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CRISP: Contact-guided Real2Sim from Monocular
Video with Planar Scene Primitives

Figure 1: We present CRISP, a framework for seamless real-to-sim human—scene interaction from
monocular video. From unconstrained video of a human interacting with a static environment (left),
our pipeline reconstructs the camera, 4D human motion, and a scene point cloud in world coordinates.
Estimated contact points (colored dots) serve as geometric anchors to recover occluded regions
as a complementary point cloud (middle). Finally, compact planar primitives are fitted to support
contact-faithful physics in simulation (right). Gray primitives are derived from the scene point cloud,
while yellow primitives are derived from the contact point cloud.

Abstract

Modeling contact-accurate human—scene interaction from monocular video is a
crucial step toward real-to-sim transfer in computer vision and robotics. However,
this task remains highly challenging due to the inherent ambiguities of monocular
perception and the limitations of Human Mesh Recovery (HMR) and single-view
3D geometry estimation. Existing methods often fail to capture reliable contact
and scene structure, making them unsuitable for converting in-the-wild videos
into simulation-ready assets. In this work, we introduce CRISP, a framework that
integrates HMR, 4D reconstruction, and contact prediction into a unified front-end
for recovering human motion, scene structure, and contact cues. These signals
jointly guide the completion of occluded geometry, after which we fit compact
planar primitives that merge the scene point cloud and the contact point cloud into a
unified, simulation-friendly representation. Finally, we integrate the reconstructed
assets into a physics-based simulator and use reinforcement learning to enforce
realistic, contact-faithful human—scene interaction. Our approach achieves over
97% success rate on human-centric video benchmarks (EMDB, PROX) and delivers
1.9x faster throughput for Reinforcement Learning training compared to prior
pipelines.

1 Introduction

Humans constantly interact with their environments—sitting on chairs, lying on sofas, climbing
stairs. Accurately recovering such human—scene interactions (HSI) from monocular video would
unlock large-scale applications in embodied Al and robotics [Allshire et al.| [2025]]. However, this
problem remains highly challenging due to the inherent ambiguities of monocular perception and the
limitations of Human Mesh Recovery (HMR) and single-view 3D geometry estimation.
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Most prior work on HMR [Shin et al.| [2024], [Wang et al.| [2024b], [Shen et al.| [2024], Wang et al.
[2025b]| focuses on human motion and neglects scene context. The resulting motions lack physical
grounding and fail to provide paired scene geometry that can be faithfully simulated in physics
engines. Recent methods|Shin et al.|[2024], Liu et al.| [2025]] that attempt joint human—scene recovery
often rely on predicted contact cues to align humans with reconstructed scenes, but these cues are
unreliable for complex, in-the-wild videos with frequent occlusions. Recent work in building scene
representation for human-centric scene has shown significant progress|Zhao et al.| [2025]],[Wang et al.
[2025alc], The most related concurrent work, VideoMimic |Allshire et al.|[2025]], directly imports
dense reconstructed meshes into simulators. We find this strategy suboptimal: dense triangle meshes
yield unstable contacts, slow training, and cannot robustly handle occluded regions. The limitations
highlight a core challenge: reliably bridging monocular video to simulation requires representations
that capture human—scene contact while remaining lightweight and stable for physics engines, which
is a gap not addressed by existing methods.

We introduce CRISP, a contact-aware real-to-sim pipeline that converts monocular human-centric
videos into contact-accurate, simulation-ready assets. CRISP integrates HMR, 4D reconstruction,
and contact prediction into a unified front-end to jointly recover human motion, scene structure, and
contact cues. These signals guide the completion of occluded geometry, which we represent using
lightweight planar primitives that merge scene and contact point clouds into a compact, simulation-
friendly form. Finally, we integrate these assets into a physics-based simulator, where reinforcement
learning refines interaction dynamics to enforce realistic, contact-faithful human—scene interaction.

Our contributions are summarized: (1) We propose CRISP, a contact-aware real-to-sim pipeline. It
converts unconstrained monocular videos into simulation-ready human motion and scene primitives
explicitly designed for stable contact in physics engines. (2) Contact-guided scene completion. We
leverage predicted body—scene contacts as geometric priors to complete occluded scene regions,
followed by normal-guided planar fitting that produces compact primitives suitable for simulation. (3)
Robust performance and efficiency. On human—scene benchmarks, CRISP attains a 96.9% real-to-sim
success rate and achieves 1.9x faster reinforcement learning training throughput compared to baseline.

