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Abstract

We show how to use low-quality, synthetic, and out-of-distribution images to
improve the quality of a diffusion model. Typically, diffusion models are trained
on curated datasets that emerge from highly filtered data pools from the Web and
other sources. We show that there is immense value in the lower-quality images
that are often discarded. We present Ambient Diffusion Omni, a simple, principled
framework to train diffusion models that can extract signal from all available images
during training. Our framework exploits two properties of natural images — spectral
power law decay and locality. We first validate our framework by successfully
training diffusion models with images synthetically corrupted by Gaussian blur,
JPEG compression, and motion blur. We then use our framework to achieve state-
of-the-art ImageNet FID and we show significant improvements in both image
quality and diversity for text-to-image generative modeling. The core insight is
that noise dampens the initial skew between the desired high-quality distribution
and the mixed distribution we actually observe. We provide rigorous theoretical
justification for our approach by analyzing the trade-off between learning from
biased data versus limited unbiased data across diffusion times.

1 Introduction

Large-scale, high-quality training datasets have been a primary driver of recent progress in generative
modeling. These datasets are typically assembled by filtering massive collections of images sourced
from the web or proprietary databases [25, 43, 53, 58, 59]. The filtering process is crucial to the
quality of the resulting models [13, 27, 25, 32, 27]. However, filtering strategies are often heuristic
and inefficient, discarding large amounts of data [51, 43, 25, 13]. We demonstrate that the data
typically rejected as low-quality holds significant, underutilized value.

Extracting meaningful information from degraded data requires algorithms that explicitly model the
degradation process. In generative modeling, there is growing interest in approaches that learn to
generate directly from degraded inputs [18, 17, 14, 15, 7, 47, 39, 52, 5, 1, 2, 55, 71, 46, 64, 45,
11, 48]. A key limitation of existing methods is their reliance on knowing the exact form of the
degradation. In real-world scenarios, image degradations—such as motion blur, sensor artifacts,
poor lighting, and low resolution—are often complex and lack a well-defined analytical description,
making this assumption unrealistic. Even within the same dataset, from ImageNet to internet scale
text-to-image datasets, there are samples of varying qualities [28], as shown in Figures 3, 24, 27,
25. Given access to this mixed-bag of datapoints, we would like to sample from a tilted continuous
measure of high-quality images, without sacrificing the diversity present in the training points.

The training objective of diffusion models naturally decomposes sampling from a target distribution
into a sequence of supervised learning tasks [30, 61, 62, 16, 19, 9, 10]. Due to the power-law structure
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a) Text-to-image results b) ImageNet results

Figure 1: Effect of using Ambient-o for (a) training a text-to-image model (Micro-Diffusion [54])
and (b) a class-conditional model for ImageNet (EDM-2 [35]). All generations are initialized with the
same noise. The baseline models are trained using all the data equally. Ambient-o changes the way the data is
used during the diffusion process based on its quality. This leads to significant visual improvements without
sacrificing diversity, as would happen with a filtering approach (see Fig. 29).

of natural image spectra [65], high diffusion times focus on generating globally coherent, semantically
meaningful content [22], while low diffusion times emphasize learning high-frequency details.

Our first key theoretical insight is that low-quality samples can still be valuable for training in the
high-noise regime. As noise increases, the diffusion process contracts distributional differences (see
Theorem B.2), reducing the mismatch between the high-quality target distribution and the available
mixed-quality data. At the same time, incorporating low-quality data increases the sample size,
reducing the variance of the learned estimator. Our analysis formalizes this bias—variance trade-off
and motivates a principled algorithm for training denoisers at high diffusion times using noisy,
heterogeneous data.

For low diffusion times, our algorithm leverages a second key property of natural images: locality. We
show a direct relationship between diffusion time and the optimal receptive field size for denoising.
Specifically, small image crops suffice at lower noise levels. This allows us to borrow high-frequency
details from out-of-distribution or synthetic images, as long as the marginal distributions of the crops
match those of the target data.

We introduce Ambient Diffusion Omni (Ambient-0), a simple and principled framework for training
diffusion models using arbitrarily corrupted and out-of-distribution data. Rather than filtering samples
based on binary ‘good’ or ‘bad’ labels, Ambient-o retains all data and modulates the training process
according to each sample’s utility. This enables the model to generate diverse outputs without
compromising image quality. Empirically, Ambient-o advances the state of the art in unconditional
generation on ImageNet and enhances diversity in text-conditional generation without sacrificing
fidelity. Theoretically, it achieves improved bounds for distribution learning by optimally balancing
the bias—variance trade-off: low-quality samples introduce bias, but their inclusion reduces variance
through increased sample size.

2 Background and Related Work

Diffusion Modeling. Diffusion models transform the problem of sampling from pg into the problem
of learning denoisers for smoothed versions of py defined as p; = py ® N (0, o%(t)I). We typically
denote with Xy ~ pg the R.V. distributed according to the distribution of interest and X; =
Xo + o(t)Z, the R.V. distributed according to p;. The target is to estimate the set of optimal [y
denoisers, i.e., the set of the conditional expectations: {E[Xo|X; = -]}X ;. Typically, this can be
achieved through supervised learning by minimizing the following loss (or a re-parametrization of it):

J(Q) = EtGM[O,T]EZIZQ,CEt|t |:Hh9(xt7t) - xOHQ ) (2.1)

that is optimized over a function family H = {hy : 6 € ©} parametrized by network parameters 6.
For sufficiently expressive families, the minimizer is indeed: hg« (z,t) = E[Xo| X; = ).
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Learning from noisy data. The diffusion modeling framework described above assumes access
to samples from the distribution of interest pg. An interesting variation of this problem is to learn
to sample from pg given access to samples from a tilted measure py and a known degradation
model. In Ambient Diffusion [18], the goal is to sample from p, given pairs (Axg, A) for a matrix
A R™*™ m < n, that is distributed according to a known density p(A). The techniques in this
work were later generalized to accommodate additive Gaussian Noise [15, 17, 1] in the measurements.
More recently there have been efforts to further broaden the family of degradation models considered
through Expectation-Maximization approaches that involve multiple training runs [52, 5].

Recent work from [17] has shown that, at least for the Gaussian corruption model, leveraging the
low-quality data can tremendously increase the performance of the trained generative models. In
particular, the authors consider the setting where we have access to a few samples from pg, let’s

denote them Do{ato }N ', and many samples from p; , let’s denote them D, {xt )}l 1, where

Pin = Po ® N(0,02(t,)1) is a smoothed version of py at a known noise level ¢,,. The clean samples
are used to learn denoisers for all noise levels ¢ € [0, 7] while the noisy samples are used to learn
denoisers only for ¢ > t,,, using the training objective:

Jambient(0) = E Z]E [H Dho(ze,t) + (1 — a(t))zy — 2 2] 2.2)
ambien teU (trn,T) |x(’> 9 t7 t tn 3 .

with «(t) = ‘72“57@)() Note that the objective of equation 2.2 only requires samples from p;

(instead of pg) and can be used to train for all times ¢ > ¢,,. This algorithm uses N1 + N5 datapoints
to learn denoisers for ¢ > ¢,, and only IV; datapoints to learn denoisers for ¢ < t,,. The authors show
that even for N; << Ns, the model performs similarly to the setting of training with (N7 + N3)
clean datapoints. The main limitation of this method and its related works is that the degradation
process needs to be known. However, in many applications, we have data from heterogeneous sources
and various qualities, but there is no analytic form or any prior on the corruption model.

