algorithm to197

solve ICL tasks and, consequently, inherit the same expressiveness limitation.198

To verify this, we construct a specialized class of ICL tasks, named bijection tasks. Specifically, given199

a bijective mapping from domain X to codomain Y , one can combine it with its inverse mapping200

to form a new task that maps X ∪ Y onto itself. For instance, combining the "to uppercase" task201

with its inverse "to lowercase" yields a bijection task that maps each letter to its opposite case, and a202

valid ICL prompt takes the form: “a→ A, B→ b, c→ C, D→”. Note that this differs from task203

superposition [23], as each input corresponds to a unique, well-defined output. We then establish a204

key limitation of rank-one coefficient matrices in addressing such tasks:205

Proposition 4. Let x, y ∈ Rd be non-zero vectors. Then the following are equivalent: (1) There206

exists a rank-one matrix W ∈ Rd×d such that y = Wx and x = Wy; (2) x = y or x = −y.207

This result highlights that rank-one coefficient matrices cannot solve general bijection tasks, and208

are restricted to only the identity mapping (x = y) or the negation mapping (x = −y). We further209

verify this implication in real-world LLMs: as summarized in Table 1, both ICL and the task vector210

method perform well on the original tasks and their inverses. Nevertheless, for the bijection tasks,211

while ICL preserves performance in many cases, the task vector method consistently fails, confusing212

examples from the two domains and yielding near-random predictions (50%). For instance, in the "to213

uppercase" task, task vectors can predict the correct letter but fail to distinguish between uppercase214

and lowercase. The only notable exceptions are the copy task (corresponding to the x = y case in215

Proposition 4) and the antonym task (corresponding to x = −y).216

Together, these findings empirically validate our conjecture: the task vector approach, which is217

restricted to rank-one coefficient matrices, cannot solve general bijection tasks. While a variety218

of ICL tasks have been explored to assess the capabilities of task vectors [7, 16, 12], the fundamental219

limitation of task vectors in addressing these bijection tasks has not been previously identified.220
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Table 1: Comparison of the accuracies of ICL and task vector on bijection tasks (Llama-7B, n = 10).
We use gray text to indicate accuracies lower than 60%.

Task Domain X Domain Y Example
X → Y Y → X X ↔ Y

ICL TV ICL TV ICL TV

To Upper {a, · · · , z} {A, · · · , Z} a → A 1.00 0.91 1.00 0.99 1.00 0.55

Translation
English French hello → bonjour 0.83 0.84 0.82 0.70 0.54 0.35
English Italian hello → ciao 0.84 0.78 0.82 0.74 0.70 0.47
English Spanish hello → hola 0.92 0.88 0.89 0.75 0.64 0.43

Linguistic

Present Gerund go → going 0.99 0.95 1.00 0.97 0.80 0.41
Present Past go → went 0.98 0.91 0.99 0.96 0.52 0.33
Present Past Perfect go → gone 0.82 0.82 0.94 0.65 0.55 0.33
Singular Plural dog → dogs 0.88 0.78 0.94 0.89 0.76 0.51

Copy {a, · · · , z, A, · · · , Z} A → A - - 1.00 0.98
Antonym Adjectives happy → sad 0.89 0.83 - 0.83 0.73

5 Further Discussions221

Inseparable Covariates and Responses. In our main analysis, we assume that xi and yi embeddings222

are linearly separable, allowing the addition xi + yi to act a concatenation operation. However,223

recognizing that this assumption does not generally hold for real-world transformers, we extend our224

analysis to the following setting, where xi and yi are no longer linearly separable. While this still225

imposes a 2d-dimensional requirement on the hidden space, such a constraint is easily satisfied in226

practical transformers, given the high dimensionality of their internal representations.227

Z0 =

[
0 0 · · · 0 0 0 0
x1 y1 · · · xn yn xtest 0

]
∈ R(2d)×(2n+2). (11)

We slightly modify the sparsity constraints for the first layer, and require (D0)2i,: = 0 for i ∈ [n+1]:228

V0 =

[
0 A0

0d×d 0

]
, Q0 =

[
02d×2d 0

0 D0

]
, where A0 ∈ Rd×d, D0 ∈ Rdp×dp . (12)

With these conditions, we are ready to establish the critical points for inseparable demonstrations.229

Note that V0 and Q0 do not involve B0 and C0, so the sequences B and C have size L− 1.230

Theorem 5. Under the same settings as Theorem 1, define SI ,SΣ ⊂ Rd×d and SP ⊂ Rdp×dp as231

SI = {λId | λ ∈ R}, SΣ =
{
λΣ−1

∣∣ λ ∈ R
}
, SP =

{
diag(In ⊗ Λ1,Λ2)

∣∣ Λ1,Λ2 ∈ R2×2
}
.

Consider optimizing an L-layer linear transformer with inseparable pairwise demonstrations and232

parameter configuration given in eq. (12) for the first layer and eq. (6) for the remaining layers, then233

infA∈SL
I , B∈SL−1

I , C∈SL−1
Σ , D∈SL

P

∑
H∈A∪B∪C∪D

∥∥∇HL
(
{Vl, Ql}Ll=1

)∥∥2
F
= 0.

This result suggests that for inseparable demonstrations, the first layer performs a functionally similar234

concatenation operation by "moving" the embedding of each xi to the corresponding yi position.235

This enables the model to reconstruct the single-token structure without linear separability.236

Optimal Weights for Causal Task Vectors. While task vectors naturally emerge in linear trans-237

formers, their embeddings do not directly help minimize the ICL risk, as evidenced by the identical238

performance between pairwise and triplet formatted prompts (Figures 4a and 4b). Instead, we show239

that task vectors contribute to minimizing the training (i.e., LLM pretraining) risk when token-wise240

dropout is applied, acting as redundancies for in-context demonstrations that may be randomly241

dropped during training. This redundancy ensures that essential task information is preserved and242

continues to facilitate accurate prediction despite partial context loss.243

Proposition 6. Under the same settings as Proposition 3, consider adding token-wise dropouts Ol:244

Zl = Zl−1Ol +
1
n AttnVl,Ql

(Zl−1)Ol, where Ol = diag(o1l , · · · , o
dp

l ), oil
i.i.d.∼ Bern(p).
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Figure 4: (a, b) Comparison of the best ICL risk achieved using single (S), pairwise (P), and triplet
(T) formatted prompts. (c) Performance comparison between 1-shot ICL and task vector.

Then any minimizer Λ4 of the in-context risk L
(
{Vl, Ql}Ll=1

)
satisfies (Λ4)n+1,: = 0 and:245

(Λ4)1:n,: ∝ argmin
Λ

c1∥Λ∥44+c2
∑n

i=1
∥Λi,:∥42+c3

∑n+1

j=1
∥Λ:,j∥42+c4

∥∥ΛΛ⊤∥∥2
F
, s.t. ∥Λ∥2F = 1.

where c1, · · · , c4 are non-negative constants depending on Vl, Ql, and p.246

This result suggests that dropout introduces additional higher-order regularization on the task vec-247

tor weights, encouraging them to distribute more uniformly across demonstrations. Furthermore,248

when considering causal attention (i.e., enforcing Λ4 to be upper-triangular), it induces a decaying249

weight pattern from later to earlier demonstrations, which is also consistently observed in practical250

transformer models as evidenced in Figure 3c. While dropout is not always applied during LLM pre-251

training or fine-tuning, the injection of position encodings and use of normalization act as alternative252

sources of perturbation, thereby promoting the emergence of such redundancy.253

Extra EOS Tokens. In our theoretical analysis, we consistently impose an additional zero token at254

the end of the input prompt. While this token can be interpreted as an EOS token in practical models,255

such a design choice is uncommon in standard ICL tasks. We justify this modeling decision with:256

Proposition 7 (Informal). Given any L-layer, single-head, d-dimensional linear-attention trans-257

former with EOS tokens, there exists an equivalent L-layer, two-head, 2d-dimensional linear-attention258

transformer operating without EOS tokens.259

This equivalence suggests that the same learning dynamics can be realized through multi-head260

architectures without relying on explicit EOS tokens. Specifically, one head in this setting is dedicated261

to task vector formation, while the other handles ICL prediction. This separation allows the model to262

retain the functional role of the EOS token implicitly within its hidden states. Consequently, our prior263

theoretical analysis can be naturally extended to practical models that omit explicit EOS tokens.264

6 Experimental Studies265

6.1 Synthetic Results with Random Linear Regression266

In this section, we validate our critical points analysis with synthetic linear regression tasks. Specifi-267

cally, we examine the achievable ICL risk of linear transformers trained with single-token (eq. (3)),268

pairwise (eq. (7)), and triplet (eq. (9)) demonstrations. We set the input dimension to d = 4 and269

Px = Pw = N (0, Id). For each setting, we train multiple models with different random seeds and270

report the minimum ICL risk achieved as a proxy for the global optimum. The comparative results271

across different numbers of layers L and demonstration formats are shown in Figures 4a and 4b.272

These results support our theoretical analysis: when trained with pairwise or triplet demonstrations, the273

transformer recovers the GD++ algorithm similar to the single-token case. Notably, the performance274

of L-layer transformers with pairwise (P) and triplet (T) demonstrations closely aligns, indicating275

a shared underlying learning pattern. Moreover, their performance consistently lies between that276

of single-token (S) case L-layer and (L − 1)-layer models. The observed improvement over the277

(L− 1)-layer single-token baselines comes from the additional GD++ performed solely on xi tokens278

in the first layer, effectively acting as a "half-step" of gradient descent.279
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Table 2: Accuracy comparison between standard ICL (Baseline), the task vector method (TaskV),
and our strategy (TaskV-M). The experiment is conducted on Llama-13B with n = 10.