2 Related work

3D human motion recovery is most widely formulated as recovering the parameters of a parametric
human model, such as SMPL [Loper et al.,2015[] and its variants [Pavlakos et al., 2019]]. Recently,
feed-forward HMR methods directly regress SMPL parameters in camera coordinates from images or
videos [Kanazawa et al., 2018]] - however this does not recover the global motion trajectory, scene
geometry, or human-scene contact. To recover world-grounded global motion trajectories, several
recent works estimate cameras via visual odometry [Shen et al.|[2024] or SLAM [Wang et al.|[2024b],
but do not recover scene geometry or contact. To recover human-scene contact, WHAM [Shin et al.,
2024] is trained to predict the likelihood of foot-ground contact using estimated contact labels from
both AMASS and 3D video datasets. WHAM then trains a trajectory refinement network that updates
the root orientation and velocity based on foot contact information. However, despite recent progress,
recovering global motion trajectories together with scene geometry and contact remains a challenging
problem. The final result is often inconsistent over time (involving jittering), or fails to recover
accurate and physically-plausible motion within the context of the scene. In light of this, we propose
to unify all these different threads: we recover world-grounded human motion jointly with scene
geometry, and leverage human-scene contact signals within a physics-based simulator to provide
contact-rich feedback and refine human motion via reinforcement learning.

3 Method

Preliminary: Human Mesh Recovery in camera coordinate. We represent the per-frame 3D
human body with SMPL [Loper et al.}|2023]], a parametric triangular mesh model. At time ¢, the posed
mesh is M; = M(0,8,r,7¢) € RO890X3 \where 0, € R23%3 are the relative joint rotations
(axis—angle) of the 23 body joints, 3 € R'? encodes body shape, and (r;, ;) € R? x R3 denote
the root (global) orientation and translation with respect to the camera. For convenience we group
the parameters as @; = (6;,3) and Ty = (r¢, ), so that T; captures global rigid motion
while ®, captures local articulated pose and identity. The scale of the SMPL mesh is in metric
units, representing the real size of the human in meters. In this work we adopt GVHMR [Shen et al.|
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Figure 2: Framework overview. From a monocular video, we recover a common world frame by
coupling deep visual SLAM with world-grounded HMR. Contact prediction provides human—scene
anchors to complete occluded regions as a point cloud. We then fit a compact set of planar primitives
to obtain a simulation-ready scene for RL training.

2024]), a transformer-based model trained in regression manner to predict SMPL pose 8; together
with camera-aligned root motion (r;, 7v;) from video. At inference, it outputs per-frame SMPL mesh

in the camera coordinate frame MEC) = M(6:,8,ry, 7).

Human, Scene, and Camera Initialization Given an unconstrained monocular video V = { I; €
RHEXWAN | depicting a human interacting with either a static scene S (e.g. parkour, stair climbing,
sitting on a sofa) or dynamic hinged objects O = {O,;}¥; (e.g. a door or a scooter), our goal
is to recover paired 3-D human motion and scene geometry in a world coordinate. A minimal
solution must therefore infer camera poses 7; = [R; | ;] € SE(3); camera intrinsics K € R3*3; a
per-frame dense depth map D = {(d;)}Y,. We replace the depth estimator in optimization stage
of MegaSAM [2024]] with MoGe[Wang et al [2024a], producing a scale-invariant dense
point cloud P together with calibrated camera parameters {K, 7; }¥.,. The intrinsics K are then
forwarded to GVHMR [Shen et al.|[2024] to obtain a human-mesh reconstruction in camera space
and lifted to the world frame ensuring that the human, scene, and camera share a single coordinate
system. As P is scale—ambiguous, we recover metric scale by taking the median of per-frame scales
calculated by dividing the depth of the human center from the SMPL mesh by the human depth from
the predicted dense depth map. The scaled cloud P is therefore metrically consistent with both the
camera calibration and the human mesh.

Normal-based planar primitive fitting We adopt a planar-world assumption: we assume the
scene structure can be modeled as a compact set of planar primitive. Despite its simplicity, this
representation is sufficient for common human-scene interactions (sitting, lying down, walking,
climbing stairs, etc.). Unlike methods that first learn a globally consistent neural field from 2D
segmentation priors to extract planar primitives 2025]], our approach directly estimates
planes from 3D cues, yielding a lightweight and simulation-ready reconstruction. We estimate a
normal field F from the point set P, then run KMeans followed by DBSCAN to cluster points into
planar patches. For each primitive, we align the local axis z with the scene normal vector n, estimate
the in-plane axes (x,y) via PCA, fit a plane using RANSAC, and expand along (x,y) to cover the
inlier points; the thickness is a hyperparameter fixed as 0.05 m. For dynamic camera setup, we also
adopt off-the-shelf flow estimator |[Zhang et al.| [2025]] to infer plane correspondence across frames.
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Table 1: EMDB human motion estimation.  Table 2: Success rates (%) and overall FPS on