Data filtering. One of the most crude, but widely used, approaches for dealing with heterogeneous
data sources is to remove the low-quality data and train only the high-quality subset [43, 25, 23].
While this yields better results than naively training on the entire distribution, it leads to a decrease in
diversity and relies on heuristics for optimizing the filtering. An alternative strategy is to train on the
entire distribution and then fine-tune on high-quality data [13, 54]. This approach better trades the
quality-diversity trade-off but still incurs a loss of diversity and is hard to calibrate.

Training with synthetic data. A lot of recent works have shown that synthetic data can improve the
generative capabilities of diffusion models when mixed properly with real data from the distribution
of interest [24, 3, 4]. In this work, we show that it helps significantly to view synthetic data as
corrupted versions of the samples from the real distribution and incorporate this perspective into the
training objective.

3 Method

We propose a new framework that extends beyond [17] to enable training generative models directly
from arbitrarily corrupted and out-of-distribution data, without requiring prior knowledge of the
degradation process. We begin by formalizing the setting of interest.

Problem Setting. We are given a dataset D = {wo )}N 1 consisting of N datapoints. Each point
in D is drawn from a mixture distribution pg, which mixes pq (the distribution of interest) and an
alternative distribution gg that may contain various forms of degradation or out-of-distribution content.
We assume access to two labeled subsets, S, Sp, where points in S are known to come from the
clean distribution pg, and points in Sp from the corrupted distribution go. While this assumption
simplifies the initial exposition, we relax it in Section G.1. We focus on the practically relevant
regime where |S¢|< |D|—i.e., access to high-quality data is severely limited. The objective is to
learn a generative model that (approximately) samples from the clean distribution pg, leveraging both
clean and corrupted samples in its training.

We now describe how degraded and out-of-distribution samples can be effectively leveraged during
training in both the high-noise and low-noise regimes of the diffusion process.
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Figure 2: A time-dependent classifier trained to distinguish noisy clean and blurry images (blur
kernel standard deviation o g = 0.6). At low noise the classifier is able to perfectly identify the blurry
images, and outputs a probability close to 0. As the noise increases and the information in the image
is destroyed, the clean and blurry distributions converge and the classifier outputs a prediction close
to 0.5. The red line plots the threshold (selected at 7 = 0.45), which is crossed at o, = 1.64.

3.1 Learning in the high-noise regime (leveraging low-quality data)

Addition of gaussian noise contracts distribution distances. The first key idea of our method is
that, at high diffusion times ¢, the noised target distribution p, and the noised corrupted distribution
Pt become increasingly similar (Theorem B.2), effectively attenuating the discrepancy introduced
by corruption. This effect is illustrated in Figure 2 (top), where we compare a clean image and its
degraded counterpart (in this case, corrupted by Gaussian blur). As the diffusion time ¢ increases, the
noised versions of both samples become visually indistinguishable. Consequently, samples from pg
can be leveraged to learn (the score of) p,, for ¢ > tgin. We formalize this intuition in Section B, and
we also quantify that for large ¢ there are statistical efficiency benefits for using a large sample from
Do versus a small sample from py .

Heuristic selection of the noise level. From the discussion so far, it follows that to use samples
from jy, we need to assign them to a noise level ™", One can select this noise level empirically,
i.e. we can ablate this parameter by training different models and selecting the one that maximizes
the generative performance. However, this approach requires multiple trainings, which can be costly.
Instead, we can find the desired noise level in a principled way as detailed below.

Training a classifier under additive Gaussian noise. To identify the appropriate noise level, we
train a time-conditional classifier to distinguish between the noised distributions p; and ¢; across
various diffusion times t. We use a single neural network cl°*®(x,,t) that is conditioned on the
diffusion time ¢, following the approach of time-aware classifiers used in classifier guidance [21].
The classifier is trained using labeled samples from S¢ (clean) and S (corrupted) via the following

objective:
Jnoise(0) = Z Ez, |20 [— log cg"ise(xt,t)} + Z Ey, |vo [—log(l - cg‘Oise(yt,t))] 3.1
zoESa YoESE

Annotation. Once the classifier is trained, we use it to determine the minimal level of noise that must
be added to the low-quality distribution gg so that it closely approximates a smoothed version of the
high-quality distribution py. Formally, we compute:

i 3 1 noi
tmin — inf { ¢ € [0,77] : 5ol > By [ t)] > 7 0 (3.2)
B YoE€ESB

for 7 = 0.5 — € and for some € > 0. Subsequently, we form the annotated dataset Doy =

{(w(()i)—kat%]mZ(i), t2i N U{ (20, 0)|zo € Sg}, where the random variables Z(¥) are i.i.d. standard
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normals. In particular, our annotated dataset indicates that we should only use the samples from D
for diffusion times ¢ > #™, for which the distributions have approximately merged and hence it is
safe to use them. In fact, the optimal classifier assigns time ¢,, that corresponds to the first time for
which drv (ps, q:) < e

From arbitrary corruption to additive Gaussian noise. The afore-described approach reduces
our problem of learning from data with arbitrary corruption to the setting of learning from data
corrupted with additive Gaussian noise. The price we pay for this reduction is the information loss
due to the extra noise we add to the samples during the annotation stage. We can now extend the
objective function (2.2) to train our diffusion model. Suppose our annotated dataset is comprised of

1

Moreover, the method is particularly well-suited to certain types of corruptions but is less effective
for others. Because the addition of Gaussian noise suppresses high-frequency components—due
to the spectral power law of natural images—our approach is most effective for corruptions that
primarily degrade high frequencies (e.g., blur). In contrast, degradations that affect low-frequency
content—such as color shifts, contrast reduction, or fog-like occlusions—are more challenging. This
limitation is illustrated in Figure 9: masked images, for example, require significantly more noise to
become usable compared to high-frequency corruptions like blur. In the extreme, the method reduces
to a filtering approach, as infinite noise nullifies all information in the corrupted samples.

samples {(xif,f,,, ,tm1) 1 Then our objective becomes:

Jambientfo(e):Eteu[o’T] Z Eﬂﬂt|$

itmingg

min
ti

U [t £ ho e, 1) + (1= alt, 60y — )

(9)
4min
i

whete (1, 717) = O,

3.2 Learning in the low-noise regime (synthetic and out-of-distribution data)

So far, our algorithm implicitly results in varying amounts of training data across diffusion noise
levels. At high noise, the model can leverage abundant low-quality data, whereas at low noise levels,
it must rely solely on the limited set of high-quality samples. We now extend the algorithm to enable
the use of synthetic and out-of-distribution data for learning denoisers at low-noise diffusion times.

To achieve this, we leverage another fundamental property of natural images: locality. At low
diffusion times, the denoising task can be solved using only a small local region of the image, without
requiring full spatial context. We validate this hypothesis experimentally in the Experiments Section
(Figures 11, 12, 13, 14), where we show that there is a mapping between diffusion time ¢ and the
crop size needed to perform the denoising optimally at this diffusion time. Intuitively, the higher the
noise, the more context is required to accurately reconstruct the image. Conversely, for lower noise,
the local information within a small neighborhood suffices to achieve effective denoising. We use
crop(t) to denote the minimal crop size needed to perform optimal denoising at time ¢. If there are
two distributions py and pg that agree on their marginals (i.e. crops), they can be used interchangeably
for low-diffusion times. Note that the distributions don’t have to agree globally, they only have to
agree on a local (patch) level. Formally, let A(t) be a random patch selector of size crop(t). Let also
Do, Po two distributions that satisfy:

A(t)#po = A(t)#po, (3.3)

where A(t)#po denotes the pushforward measure! of py under A(t). Then, the cropped portions
of the tilted distributions provide equivalent information to the crops of the original distribution for
denoising.