Method Knowledge Algorithmic Translation Linguistic Bijection Average

0-shot Baseline 6.90 ± 2.08 15.60 ± 1.72 7.00 ± 1.65 12.44 ± 1.74 8.27 ± 1.33 10.28 ± 0.98
TaskV 68.80 ± 2.66 86.20 ± 1.61 73.53 ± 0.91 85.24 ± 1.80 50.67 ± 2.32 72.26 ± 1.01

1-shot
Baseline 69.50 ± 3.86 73.67 ± 1.56 57.80 ± 2.01 56.22 ± 1.57 44.76 ± 2.44 58.11 ± 0.63
TaskV 79.50 ± 2.35 88.47 ± 0.75 80.67 ± 2.56 89.11 ± 0.84 60.44 ± 2.07 78.79 ± 0.77
TaskV-M 81.30 ± 2.80 89.53 ± 0.65 80.13 ± 2.14 88.71 ± 0.62 61.78 ± 0.96 79.34 ± 0.37

2-shot
Baseline 78.80 ± 3.30 85.07 ± 1.37 75.67 ± 2.64 76.80 ± 1.18 56.49 ± 2.87 72.92 ± 0.59
TaskV 84.60 ± 2.11 88.40 ± 0.68 84.33 ± 0.92 90.13 ± 0.92 62.44 ± 2.16 80.82 ± 0.42
TaskV-M 85.70 ± 1.63 89.27 ± 1.10 84.13 ± 1.15 89.64 ± 0.86 64.49 ± 2.02 81.48 ± 0.37

3-shot
Baseline 86.20 ± 2.69 88.07 ± 1.06 80.00 ± 1.67 84.04 ± 1.19 62.18 ± 1.52 78.51 ± 0.42
TaskV 90.20 ± 2.23 88.67 ± 0.89 86.27 ± 2.31 92.31 ± 0.48 66.53 ± 0.94 83.53 ± 0.41
TaskV-M 90.30 ± 1.50 89.87 ± 0.83 86.07 ± 2.17 92.36 ± 0.72 68.13 ± 0.76 84.15 ± 0.52

4-shot
Baseline 84.80 ± 2.06 88.07 ± 0.61 83.27 ± 1.82 88.89 ± 1.91 67.16 ± 1.47 81.52 ± 0.66
TaskV 88.70 ± 1.69 89.53 ± 1.34 86.27 ± 1.08 92.76 ± 0.54 70.44 ± 1.35 84.66 ± 0.39
TaskV-M 89.60 ± 1.43 91.00 ± 1.01 87.20 ± 0.62 92.36 ± 1.44 72.53 ± 0.94 85.64 ± 0.29

Additionally, we successfully reproduce the task vector method in linear transformers. Specifically,280

we extract the hidden state of the final (→) token from triplet demonstrations after the first layer,281

and inject this vector into zero-shot prompts consisting of only xtest. To simulate the effect of layer282

normalization used in practical transformers, we normalize the task vectors before inference and the283

output vectors before ICL risk evaluation. As shown in Figure 4c, the performance of task vectors is284

parallel to that of standard ICL with a single in-context example. This validates our conjecture that285

the injected task vector effectively acts as a single demonstration.286

6.2 Enhancing the Task Vector Method287

We further explore an enhancement to the original task vector method. According to our previous288

analysis, a single injected task vector may not provide sufficient information for inference on complex289

tasks (e.g., bijection tasks). Moreover, in linear-attention models, each (→) token functions as an290

individual in-context demonstration during the gradient descent phase and thus contributes equally291

to the ICL risk. Motivated by this, we extend the standard task vector method, which modifies only292

the final arrow token, and propose a multi-vector variant that injects into every single arrow token293

in few-shot prompts. This enriched injection scheme enables the model to leverage multiple new294

demonstrations, thereby providing a more informative and distributed context for prediction.295

We compare our multi-vector injection strategy (TaskV-M) against standard N -shot ICL (Baseline)296

and the original task vector method (TaskV). For each N -shot prompt, we generate N + 1 distinct297

ICL prompts to produce N + 1 task vectors, which are then used to replace the embeddings of298

all arrow tokens in the input. For each task, performance is evaluated over 50 randomly sampled299

prompts, with mean accuracy and standard deviation reported across 5 independent trials. The300

final results, summarized in Table 2, span a diverse set of ICL task types, including Knowledge,301

Algorithmic, Translation, Linguistic, and Bijection, showing that TaskV-M consistently outperforms302

TaskV, especially on the more challenging bijection tasks. These findings support our analysis that303

every arrow token contributes meaningfully to the model’s ICL capability.304

7 Conclusion305

This paper proposes the linear combination conjecture as a plausible explanation for the emergence306

and functionality of task vectors in ICL. We support this conjecture with both empirical observations307

and theoretical analysis, demonstrating how task vectors naturally arise under triplet-formatted308

demonstrations in simple linear transformer models, and why this method inherently fails on general309

bijection tasks. While the conjecture may not yet offer a complete characterization of ICL dynamics,310

it provides a new perspective on the underlying mechanisms and offers a promising direction for311

interpreting intermediate hidden states in modern transformer-based language models.312
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A Auxiliary Lemmas395

Lemma 8 (Proposed in [1]). Given positive objective function f(A) taking parameters A = {Ai}ni=1,396

where Ai ∈ Rdi×di . Let S = Πn
i=1Si ⊂ Πn

i=1Rdi×di be a predefined parameter subspace. Define397

Ã(t, Ri) = {A1, · · · , Ai+ tRi, · · · , An} given i ∈ [1, n], Ri ∈ Rdi×di and t ∈ R. If for any A ∈ S398

and Ri ∈ Rdi×di , there exists R̃i ∈ Si such that399

d

dt
f
(
Ã(t, R̃i)

)∣∣∣∣
t=0

≤ d

dt
f
(
Ã(t, Ri)

)∣∣∣∣
t=0

,

then we have400

inf
A∈S

n∑
i=1

∥∇Ai
f(A)∥2F = 0.

Proof. This lemma is proved as part of the main theorems in [1]. We rearrange the proof here to401

accommodate arbitrary function of matrices. Firstly, notice that for any R = {Ri}ni=1 ∈ Πn
i=1Rdi×di ,402

n∑
i=1

d

dt
f
(
Ã(t, R̃i)

)∣∣∣∣
t=0

=
d

dt
f(A+ tR)

∣∣∣∣
t=0

.

Therefore, the provided precondition is equivalent to stating that for any A ∈ S and R ∈ Πn
i=1Rdi×di ,403

there exists R̃ ∈ S such that:404

d

dt
f
(
A+ tR̃

)∣∣∣∣
t=0

≤ d

dt
f(A+ tR)

∣∣∣∣
t=0

.

Let R = −∇Af(A), we then have405

d

dt
f(A+ tR)

∣∣∣∣
t=0

=

〈
df(A− t∇Af(A))

d(A− t∇Af(A))
,
d(A− t∇Af(A))

t

〉∣∣∣∣
t=0

= ⟨∇Af(A),−∇Af(A)⟩ = −∥∇Af(A)∥2F .
If the infimum of ∥∇Af(A)∥2F is not zero but some positive value p, then the S-constrained gradient406

flow induced by R̃ will lead to unbounded descent:407

d

dt
f
(
A+ tR̃

)∣∣∣∣
t=0

≤ −p.

This contradicts the fact that f(A) ≥ 0 and concludes the proof.408

The following lemma is an extension of Lemma 5 in [1] by accommodating multivariate y samples as409

well as enabling a wider range of demonstration and transformer parameter configurations.410

Lemma 9. Let x1, · · · , xn+1 be i.i.d. samples from an input distribution, and let W be sampled411

independently of {xi}n+1
i=1 . Let Z0 ∈ R(2d)×N , where N ∈ Z, be constructed of form412

Z0 =

[
∗ · · · ∗ ∗
∗ · · · ∗ 0d

]
∈ R(2d)×N ,

where the ∗ parts can be arbitrarily constructed from {xi}n+1
i=1 and W . Let Z̃0 be defined as replacing413

the zero part of Z0 by yn+1:414

Z̃0 =

[
∗ · · · ∗ ∗
∗ · · · ∗ yn+1

]
∈ R(2d)×N .

Let Z̃l be the output of the l-th layer of the linear transformer, and let X̃l, Ỹl ∈ Rd×N be the first and415

last d rows of Z̃l, respectively. Suppose that the {Ql}Ll=1 matrices are of form416

Ql =

[ ∗︸︷︷︸
d columns

0(2d+dp)×d ∗︸︷︷︸
dp columns

]
,

Then the in-context risk of this L-layer linear transformer is equivalent to417

L
(
{Vl, Ql}Ll=1

)
= EZ̃0,W

[
tr
(
(IN −M)Ỹ ⊤

L ỸL(IN −M)
)]

. (13)
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Proof. Let the Vl and Ql matrices be represented as:418

Vl =

[
V 1
l

V 2
l

]
, Ql =

[
Q1

l 0 Q2
l

]
,

where V 1
l , V

2
l ∈ Rd×2d, Q1

l ∈ R(2d+dp)×d, Q2
l ∈ R(2d+dp)×dp . Then the update rule in eq. (5) can419

be rephrased as420

Xl = Xl−1 +
1

n
V 1
l Zl−1M

[
Z⊤
l−1, P

](
Q1

lXl−1 +Q2
l P
)
,

Yl = Yl−1 +
1

n
V 2
l Zl−1M

[
Z⊤
l−1, P

](
Q1

lXl−1 +Q2
l P
)
.

Let ∆Z = Z̃0 − Z0, i.e. an all-zero matrix except that the last half of the last column is yn+1. Let421

∆X and ∆Y be its first and last d rows respectively, then ∆X = 0 and ∆Y = [0 · · · 0 yn+1].422

Note that Z̃l = Zl +∆Z holds for l = 0 trivially. Now suppose it holds for some l = k − 1, then423

X̃k = X̃k−1 +
1

n
V 1
k Z̃k−1M

[
Z̃⊤
k−1, P

](
Q1

kX̃k−1 +Q2
kP
)

= Xk−1 +
1

n
V 1
k Zk−1M

[
Z⊤
k−1, P

](
Q1

kXk−1 +Q2
kP
)

+
1

n
V 1
k ∆ZM

[
Z⊤
k−1, P

](
Q1

kXk−1 +Q2
kP
)

+
1

n
V 1
k Zk−1M

[
∆⊤

Z , 0dp×dp

](
Q1

kXk−1 +Q2
kP
)

+
1

n
V 1
k ∆ZM

[
∆⊤

Z , 0dp×dp

](
Q1

kXk−1 +Q2
kP
)

= Xk−1 +
1

n
V 1
k Zk−1M

[
Z⊤
k−1, P

](
Q1

kXk−1 +Q2
kP
)
= Xk,

where the last step holds by noticing that ∆ZM = 0. Similarly, one can prove that424

Ỹk = Yk−1 +∆Y +
1

n
V 2
k Zk−1M

[
Z⊤
k−1, P

](
Q1

kXk−1 +Q2
kP
)
= Yk +∆Y .

Therefore, it holds that for any l ∈ [1, L], Z̃l = Zl +∆Z . Recall the in-context risk in eq. (2):425

L
(
{Vl, Ql}Ll=1

)
= EZ0,W

∥∥(ZL)(d+1:2d),N + yn+1

∥∥2
2

= EZ0,W ∥(YL +∆Y )(IN −M)∥22
= EZ̃0,W

[
tr
(
(IN −M)Ỹ ⊤

L ỸL(IN −M)
)]

.

