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Figure 1: We present CRISP, a framework for seamless real-to-sim human–scene interaction from
monocular video. From unconstrained video of a human interacting with a static environment (left),
our pipeline reconstructs the camera, 4D human motion, and a scene point cloud in world coordinates.
Estimated contact points (colored dots) serve as geometric anchors to recover occluded regions
as a complementary point cloud (middle). Finally, compact planar primitives are fitted to support
contact-faithful physics in simulation (right). Gray primitives are derived from the scene point cloud,
while yellow primitives are derived from the contact point cloud.
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Abstract

Modeling contact-accurate human–scene interaction from monocular video is a3

crucial step toward real-to-sim transfer in computer vision and robotics. However,4

this task remains highly challenging due to the inherent ambiguities of monocular5

perception and the limitations of Human Mesh Recovery (HMR) and single-view6

3D geometry estimation. Existing methods often fail to capture reliable contact7

and scene structure, making them unsuitable for converting in-the-wild videos8

into simulation-ready assets. In this work, we introduce CRISP, a framework that9

integrates HMR, 4D reconstruction, and contact prediction into a unified front-end10

for recovering human motion, scene structure, and contact cues. These signals11

jointly guide the completion of occluded geometry, after which we fit compact12

planar primitives that merge the scene point cloud and the contact point cloud into a13

unified, simulation-friendly representation. Finally, we integrate the reconstructed14

assets into a physics-based simulator and use reinforcement learning to enforce15

realistic, contact-faithful human–scene interaction. Our approach achieves over16

97% success rate on human-centric video benchmarks (EMDB, PROX) and delivers17

1̃.9× faster throughput for Reinforcement Learning training compared to prior18

pipelines. This demonstrates the ability of CRISP to generate paired human motion19

and interacting environments at scale, greatly advancing real-to-sim applications in20

robotics and embodied AI.21

1 Introduction22

Humans constantly interact with their environments—sitting on chairs, lying on sofas, climbing23

stairs. Accurately recovering such human–scene interactions (HSI) from monocular video would24
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unlock large-scale applications in embodied AI and robotics Allshire et al. [2025]. However, this25

problem remains highly challenging due to the inherent ambiguities of monocular perception and the26

limitations of Human Mesh Recovery (HMR) and single-view 3D geometry estimation.27

Most prior work on HMR Shin et al. [2024], Wang et al. [2024b], Shen et al. [2024] focuses on human28

motion and neglects scene context. The resulting motions lack physical grounding and fail to provide29

paired scene geometry that can be faithfully simulated in physics engines. Recent methods Shin et al.30

[2024], Liu et al. [2025] that attempt joint human–scene recovery often rely on predicted contact cues31

to align humans with reconstructed scenes, but these cues are unreliable for complex, in-the-wild32

videos with frequent occlusions. The most related concurrent work, VideoMimic Allshire et al.33

[2025], directly imports dense reconstructed meshes into simulators. We find this strategy suboptimal:34

dense triangle meshes yield unstable contacts, slow training, and cannot robustly handle occluded35

regions. These limitations highlight a core challenge: reliably bridging monocular video to simulation36

requires representations that capture human–scene contact while remaining lightweight and stable for37

physics engines, which is a gap not addressed by existing methods.38

We introduce CRISP, a contact-aware real-to-sim pipeline that converts monocular human-centric39

videos into contact-accurate, simulation-ready assets. CRISP integrates HMR, 4D reconstruction,40

and contact prediction into a unified front-end to jointly recover human motion, scene structure, and41

contact cues. These signals guide the completion of occluded geometry, which we represent using42

lightweight planar primitives that merge scene and contact point clouds into a compact, simulation-43

friendly form. Finally, we integrate these assets into a physics-based simulator, where reinforcement44

learning refines interaction dynamics to enforce realistic, contact-faithful human–scene interaction.45

Our contributions are summarized: (1) We propose CRISP, a contact-aware real-to-sim pipeline. It46

converts unconstrained monocular videos into simulation-ready human motion and scene primitives47

explicitly designed for stable contact in physics engines. (2) Contact-guided scene completion. We48

leverage predicted body–scene contacts as geometric priors to complete occluded scene regions,49

followed by normal-guided planar fitting that produces compact primitives suitable for simulation. (3)50

Robust performance and efficiency. On human–scene benchmarks, CRISP attains a 96.9% real-to-sim51

success rate and achieves 1.9× faster reinforcement learning training throughput compared to baseline.52