Training a crops classifier. Note that the condition of Equation (3.3) can be trivially satisfied if A(t)
masks all the pixels or even if A(t) just selects a single pixel. We are interested in finding what is
the maximum crop size for which this condition is approximately true. Once again, we can use a
classifier to solve this task. The input to the classifier, ¢, °*", is a crop of an image that either arises

from py or Py, and the classifier needs to classify between these two cases.

'Given measure spaces (X1, 1) and (X2, 32), a measurable function f : X; — Xa, and a probability
measure p : ¥1 — [0, 00), the pushforward measure f+#p is defined as (f#p)(B) = p(f~*(B)) VB € %s.
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Annotation and training using the trained classifier. Once the classifier is trained, we are now
interested in finding the biggest crop size for which the distributions pg, pg cannot be confidently
distinguished. Formally,

ax 1 .

tmax —qup { t € [0,77] : 5ol > IEEP AR )] > Ty (3.4)
B YoESB

for 7 = 0.5 — € and for some small ¢ > 02. For times ¢ < tmaxthe out-of-distribution images from
Po can be used with the regular diffusion objective as images from py, as for these times the denoiser
only looks at crops and at the crop level the distributions have converged.

The donut paradox. Each sample can be used for ¢t > t?‘in and for t < t*** but not for ¢t €
(tmax ¢min) “We call this the donut paradox as there is a hole in the middle of the diffusion trajectory
for which we have fewer available data. These times do not have enough noise for the distributions
to merge globally, but also the required receptive field for denoising is big enough so that there are
differences on a crop level. We show an example of this effect in Figure 10.

Table 1: ImageNet results with and without classifier-free guidance.

Train FID | Test FID | Model Size
ImageNet-512 FID FIDv2 FID FIDv2 Mparams NFE
no CFG  w/CFG | no CFG w/CFG | no CFG w/CFG | no CFG w/CFG

EDM2-XS 3.57 291 103.39 79.94 3.77 3.68 115.16 93.86 125 63
Ambient-0-XS 3.59 2.89 107.26 79.56 3.69 3.58 115.02 92.96 125 63
EDM2-XXL 1.91 (1.93) 1.81 42.84 33.09 2.88 2.73 56.42 46.22 1523 63
Ambient-o-XXL 1.99 1.87 43.38 33.34 2.81 2.68 56.40 46.02 1523 63
Ambient-o-XXL+crops 1.91 1.80 42.84 32.63 2.78 2.53 56.39 45.78 1523 63

Figure 3: Results using CLIP to obtain the high-quality and the low-quality sets of ImageNet.

4 Experiments

Controlled experiments to show utility from low-quality data. To verify our method, we first
do synthetic experiments on artificially corrupted data. We use EDM [34] as our baseline, and we
train networks on CIFAR-10 and FFHQ. For the first experiments, we only use the high-noise part of
our Ambient-o method (Section 3.1). We underline that for all of our experiments, we only change
the way we use the data, and we keep all the optimization and network hyperparameters as is. We
compare against using all the data as equal (despite the corruption) and the filtering strategy of
only training on the clean samples. For evaluation, we measure FID [29] with respect to the full
uncorrupted dataset (which is not available during training).

For the blurring experiments, we use a Gaussian kernel with standard deviation op =
0.4,0.6,0.8, 1.0, and we corrupt 90% of the data. We show some corrupted images in Appendix
Figure 5a. To obtain annotations, we train a blurry vs clean image classifier under noise, as explained
in Section 3.1. For the experiments in the main paper, we use a balanced dataset for the training
of the classifier. We ablate the effect of having fewer training samples for the classifier training in
Appendix Section F where we show that reducing the number of clean samples available for classifier
training leads to a small drop in performance. Once equipped with the trained classifier, each sample
is annotated on its own based on the amount of noise that is needed to confuse the classifier (sample
dependent annotation). We present our results in Table 2a. As shown, for all corruption strengths,
Ambient Omni, significantly outperforms the two baseline methods. In the one to the last column of
Table 2a, we further show the average annotation of the classifier. As expected, the average assigned
noise level increases as the corruption intensifies.

2We subtract an € to allow for approximate mixing of the two distributions and hence smaller annotation
times.
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Table 2: In a controlled experiment with restricted access only to 10% of the clean dataset, our
method of Ambient-o uses corrupted and out-of-distribution data to improve performance.

(a) Gaussian blurred data at different levels. (b) Additional out-of-distribution data.
Method Parameters Values (0'5) C—,tmin FID Source Data  Additional Data Method &%  FID
Only Clean (10%) - - 8.79 None - - 12.08

Cats Fixed o 0.2 11.14

1.0 4532 ]
. Cats Fixed o 0.1 9.85
All data 08 o 2 Dogs (10%) Cats Fixedo  0.05  10.66
0‘4 2 47 Cats Fixed o 0.025  12.07
. - Cats Classifier 0.09 8.92
1.0 2.84 6.16 Procedural Classifier  0.042 10.98

. 0.8 1.93 600

Ambient-o 0.6 138 534 Cats (10%) None - - 520
0.4 0.92 2.44 D0g§ Cldss}ﬁer 0.13 5.11
Wildlife Classifier 0.08 4.89

Controlled experiments to show utility from out-of-distribution images. We now want to validate
the method developed in Section 3.2 for leveraging out-of-distribution data. To start with, we want to
find the mapping between diffusion times and the size of the receptive field required for an optimal
denoising prediction. To do so, we take a pre-trained denoising diffusion model and measure the
denoising loss at a given location as we increase the size of the context. We provide the corresponding
plot in the Supplemental Figures 13, 11. The main finding is that while providing more context
always leads to a decrease in the average loss, for sufficiently small noise levels, the loss nearly
plateaus before the full image context is provided. That implies that the perfect denoiser for a given
noise level only needs to look at a localized part of the image.

Equipped with the mapping between diffusion times and crop sizes, we now proceed to a fun
experiment. Specifically, we show that it is possible to use images of cats to improve a generative
model for dogs (!) and vice-versa. The cats here represent out-of-distribution data that can be used
to improve the performance in the distribution of interest (in our toy example, dogs distribution).
To perform this experiment, we train a classifier that discriminates between cats and dog images by
looking at crops of various sizes (Section 3.2). Figure 18 shows the predictions of an 8 x 8 crops-
classifier for an image of a cat, illustrating that there are a number of crops that are misclassified
as crops from a dog image. We report results for this experiment in Table 2b and we observe
improvements in FID arising from using out-of-distribution data. Beyond natural images, we show
that it is even possible to use procedurally generated data from Shaders [6] to (slightly) improve the
performance. Figure 19 shows an example of such an image and the corresponding predictions of
a crops classifier. Table 2b contains more results and ablations between annotating all the out-of-
distribution at a single noise level vs. sample-dependent annotations.

Corruptions of natural datasets — ImageNet results. Up to this point, our corrupted data has
been artificially constructed to study our method in a controlled setting. However, it turns out that
even in real datasets such as ImageNet, there are images with significant degradations such as heavy
blur, low lighting, and low contrast, and also images with fantastic detail, clear lightning, and sharp
contrast. Here, the high-quality and the low-quality sets are not given and hence we have to estimate
them. We opt to use the CLIP-IQA quality metric [66] to separate ImageNet into high-quality (top
10% CLIP-IQA) and low-quality (bottom 90% CLIP-IQA) sets. Figure 3 shows some of the top
and bottom quality images according to our metric. Given the high-quality and low-quality sets, we
are now back to the previous setting where we can use the developed Ambient-o methodology. We
underline that there is a rich literature regarding quality-assessment methods [69, 68, 49, 67].