The proof is complete.426

B Proof of Theoretical Results427

B.1 Proof of Proposition 4428

Proof. We will first prove sufficiency. Let W = ab⊤ be a rank-one matrix, where a, b ∈ Rd. The429

given conditions imply that x = Wy = WWx = ab⊤ab⊤x, we then have b⊤x = b⊤ab⊤ab⊤x =430

(b⊤a)2b⊤x. Since b⊤x ̸= 0, we can conclude that b⊤a = ±1. Then, x = ab⊤ab⊤x = ±ab⊤x = ±y.431

To prove the necessity, it suffices to show that selecting W = xx⊤/∥x∥22 when x = y satisfies the432

given conditions (alternatively, select W = −xx⊤/∥x∥22 when x = −y).433

B.2 Proof of Theorem 1434

Proof. To enhance the readability of the notations in this proof, we will drop the constant 1
n factor435

in linear attention. Furthermore, we will simplify Z̃0, X̃0 and Ỹ0 in Lemma 9 as Z0, X0 and Y0436
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respectively. This results in different definitions compared to the original ones, but we will not refer437

to the original definitions in the remainder of this proof.438

Z0 =

[
X0

Y0

]
=

[
x1 0 · · · xn 0 xtest 0
0 y1 · · · 0 yn 0 ytest

]
∈ R(2d)×(2n+2).

Let Zl be the output of the l-th layer of the transformer, and let Xl, Yl ∈ Rd×(2n+2) denote the first439

and last d rows of Zl, respectively. Under the constraint in eq. (6), we can verify that440

Xl = Xl−1 +AlXl−1M(X⊤
l−1ClXl−1 +Dl),

Yl = Yl−1 +BlYl−1M(X⊤
l−1ClXl−1 +Dl).

(14)

In the following analysis, we will use f(A← B) to denote the result of the function f of A when441

replacing the value of A with B. Additionally, we denote f(A ← B ∗ A) as f(A
∗←− B) for any442

operator ∗. Therefore, f(A +←− B) = f(A← A+ B). We also denote f(A
×←− B) = f(A← BA)443

and f(A
⋄←− B) = f(A← AB) for convenience.444

Our goal is proving that, for any E ∈ A ∪B ∪ C ∪D and an arbitrary matrix R ∈ Rd×d (Rdp×dp445

for D), there exists R̃ ∈ SI (SΣ for C, SP for D) such that446

d

dt
L(E +←− tR̃)

∣∣∣∣
t=0

≤ d

dt
L(E +←− tR)

∣∣∣∣
t=0

. (15)

Let X0 = [0, x1, · · · , 0, xtest] be a function of X0, we then have Y0 = WX0. Let U⊥ ∈ Rd×d be a447

uniformly sampled random orthonormal matrix, and let UΣ = Σ1/2U⊥Σ
−1/2. One can verify that448

U−1
Σ = Σ1/2U⊤

⊥Σ−1/2. By applying Lemma 9 and the fact that X0
d
= UΣX0, we have that for any449

given matrix R,450

d

dt
L(E +←− tR)

∣∣∣∣
t=0

=
d

dt
EX0,W

[
tr
(
(I −M)Y ⊤

L (E
+←− tR)YL(E

+←− tR)(I −M)
)]∣∣∣∣

t=0

= 2EX0,W

[
tr

(
(I −M)Y ⊤

L

d

dt
YL(E

+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0,W,U⊥

[
tr

(
(I −M)Y ⊤

L (X0
×←− UΣ)

d

dt
YL(X0

×←− UΣ, E
+←− tR)

∣∣∣∣
t=0

(I −M)

)]
.

Next, we will show that eq. (15) holds for each one of Ai, Bi, Ci, Di for any i ∈ [1, L].451

1. Equation (15) holds for Ai.452

We first show that for any l ∈ [1, L], the following equations hold:453

Xl(X0
×←− UΣ) = UΣXl, (16)

d

dt
Xl(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

= UΣ
d

dt
Xl(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

. (17)

It is straightforward to verify that eq. (16) holds for l = 0. Now suppose that eq. (16) holds for some454

l = k − 1, we then have455

Xk(X0
×←− UΣ)

= Xk−1(X0
×←− UΣ) +AlXk−1(X0

×←− UΣ)M
(
X⊤

k−1(X0
×←− UΣ)ClXk−1(X0

×←− UΣ) +Dl

)
= UΣXk−1 +AlUΣXk−1M

(
X⊤

k−1U
⊤
Σ ClUΣXk−1 +Dl

)
= UΣ

(
Xk−1 +AlXk−1M

(
X⊤

k−1ClXk−1 +Dl

))
= UΣXk,

where the third equality follows by noticing that when Al = alId and Cl = clΣ
−1, we have456

AlUΣ = UΣAl and U⊤
Σ ClUΣ = Cl. This concludes the proof of eq. (16).457
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We now turn to the proof of eq. (17). Notice that when l < i, we naturally have458

d

dt
Xl(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

= UΣ
d

dt
Xl(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

= 0.

When l = i, it is easy to verify that459

d

dt
Xl(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

= RUΣXl−1M(X⊤
l−1U

⊤
Σ ClUΣXl−1 +Dl)

= UΣ · U−1
Σ RUΣM(X⊤

l−1ClXl−1 +Dl)

= UΣ
d

dt
Xl(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

.

Now suppose that eq. (17) holds for some l = k − 1 ≥ i, one can verify that:460

d

dt
Xk(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

=
d

dt
Xk−1(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

+
d

dt
AkXk−1(X0

×←− UΣ, Ai
+←− tR)M

·
(
X⊤

k−1(X0
×←− UΣ, Ai

+←− tR)CkXk−1(X0
×←− UΣ, Ai

+←− tR) +Dk

)∣∣∣∣
t=0

=
d

dt
Xk−1(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

+Ak
d

dt
Xk−1(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

M
(
X⊤

k−1(X0
×←− UΣ)CkXk−1(X0

×←− UΣ) +Dk

)
+AkXk−1(X0

×←− UΣ)M
d

dt
X⊤

k−1(X0
×←− UΣ, Ai

+←− tR)

∣∣∣∣
t=0

CkXk−1(X0
×←− UΣ)

+AkXk−1(X0
×←− UΣ)MX⊤

k−1(X0
×←− UΣ)Ck

d

dt
Xk−1(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

= UΣ
d

dt
Xk−1(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

+ UΣAk
d

dt
Xk−1(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

M
(
X⊤

k−1CkXk−1 +Dk

)
+ UΣAkXk−1M

d

dt
X⊤

k−1(Ai
+←− tU−1

Σ RUΣ)

∣∣∣∣
t=0

CkXk−1

+ UΣAkXk−1MX⊤
k−1Ck

d

dt
Xk−1(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

= UΣ
d

dt
Xk−1(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

+ UΣ
d

dt
AkXk−1(Ai

+←− tU−1
Σ RUΣ)M

·
(
X⊤

k−1(Ai
+←− tU−1

Σ RUΣ)CkXk−1(Ai
+←− tU−1

Σ RUΣ) +Dk

)∣∣∣∣
t=0

= UΣ
d

dt
Xk(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

.

This completes the proof of eq. (17).461

Under the condition that Bl = blId for some bl ∈ R, we can simplify eq. (14) as462

Yl = Yl−1 + blYl−1M(X⊤
l−1ClXl−1 +Dl)

= Yl−1

(
I + blM(X⊤

l−1ClXl−1 +Dl)
)

= Y0

l∏
j=1

(
I + bjM(X⊤

j−1CjXj−1 +Dj)
)
.
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Define Gl = X0

∏l
j=1

(
I + bjM(X⊤

j−1CjXj−1 +Dj)
)
, then it satisfies that Yl = WGl. We are463

ready to prove that similar results to eqs. (16) and (17) also hold for Gl, l ∈ [1, L]:464

Gl(X0
×←− UΣ) = UΣGl, (18)

d

dt
Gl(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

= UΣ
d

dt
Gl(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

. (19)

Notice that eq. (18) holds trivially for l = 0 as G0 = X0. Now suppose that eq. (18) holds for some465

l = k − 1, we then have466

Gk(X0
×←− UΣ) = Gk−1(X0

×←− UΣ)
(
I + bkM(X⊤

k−1(X0
×←− UΣ)CkXk−1(X0

×←− UΣ) +Dk)
)

= UΣGk−1

(
I + bkM(X⊤

k−1CkXk−1 +Dk)
)
= UΣGk.

This concludes eq. (18). As for eq. (19), notice that both sides equal 0 when l ≤ i. Now suppose that467

eq. (19) holds for some l = k − 1 ≥ i, we then have:468

d

dt
Gk(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

=
d

dt
Gk−1(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

+
d

dt
bkGk−1(X0

×←− UΣ, Ai
+←− tR)M

·
(
X⊤

k−1(X0
×←− UΣ, Ai

+←− tR)CkXk−1(X0
×←− UΣ, Ai

+←− tR) +Dk

)∣∣∣∣
t=0

=
d

dt
Gk−1(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

+ bk
d

dt
Gk−1(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

M
(
X⊤

k−1(X0
×←− UΣ)CkXk−1(X0

×←− UΣ) +Dk

)
+ bkGk−1(X0

×←− UΣ)M
d

dt
X⊤

k−1(X0
×←− UΣ, Ai

+←− tR)

∣∣∣∣
t=0

CkXk−1(X0
×←− UΣ)

+ bkGk−1(X0
×←− UΣ)MX⊤

k−1(X0
×←− UΣ)Ck

d

dt
Xk−1(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

= UΣ
d

dt
Gk−1(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

+ bkUΣ
d

dt
Gk−1(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

M
(
X⊤

k−1CkXk−1 +Dk

)
+ bkUΣGk−1M

d

dt
X⊤

k−1(Ai
+←− tU−1

Σ RUΣ)

∣∣∣∣
t=0

CkXk−1

+ bkUΣGk−1MX⊤
k−1Ck

d

dt
Xk−1(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

= UΣ
d

dt
Gk(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

.