2 Related work53

3D human motion recovery is most widely formulated as recovering the parameters of a parametric54

human model, such as SMPL [Loper et al., 2015] and its variants [Pavlakos et al., 2019]. Recently,55

feed-forward HMR methods directly regress SMPL parameters in camera coordinates from images or56

videos [Kanazawa et al., 2018] - however this does not recover the global motion trajectory, scene57

geometry, or human-scene contact. To recover world-grounded global motion trajectories, several58

recent works estimate cameras via visual odometry [Shen et al., 2024] or SLAM [Wang et al., 2024b],59

but do not recover scene geometry or contact. To recover human-scene contact, WHAM [Shin et al.,60

2024] is trained to predict the likelihood of foot-ground contact using estimated contact labels from61

both AMASS and 3D video datasets. WHAM then trains a trajectory refinement network that updates62

the root orientation and velocity based on foot contact information. However, despite recent progress,63

recovering global motion trajectories together with scene geometry and contact remains a challenging64

problem. The final result is often inconsistent over time (involving jittering), or fails to recover65

accurate and physically-plausible motion within the context of the scene. In light of this, we propose66

to unify all these different threads: we recover world-grounded human motion jointly with scene67

geometry, and leverage human-scene contact signals within a physics-based simulator to provide68

contact-rich feedback and refine human motion via reinforcement learning.69

3 Method70

Preliminary: Human Mesh Recovery in camera coordinate. We represent the per-frame 3D71

human body with SMPL [Loper et al., 2023], a parametric triangular mesh model. At time t, the posed72

mesh is Mt = M(θt,β, rt,πt) ∈ R6890×3, where θt ∈ R23×3 are the relative joint rotations73

(axis–angle) of the 23 body joints, β ∈ R10 encodes body shape, and (rt,πt) ∈ R3 × R3 denote74

the root (global) orientation and translation with respect to the camera. For convenience we group75

the parameters as Θt = (θt,β) and Tt = (rt,πt), so that Tt captures global rigid motion76
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Figure 2: Framework overview. From a monocular video, we recover a common world frame by
coupling deep visual SLAM with world-grounded HMR. Contact prediction provides human–scene
anchors to complete occluded regions as a point cloud. We then fit a compact set of planar primitives
to obtain a simulation-ready scene for RL training.

while Θt captures local articulated pose and identity. The scale of the SMPL mesh is in metric77

units, representing the real size of the human in meters. In this work we adopt GVHMR [Shen et al.,78

2024], a transformer-based model trained in regression manner to predict SMPL pose θt together79

with camera-aligned root motion (rt,πt) from video. At inference, it outputs per-frame SMPL mesh80

in the camera coordinate frame M
(c)
t = M(θt,β, rt,πt) .81

Human, Scene, and Camera Initialization Given an unconstrained monocular video V = { Ii ∈82

RH×W }Ni=1 depicting a human interacting with either a static scene S (e.g. parkour, stair climbing,83

sitting on a sofa) or dynamic hinged objects O = {Oi}Ni=1 (e.g. a door or a scooter), our goal84

is to recover paired 3-D human motion and scene geometry in a world coordinate. A minimal85

solution must therefore infer camera poses Ti = [Ri | ti] ∈ SE(3); camera intrinsics K ∈ R3×3; a86

per-frame dense depth map D = {(di)}Ni=1. We replace the depth estimator in optimization stage87

of MegaSAM [Li et al., 2024] with MoGe[Wang et al., 2024a], producing a scale-invariant dense88

point cloud P together with calibrated camera parameters {K, Ti}Ni=1. The intrinsics K are then89

forwarded to GVHMR Shen et al. [2024] to obtain a human-mesh reconstruction in camera space90

and lifted to the world frame ensuring that the human, scene, and camera share a single coordinate91

system. As P is scale–ambiguous, we recover metric scale by taking the median of per-frame scales92

calculated by dividing the depth of the human center from the SMPL mesh by the human depth from93

the predicted dense depth map. The scaled cloud P̃ is therefore metrically consistent with both the94

camera calibration and the human mesh.95

Normal–based planar primitive fitting We adopt a planar-world assumption: we assume the96

scene structure can be modeled as a compact set of planar primitive. Despite its simplicity, this97

representation is sufficient for common human–scene interactions (sitting, lying down, walking,98

climbing stairs, etc.). Unlike methods that first learn a globally consistent neural field from 2D99

segmentation priors to extract planar primitives [Ye et al., 2025], our approach directly estimates100

planes from 3D cues, yielding a lightweight and simulation-ready reconstruction. We estimate a101

normal field F from the point set P , then run KMeans followed by DBSCAN to cluster points into102

planar patches. For each primitive, we align the local axis z with the scene normal vector n, estimate103

the in-plane axes (x,y) via PCA, fit a plane using RANSAC, and expand along (x,y) to cover the104

inlier points; the thickness is a hyperparameter fixed as 0.05m. For dynamic camera setup, we also105

adopt off-the-shelf flow estimator Zhang et al. [2025] to infer plane correspondence across frames.106
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Table 1: EMDB human motion estimation.
Method EMDB

WA-MPJPE100 ↓ W-MPJPE100 ↓ RTE↓
WHAMShin et al. [2024] 98.4489 267.5326 3.299
TRAMWang et al. [2024b] 83.6142 249.5018 1.927
GVHMRShen et al. [2024] 74.8000 200.700 1.900
CRISP (Ours) 76.5195 178.0635 1.620

Table 2: Success rates (%) and overall FPS on
EMDB and PROX datasets.