We use Ambient-o to refer to our method that uses low-quality data at high diffusion times (Section 4)
and Ambient-o+crops to refer to the extended version of our method that uses crops from potentially
low-quality images at low-diffusion times. Perhaps surprisingly, there are images in ImageNet that
have lower global quality but high-quality crops that we can use for low-noise. We present results in
Table 1, where we show the best FID [29] and FDpNoy2 obtained by different methods. We show the
highest and lowest quality crops, alongside their associated full images, of ImageNet according to
CLIP in Figure 15.

As shown in the Table, our method leads to state-of-the-art FID scores, improving over the previous
state-of-the-art baseline EDM-2 [35] at both the low and high parameter count settings. The benefits
are more pronounced when we measure test FID as our method memorizes significantly less due
to the addition of noise during the annotation stage of our pipeline (Section 3.1). Beyond FID, we
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provide qualitative results in Figure | (bottom) and Appendix Figures 7, 8. We further show that the
quality of the generated images measured by CLIP increased compared to the baseline in Appendix
Table 5. The observed improvements are proof that the ability to learn from data with heterogeneous
qualities can be truly impactful for realistic settings beyond synthetic corruptions typically studied in
prior work.

Text-to-image results. For our final set of experiments, we show how Ambient-o can be used to
improve the performance of text-to-image diffusion models. We use the code-base of MicroDiffusion
[54], as it is open-data and trainable with modest compute (= 2 days on 8-H100 GPUs). Sehwag et al.
[54] use four main datasets to train their model: Conceptual Captions (12M) [56], Segment Anything
(11M) [41], JourneyDB (4.2M) [63], and DiffusionDB (10.7M) [70]. Of these four, DiffusionDB is
of significantly lower quality than the others as it contains solely synthetic data from an outdated
diffusion model. This presents an opportunity for the use of our method. Can we use this lower-quality
data and improve the performance of the trained network?

We set o min = 2 for all samples from DiffusionDB and o,;,, = 0 for all other datasets and we train a
diffusion model with Ambient-o. We note that we did not ablate this hyperparameter and it is quite
likely that improved results would be obtained by tuning it or by training a high-quality vs low-quality
data classifier for the annotation. Despite that, our trained model achieves a remarkable FID of 10.61
in COCO, significantly improving the baseline FID of 12.37 (Table 4). We present qualitative results
in Figure 1 and GPT-40 evaluations on DrawBench and PartiPrompt in Figure 23. Ambient-o and
baseline generations for different prompts can be found in Figure 1.

As an additional ablation, we compared our method with the recipe of doing a final fine-tuning
on the highest-quality subset, as done in the works of [54, 13]. Compared to this baseline, our
method obtained slightly worse COCO FID (10.61 vs 10.27) but obtained much greater diversity,
as seen visually in Figure 29 and quantitatively through > 13% increases in DINO Vendi Diversity
on prompts from DiffDB (3.22 vs 3.65.). This corroborates our intuition that data filtration leads to
decreased diversity. Ambient-o uses all the data but can strike a fine balance between high-quality
and diverse generation.

(a) Measuring fidelity and prompt alignment of  (b) Measuring performance on the GenEval benchmark.

generated images on COCO dataset. Objects
T — ) . Col
Method FID-30K (/) Clip-FD-30K (})  Clip-score (1) Method Overall Single Two Counting Colors Position allri(lju‘iiron
Baseline 12.37 10.07 0.345 Baseline 044 097 033 035 0.82 0.06 0.14
Ambient-o 10.61 9.40 0.348 Ambient-o 047 097 040  0.36 0.82 0.11 0.14

Figure 4: Quantitative benefits of Ambient-o on COCO [44] zero-shot generation and GenEval [26].

5 Conclusion

Is it possible to get good generative models from bad data? Our framework extracts value from
low-quality, synthetic, and out-of-distribution sources. At a time when the ever-growing data demands
of GenAl are at odds with the need for quality control, Ambient-o lights a path for both to be achieved
simultaneously.
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avoided by using hand-picked annotation times based on quality proxies as done in our synthetic data
experiment. Finally, we believe the true potential of Ambient-o lies in scientific applications, where
data often arises from heterogeneous measurement processes.

B Theory

We study the 1-d case, but all our claims easily extend to any dimension. We compare two algorithms:

Algorithm 1. Algorithm 1 trains a diffusion model using access to n; samples from a target density
po, assumed to be supported in [0, 1] and be A;-Lipschitz.

Algorithm 2. Algorithm 2 trains a diffusion model using access to n1 + ny samples from a density
Po that is a mixture of the a target density py and another density g, assumed to be supported in [0, 1]

and be Ap-Lipschitz: po = -L—po + -2 qo.

We want to compare how well these algorithms estimate the distribution p; := py ® N (0,072). We

use ﬁil), 13,(52) to denote the estimates obtained for p; by Algorithms 1 and 2 respectively.

Diffusion modeling is Gaussian kernel density estimation. We start by making a connection
between the optimal solution to the diffusion modeling objective and kernel density estimation. Given
a finite dataset {WW () }7_, | the optimal solution to the diffusion modeling objective should match the
empirical density at time ¢, which is:

1 w@ —
pe(w) = o, Z:¢ (Utz> ) (B.1)

where ¢(u) = \/%6’7‘2/ 2 is the Gaussian kernel. We observe that equation B.1 is identical to a
Gaussian kernel density estimate, given samples {TW ()73,
We establish the following result for Gaussian kernel density estimation.

Theorem B.1 (Gaussian Kernel Density Estimation). Let {W ()}, be a set of n independent
samples from a \-Lipschitz density p. Let p be the empirical density, p, := p ® N(0,0?) and
Do = p ®N(0,02). Then, with probability at least 1 — § with respect to the sample randomness,

1 \/logn+log(1\/)\)+log2/5

1
==t
n  on o?n

dTV(poaf)o) ,S (BZ)

The proof of this result is given in the Appendix.

Comparing the performance of Algorithms 1 and 2. Applying Theorem B.1 directly to the pg

density, we immediately get that the estimate p§” (x) obtained by Algorithm 1 satisfies:

1
d ’ A1)y «
TV(pt Db ) ~ Utgm

. (B.3)

apny

1 n \/lognl +log(1V A1) +log2/6

Let us now see what we get by applying Theorem B.1 to Algorithm 2, which uses samples from the

tilted distribution pg. Since this distribution is ( L)\, 4 D12 )\2) -Lipschitz, we get that:

ni+nsa ni+no
drv(Gnp?) < — 4 1 N log(n1 +na) +log(1V -\ + —2-),) +log 2/d
TR )~ Fng) | 02 (ny + na) o2(n1 + n2) ;

where p; := po ® N(0,02).

Further, we have that: drv (py, pﬁ”) < drv(Pe, pe) + dov(De, ]3,52)). We already have a bound for
the second term. To bound the first term, we prove the following theorem.