This concludes the proof of eq. (19). Consider the in-context risk:469

d

dt
L(Ai

+←− tR)

∣∣∣∣
t=0

= 2EX0,W,U⊥

[
tr

(
(I −M)Y ⊤

L (X0
×←− UΣ)

d

dt
YL(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0,W,U⊥

[
tr

(
(I −M)G⊤

LU
⊤
Σ W⊤WUΣ

d

dt
GL(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

(I −M)

)]
= 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
EU⊥

[
GL(Ai

+←− tU−1
Σ RUΣ)

]∣∣∣∣
t=0

(I −M)

)]
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= 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
GL(Ai

+←− EU⊥

[
tU−1

Σ RUΣ

]
)

∣∣∣∣
t=0

(I −M)

)]
= 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
GL(Ai

+←− trId)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
EX0,W

[
tr
(
(I −M)Y ⊤

L (Ai
+←− trId)YL(Ai

+←− trId)(I −M)
)]∣∣∣∣

t=0

=
d

dt
L(Ai

+←− trId)

∣∣∣∣
t=0

,

where r = EU⊥ [U
−1
Σ RUΣ] =

1
d tr
(
Σ−1/2RΣ1/2

)
, and we used the fact that U⊤

Σ Σ−1UΣ = Σ−1,470

and d
dtGL(Ai

+←− tR)
∣∣∣
t=0

is affine in R. This concludes that eq. (15) holds for Ai, i ∈ [1, L].471

2. Equation (15) holds for Bi.472

From the recursive expressions in eq. (14), we can conclude that the values of Xl do not depend on473

Bi. Therefore, we naturally have474

Xl(Bi
+←− tR) = Xl. (20)

Next, we would like to show that for any l ∈ [1, L],475

EW

[
W⊤ d

dt
Yl(Bi

+←− tR)

∣∣∣∣
t=0

]
= Σ−1 d

dt
Gl(bi

+←− t tr(R))

∣∣∣∣
t=0

. (21)

When l < i, we can easily verify eq. (21) since both sides equal 0. When l = i, we can get476

EW

[
W⊤ d

dt
Yl(Bi

+←− tR)

∣∣∣∣
t=0

]
= EW

[
W⊤RYl−1M

(
X⊤

l−1ClXl−1 +Dl

)]
= EW

[
W⊤RW

]
Gl−1M

(
X⊤

l−1ClXl−1 +Dl

)
= tr(R)Σ−1Gl−1M

(
X⊤

l−1ClXl−1 +Dl

)
= Σ−1 d

dt
Gl(bi

+←− t tr(R))

∣∣∣∣
t=0

.

Suppose that eq. (21) holds for some l = k − 1 ≥ i. One can then verify477

EW

[
W⊤ d

dt
Yk(Bi

+←− tR)

∣∣∣∣
t=0

]
= EW

[
W⊤ d

dt
Yk−1(Bi

+←− tR)
(
I + bkM(X⊤

k−1CkXk−1 +Dk)
)∣∣∣∣

t=0

]
= EW

[
W⊤ d

dt
Yk−1(Bi

+←− tR)

∣∣∣∣
t=0

](
I + bkM(X⊤

k−1CkXk−1 +Dk)
)

= Σ−1 d

dt
Gk−1(bi

+←− t tr(R))

∣∣∣∣
t=0

(
I + bkM(X⊤

k−1CkXk−1 +Dk)
)

= Σ−1 d

dt
Gk(bi

+←− t tr(R))

∣∣∣∣
t=0

.

The proof of eq. (21) is complete. Now, look at the in-context risk, we have478

d

dt
L(Bi

+←− tR)

∣∣∣∣
t=0

= 2EX0,W

[
tr

(
(I −M)Y ⊤

L

d

dt
YL(Bi

+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0

[
tr

(
(I −M)G⊤

L EW

[
W⊤ d

dt
YL(Bi

+←− tR)

∣∣∣∣
t=0

]
(I −M)

)]
= 2EX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
GL(bi

+←− t tr(R))

∣∣∣∣
t=0

(I −M)

)]
= 2EX0,W

[
tr

(
(I −M)Y ⊤

L

d

dt
YL(Bi

+←− t tr(R)Id)

∣∣∣∣
t=0

(I −M)

)]
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=
d

dt
L(Bi

+←− t tr(R)Id)

∣∣∣∣
t=0

.

This concludes that eq. (15) holds for Bi, i ∈ [1, L].479

3. Equation (15) holds for Ci.480

Similar to the Ai case, we will first prove that for any l ∈ [1, L],481

d

dt
Xl(X0

×←− UΣ, Ci
+←− tR)

∣∣∣∣
t=0

= UΣ
d

dt
Xl(Ci

+←− tU⊤
Σ RUΣ)

∣∣∣∣
t=0

. (22)

The equation above holds trivially for l < i. For the case l = i, we have482

d

dt
Xl(X0

×←− UΣ, Ci
+←− tR)

∣∣∣∣
t=0

= AjXl−1(X0
×←− UΣ)MX⊤

l−1(X0
×←− UΣ)RXl−1(X0

×←− UΣ)

= UΣAjXl−1MX⊤
l−1U

⊤
Σ RUΣXl−1 = UΣ

d

dt
Xl(Ci

+←− tU⊤
Σ RUΣ)

∣∣∣∣
t=0

.

One can conclude the proof of eq. (22) through a similar reduction as eq. (17) for l > i layers. Next,483

we establish the corresponding result for Gl:484

d

dt
Gl(X0

×←− UΣ, Ci
+←− tR)

∣∣∣∣
t=0

= UΣ
d

dt
Gl(Ci

+←− tU⊤
Σ RUΣ)

∣∣∣∣
t=0

. (23)

This equation holds trivially for l < i. When taking l = i, we can verify that485

d

dt
Gl(X0

×←− UΣ, Ci
+←− tR)

∣∣∣∣
t=0

= blGl−1(X0
×←− UΣ)MX⊤

l−1(X0
×←− UΣ)RXl−1(X0

×←− UΣ)

= blUΣGl−1(X0
×←− UΣ)MX⊤

l−1U
⊤
Σ RUΣXl−1

= UΣ
d

dt
Gl(Ci

+←− tU⊤
Σ RUΣ)

∣∣∣∣
t=0

.

For l > i layers, one can follow similar reductions as eq. (19) to finish the proof. We then consider486

the in-context risk:487

d

dt
L(Ci

+←− tR)

∣∣∣∣
t=0

= 2EX0,W,U⊥

[
tr

(
(I −M)Y ⊤

L (X0
×←− UΣ)

d

dt
YL(X0

×←− UΣ, Ci
+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0,W,U⊥

[
tr

(
(I −M)G⊤

LU
⊤
Σ W⊤WUΣ

d

dt
GL(Ci

+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
EU⊥

[
GL(Ci

+←− tU⊤
Σ RUΣ)

]∣∣∣∣
t=0

(I −M)

)]
= 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
GL(Ci

+←− trΣ−1)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
EX0,W

[
tr
(
(I −M)Y ⊤

L (Ci
+←− trΣ−1)YL(Ci

+←− trΣ−1)(I −M)
)]∣∣∣∣

t=0

=
d

dt
L(Ci

+←− trΣ−1)

∣∣∣∣
t=0

,

where r = EU⊥ [U
⊤
Σ RUΣ] =

1
d tr
(
Σ1/2RΣ1/2

)
. This concludes that eq. (15) holds for Ci.488

4. Equation (15) holds for Di.489

Let Up ∈ Rn×n be a uniformly sampled permutation matrix, i.e., a binary matrix that has exactly one 1490

entry in each row and column with all other entries 0. Let U◦ = diag(Up⊗I2, I2) ∈ R(2n+2)×(2n+2).491
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One can verify that by multiplying X0U◦, it is equal to shuffling the first n 2-column sub-blocks of492

X0 and keeping the last 2 columns unchanged.493

Then, consider a matrix Uξ = diag(ξ1, . . . , ξn+1) ∈ R(n+1)×(n+1) where ξi
i.i.d.∼ Unif{±1}, i.e., a494

diagonal matrix with random ±1 entries. Let U± = Uξ ⊗ I2 ∈ R(2n+2)×(2n+2). Thus, U± = U⊤
±495

and X0U± is randomly flipping the sign of each 2-column sub-block in X0.496

We are going to prove that for any l ∈ [1, L], recalling that f(A ⋄←− B) = f(A← AB),497

Xl(X0
⋄←− U±U◦) = XlU±U◦, (24)

Gl(X0
⋄←− U±U◦) = GlU±U◦. (25)

Equation (24) holds trivially for l = 0. When eq. (24) holds for some l = k − 1, we can verify that498

Xk(X0
⋄←− U±U◦)

= Xk−1U±U◦ +AkXk−1U±U◦M
(
U⊤
◦ U⊤

±X⊤
k−1CkXk−1U±U◦ +Dk

)
= Xk−1U±U◦ +AkXk−1U±U◦MU⊤

◦ U⊤
±
(
X⊤

k−1CkXk−1 + U±U◦DkU
⊤
◦ U⊤

±
)
U±U◦

= Xk−1U±U◦ +AkXk−1M
(
X⊤

k−1CkXk−1 +Dk

)
U±U◦

=
(
Xk−1 +AkXk−1M

(
X⊤

k−1CkXk−1 +Dk

))
U±U◦ = XkU±U◦.

It uses the fact that there exists some D1
i , D

2
i ∈ R2×2 such that Di = diag(In ⊗ D1

i , D
2
i ), so499

shuffling the first n 2 × 2 diagonal sub-blocks of Di does not change the matrix, and we have500

U◦DiU
⊤
◦ = Di. Similarly, we have U±DkU

⊤
± = Dk. This concludes eq. (24), and eq. (25) could be501

acquired similarly.502

Next, we will establish the following equalities for Xl and Gl:503

d

dt
Xl(X0

⋄←− U±U◦, Di
+←− tR)

∣∣∣∣
t=0

=
d

dt
Xl(Di

+←− tU±U◦RU⊤
◦ U⊤

± )

∣∣∣∣
t=0

U±U◦, (26)

d

dt
Gl(X0

⋄←− U±U◦, Di
+←− tR)

∣∣∣∣
t=0

=
d

dt
Gl(Di

+←− tU±U◦RU⊤
◦ U⊤

± )

∣∣∣∣
t=0

U±U◦. (27)

The proof follows by similar reductions as proving eqs. (17) and (19).504

Finally, we consider the in-context risk under the permutation of Up and Uξ. Since each pair of505

(xi, yi) is equivalently sampled from Gaussian distributions, we have X0
d
= X0U±U◦. Therefore,506

d

dt
L(Di

+←− tR)

∣∣∣∣
t=0

= 2EX0,W

[
tr

(
(I −M)Y ⊤

L

d

dt
YL(Di

+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0,W,Up,Uξ

[
tr

(
(I−M)Y ⊤

L (X0
⋄←− U±U◦)

d

dt
YL(X0

⋄←− U±U◦, Di
+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2dEX0,Up,Uξ

[
tr

(
(I−M)U⊤

◦ U⊤
±G⊤

LΣ
−1 d

dt
GL(Di

+←− tU±U◦RU⊤
◦ U⊤

± )

∣∣∣∣
t=0

U±U◦(I−M)

)]
= 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
EUp,Uξ

[
GL(Di

+←− tU±U
⊤
◦ RU◦U±)

]∣∣∣∣
t=0

(I −M)

)]
= 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
GL(Di

+←− tR̃)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
L(Di

+←− tR̃)