Method \ EMDB EMDB and PROX datasets.

| WA-MPIPE1ool W-MPIPBiool RTEL  “ppernog | EMDB (21) | PROX (12) | Average! | FPSt
WHAMShin et al.|[2024 98.4489 2675326 3.299 -
TRAMWang ot al.||2024b 83.6142 2495018 1927  VDBfusion 90.40 81.82 87.50 8K
GVHMRShen et al. [[2024 74.8000 200.700 1.900 NKSR 5238 7273 65.40 8K
CRISP (Ours) 76.5195 178.0635 1.620 CRISP (Ours) 100.0 91.67 96.97 15K

Goal-conditioned reinforcement learning. Following Peng et al.| [2018al], we train a fully-
constrained motion-tracking policy 7€ that maps the current state of the humanoid to actuator
torques. Because the dataset provides only kinematic reference clips, 7FC must infer the required
motor commands. Our fully-constrained controller is trained end-to-end to imitate target motions by
conditioning on the full-body motion sequence. The training objective is formulated as a motion-
tracking reward and optimized using reinforcement learning. The objective of motion tracking is to
predict the next actions based on the current character state, and a sequence of future target poses.

Observations. At each timestep, the policy observes the character’s joint orientations and positions
together with linear and angular velocities, all expressed in the root frame to remove global motion.
We also provide a short look-ahead of the next N target poses: for each future step, the input contains
joint-wise orientation and position deltas relative to the current pose plus a scalar time-to-target. The
policy is trained end-to-end with asynchronous PPO [Schulman et al.,|2017] to track the reference
motion while avoiding interpenetration and respecting joint limits, yielding stable contact-aware

control in the reconstructed scene. ) ) o
Action space. Following prior work [Peng et al.,[2018b]], actions are parametized as desired joint

targets for a Proportional-Derivative (PD) controller. The stochastic policy 7 (at | s¢, gt) is modelled

as a multivariate Gaussian with fixed diagonal covariance ¥ = ¢27.
Reward Function. The reward function r; encourages the agent to closely follow a reference

motion by minimizing discrepancies between the simulated character’s state and the target trajectory:

re = WP + wErE + whrh 4 wjvrjtv + wjavdav + weriE, )
where each rt{'} represents an individual reward component, and w{} denotes its corresponding
weight. Specifically, the reward encourages accurate imitation of global joint positions (gp), global
joint rotations (gr), root height (rh), joint velocities (jv), and joint angular velocities (jav).

4 Experiments

Datasets. We evaluate on the following datasets: EMDB [Kaufmann et al.,|2023] and PROX [Has+
san et al.,[2019]. The EMDB dataset provides labels for global human motion without the scene
model, and weuse the EMDB-2 subset with 21 sequences (4 indoor + 17 ourdoor) for evaluation. The
PROX dataset provides labels for and paired 3D scene scan of 12 indoor setting .

Baselines. We ablate three types of geometry representations and run best convexification strat-
egy [[Wei et al.||2022] that enables real2sim, and compare to prior work on world-grounded HMR.
Geometry. (i) VDBFusion [Vizzo et all 2022] (average weighted TSDF followed by March-
ing Cubes [Lorensen and Clinel [1987]]; and (ii) NKSR. We omit JOSH [Liu et al., 2025] and
VideoMimic [Allshire et al.,2025]] as code are not publicly available.

Metrics. We evaluate global human motion estimation following prior works [Shin et al., [2024]
Wang et al., [2024b]] to use the world-grounded human pose estimation metric W-MPJPE(q or
WA-MPIJPE, o, for evaluation. We also evaluate the global trajectory errors normalized by the total
distance after aligning the whole trajectory and measure Root Translation Error (RTE%). For RL
training, we ablate several design chocies regrading success rate. We also compare the throughput
during RL training, measured in frames per second (FPS). This metric reflects the efficiency of
different reconstruction backends when used in our RL loop.

Discussion and Conclusion. Our proposed framework attains the highest success rates on both
datasets—100% on EMDB-2 and 91.67% on PROX—yielding a 96.97% average, which is +9.47 per-
centage points over the strongest baseline (VDBfusion at 87.50%). Moreover, our planar, simulation-
ready representation delivers 15K FPS training throughput which brought 2X speedup. The gains are
consistent with our design: contact-guided completion plus compact plane primitives reduce collision
pairs and contact resolution cost, improving both stability (higher success) and efficiency (higher FPS).
The results highlight that explicitly leveraging predicted contact points to drive planar reconstruction
is an effective route to reliable, simulation-ready real-to-sim from in-the-wild monocular video.
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