3This connection has been observed in prior works too, e.g., see [33, 8].
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Theorem B.2 (Distance contraction under noise). Consider distributions P and Q) supported on a
subset of R% with diameter D. Then
D
dry (P @ N(0,0°T),Q ® N(0,0°T)) < drv(P,Q) - 2%
Applying this theorem we get that: dpv (P, pr) < 201 dTv (po, po) < 2(1” cdry (po, o), where
for the second inequality we used that dv (po, Po) < " +n2 drv(po, qo)-

Putting everything together, Algorithm (2) achieves an estimation error:

dTV(pta h° )) ~
1 1 log(ny + nz) +log(1V - oAt )\2) +log2/8 n
+ — + tna + 2 drv(po,qo)-
(n14+mn2)  of(n1 +ng) oZ(n1 + na) o¢(n1 + n2)

Comparing this with the bound obtained in Equation B.3, we see that if n is sufficiently larger than
ny orif Ay < Ay, thereis a tf{ﬂn such that for any ¢ > t?in, the upper-bound obtained by Algorithm
2 is better than the upper-bound obtained by Algorithm 1. That implies that for high-diffusion times,
using biased data might be helpful for learning, as the bias term (final term) decays with the amount
of noise. Going back to equation B, note that the switching point ¢ > #™" depends on the distance
drv (P, p) that decays as shown in Theorem B.2. Once this distance becomes small enough, our
computations above suggest that we benefit from biased data. The classifier of Section 3.1, if optimal,
exactly tracks the distance drv (p¢, p;) and, as a result, tracks the switching point.

C Theoretical Results

C.1 Kernel Estimation
Assumption C.1. The density p is A lipschitz.

Let {X® 17, aset of n independent samples from a density p that satisfies Assumption C.1. Let p
be the empirical density on those samples.

We are interested in bounding the total variation distance between p, := p ® N(0,0?) and p, =
p®N(0,0?). In particular,

I (XD -2
b, (z) = — 1, C.1
Po(x) m;_lqﬁ( . ) (€D
where ¢(u) = —L_¢=%*/2 is the Gaussian kernel. We want to argue that the TV distance between

Ve
P, and P, is small given sufficiently many samples n. For simplicity, let’s fix the support of p to be

[0, 1]. We have:

(1+1)/L
@wwr-/m pamuz/ po() — po(@)ldz  (C2)

Now let us look at one of the terms of the summation.

(14+1)/L (1+1)/L
[ @ = pe@lde= [ ale) = paU/D) + 2o /D) < o)z (€3)

/L /L

(1+1)/L (1+1)/L

< / |pa($) _pa(l/L)|d$ + / |pa(l/L) _ﬁo(l‘)‘dx' (C4)
/L 1L
We first work on the first term. Using Lemma C.6:
(I+1)/L (I+1)/L

[ @ - pelde <3 [ o= 1/2lds ©3)

/L /L

A

= 572" (C.6)
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Next, we work on the second term.

(I4+1)/L (1+1)/L
/l Do (1)) — po(a)|de = /l/L Do (/L) — po(l/L) + po(l/L) — po(@)dz  (C.T)

/L
(1+1)/L (1+1)/L
S R X U R MU B NET PR
/L /L
According to Lemma C.5, we have that p, is A= %\/ﬁ Lipschitz. Then, the second term becomes:
(I4+1)/L . rU+n/L b
/ Po(I/L) = po(x)|dz < A/ /L — z|de = == (C.9)
1L 1L 2L

It remains to bound the following term

(4+1)/L .
/ lpo(1/L) — po(1/L)|dx = Ipo (/L) LpU(Z/L)‘ (C.10)
l/L

We will be applying Hoeffding’s Inequality, stated below:

Theorem C.2 (Hoeffding’s Inequality). Let Y1, ...,Y,, be independent random variables in [a, b] with
mean 1. Then,
Pr <

Recall that p,, can be written as

%ZYZ-—M

=1

> t) < 2exp (—2nt*/(b—a)?). (C.11)

n @ —
ZM _ %Zyi, (C.12)
i=1 =1

pg(l‘) = %

(XD —2)/0)

in terms of the random variables Y; := . These random variables are supported in

[O, \/ﬁ} . So, for any x, we have that:

Pr (|po(z) — E[ps(2)]] > t) < 2exp (—4mo’nt?) . (C.13)

Taking ¢t = 4/ 104%;2;’;{ f) and using the above inequality and the union bound, we have that, with

probability at least 1 — 4, foralll € {0,1,...,L — 1}:
log(2L/6)

501/2) ~ Blpo 1/ L)| < 5L C.14)

Let us now compute the expected value of p, ().

E[po(z)] = E % Zj: ¢ (X()Ux)] (C.15)
o (25)
= % /p(u)¢ <x ~ “) du = (p @ N(0,0%))(x) = po (). (C.17)

Combining equation C.14 and equation C.17, we get:
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log(2L/9d)

p l L) - o < 1
51/ L) = pola)] < |25 C18)
Putting everything together we have:
1 log(2L/6)
d oy1’o) = .
v{Pe:Po) < 3L " 2L02\/2me dra?n

Choosing L = n - max{\, 1} we get that:

1
n ot
n a n

ey (Do o) < 1 \/logn+log(1\/)\)+log2/5
TV VPos Po) S

on
C.2 Evolution of parameters under noise

Proof of theorem B.2: We will use the following facts:

Fact 1 (Direct corollary of the optimal coupling theorem). There exists a coupling v of P and @,
which samples a pair of random variables (X,Y") ~ v such that Pr[X # Y] = dpv(P, Q).

Fact 2. Forany z,y € R dpy (N (z,0%), N (y,0%1)) < ||z — y||/20
Proof. The KL divergence between N (111, X1) and N (2, X2) is

mWW$mMm&»JQM$m+W—mxwrm>MMg')

2 |21 ]
Applying this general result to our case:
2 27V 1 (]x— Z/H2

We conclude by applying Pinsker’s inequality. O

A corollary of Fact 2 and the optimal coupling theorem is the following:

Fact 3. Fix arbitrary 2,y € R%. There exists a coupling 7, , of N(0,o%I) and (0, o*I), which
samples a pair of random variables (Z, Z') ~ 7, such that Pr. [v+ 7 # y+ Z'] = [z —yl|/20.

Now let us denote by P = P ® N(0,0%I) and Q = Q ® N(0, o). To establish our claim in the
theorem statement, it suffices to exhibit a coupling 7 of P and Q which samples a pair of random
variables (X, Y) ~ 4 such that: Pr5[X # Y] < dpy(P, Q) - 5. We define coupling ¥ as follows:

1. Sample (X,Y) ~ ~ (as specified in Fact 1); then

2. sample (Z,Z") ~ vx y (as specified in Fact 3); then
3. output (X,Y) := (X + Z,Y + Z').

Let us argue the following:

Lemma C.3. The afore-described sampling procedure 7 is a valid coupling of Pand Q.