∣∣∣∣
t=0

,

where R̃ = EUp,Uξ
[U±U

⊤
◦ RU◦U±] = diag(In ⊗R1, R2), R1 = 1

n

∑n
j=1 Rj , R2 = Rn+1, and Rj507

is the j-th 2× 2 diagonal block of R. The 4th equality uses the fact that tr[(I −M)A(I −M)] is ex-508

tracting the right-bottom element of A, so it should be equal to tr
[
(I −M)U⊤

◦ U⊤
±AU±U◦(I −M)

]
509

for any matrix A. This concludes that eq. (15) holds for Di.510

Till now, we have proved that eq. (15) holds for each one of Ai, Bi, Ci, Di. The proof of the whole511

theorem is then completed by applying Lemma 8.512
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B.3 Proof of Theorem 2513

Proof. In this proof, we follow the same notations as the proof of Theorem 1, where the constant 1
n514

factor is dropped and Z̃0, X̃0, Ỹ0 are simplified as Z0, X0, Y0 respectively.515

Z0 =

[
x1 0 0 · · · xn 0 0 xtest 0 0
0 0 y1 · · · 0 0 yn 0 0 ytest

]
∈ R(2d)×(3n+3). (28)

Let Zl ∈ R2d×(3n+3) be the l-th layer’s output and let Xl, Yl ∈ Rd×(3n+3) be its first and last d516

rows. Our goal is to prove that, for any E ∈ A ∪ B ∪ C ∪ D and an arbitrary matrix R ∈ Rd×d517

(Rdp×dpforD), there exists R̃ ∈ SI (SΣ for C, SP for D) such that518

d

dt
L(E +←− tR̃)

∣∣∣∣
t=0

≤ d

dt
L(E +←− tR)

∣∣∣∣
t=0

. (29)

The proofs of eq. (29) for Ai, Bi and Ci are identical with the proof of Theorem 1 so we omit them.519

We will be focusing on Di for the rest of the proof.520

Let Us
p ∈ Rn×n and U t

p ∈ R(n+1)×(n+1) be uniformly sampled permutation matrices. Let Us
◦ =521

diag(Us
p , 1) ⊗ diag(1, 0, 1) and U t

◦ = U t
p ⊗ diag(0, 1, 0). Therefore, X0U

s
◦ is shuffling the 1-st522

and 3-rd columns among each 3-column sub-block of X0 (except for the last 3-column sub-block),523

and X0U
s
◦ is shuffling the 2-nd column among each 3-column sub-block. Next, let Us

ξ , U
t
ξ ∈524

R(n+1)×(n+1) be diagonal matrices with uniformly sampled ±1 entries. Define Us
± = Us

ξ ⊗525

diag(1, 0, 1) and U t
± = U t

ξ ⊗ diag(0, 1, 0). It can then be verified that X0U
s
±U

t
±

d
= X0.526

To simplify the notations, let U≡ denote Us
±U

t
±U

s
◦U

t
◦. We will focus on a subset of SP :527

S ′P =
{
diag(In ⊗ Λ1,Λ2) + In+1 ⊗ Λ3

∣∣∣ Λ1,Λ2 ∈M
(

1 0 1
0 0 0
1 0 1

)
,Λ3 ∈M

(
0 0 0
0 1 0
0 0 0

)}
.

Assume Dk = diag(In ⊗ Λ1,Λ2) + In+1 ⊗ Λ3 ∈ S ′P as defined above, one can verify that it is528

a block-diagonal matrix constructed from the same 3 × 3 sub-blocks, and thus is invariant under529

U≡DkU
⊤
≡ . We will then prove that for any l ∈ [1, L],530

Xl(X0
⋄←− U≡) = XlU≡, (30)

Gl(X0
⋄←− U≡) = GlU≡, (31)

d

dt
Xl(X0

⋄←− U≡, Di
+←− tR)

∣∣∣∣
t=0

=
d

dt
Xl(Di

+←− tU≡RU⊤
≡ )

∣∣∣∣
t=0

U≡, (32)

d

dt
Gl(X0

⋄←− U≡, Di
+←− tR)

∣∣∣∣
t=0

=
d

dt
Gl(Di

+←− tU≡RU⊤
≡ )

∣∣∣∣
t=0

U≡. (33)

These results can be acquired by similar proofs as eqs. (24) to (27). We then consider the in-context531

risk under the permutations of U≡. Similarly, we have X0
d
= X0U≡ and532

d

dt
L(Di

+←− tR)

∣∣∣∣
t=0

= 2EX0,W

[
tr

(
(I −M)Y ⊤

L

d

dt
YL(Di

+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2dEX0,U≡

[
tr

(
(I −M)G⊤

L (X0
⋄←− U≡)Σ

−1 d

dt
GL(X0

⋄←− U≡, Di
+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2dEX0,U≡

[
tr

(
(I −M)U⊤

≡G⊤
LΣ

−1 d

dt
GL(Di

+←− tU≡RU⊤
≡ )

∣∣∣∣
t=0

U≡(I −M)

)]
= 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
GL(Di

+←− tEU≡

[
U≡RU⊤

≡
]
)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
L(Di

+←− tR̃)

∣∣∣∣
t=0

.
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Let Rj be the j-th 3×3 diagonal block of R, then R1 = 1
n

∑n
j=1 Rj◦

(
1 0 1
0 0 0
1 0 1

)
, R2 = Rn+1◦

(
1 0 1
0 0 0
1 0 1

)
,533

R3 = 1
n+1

∑n+1
j=1 Rj ◦

(
0 0 0
0 1 0
0 0 0

)
and R̃ = EU≡

[
U≡RU⊤

≡
]
= diag(In ⊗R1, R2) + In+1 ⊗R3. This534

indicates that eq. (29) holds for each Di ∈ S ′P , and thus the proof of the whole theorem completes by535

applying Lemma 8 and noticing that S ′P ⊂ SP .536

B.4 Proof of Theorem 5537

Proof. We keep the same notations as the proof of Theorem 1, dropping the 1
n factor and simplifying538

X̃0, Ỹ0, Z̃0 as X0, Y0, Z0, as follows:539

Z0 =

[
0 0 · · · 0 0 0 0
x1 y1 · · · xn yn xtest ytest

]
∈ R(2d)×(2n+2). (34)

Note that we now have X0 and Y0 containing both xi and yi. Define540

X = [x1 0 · · · xn 0 xtest 0] ,

X = [0 x1 · · · 0 xn 0 xtest] ,

Y = [0 y1 · · · 0 yn 0 ytest] .

we then have Y0 = X + Y = X +WX . From the parameter configuration in eq. (12), the update541

rule of the first attention layer is542

X1 = A1Y0MD1 = A1XMD1, Y1 = Y0 = X +WX. (35)

The update rule for the following layers is the same as eq. (14). We are going to prove that, for any543

E ∈ A ∪ B ∪ C ∪D and an arbitrary matrix R ∈ Rd×d (Rdp×dp for D), there exists R̃ ∈ SI (SΣ544

for C, SP for D) such that545

d

dt
L(E +←− tR̃)

∣∣∣∣
t=0

≤ d

dt
L(E +←− tR)

∣∣∣∣
t=0

. (36)

Similarly to Theorem 1, we uniformly sample U⊥ ∈ Rd×d as an orthonormal random matrix, and let546

UΣ = Σ1/2U⊥Σ
−1/2. Under the condition that Bl = blId for some bl ∈ R, we have547

Yl = Y1

l∏
j=2

(
I + bjM

(
X⊤

j−1CjXj−1 +Dj

))
.

Let Fl = X
∏l

j=2

(
I+bjM

(
X⊤

j−1CjXj−1+Dj

))
, Gl = X

∏l
j=2

(
I+bjM

(
X⊤

j−1CjXj−1+Dj

))
,548

we then have Yl = Fl +WGl. According to Lemma 9,549

d

dt
L(E +←− tR)

∣∣∣∣
t=0

=
d

dt
EX0,W

[
tr
(
(I −M)Y ⊤

L (E
+←− tR)YL(E

+←− tR)(I −M)
)]∣∣∣∣

t=0

=
d

dt
EX0,W

[
tr
(
(I −M)F⊤

L (E
+←− tR)FL(E

+←− tR)(I −M)
)]∣∣∣∣

t=0

+
d

dt
EX0,W

[
tr
(
(I −M)G⊤

L (E
+←− tR)W⊤WGL(E

+←− tR)(I −M)
)]∣∣∣∣

t=0

= 2EX0

[
tr

(
(I −M)F⊤

L

d

dt
FL(E

+←− tR)

∣∣∣∣
t=0

(I −M)

)]
+ 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
GL(E

+←− tR)

∣∣∣∣
t=0

(I −M)

)]
.

Next, we will show that eq. (36) holds for each one of Ai, Bi, Ci, Di for any i ∈ [1, L].550

1. Equation (36) holds for Ai.551
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One can easily verify that eqs. (16) and (17) still hold. Furthermore, eqs. (18) and (19) hold for both552

Fl and Gl. With these observations, we can then verify553

d

dt
L(Ai

+←− tR)

∣∣∣∣
t=0

= 2EX0,U⊥

[
tr

(
(I −M)F⊤

L (X
×←− UΣ)

d

dt
FL(X

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

(I −M)

)]
+ 2dEX0,U⊥

[
tr

(
(I −M)G⊤

L (X
×←− UΣ)Σ

−1 d

dt
GL(X

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0,U⊥

[
tr

(
(I −M)F⊤

L U⊤
Σ UΣ

d

dt
FL(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

(I −M)

)]
+ 2dEX0,U⊥

[
tr

(
(I −M)G⊤

LU
⊤
Σ Σ−1UΣ

d

dt
GL(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0

[
tr

(
(I −M)F⊤

L

d

dt
FL(Ai

+←− trId)

∣∣∣∣
t=0

(I −M)

)]
+ 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
GL(Ai

+←− trId)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
L(Ai

+←− trId)

∣∣∣∣
t=0

,

where r = EU⊥ [U
−1
Σ RUΣ] =

1
d tr
(
Σ−1/2RΣ1/2

)
.554

2. Equation (36) holds for Bi.555

From the definition of Fl and Gl, we can verify that556

d

dt
Yl(Bi

+←− tR)

∣∣∣∣
t=0

= R(Fi−1 +WGi−1)M(X⊤
i−1CiXi−1 +Di)

l∏
j=i+1

(
I + bjM(X⊤

j−1CjXj−1 +Dj)
)
.

Define557

F i
l =

(
Fi−1 +BiFi−1M(X⊤

i−1CiXi−1 +Di)
) l∏
j=i+1

(
I + bjM(X⊤

j−1CjXj−1 +Dj)
)
,

Gi
l =

(
WGi−1 +BiWGi−1M(X⊤

i−1CiXi−1 +Di)
) l∏
j=i+1

(
I + bjM(X⊤

j−1CjXj−1 +Dj)
)
,

We then have558

d

dt
Yl(Bi

+←− tR)

∣∣∣∣
t=0

=
d

dt
F i

l(Bi
+←− tR)

∣∣∣∣
t=0

+
d

dt
Gi

l(Bi
+←− tR)

∣∣∣∣
t=0

.

