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Abstract

Gradient descent-ascent (GDA) is a widely used algorithm for minimax optimization. How-
ever, GDA has been proved to converge to stationary points for nonconvex minimax optimiza-
tion, which are suboptimal compared with local minimax points. In this work, we develop
cubic regularization (CR) type algorithms that globally converge to local minimax points
in nonconvex-strongly-concave minimax optimization. We first show that local minimax
points are equivalent to second-order stationary points of a certain envelope function. Then,
inspired by the classic cubic regularization algorithm, we propose an algorithm named Cubic-
LocalMinimax for finding local minimax points, and provide a comprehensive convergence
analysis by leveraging its intrinsic potential function. Specifically, we establish the global
convergence of Cubic-LocalMinimax to a local minimax point at a sublinear convergence rate
and characterize its iteration complexity. Also, we propose a GDA-based solver for solving
the cubic subproblem involved in Cubic-LocalMinimax up to certain pre-defined accuracy,
and analyze the overall gradient and Hessian-vector product computation complexities of
such an inexact Cubic-LocalMinimax algorithm. Moreover, we propose a stochastic variant of
Cubic-LocalMinimax for large-scale minimax optimization, and characterize its sample com-
plexity under stochastic sub-sampling. Experimental results demonstrate faster convergence
of our stochastic Cubic-LocalMinimax than the standard stochastic GDA algorithm.

1 Introduction

Minimax optimization (a.k.a. two-player sequential zero-sum games) is a popular modeling framework that
has broad applications in modern machine learning, including game theory (Ferreira et al., 2012), generative
adversarial networks (Goodfellow et al., 2014), adversarial training (Sinha et al., 2017), reinforcement learning
(Qiu et al., 2020; Ho and Ermon, 2016; Song et al., 2018), etc. A standard minimax optimization problem is
shown below, where f is a smooth bivariate function.

min
x∈Rm

max
y∈Rn

f(x, y). (P)

In the existing literature, many optimization algorithms have been developed to solve different types of
minimax problems. Among them, a simple and popular algorithm is the gradient descent-ascent (GDA),
which alternates between a gradient descent update on x and a gradient ascent update on y in each iteration.
Specifically, the global convergence of GDA has been established for minimax problems under various types
of global geometries, such as convex-concave-type geometry (f is convex in x and concave in y) (Nedić
and Ozdaglar, 2009; Du and Hu, 2019; Mokhtari et al., 2020; Zhang and Wang, 2021), bi-linear geometry
(Neumann, 1928; Robinson, 1951) and Polyak-Łojasiewicz geometry (Nouiehed et al., 2019; Yang et al., 2020),
yet these geometries are not satisfied by general nonconvex minimax problems in modern machine learning
applications. Recently, many studies proved the convergence of GDA in nonconvex minimax optimization for
both nonconvex-concave problems (Lin et al., 2020; Nouiehed et al., 2019; Xu et al., 2020d) and nonconvex-
strongly-concave problems (Lin et al., 2020; Xu et al., 2020d; Chen et al., 2021). In these studies, it has been
shown that GDA converges sublinearly to a stationary point where the gradient of an envelope-type function
Φ(x) := maxy f(x, y) vanishes.
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Although GDA can find stationary points in nonconvex minimax optimization, the stationary points may
include candidate solutions that are far more sub-optimal than global minimax points. However, finding
global minimax points is in general NP-hard (Jin et al., 2020). Recently, Jin et al. (2020) proposed a notion
of local minimax point that is computationally tractable and is close to global minimax point. Specifically,
a local minimax point (x, y) is a stationary point that satisfies the following second-order non-degeneracy
conditions (see Definition 1 for the formal definition).

∇22f(x, y) ≺ 0,
[
∇11f −∇12f(∇22f)−1∇21f

]
(x, y) ≻ 0.

In the existing literature, several studies have proposed Newton-type GDA algorithms for finding such local
minimax points. Specifically, Wang et al. (2020) proposed a Follow-the-Ridge (FR) algorithm, which is a
variant of GDA that applies a second-order correction term to the gradient ascent update. In particular, the
authors showed that any strictly stable fixed point of FR is a local minimax point, and vice versa. In another
work (Zhang et al., 2021), the authors proposed two Newton-type GDA algorithms that are proven to locally
converge to a local minimax point at a linear and super-linear convergence rate, respectively. However, these
second-order-type GDA algorithms only have asymptotic convergence guarantees that require initializing
sufficiently close to a local minimax point, and they do not have any global convergence guarantees. Therefore,
we are motivated to ask the following fundamental question.