Proof. We need to establish that the marginals of v are P and Q. We will only show that for
()~( 17) ~ 5y accordmg to the afore-described sampling procedure, the marginal distribution of X is
P, as the proof for Y is identical. Since ~ is a coupling of P and Q, for (X,Y’) ~ , the marginal
distribution of X is P. By Fact 3, conditioning on any value of X and Y, the marginal distribution of
Z is N'(0,0%1). Thus, X = X + Z, where X ~ P and independently Z ~ A/(0, o), and thus the
distribution of X is P. O

Lemma C.4. Under the afore-described coupling 7: Pr5[X # Y] < dpv(P,Q) - %
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Proof. Notice that, when X =Y, by Fact 3, Z = Z’ with probability 1, and therefore X =Y. So

for event X # Y to happen, it must be that X # Y happens and, conditioning on this event, that
X + Z #Y + Z' happens. By Fact |, Pry[X # Y] = dpv(P, Q). By Fact 3, for any realization of

(X,Y),Pry [ X+Z#Y + 7| = w < £, where we used that P and Q are supported on
a set with diameter D. Putting the above together, the claim follows. O

d

C.3 Auxiliary Lemmas

Lemma C.5 (Lipschitzness of the empirical density). For a collection of points XV, ... X ™)
consider the function p,(z) = L 3" ¢ (X“;_I) , where ¢(u) = ﬁe‘"ﬁﬂ is the Gaussian

kernel. Then p, is (ﬁ)—upschim

Proof. Let us compute the derivative of p,:

_x®
P (2) = Z <5” X ) (C.19)
no dx o

2 2 XY -z
— Zexp ( —2)?/(20 )) — (C.20)
# 2
< Tong? m;ixexp( u”/2)u (C.21)
<t (C.22)
2me

O

Lemma C.6 (Lipschitzness of a density convolved with a Gaussian). Let p be a density that is
A-Lipschitz. Let py, = p ® N'(0,0%I). Then, p, is also \-Lipschitz.

Proof. Let us denote with ¢, (-) the Gaussian density with variance o2. We have that:

Pol() — Poly) = /(zo(x 1) ply — )b (r)dr = (C.23)
1Po() — Do (y)|< /pu 1) = ply — )| (r)dr (C.24)
< Az -yl /¢g(7')dr (C.25)

= Az —y|. (C.26)

O

D Additional Results

D.1 CIFAR-10 controlled corruptions

Figures 5a, 5b and 6 show gaussian blur, motion blur, and JPEG corrupted CIFAR-10 images
respectively at different levels of severity. Appendix Table 3 shows results for JPEG compressed
data at different levels of compression. We also tested our method for motion blurred data with high
severity, visualized in the last row of Appendix Figure 6), obtaining a best FID of 5.85 (compared to
8.79 of training on only the clean data).
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(a) CIFAR-10 images corrupted with blur at in- (b) CIFAR-10 images corrupted with JPEG at com-
creasing levels (o5 = 0.4,0.6, 1.0). pression rates: 25%, 18%, 15% respectively.

Figure 6: CIFAR-10 images corrupted with motion blur at increasing levels of corruption.

D.2 FFHQ-64x64 controlled corruptions

In Appendix 4 we show additional results for learning from blurred data on the FFHQ dataset.
Similarly to the main paper, we observe that our Ambient-o algorithm leads to improvements over
just using the high-quality data that are inversely proportional to the corruption level.

D.3 ImageNet results

In the main paper, we used FID as a way to measure the quality of generated images. However, FID
is computed with respect to the test dataset that might also have samples of poor quality. Further,
during FID computation, quality and diversity are entangled. To disentangle the two, we generate
images using the EDM-2 baseline and our Ambient-o model and we use CLIP to evaluate the quality
of the generated image (through the CLIP-IQA metric implemented in the PIQ package [38, 37]). We
present results and win-rates in Table 5. As shown, Ambient-o achieves a better per-image quality
compared to the baseline despite using exactly the same model, hyperparameters, and optimization
algorithm. The difference comes solely from better use of the available data.
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Table 3: Results for learning from JPEG compressed data on CIFAR-10.

Method Dataset Clean (%) Corrupted (%) JPEG Compression (Q) 6'{?“ FID
Only Clean Cifar-10 10 0 - - 8.79
15% 1.60 6.67

18% 1.40 6.43

. . . 25% 1.27 6.34
Ambient Omni  Cifar-10 10 90 50% 103 594
5% 0.81 5.57

90% 0.63 4.72

Table 4: Results for learning from blurred data, FFHQ.

Method Dataset Clean (%) Corrupted (%) Parameters Values (0) c‘r{i‘in FID
Only Clean FFHQ 10 0 - - 5.12
10 90 0.8 2.89 4.95
Ambient Omni FFHQ 10 90 0.6 2.12 4.65
10 90 0.4 0.63 3.32

E Ambient diffusion implementation details and loss ablations

Similar to the EDM-2 [35] paper, we use a pre-condition weight to balance the importance of different
diffusion times. Specifically, we modulate the EDM2 weight A(o) by a factor:

Xamb (O Omin) = 04/(02 — Usﬂn)Q (E.1)

for our ambient loss based on a similar analysis to [35]. We further use a buffer zone around the
annotation time of each sample to ensure that the loss doesn’t have singularities due to divisions by 0.
We ablate the precondition term and the buffer size in Appendix Table 6.

For our ablations, we focus on the setting of training with 10% clean data and 90% corrupted data
with Gaussian blur of o = 0.6. Using no ambient pre-conditioning and no buffer, we obtain an
FID of 5.56. In the same setting, adding the ambient pre-conditioning weight Aymb (0, Omin) improves
FID by 0.13 points. Next, we ablate two strategies to mitigate the impact of the singularity of
Aamb (0, Omin) 8t 0 = omin. The first strategy clips the ambient pre-conditioning weight at a specified
maximum value AMAX, but still trains for o arbitrarily close to oi,. The second strategy also specifies

amb >
a maximum value, but imposes a buffer

1

Omin
/\MAX -1
amb

o> ,/1+ (E.2)

that restricts training to noise levels o such that Aymp (0, Omin) < )\gfn"t‘,x. Clipping the ambient weight

to AMAX — 2.0 minimally improves FID to 5.35, but clipping to 4.0 significantly worsens it to

amb

5.69. Adding a buffer at \M4X = 2.0 slightly worsens FID to 5.40, but slackening the buffer to 4.0

minimally improves FID to 5.34. We opt for the buffering strategy in favor of the clipping strategy
since performance appears convex in the buffer parameter, and because it obtains the best FID.

F Annotation ablations

We ablate the choice of using a fixed annotation vs sample-adaptive annotations in Appendix Table
7. We find that using sample-adaptive annotations achieves improved results. Nevertheless, both
annotation methods yield improvements over the training on filtered data and the training on every-
thing baselines. To show that our method works for more corruption types, we perform an equivalent
experiment with JPEG compressed data at different compression ratios and we achieve similar results,
presented in Appendix Table 3. We ablate the impact of the amount of training data and the number
of training iterations on the classifier annotations in Appendix Section F. We show results for motion
blur (Figure 6 and Section D.1) and for the FFHQ dataset (Table 4).
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Table 5: Additional comparison between EDM-2 XXL and our Ambient-o model using the CLIP
IQA metric for image quality assesment. Ambient-o leads to improved scores despite using the exact
same architecture, data and hyperparameters. For this experiment, we use the models with guidance
optimized for DINO FD since they are the ones producing the higher quality images.

Metric EDM-2 [35] XXI. Ambient-o XXL crops
Average CLIP IQA score 0.69 0.71

Median CLIP IQA score 0.79 0.80

Win-rate 47.98% 52.02%

Table 6: Ablation study of ambient weight and stability buffer on Cifar-10 with 10% clean data and
90% corrupted data with blur of 0.6.

Method FID |
No ambient preconditioning weight and no buffer:
Aamb (0, Omin) = 1 & 0 > Opin 5.49
 Adding ambient preconditioning weight:
+ Weight Aymb (0, omin) = 04 /(02 — 02,.)? 5.36
- Adding stability buffer/clipping:
+ Clip Aamb (0, Omin) at 2.0 5.35
+ Clip Aamb (0, Omin) at 4.0 5.69
+ Buffer Aymp (0, 0min) at 2.0 i.e. ¢ > v/20min 5.40

+ Buffer A\ymp (0, Omin) at 4.01ie. 0 > (2/V3)0mn  5.34

Balanced vs unbalanced data: We ablate the impact of classifier training data on the setting of
CIFAR-10 with 10% clean data and 90% corrupted data with gaussian blur with o = 0.6. When
annotating with a classifier trained on the same unbalanced dataset we train the diffusion model on
we obtained a best FID of 6.04, compared to the 5.34 obtained if we train on a balanced dataset.