Method EMDB (21) PROX (12) Average↑ FPS↑
VDBfusion 90.40 81.82 87.50 8K
NKSR 52.38 72.73 65.40 8K
CRISP (Ours) 100.0 91.67 96.97 15K

Goal-conditioned reinforcement learning. Following Peng et al. [2018a], we train a fully-107

constrained motion-tracking policy πFC that maps the current state of the humanoid to actuator108

torques. Because the dataset provides only kinematic reference clips, πFC must infer the required109

motor commands. Our fully-constrained controller is trained end-to-end to imitate target motions by110

conditioning on the full-body motion sequence. The training objective is formulated as a motion-111

tracking reward and optimized using reinforcement learning. The objective of motion tracking is to112

predict the next actions based on the current character state, and a sequence of future target poses.113

Observations. At each timestep, the policy observes the character’s joint orientations and positions114

together with linear and angular velocities, all expressed in the root frame to remove global motion.115

We also provide a short look-ahead of the next N target poses: for each future step, the input contains116

joint-wise orientation and position deltas relative to the current pose plus a scalar time-to-target. The117

policy is trained end-to-end with asynchronous PPO [Schulman et al., 2017] to track the reference118

motion while avoiding interpenetration and respecting joint limits, yielding stable contact-aware119

control in the reconstructed scene.120
Action space. Following prior work [Peng et al., 2018b], actions are parametized as desired joint121

targets for a Proportional–Derivative (PD) controller. The stochastic policy π
(
at | st, gt

)
is modelled122

as a multivariate Gaussian with fixed diagonal covariance Σ = σ2
πI.123

Reward Function. The reward function rt encourages the agent to closely follow a reference124

motion by minimizing discrepancies between the simulated character’s state and the target trajectory:125

rt = wgprgp
t + wgrrgr

t + wrhrrh
t + wjvrjv

t + wjavrjav
t + wegreg

t , (1)

where each r
{·}
t represents an individual reward component, and w{·} denotes its corresponding126

weight. Specifically, the reward encourages accurate imitation of global joint positions (gp), global127

joint rotations (gr), root height (rh), joint velocities (jv), and joint angular velocities (jav).128

4 Experiments129

Datasets. We evaluate on the following datasets: EMDB [Kaufmann et al., 2023] and PROX [Has-130

san et al., 2019]. The EMDB dataset provides labels for global human motion without the scene131

model, and weuse the EMDB-2 subset with 21 sequences (4 indoor + 17 ourdoor) for evaluation. The132

PROX dataset provides labels for and paired 3D scene scan of 12 indoor setting .133

Baselines. We ablate three types of geometry representations and run best convexification strat-134

egy [Wei et al., 2022] that enables real2sim, and compare to prior work on world-grounded HMR.135

Geometry. (i) VDBFusion [Vizzo et al., 2022] (average weighted TSDF followed by March-136

ing Cubes [Lorensen and Cline, 1987]; and (ii) NKSR. We omit JOSH [Liu et al., 2025] and137

VideoMimic [Allshire et al., 2025] as code are not publicly available.138

Metrics. We evaluate global human motion estimation following prior works [Shin et al., 2024,139

Wang et al., 2024b] to use the world-grounded human pose estimation metric W-MPJPE100 or140

WA-MPJPE100 for evaluation. We also evaluate the global trajectory errors normalized by the total141

distance after aligning the whole trajectory and measure Root Translation Error (RTE%). For RL142

training, we ablate several design chocies regrading success rate. We also compare the throughput143

during RL training, measured in frames per second (FPS). This metric reflects the efficiency of144

different reconstruction backends when used in our RL loop.145

Discussion and Conclusion. Our proposed framework attains the highest success rates on both146

datasets—100% on EMDB-2 and 91.67% on PROX—yielding a 96.97% average, which is +9.47 per-147

centage points over the strongest baseline (VDBfusion at 87.50%). Moreover, our planar, simulation-148

ready representation delivers 15K FPS training throughput which brought 2X speedup. The gains are149

consistent with our design: contact-guided completion plus compact plane primitives reduce collision150

pairs and contact resolution cost, improving both stability (higher success) and efficiency (higher FPS).151

The results highlight that explicitly leveraging predicted contact points to drive planar reconstruction152

is an effective route to reliable, simulation-ready real-to-sim from in-the-wild monocular video.153
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