• Q: Can we develop globally convergent algorithms that can efficiently find local minimax points in nonconvex
minimax optimization? What are their convergence rates and complexities?

In this work, we provide comprehensive answers to these questions. We develop deterministic and stochastic
cubic regularization type algorithms that globally converge to local minimax points in nonconvex-strongly-
concave minimax optimization, and study their convergence rates, computation complexities and sample
complexities under standard assumptions. We summarize our contributions as follows.

1.1 Our Contributions

We consider the minimax optimization problem (P), where f is twice-differentiable with Lipschitz continuous
gradient and Hessian and is nonconvex-strongly-concave. In this setting, we first show that local minimax points
of f are equivalent to second-order stationary points of the envelope function Φ(x) := maxy∈Rn f(x, y). Then,
inspired by the classic cubic regularization algorithm, we propose an algorithm named Cubic-LocalMinimax
to find local minimax points. The algorithm uses gradient ascent to update y, which is then used to estimate
the gradient and Hessian involved in the cubic regularization update for x (see Algorithm 1 for more details).

Global convergence. We show that Cubic-LocalMinimax admits an intrinsic potential function Ht (see
Proposition 3) that monotonically decreases over the iterations. Based on this property, we prove that every
limit point of {xt}t generated by Cubic-LocalMinimax is a local minimax point. Moreover, to achieve an
ϵ-accurate local minimax point, Cubic-LocalMinimax requires O

(
L2κ1.5ϵ−3) number of cubic updates and

Õ
(
L2κ2.5ϵ−3) number of gradient ascent updates, where κ > 1 denotes the problem condition number.

GDA-Cubic solver. The updates of Cubic-LocalMinimax involve a cubic subproblem that has a very
special Hessian structure. To solve this subproblem, we reformulate it as a minimax optimization problem,
for which we develop a GDA type solver (see Algorithm 4). We name such a variant of Cubic-LocalMinimax
as Inexact Cubic-LocalMinimax. By bounding the approximation error of the cubic solver carefully, we
establish a monotonically decreasing potential function and establish the same iteration complexity as that of
Cubic-LocalMinimax. Moreover, the total number of Hessian-vector product computations involved in the
cubic solver is of the order Õ(L1κ2ϵ−4).

Sample complexity. We further develop a stochastic variant of Cubic-LocalMinimax named as Stochastic
Cubic-LocalMinimax, which applies stochastic sub-sampling to improve the sample complexity in large-scale
minimax optimization. In particular, we adopt time-varying batch sizes in a way such that the induced
gradient inexactness and Hessian inexactness are adapted to the optimization increment ∥xt − xt−1∥ in the
previous iteration. Consequently, to achieve an ϵ-accurate local minimax point, we show that stochastic
Cubic-LocalMinimax requires querying Õ(κ3.5ϵ−7) number of gradient samples and Õ(κ2.5ϵ−5) number of
Jacobian samples.
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1.2 Other Related Work

Deterministic GDA algorithms: Yang et al. (2020) studied an alternating gradient descent-ascent (AGDA)
algorithm in which the gradient ascent step uses the current variable xt+1 instead of xt. Xu et al. (2020d)
studied an alternating gradient projection algorithm which applies ℓ2 regularizer to the local objective function
of GDA followed by projection onto the constraint sets. Daskalakis and Panageas (2018); Mokhtari et al.
(2020); Zhang and Wang (2021) analyzed optimistic gradient descent-ascent (OGDA). Mokhtari et al. (2020)
also studied an extra-gradient algorithm which applies two-step GDA in each iteration. Nouiehed et al.
(2019) studied multi-step GDA where multiple gradient ascent steps are performed, and they also studied the
momentum-accelerated version. Cherukuri et al. (2017); Daskalakis and Panageas (2018); Jin et al. (2020)
studied GDA in continuous time dynamics using differential equations. Adolphs et al. (2019) analyzed a
second-order variant of the GDA algorithm.

In a concurrent work (Luo and Chen, 2021), the authors proposed a Minimax Cubic-Newton algorithm that
is different from our Cubic-LocalMinimax in various aspects, as we elaborate with more details in Sections 4
and 5. First, our algorithm adopts a very different output rule, which leads to a different algorithm design of
the cubic solver as well as different convergence proof strategies. Second, we develop a GDA-based solver
for solving the cubic subproblem, whereas they use a gradient-based solver with Chebyshev polynomials.
Moreover, we develop a stochastic version of Cubic-LocalMinimax and analyze its sample complexity, which
to our knowledge has not been studied in the existing literature.