Training iterations: We ablate the impact of classifier training iterations on the setting of CIFAR-10
with 10% clean data and 90% corrupted data with JPEG compression at compression rate of 18%,
training the classifier with a balanced dataset. We report minute variations in the best FID, obtaining
6.50, 6.58, and 6.49 when training the classifier for 5e6, 10e6, and 15e6 images worth of training
respectively.

Table 7: Comparison with baselines for training with data corrupted by Gaussian Blur at different
levels. The dataset used in this experiment is CIFAR-10.

Method Clean (%) Corrupted (%) Parameters Values (05) &tngin FID
Only Clean 10 0 - - 8.79
1.0 45.32

No annotations 10 90 0.8 0 28.26
0.4 2.47

1.0 2.32 6.95

Single annotation 10 90 0.8 1.89 6.66
0.4 0.00 2.47

10 90 1.0 2.84 6.16

Classifier annotations 10 90 0.8 1.93 6.00
10 90 04 0.22 2.44

20



687

688

689
690
691
692
693
694
695
696

697

698
699

700
701

702
703

704

706
707
708

709

710
71
712

713

714
715
716
77
718
719

720
721

722

723
724
725
726
727

G Training Details

G.1 Formation of the high-quality and low-quality sets.

In the theoretical problem setting we assumed the existence of a good set S from the clean
distribution and a bad set Sp from the corrupted distribution. In practice, we do not actually possess
these sets initially, but we can construct them so long as we have access to a measure of "quality".
Given a function on images which tells us wether its good enough to generate or not e.g. CLIP-IQA
quality [66] greater than some threshold, we can define our good set S¢ as the good enough images
and Sp as the complement. From this point on we can apply the methodology of ambient-o as
developed, either employing classifier annotations as in our pixel diffusion experiments, or fixed
annotations as in our large scale ImageNet and text-to-image experiments.

G.2 Datasets

CIFAR-10. CIFAR-10 [42] consists of 60,000 32x32 images of ten classes (airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck).

FFHQ. FFHQ [36] consists of 70,000 512x512 images of faces from Flickr. We used the dataset at
64x64 resolution for our experiments.

AFHQ. AFHQ [12] consists of 5,653 images of cats, 5,239 images of dogs and 5,000 images of
wildlife, for a total of 15,892 images.

ImageNet. ImageNet [20] consists of 1,281,167 images of variable resolution from 1000 classes.
Conceptual Captions. Conceptual Captions [56] consists of 12M (image url, caption) pairs.

Segment Anything. Segment Anything [41] consists of 11.1M high-resolution images annotated
with segmentation masks. Since the original dataset did not have real captions, we use the same
LLaVA generated captions created by the MicroDiffusion [54] paper.

JourneyDB. JourneyDB consists of 4.4M synthetic image-caption pairs from Midjourney [63].

DiffusionDB. DiffusionDB consists of 14M synthetic image-caption pairs, mostly generated from
Stable Diffusion models [70]. We use the same 10.7M quality-filtered subset created by the MicroD-
iffusion paper [54].

G.3 Diffusion model training

CIFAR-10. We use the EDM [34] codebase as a reference to train class-conditional diffusion
models on CIFAR-10. The architecture is a Diffusion U-Net [60] with ~55M paramemeters. We use
the Adam optimizer [40] with learning rate 0.001, batch size 512, and no weight decay. While the
original EDM paper trained for 200 x 10% images worth of training, when training with corrupted
data we saw best results around 20 x 10 images. On a single 8xV 100 node we achieved a throughput
of 0.8s per 1k images, for an average of 4.4h per training run.

FFHQ. Same as for CIFAR-10, except learning was set to 2e — 4, we trained for a maximum of
100 x 10° images worth of training, and saw best results around 30 x 10° images worth.

AFHQ. Same as FFHQ.

ImageNet. We use the EDM2 [35] codebase as a reference to train class-conditional diffusion
models on ImageNet. The architecture is a Diffusion U-Net [60] with ~125M paramemeters. We use
the Adam optimizer [40] with reference learning rate 0.012, batch size 2048, and no weight decay.
Same as the original codebase, we trained for ~2B worth of images. On 32 H200 GPUs, XS models
took ~3 days to train, while XXL models took ~7 days.
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MicroDiffusion. We use the MicroDiffusion codebase [54] as a reference to train text-to-image
models on an academic budget. We follow their recipe exactly, changing only the standard denoising
diffusion loss to the ambient diffusion loss. The architecture is a Diffusion Transformer [50] utilizing
Mixture-of-Experiments (MoE) feedforward layers [57, 31], with ~1.1B paramemeters. We use the
AdamW optimizer [40] with reference learning rates 2.4e — 4 /8¢ — 5/8e — 5/8e — 5 for each of the
four phases and batch size 2048 for all phases. On 8 H200 GPUs, training takes ~2 days to train.

G.4 Classifier training

Classifier training is done using the same optimization recipe (optimizer, learning rate, batch size,
etc.) as diffusion model training, except we change the architecture to an encoder-only "Half-Unet",
simply by removing the decoder half of the original UNet architecture. The training of the classifier
is substantially shorter compared to the diffusion training since classification is task is easier than
generation.

H Additional Figures

Figure 7: Uncurated generations from our Ambient-o XXL model trained on ImageNet.
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Figure 8: Uncurated generations from our Ambient-o+crops XXL model trained on ImageNet.
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Figure 9: Visual summary of our method for using low-quality data at high-noise. We see how
the various corrupted images become indistinguishable from the High Quality (HQ) after a minimum
noise level. These noisy versions of Low Quality (LQ) images are actually high-quality data, which
filtering approaches discard, but Ambient Omni uses.

Data Availability vs. Noise Level

6000 1 4
100% - Amount of data available without corruptions
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Figure 10: Amount of samples available at each noise level when training a generative model for
dogs in the following setting: (1) we have 10% of the dogs dataset uncorrupted, (2) we have the other
90% of the dogs dataset corrupted with gaussian blur with o = 0.6, and (3) we have 100% of the
clean dataset of cats. At low noise levels, we can train on both the high quality dogs and a lot of
the cats, resulting in > 100% of samples available relative to the original dogs dataset size. As the
noise level starts to increase, we stop being able to use to the out-of-distribution cat samples, but start
gaining some blurry dog samples. As the noise level approaches the maximum all the blurry dogs
become available for training, such that the amount of data available approaches 100%.
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Loss vs Context Size
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Figure 11: ImageNet-512x512: denoising loss of an optimally trained model, measured at 2 x 2
center patch, as we increase the context size given to the model (horizontal axis) and the noise level
(different curves). As expected, for higher noise, more context is needed for optimal denoising. The
large dot on each curve marks the point where the loss nearly plateaus.
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Figure 12: ImageNet-512x512: context size needed to be within e = 1le — 3 of the optimal loss for
different noise levels. As expected, for higher noise, more context is needed for optimal denoising.
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Figure 13: FFHQ: denoising loss of an optimally trained model, measured at 2 x 2 center patch, as
we increase the context size given to the model (horizontal axis) and the noise level (different curves).
As expected, for higher noise, more context is needed for optimal denoising. The large dot on each
curve marks the point where the loss nearly plateaus.
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Figure 14: FFHQ: context size needed to be within e = 1le — 3 of the optimal loss for different noise
levels. As expected, for higher noise, more context is needed for optimal denoising.
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(a) High quality crops (b) Low quality crops
Figure 15: Results using CLIP to find (a) high-quality and (b) low-quality crops on ImageNet.