Similar to eqs. (19) and (21), we can prove that559

d

dt
F i

l(X0
×←− UΣ, Bi

+←− tR)

∣∣∣∣
t=0

= UΣ
d

dt
F i

l(Bi
+←− tU−1

Σ RUΣ)

∣∣∣∣
t=0

,

EW

[
W⊤ d

dt
Gi

l(Bi
+←− tR)

∣∣∣∣
t=0

]
= Σ−1 d

dt
Gi

l(Bi
+←− t tr(R)Id)

∣∣∣∣
t=0

.

Without loss of generality, we assume that r = 1
d tr
(
Σ−1/2RΣ1/2

)
≤ 1

d tr(R), and let γ =560

rd/ tr(R) ≤ 1. Then, one can verify that561

d

dt
L(Bi

+←− tR)

∣∣∣∣
t=0
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= 2EX0,U⊥

[
tr

(
(I −M)F⊤

l (X
×←− UΣ)

d

dt
F i

l(X
×←− UΣ, Bi

+←− tR)

∣∣∣∣
t=0

(I −M)

)]
+ 2EX0,W

[
tr

(
(I −M)G⊤

l W
⊤ d

dt
Gi

l(Bi
+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0

[
tr

(
(I −M)F⊤

l

d

dt
F i

l(Bi
+←− trId)

∣∣∣∣
t=0

(I −M)

)]
+ 2EX0

[
tr

(
(I −M)G⊤

l Σ
−1 d

dt
Gi

l(Bi
+←− t tr(R)Id)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0

[
tr

(
(I −M)F⊤

l

d

dt
Fl(Bi

+←− trId)

∣∣∣∣
t=0

(I −M)

)]
+

1

γ
2dEX0

[
tr

(
(I −M)G⊤

l Σ
−1 d

dt
Gl(Bi

+←− trId)

∣∣∣∣
t=0

(I −M)

)]
=

(
1

γ
− 1

)
2dEX0

[
tr

(
(I −M)G⊤

l Σ
−1 d

dt
Gl(Bi

+←− trId)

∣∣∣∣
t=0

(I −M)

)]
+

d

dt
L(Bi

+←− trId)

∣∣∣∣
t=0

≥ d

dt
L(Bi

+←− trId)

∣∣∣∣
t=0

.

The last inequality assumes the positivity of the term involving Gl. Otherwise, one can simply flip562

the numerator and denominator of γ and scale the derivative of Fl instead of Gl to yield an additional563

positive term besides the risk term to finish the proof.564

3. Equation (36) holds for Ci, Di.565

Similarly, one can verify that eqs. (22) and (23) still hold (also eqs. (24) to (27)), and finish the proof566

by following the same reductions as Theorem 1 with Fl and Gl.567

B.5 Proof of Proposition 3568

Proof. Let Al = alId, Bl = blId, Cl = clId and Dl = diag(In⊗D1
l , D

2
l )+In+1⊗D3

l +D4
l ⊗D5

l for569

l ∈ [1, 2]. Let Zl ∈ R2d×(3n+3) be the output of the l-th attention layer, and let Xl, Yl ∈ Rd×(3n+3)570

be its first and last d rows respectively. Note that Yl in this proof does not contain ytest.571

Let D1
1 =

(
dx
x 0 dy

x
0 0 0
dx
y 0 dy

y

)
, D2

1 =
(

sx 0 sy
0 0 0
0 0 0

)
(note that the last row of D2

1 is masked out by M , so we572

simply set it to 0), and D5
1 =

( 0 tx 0
0 0 0
0 ty 0

)
. We use D as an abbreviation for D4

1 , and use di,j to denote573

the elements in D. One can verify that574

X1 = X0 + a1X0M
(
diag(In ⊗D1

1, D
2
1) + In+1 ⊗D3

1 +D4
1 ⊗D5

1

)
=

[ (1 + a1d
x
x)x1 a1tx

∑n+1
i=1 di,1xi a1d

y
xx1

· · ·
(1 + a1d

x
x)xn a1tx

∑n+1
i=1 di,nxi a1d

y
xxn

(1 + a1d
x
x)xtest a1tx

∑n+1
i=1 di,n+1xi a1d

y
xxtest ]

.

Similarly, we have575

Y1 = Y0 + b1Y0M
(
diag(In ⊗D1

1, D
2
1) + In+1 ⊗D3

1 +D4
1 ⊗D5

1

)
=

[ b1d
x
yy1 b1ty

∑n
i=1 di,1yi (1 + b1d

y
y)y1

· · ·
b1d

x
yyn b1ty

∑n
i=1 di,nyi (1 + b1d

y
y)yn

0 b1ty
∑n

i=1 di,n+1yi 0 ]

.

By the definition of linear attention, we can show that576

TF(Z0; {Vl, Ql}2l=1) = (Y2)3n+3 = b2Y1M
(
c2X

⊤
1 (X1)3n+3 + (D2)3n+3

)
= b2c2a1d

y
x

(
3n+2∑
i=1

(Y1)i(X1)
⊤
i

)
xtest.
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Define ∆X1 = [0 a1txdn+1,1xtest 0 · · · 0 a1txdn+1,n+1xtest 0], and let X1 = X1 −577

∆X1, then TF(Z0; {Vl, Ql}2l=1) = TF(Z0; {Vl, Ql}2l=1, X1 ← X1) + TF(Z0; {Vl, Ql}2l=1, X1 ←578

∆X1). Let b1dxy(1 + a1d
x
x) + (1 + b1d

x
y)a1d

x
x = a, b1tya1tx = b, b2c2a1dyx = c, we then have579

TF(Z0; {Vl, Ql}2l=1, X1 ← X1) = c

a

n∑
i=1

yix
⊤
i + b

n+1∑
i=1

 n∑
j=1

dj,iyj

 n∑
j=1

dj,ix
⊤
j

xtest

= c

a

n∑
i=1

yix
⊤
i + b

n∑
j=1

n∑
k=1

(
n+1∑
i=1

dj,idk,i

)
yjx

⊤
k

xtest, (37)

TF(Z0; {Vl, Ql}2l=1, X1 ← ∆X1) = bc

n+1∑
i=1

n∑
j=1

dj,iyjdn+1,ix
⊤
testxtest

= bc

n∑
j=1

(
n+1∑
i=1

dj,idn+1,i

)
yjx

⊤
testxtest. (38)

Now consider the in-context risk,580

L(V,Q) = EZ0,W ∥TF(Z0; {V,Q}) +Wxtest∥22
= EZ0,W

[
(TF(Z0; {V,Q}) +Wxtest)

⊤
(TF(Z0; {V,Q}) +Wxtest)

]
= EZ0,W

[(
TF(Z0; {V,Q}, X1 ← X1) +Wxtest

)⊤(
TF(Z0; {V,Q}, X1 ← X1) +Wxtest

)]
+ 2EZ0,W

[
TF(Z0; {V,Q}, X1 ← ∆X1)

⊤(TF(Z0; {V,Q}, X1 ← X1) +Wxtest

)]
+ EZ0,W

[
TF(Z0; {V,Q}, X1 ← ∆X1)

⊤ TF(Z0; {V,Q}, X1 ← ∆X1)
]
.

In the equation above, the 3-rd part is always positive. We then examine the second part:581

EZ0,W

[
TF(Z0; {V,Q}, X1 ← ∆X1)

⊤(TF(Z0; {V,Q}, X1 ← X1) +Wxtest

)]
= EZ0,W

[
x⊤
testxtestv1xtest + x⊤

testxtestv2xtest

]
= 0,

where v1=bc
∑n

j=1

(∑n+1
i=1 dj,idn+1,i

)
y⊤j c
(
a
∑n

i=1 yix
⊤
i +b

∑n
j=1

∑n
k=1

(∑n+1
i=1 dj,idk,i

)
yjx

⊤
k

)
582

and v2 = bc
∑n

j=1

(∑n+1
i=1 dj,idn+1,i

)
y⊤j W are independent of xtest. Therefore, L(V,Q) attains its583

minimum only if TF(Z0; {V,Q}, X1 ← ∆X1) = 0, implying dn+1,i = 0 for i ∈ [1, n+ 1].584

In the following analysis, we will assume that the last row of D is 0, and let M ∈ Rn×(n+1) be585

the first n rows of D. Additionally, we will drop the c factor in eq. (37), since its position could be586

substituted by a and b. We then define W̃ = a
∑n

i=1 yix
⊤
i + b

∑n
j=1

∑n
k=1

(∑n+1
i=1 dj,idk,i

)
yjx

⊤
k ,587

X = [x1 · · · xn] and Y = [y1 · · · yn]. One can verify that588

W̃ = aY X⊤ + bY MM⊤X⊤ = aWXX⊤ + bWXMM⊤X⊤. (39)

Furthermore, the in-context risk could be expanded as589

L(V,Q) = EZ0,W

∥∥∥W̃xtest +Wxtest

∥∥∥2
2
= EZ0,W

[
x⊤
test(W̃ +W )⊤(W̃ +W )xtest

]
= EZ0,W

[
tr
(
(W̃ +W )⊤(W̃ +W )

)]
= EZ0,W

[
tr
(
W̃⊤W̃

)
+ 2 tr

(
W⊤W̃

)
+ tr

(
W⊤W

)]
.

We will use the identity EX [XAX⊤XBX⊤] =
(
tr(A) tr(B) + tr

(
AB⊤)+ d tr(AB)

)
Id for any590

A,B ∈ Rn×n, which can be acquired by expanding each element and applying Isserlis’ theorem. Let591

T1 = tr
(
MM⊤) and T2 = tr

(
MM⊤MM⊤), then592

EZ0,W

[
tr
(
(aWXX⊤ + bWXMM⊤X⊤)⊤(aWXX⊤ + bWXMM⊤X⊤)

)]
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= EZ0,W

[
a2 tr

(
XX⊤W⊤WXX⊤)+ 2ab tr

(
XX⊤W⊤WXMM⊤X⊤)]

+ EZ0,W

[
b2 tr

(
XMM⊤X⊤W⊤WXMM⊤X⊤)]

= dEZ0

[
a2 tr

(
XX⊤XX⊤)+ 2ab tr

(
XX⊤XMM⊤X⊤)+ b2 tr

(
XMM⊤X⊤XMM⊤X⊤)]

= a2d2n(n+ 1 + d) + 2abd2(n+ 1 + d)T1 + b2d2(T 2
1 + (1 + d)T2).