Stochastic GDA algorithms: Lin et al. (2020); Yang et al. (2020) analyzed stochastic GDA and stochastic
AGDA, which are direct extension of GDA and AGDA to the stochastic setting. Variance reduction techniques
have been applied to stochastic minimax optimization, including SVRG-based (Du and Hu, 2019; Yang et al.,
2020), SPIDER-based (Xu et al., 2020c), SREDA (Xu et al., 2020b), STORM (Qiu et al., 2020) and its
gradient free version (Huang et al., 2020). Xie et al. (2020) studied the complexity lower bound of first-order
stochastic algorithms for finite-sum minimax problem.

Cubic regularization (CR): The CR algorithm dates back to (Griewank, 1981), where global convergence is
established. In (Nesterov and Polyak, 2006), the author analyzed the convergence rate of CR to second-order
stationary points in nonconvex optimization. In (Nesterov, 2008), the authors established the sub-linear
convergence of CR for solving convex smooth problems, and they further proposed an accelerated version of CR
with improved sub-linear convergence. Yue et al. (2019) studied the asymptotic convergence properties of CR
under the error bound condition, and established the quadratic convergence of the iterates. Recently, Hallak
and Teboulle (2020) proposed a framework of two directional method for finding second-order stationary
points in general smooth nonconvex optimization. The main idea is to search for a feasible direction toward
the solution and is not based on cubic regularization. Several other works proposed different methods to
solve the cubic subproblem of CR, e.g., (Agarwal et al., 2017; Carmon and Duchi, 2019; Cartis et al., 2011b).
Another line of work aimed at improving the computation efficiency of CR by solving the cubic subproblem
with inexact gradient and Hessian information. In particular, Ghadimi et al. (2017) proposed an inexact
CR for solving convex problem. Also, Cartis et al. (2011a) proposed an adaptive inexact CR for nonconvex
optimization, whereas Jiang et al. (2017) further studied the accelerated version for convex optimization.
Several studies explored subsampling schemes to implement inexact CR algorithms, e.g., (Kohler and Lucchi,
2017; Xu et al., 2020a; Zhou and Liang, 2018; Wang et al., 2018b).

2 Problem Formulation and Preliminaries

We consider the following standard minimax optimization problem (P), where f is a nonconvex-strongly-
concave bivariate function and is twice-differentiable. Throughout the paper, we define the envelope function
Φ(x) := maxy∈Rn f(x, y).

min
x∈Rm

max
y∈Rn

f(x, y). (P)

Our goal is to develop algorithms that converge to a local minimax point of (P), which is defined as follows.
Definition 1 (Local minimax point). A point (x∗, y∗) is a local minimax point of (P) if there exists δ0 > 0
and a function h that satisfies limδ→0+ h(δ) = 0 such that, for any δ ∈ (0, δ0] and any x, y that satisfies
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∥x− x∗∥ ≤ δ and ∥y − y∗∥ ≤ δ, we have

f(x∗, y) ≤ f(x∗, y∗) ≤ max
y′:∥y′−y∗∥≤h(δ)

f(x, y′). (1)

Local minimax points are different from global minimax points, which require x and y to be the global
minimizer and global maximizer of the functions Φ(x) and f(x, ·) simultaneously. In general minimax
optimization, it has been shown that global minimax points can be neither local minimax points nor even
stationary points (Jin et al., 2020). However, global minimax necessarily implies local minimax in nonconvex-
strongly-concave optimization. Moreover, under mild conditions, many machine learning problems have been
shown to possess local minimax points, e.g., generative adversarial networks (GANs) (Nagarajan and Kolter,
2017; Zhang et al., 2021), distributional robust machine learning (Sinha et al., 2018), etc.

In (Jin et al., 2020), the following set of second-order conditions have been proved to be sufficient conditions
for local minimax points. Moreover, as we show later, our algorithm design is inspired by these conditions.
Definition 2 (Sufficient conditions for local minimax). A point (x, y) is a local minimax point of (P) if the
following conditions hold.

1. Stationary: ∇1f(x, y) = 0, ∇2f(x, y) = 0;

2. Non-degeneracy: ∇22f(x, y) ≺ 0, and
[
∇11f −∇12f(∇22f)−1∇21f

]
(x, y) ≻ 0.