(a) Cat image and classification probabilities over (b) Cat image and classification probabilities over
patches. patches.

Figure 16: Two examples of cats from the AFHQ dataset. We partition each cat into non overlapping
patches and we compute the probabilities of the patch belonging to an image of a dog using a cats vs
dogs classifier trained on patches. The cat on the right has a lot more patches that could belong to a
dog image according to the classifier, possibly due to the color or the texture of the fur.
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(a) Cat annotated by a cats vs. (b) Cat annotated by a cats vs. (c) Cat annotated by a cats vs.
dogs classifier that operates with dogs classifier that operates with dogs classifier that operates with
crops of size 8. crops of size 16. crops of size 24.

Figure 17: Patch-based annotations of a cat image from AFHQ using cats vs. dogs classifiers trained
on different patch sizes.

Figure 18: Patch level probabilities for dogness in a cat image.

Figure 19: Patch level probabilities for dogness in a synthetic image (procedural program). The cat
has more useful patches than this non-realistic procedural program.
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(a) Synthetic image and classification probabilities (b) Synthetic image and classification probabilities
over patches. over patches.

Figure 20: Two examples of procedurally generated images. We partition each image into non
overlapping patches and we compute the probabilities of the patch belonging to an image of a dog
using a synthetic image vs dogs classifier trained on patches. The image on the right has a lot more
patches that could belong to a dog image according to the classifier, possibly due to the color or the
texture.

(a) Cat image and classification probabilities over (b) Cat image and classification probabilities over
patches. patches.

Figure 21: Two examples of cat images. We partition each image into nonoverlapping patches and
we compute the probabilities of the patch belonging to an image of wildlife using a cats vs wildlife
classifier trained on patches. The image on the right has a lot more patches that could belong to a
wildlife image according to the classifier, possibly due to the color or the texture.

(a) Example batch. (b) Noisy batch.

Figure 22: Example batch.
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Figure 23: Assessing image quality with GPT-40 on DrawBench and PartiPrompts.

(a) Highest quality images from CC12M according (b) Lowest quality images from CC12M according
to CLIP. to CLIP.

Figure 24: CLIP annotations for quality of images from CC12M.

(a) Highest quality images from SA1B according (b) Lowest quality images from SA1B according
to CLIP. to CLIP.

Figure 25: CLIP annotations for quality of images from SA1B.
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(a) Highest quality images from DiffDB according (b) Lowest quality images from DiffDB according
to CLIP. to CLIP.

Figure 26: CLIP annotations for quality of images from DiffDB.

(a) Highest quality images from JDB according to (b) Lowest quality images from JDB according to
CLIP. CLIP.

Figure 27: CLIP annotations for quality of images from JDB.
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Image Quality Distribution

1.0

0.8

0.6

0.4

CLIP-IQA Quality Score

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Dataset (sorted by quality)

Figure 28: Distribution of image qualities according to CLIP for ImageNet-512.

(a) "the great battle of middle earth, unreal engine, trending on artstation, masterpiece"

(b) "an abominable snowman trapped in ice by greg rutkowski"

Figure 29: Examples of mode collapse. Left: baseline model finetuned on a high-quality subset.
Right: Ambient-o model using all the data. As shown, finetuning decreases output diversity.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our method does not use any information about the type of corruption, and
our experiments show it generalizes to low quality data found in the wild, not just a few
artifically controlled corruptions.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We openly discuss the limitations of our approach, such as:

(a) The high and low quality distributions never perfectly merge, so our method always
introduces a (small) distribution error compared to filtering.

(b) Our method does not work well with certain corruption types, such as masking. These
"ill-suited" corruptions require a very large amount of noise to merge, such that they
are effectively never used during training and our method reduces to filtering in these
cases.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Our theorems include all premises and assumptions used to prove the result.
Informal proofs are found in the main text, referencing formal proofs in the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the information on the algorithm and the training recipe needed to re-
produce our experiments is included in the paper (either in the main text or the appendix).
Additionally, we will make the training and evaluation code public after acceptance of the

paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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845 (c) If the contribution is a new model (e.g., a large language model), then there should

846 either be a way to access this model for reproducing the results or a way to reproduce
847 the model (e.g., with an open-source dataset or instructions for how to construct
848 the dataset).

849 (d) We recognize that reproducibility may be tricky in some cases, in which case
850 authors are welcome to describe the particular way they provide for reproducibility.
851 In the case of closed-source models, it may be that access to the model is limited in
852 some way (e.g., to registered users), but it should be possible for other researchers
853 to have some path to reproducing or verifying the results.

854 5. Open access to data and code

855 Question: Does the paper provide open access to the data and code, with sufficient instruc-
856 tions to faithfully reproduce the main experimental results, as described in supplemental
857 material?

858 Answer:

859 Justification: All data used is publically accessible. We will release the full training and
860 evaluation code upon acceptance.

861 Guidelines:

862 » The answer NA means that paper does not include experiments requiring code.

863 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/
864 public/guides/CodeSubmissionPolicy) for more details.

865 * While we encourage the release of code and data, we understand that this might not be
866 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
867 including code, unless this is central to the contribution (e.g., for a new open-source
868 benchmark).

869 * The instructions should contain the exact command and environment needed to run to
870 reproduce the results. See the NeurIPS code and data submission guidelines (https:
871 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

872 * The authors should provide instructions on data access and preparation, including how
873 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
874 * The authors should provide scripts to reproduce all experimental results for the new
875 proposed method and baselines. If only a subset of experiments are reproducible, they
876 should state which ones are omitted from the script and why.

877 * At submission time, to preserve anonymity, the authors should release anonymized
878 versions (if applicable).

879 * Providing as much information as possible in supplemental material (appended to the
880 paper) is recommended, but including URLSs to data and code is permitted.

881 6. Experimental setting/details

882 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
883 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
884 results?

885 Answer: [Yes]

886 Justification: We provide the core elements in the main text and the full details in the
887 appendix.

888 Guidelines:

889 * The answer NA means that the paper does not include experiments.

890 * The experimental setting should be presented in the core of the paper to a level of detail
891 that is necessary to appreciate the results and make sense of them.

892 * The full details can be provided either with the code, in appendix, or as supplemental
893 material.

894 7. Experiment statistical significance

895 Question: Does the paper report error bars suitably and correctly defined or other appropriate
896 information about the statistical significance of the experiments?
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Answer:

Justification: Obtaining error bars would require extremely computationally expensive
retraining of diffusion models.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: GPU type and number and compute time is provided in the appendix for all
experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work does not use human trials, and all data used is publically available.
We analyse the potential negative impacts of improving generative model abilities in ??.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See ??.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We are not releasing any datasets. We will be releasing the models upon paper
acceptance, but there has already been a model trained and open-sourced from the same
dataset. Moreover, our work is far away from state-of-the-art text-to-image generation, and
thus does not introduce extra risks that do not already exist.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
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13.

14.

15.

Justification: Prior work has already trained and made public models trained on the same
data we use to train. Moreover, all datasets are publically available and were introduced by
prior research work, which we explicitly state and cite.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new datasets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No important, original, or non-standard usage of LLM:s in the paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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