Simultaneously, we can verify that EZ0,W [tr
(
W⊤W

)
] = d2 and593

EZ0,W

[
tr
(
W⊤W̃

)]
= EZ0,W

[
aW⊤WXX⊤ + bW⊤WXMM⊤X⊤] = ad2n+ bd2T1.

Combining the results above, we aim to find the optimal a, b,M that minimize594

1

d2
L(V,Q) = c0 + c1T1 + c2T

2
1 + c3T2,

where595

c0 = a2n(n+ 1 + d) + 1 + 2an, c1 = 2ab(n+ 1 + d) + 2b,

c2 = b2, c3 = b2(1 + d).

Since c3 ≥ 0, to minimize L(V,Q) we need to minimize T2. Given that MM⊤ is symmetric, we596

denote its n eigenvalues as λi, i ∈ [1, n]. Then by Cauchy–Schwarz inequality,597

tr
(
MM⊤MM⊤) = n∑

i=1

λ2
i ≥

1

n

(
n∑

i=1

λi

)2

=
1

n
tr2(MM⊤).

Therefore, L(V,Q) is minimized only if the inequality above holds with equality, which implies598

that λi = λj for any i ̸= j. This concludes the proof by showing that there exists λ ∈ R such that599

MM⊤ = λId, and thus DD⊤ = diag(λId, 0).600

B.6 Proof of Proposition 6601

Proof. We will continue from eqs. (37) and (38). After applying token-wise dropout, we have602

TF(Z0; {Vl, Ql}2l=1, X1 ← X1) =

n∑
i=1

(ao3i−2
2 + bo3i2 )o3i−2

1 o3i1 yix
⊤
i o

3n+1
1 o3n+3

2 xtest

+ c

n∑
j=1

n∑
k=1

(
n+1∑
i=1

o3i−1
2 dj,idk,i

)
o3j1 o3k−2

1 yjx
⊤
k o

3n+1
1 o3n+3

2 xtest, (40)

TF(Z0; {Vl, Ql}2l=1, X1 ← ∆X1) = co3n+3
2

n∑
j=1

(
n+1∑
i=1

dj,idn+1,i

)
o3j1 o3n+1

1 yjx
⊤
testxtest,

where a = b2c2a1d
y
xb1d

x
y(1+a1d

x
x), b = b2c2a1d

y
x(1+b1d

x
y)a1d

x
x and c = b2c2a1d

y
xb1tya1tx. One603

can verify that our previous analysis about TF(Z0; {Vl, Ql}2l=1, X1 ← ∆X1) still holds and we thus604

have dn+1,: = 0. We then define:605

O1
l = diag(o1l , · · · , o3n−2

l ) ∈ Rn×n, O2
l = diag(o3l , · · · , o3nl ) ∈ Rn×n, for l ∈ [2],

O3
2 = diag(o22, · · · , o3n+2

2 ) ∈ R(n+1)×(n+1).

By defining606

W̃ =

n∑
i=1

(ao3i−2
2 + bo3i2 )o3i−2

1 o3i1 yix
⊤
i + c

n∑
j=1

n∑
k=1

(
n+1∑
i=1

o3i−1
2 dj,idk,i

)
o3j1 o3k−2

1 yjx
⊤
k ,

One can verify that607

W̃ = A+B + C ≜ aY O2
1O

1
2O

1
1X

⊤ + bY O2
1O

2
2O

1
1X

⊤ + cY O2
1MO3

2M
⊤O1

1X
⊤.

25



Then, we will compute the expectation of each term in the following decomposition:608

L(V,Q) = EZ0,W

[
tr
(
W̃⊤W̃

)
+ 2 tr

(
W⊤W̃

)
+ tr

(
W⊤W

)]
,

Specifically, let T1 = tr
(
MM⊤), T2 = tr

(
MM⊤MM⊤), T3 = ∥M∥44, T4 =

∑n
i=1 ∥Mi,:∥42,609

T5 =
∑n+1

j=1 ∥M:,j∥42, we then have610

E[tr
(
A⊤A

)
] = a2d2(np3 + n(n− 1)p6 + (1 + d)np3),

E[tr
(
B⊤B

)
] = b2d2(np3 + n(n− 1)p6 + (1 + d)np3),

E[tr
(
C⊤C

)
] = c2d2(p6T 2

1 + (1 + d)(p4 − p6)T4 + (1 + d)(p5 − p6)T5

+ (1 + d)(p3 − p4 − p5 + p6)T3 + (p3 − p4)T4 + p4T2 + dp6T2),

E[tr
(
A⊤B

)
] = abd2(np4 + n(n− 1)p6 + (1 + d)np4),

E[tr
(
A⊤C

)
] = acd2((p4 + (n− 1)p6)T1 + (1 + d)p4T1),

E[tr
(
B⊤C

)
] = bcd2((p4 + (n− 1)p6)T1 + (1 + d)p4T1),

E[tr
(
W⊤A

)
] = ad2np3, E[tr

(
W⊤B

)
] = bd2np3, E[tr

(
W⊤C

)
] = cd2p3T1.

Summarizing our analysis above, minM L(V,Q) is equivalent to:611

min
M

{
c0 + c1T1 + c2T2 + c3T3 + c4T4 + c5T5 + c6T

2
1

}
,

where612

c0 = 1 + n(2 + d)p3(a2 + b2) + 2np3(a+ b) + 2n(2 + d)p4ab+ n(n− 1)p6(a+ b)2,

c1 = 2(a+ b)c(p4 + (n− 1)p6 + (1 + d)p4) + 2cp3,

c2 = c2(p4 + dp6),

c3 = c2(1 + d)(p3 − p4 − p5 + p6),

c4 = c2((1 + d)(p4 − p6) + (p3 − p4)),

c5 = c2(1 + d)(p5 − p6),

c6 = c2p6.

It is easy to verify that c2, c3, c4, c5, c6 ≥ 0.613

B.7 Proof of Proposition 7614

Proposition 7 (Restate). Let dp denote the number of non-EOS tokens. Given any L-layer, single-615

head, d-dimensional linear-attention transformer with EOS tokens:616

TF
(
Z0; {Vl, Ql, Pl}l∈[L]

)
= (ZL):,dp+1, (Z0):,dp+1 = 0,

where617

Zl ∈ Rd×(dp+1), Vl, Ql ∈ Rd×d, Pl ∈ R(dp+1)×(dp+1),

Zl = Zl−1 + VlZl−1M(Z⊤
l−1QlZ

⊤
l−1 + Pl), M = diag(Idp , 0).

There exists an L-layer, two-head, 2d-dimensional linear-attention transformer operating without618

EOS tokens:619

TF
(
Z0; {V h

l , Q
h
l , P

h
l }l∈[L],h∈[2]

)
= (ZL)d:2d,dp ,

where620

Zl ∈ R2d×dp , V h
l , Q

h
l ∈ R2d×2d, Ph

l ∈ Rdp×dp ,

Zl = Zl−1 +

2∑
h=1

V h
l Zl−1(Z

⊤
l−1Q

h
l Z

⊤
l−1 + Ph

l ).

Such that for any Z ∈ Rd×dp , by letting Z0 = [Z 0] and Z0 =

[
Z
0

]
, we have621

TF
(
Z0; {Vl, Ql, Pl}l∈[L]

)
= TF

(
Z0; {V h

l , Q
h
l , P

h
l }l∈[L],h∈[2]

)
.
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Proof. We construct V h
l , Qh

l , and Ph
l as follows:622

V 1
l =

[
Vl 0
0 0

]
, Q1

l =

[
Ql 0
0 0

]
, P 1

l = (Pl)1:dp,1:dp
,

V 2
l =

[
0 0
Vl 0

]
, Q2

l =

[
0 Ql

0 0

]
, P 2

l =
[
0 (Pl):,dp+1

]
.

We will show that for any l ∈ [L], it satisfies Zl =

[
(Zl):,(1:dp−1) (Zl):,dp

0 (Zl):,dp+1

]
. One can verify that623

it holds trivially for l = 0. Then, suppose it holds for some l = k − 1, we have624

Zk = Zk−1 + V 1
kZk−1(Z

⊤
k−1Q

1
kZ

⊤
k−1 + P 1

k) + V 2
kZk−1(Z

⊤
k−1Q

2
kZ

⊤
k−1 + P 2

k)

= Zk−1 +

[
Vk(Zk−1):,1:dp

(
(Zk−1)

⊤
:,1:dp

Qk(Zk−1):,1:dp
+ (Pk)1:dp,1:dp

)
0

]

+

[
0

Vk(Zk−1):,1:dp

] ([
0 (Zk−1)

⊤
:,1:dp

Qk(Zk−1):,dp+1

]
+
[
0 (Pk):,dp+1

])
= Zk−1 +

[
VkZk−1M

(
Z⊤
k−1Qk(Zk−1):,1:dp

+ (Pk):,1:dp

)
0

]
+

[
0 0
0 VkZk−1M

(
Z⊤
k−1Qk(Zk−1):,dp+1 + (Pk):,dp+1

)]
=

[
(Zk):,1:dp

0

]
+

[
0 0
0 (Zk):,dp+1

]
.

The proof is complete.625

C Experiment Details and Additional Results626

In this section, we present experiment details and additional results not included in the main text due627

to space limitations. Our experiments are conducted on an A100 40G GPU. It takes around 30 GPU628

hours to fully reproduce our results1.629

C.1 Synthetic Experiments on Linear Transformers630

We consider training linear-attention transformers on random linear regression instances. We take631

embedding dimension d = 4, and the distributions for generating xi and wi are both Px = Pw =632

N (0, Id). We optimize the ICL risk for L-layer linear transformers with n in-context demonstrations633

using AdamW, where L ∈ [3] and n ∈ [5, 30]. Each gradient step is computed from a batch size of634

1000. We additionally apply ℓ1 regularization to simplify the found solutions. For training efficiency635

and stability, we restrict the Al, Bl, and Cl matrices to SI during training, and initialize Dl ∈ Rdp×dp636

with i.i.d. Gaussian matrices. For each case, we train 40 models with different random seeds, and637

report the minimum achieved ICL risk to approximate the global minimum.638

To reproduce the task vector mechanism, we focus on transformers trained with triplet-formatted639

prompts. The training procedure is identical to the above. For inference, we restrict Pw to rank-one640

coefficient matrices, by letting W = w1w
⊤
2 , where w1, w2 ∼ N (0, Id). We first generate normal ICL641

prompts to generate task vectors as the hidden states of the last arrow token after the first attention642

layer, and then inject them into zero-shot prompts after normalization. The final outputs ŷtest are taken643

as the output of these injected zero-shot prompts after being processed with the same transformer644

model. We compute the final risk as E
∥∥∥ ŷtest

∥ŷtest∥ + ytest

∥ytest∥

∥∥∥ to simulate the layer normalization blocks645

in practical LLMs. The reported scores are averaged for n ∈ [5, 30].646

C.2 Experiments on Practical LLMs647

Datasets. Following the settings of the original task vector method [7], our study covers 33 tasks in 5648

categories. The detailed description for each task is provided in Table 3.649

1The source code is available in supplementary materials.
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Table 3: Descriptions of the tasks used in our empirical studies.
Category Task Example Description

Knowledge

Contry to Capital France → Paris Output the capital city of the given country.
Person to Language Macron → French Output the native language of the given person.
Location to Continent Paris → Europe Output the corresponding continent of the given

location.
Religion Saladin → Muslim Output the associated religion of the given loca-

tion or person.

Algorithmic

List First [a,b,c] → a Output the first item in the given list.
List Last [a,b,c] → c Output the last item in the given list.
Next Letter a → b Output the next letter of the given letter in the

alphabet.
Prev Letter b → a Output the previous letter of the given letter in

the alphabet.
To Upper a → A Output the corresponding uppercase letter of the

given lowercase letter.
To Lower A → a Output the corresponding lowercase letter of the

given uppercase letter.

Translation

English to French hello → bonjour Translate the given word in English to French.
English to Italian hello → ciao Translate the given word in English to Italian.
English to Spanish hello → hola Translate the given word in English to Spanish.
French to English bonjour → hello Translate the given word in French to English.
Italian to English ciao → hello Translate the given word in Italian to English.
Spanish to English hola → hello Translate the given word in Spanish to English.

Linguistic

Present to Gerund go → going Output the corresponding gerund form of the
given verb in present simple tense.

Present to Past go → went Output the corresponding past simple form of
the given verb in present simple tense.

Present to Past Perfect go → gone Output the corresponding past perfect form of
the given verb in present simple tense.

Gerund to Present going → go Output the corresponding present simple form
of the given verb in gerund form.

Past to Present went → go Output the corresponding present simple form
of the given verb in past simple tense.

Past Perfect to Present gone → go Output the corresponding present simple form
of the given verb in past perfect tense.

Singular to Plural dog → dogs Output the corresponding plural form of the
given noun in singular form.

Plural to Singular dogs → dog Output the corresponding singular form of the
given noun in plural form.

Antonym happy → sad Output the antonym of the given adjective.

Bijection

To Upper & Lower a ↔ A Output the given letter in uppercase if it is in
lowercase, and vice versa.

English & French hello ↔ bonjour Translate the given word to French if it is in
English, and vice versa.

English & Italian hello ↔ ciao Translate the given word to Italian if it is in
English, and vice versa.

English & Spanish hello ↔ hola Translate the given word to Spanish if it is in
English, and vice versa.

Present & Gerund go ↔ going Output the given verb in gerund form if it is in
present simple tense, and vice versa.

Present & Past go ↔ went Output the given verb in past simple form if it is
in present simple tense, and vice versa.

Present & Past Perfect go ↔ gone Output the given verb in past perfect form if it
is in present simple tense, and vice versa.

Singular & Plural dog ↔ dogs Output the given noun in plural form if it is in
singular form, and vice versa.
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Table 4: Accuracy comparison between standard ICL (Baseline), the task vector method (TaskV),
and our strategy (TaskV-M). The experiment is conducted on Pythia-12B with n = 10.

Method Knowledge Algorithmic Translation Linguistic Bijection Average

0-shot Baseline 6.60 ± 1.59 14.07 ± 1.45 8.60 ± 0.68 12.53 ± 1.57 10.31 ± 0.70 10.82 ± 0.48
TaskV 63.30 ± 2.62 84.73 ± 1.22 62.07 ± 0.98 82.58 ± 1.22 42.27 ± 0.92 66.40 ± 0.96

1-shot
Baseline 61.80 ± 5.45 72.80 ± 1.15 43.27 ± 2.92 57.07 ± 1.15 41.91 ± 2.83 53.95 ± 1.02
TaskV 76.40 ± 2.40 84.20 ± 1.05 71.47 ± 1.41 87.16 ± 2.04 53.11 ± 2.37 73.59 ± 0.79
TaskV-M 77.70 ± 2.52 83.73 ± 1.37 71.00 ± 1.48 86.80 ± 1.59 53.87 ± 2.90 73.68 ± 0.90

2-shot
Baseline 70.30 ± 3.71 82.13 ± 0.54 60.80 ± 1.81 81.16 ± 1.57 50.76 ± 2.17 68.41 ± 0.64
TaskV 80.30 ± 2.46 87.00 ± 1.63 76.13 ± 3.77 89.33 ± 0.70 58.67 ± 2.44 77.41 ± 0.50
TaskV-M 81.60 ± 1.56 86.47 ± 0.40 77.27 ± 2.53 89.51 ± 0.88 59.24 ± 2.48 77.87 ± 0.76

3-shot
Baseline 77.60 ± 2.40 81.87 ± 0.81 68.13 ± 2.02 86.31 ± 1.93 55.73 ± 1.60 73.20 ± 0.31
TaskV 84.00 ± 2.76 86.33 ± 1.17 79.53 ± 2.27 92.00 ± 0.67 58.76 ± 1.53 79.06 ± 0.67
TaskV-M 85.40 ± 2.31 87.07 ± 1.18 78.13 ± 1.86 92.84 ± 0.68 59.56 ± 1.27 79.54 ± 0.35

4-shot
Baseline 78.40 ± 1.83 82.73 ± 0.44 72.40 ± 1.24 88.89 ± 1.25 57.91 ± 1.46 75.46 ± 0.64
TaskV 83.80 ± 1.12 87.60 ± 1.81 80.20 ± 2.39 92.18 ± 0.96 59.38 ± 0.47 79.59 ± 0.62
TaskV-M 84.30 ± 1.50 88.13 ± 0.81 80.00 ± 2.67 91.87 ± 1.25 60.31 ± 0.86 79.87 ± 0.51

Prompt Template. The template used to construct ICL demonstrations is “Example:{xi} → {yi},650

where xi and yi are subsequently replaced by the input and output of the semantic mapping. For651

the query part, yi is omitted from the prompt. After concatenating each demonstration with “\n”, an652

example of the full input prompt is:653

Example:{x1} → {y1}\n · · ·Example:{xn} → {yn}\nExample:{xtest} →

Evaluation. To evaluate the N -shot performance, we generate 50× (N + 1) i.i.d. prompts for each654

task with number of demonstrations n = 10 for task vector extraction. The hidden states of the655

last→ token, which is also literally the last token in the prompt, are recorded for every layer in the656

transformer. Thereafter, we generate another 50 i.i.d. prompts with N demonstrations, where xtest is657

selected to be distinct from the previous chosen ones. The final accuracy is measured by whether658

the next word predicted matches the expected answer. The performance of the standard ICL method659

(Baseline) is acquired by inferring without interference. For the task vector method (TaskV) and our660

multi-vector variant (TaskV-M), the extracted task vectors are injected to replace the hidden states of661

the arrow→ tokens at a specified layer l. For TaskV, only the last arrow token is injected, while for662

TaskV-M, each of the N + 1 arrow tokens is injected with the N + 1 extracted task vectors for the663

same task. The performance is reported for the one layer l ∈ L achieving the highest accuracy. For664

each case, the mean and standard deviation are evaluated through 5 independent trials.665

Additional Results. Besides Llama-13B, we also observe consistent accuracy improvement of our666

TaskV-M method on the Pythia-12B model, as reported in Table 4.667

D Additional Discussions668

D.1 Last Task Vector Weights the Most669

While our analysis of linear-attention models suggests that each formed task vector (i.e., the hidden670

state at each arrow token) contributes equally to the final prediction, this assumption does not fully671

hold in practical LLMs. As demonstrated by the conflicting tasks experiment in [7], injecting a672

task vector from task B into an ICL prompt designed for task A causes the model to predominantly673

perform task B. This behavior indicates that LLMs largely rely on the last arrow token to determine674

the task identity. We attribute this to the causal attention mechanism used in practical LLMs, which675

is not captured by our current theoretical analysis. In causal attention, only the final arrow token676

can aggregate information from the entire preceding context, making it the most informative and677

influential for prediction. This explains why our multi-vector strategy offers modest, though consistent,678

performance gains. The improvement suggests that intermediate arrow tokens do participate in the679

inference process, albeit less effectively. Enhancing how LLMs utilize information from all arrow680

tokens remains a promising direction for improving task vector accuracy and robustness.681
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D.2 Decoding the Vocabulary of Task Vectors682

Multiple prior works [7, 16] have observed an interesting phenomenon: when task vectors are683

extracted and passed through the final classification layer, the top predicted tokens often belong to684

the output space of the corresponding task. This effect is particularly prominent in the GPT-J model.685

Interestingly, we find that this behavior can be naturally explained by our analysis of linear models.686

Specifically, we assume that the hidden state space has dimensionality at least 2d, where the first d687

dimensions represent the input (xi) and the last d dimensions represent the output (yi). Task vectors688

constructed under this architecture preserve this layout: the first half encodes a linear combination689

of xi, and the second half encodes a linear combination of yi. In the final layer, the model predicts690

ytest by extracting the last d dimensions of the final token. When this same mechanism is applied to691

a task vector, it naturally produces a linear combination of the yi values, thereby generating outputs692

aligned with the task’s output space. This indicates that practical LLMs adopt a similar partition in693

the hidden state space, justifying our prompt structure for linear model analysis.694

D.3 Limitations695

While our analysis provides new insights into the emergence and functionality of task vectors, it is696

primarily conducted on simplified linear-attention transformers and synthetic tasks, which may not697

fully capture the complexity of real-world LLMs. Moreover, our theoretical framework focuses on698

middle-layer representations and does not fully account for deeper interactions across layers or the699

role of fine-tuned components such as layer normalization and multi-head attention.700

D.4 Broader Impacts701

This work advances the theoretical understanding of in-context learning and task vector mechanisms,702

which can lead to more efficient and interpretable language models. By enabling faster inference703

through task vectors, it may reduce the computational cost and energy consumption of large-scale704

deployment, thereby making AI systems more accessible and environmentally sustainable. Im-705

proved interpretability could also enhance trust and transparency in AI applications across education,706

healthcare, and other socially beneficial domains.707

As task vector methods improve efficiency and transferability, they may also be misused to replicate708

or extract functionality from proprietary models without authorization, raising concerns around model709

intellectual property. Additionally, while interpretability is often framed as a benefit, deeper insights710

into model internals could be exploited to engineer adversarial inputs or extract sensitive training711

data. Careful consideration and mitigation strategies are essential to ensure that such work aligns712

with the broader goals of safe and beneficial AI.713
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