Throughout the paper, we adopt the following standard assumptions on the minimax optimization problem
(P). These conditions have been widely adopted in the related works (Lin et al., 2020; Jin et al., 2020; Zhang
et al., 2021).
Assumption 1. The minimax problem (P) satisfies:

1. Function f(·, ·) is L1-smooth and function f(x, ·) is µ-strongly concave for any fixed x;

2. The Jacobian mappings ∇11f , ∇12f , ∇21f , ∇22f are L2-Lipschitz continuous;

3. Function Φ(x) := maxy∈Rn f(x, y) is bounded below and has bounded sub-level sets.

To elaborate, item 1 considers the class of nonconvex-strongly-concave functions f that has been widely
studied in the minimax optimization literature (Lin et al., 2020; Jin et al., 2020; Xu et al., 2020d; Lu
et al., 2020), and it is also satisfied by many machine learning applications. Item 2 assumes that the block
Jacobian matrices of f are Lipschitz continuous, which is a standard assumption for analyzing second-order
optimization algorithms (Nesterov and Polyak, 2006; Agarwal et al., 2017). Moreover, item 3 guarantees that
the minimax problem has at least one solution.

Under Assumption 1, the following properties regarding the gradient of the minimax problem (P) have been
proved in the literature. Throughout, we denote κ = L1/µ as the condition number.
Proposition 1. (Lin et al., 2020) Let Assumption 1 hold. Then, the mapping y∗(x) := arg maxy∈Rn f(x, y)
is unique for every fixed x. Moreover, it holds that

1. Mapping y∗(x) is κ-Lipschitz continuous;

2. Function Φ(x) is L1(1 + κ)-smooth and ∇Φ(x) = ∇1f(x, y∗(x)).

3 A Cubic Regularization Approach for Finding Local Minimax Points

In this section, we propose a cubic regularization type algorithm that leverages the cubic regularization
technique to find local minimax points of the nonconvex minimax problem (P). We first relate local minimax
points to certain second-order stationary points in Section 3.1, based on which we further develop the
algorithm in Section 3.2.

3.1 On Local Minimax and Second-Order Stationary

Regarding the conditions of local minimax points listed in Definition 2, note that the stationary conditions in
item 1 are easy to achieve, e.g., by performing standard gradient updates. For the non-degeneracy conditions
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listed in item 2, the first condition is guaranteed as f(x, ·) is strongly concave. Therefore, the major challenge
is to achieve the other non-degeneracy condition

[
∇11f −∇12f(∇22f)−1∇21f

]
(x, y) ≻ 0. Interestingly, in

nonconvex-strongly-concave minimax optimization, such a non-degeneracy condition has close connections to
a certain second-order stationary condition on the envelope function Φ(x), as formally stated in the following
proposition.
Proposition 2. Let Assumption 1 hold. Then, the following statements hold.

1. Define mapping G(x, y) =
[
∇11f −∇12f(∇22f)−1∇21f

]
(x, y). Then, G is a Lipschitz continuous mapping

with Lipschitz constant LG = L2(1 + κ)2;

2. The Hessian of Φ satisfies ∇2Φ(x) = G(x, y∗(x)), and it is Lipschitz continuous with Lipschitz constant
LΦ = LG(1 + κ) = L2(1 + κ)3.

The above proposition points out that the non-degeneracy condition G(x, y) ≻ 0 actually corresponds to
a second order stationary condition of the envelop function Φ(x). To explain more specifically, consider
a pair of points (x, y∗(x)), in which y∗(x) := arg maxy f(x, y). Since f(x, ·) is strongly concave and y∗(x)
is the maximizer, we know that y∗(x) must satisfy the stationary condition ∇2f(x, y∗(x)) = 0 and the
non-degeneracy condition ∇22f(x, y∗(x)) ≺ 0. Therefore, in order to be a local minimax point, x must satisfy
the stationary condition ∇1f(x, y∗(x)) = 0 and the non-degeneracy condition G(x, y∗(x)) ≻ 0, which, by
item 2 of Proposition 1 and item 2 of Proposition 2, are equivalent to the set of second-order stationary
conditions stated in the following fact.
Fact 1. Let Assumption 1 hold. Then, (x, y∗(x)) is a local minimax point of (P) if x satisfies the following
set of second-order stationary conditions.

(Second-order stationary): ∇Φ(x) = 0, ∇2Φ(x) ≻ 0.

To summarize, to find a local minimax point in nonconvex-strongly-concave minimax optimization, it suffices
to find a second-order stationary point of the smooth nonconvex envelope function Φ(x). Such a key
observation is the basis for developing our proposed algorithm in the next subsection. We also note that the
proof of Proposition 2 is not trivial. Specifically, we need to first develop bounds for the spectrum norm of
the block Jacobian matrices in Lemma 2 (see the first page of the appendix), which helps prove the Lipschitz
continuity of the G mapping in item 1. Moreover, we leverage the optimality condition of f(x, ·) to derive an
expression for the maximizer mapping y∗(x) (see (42) in the appendix), which is used to further prove item 2.

3.2 The Cubic-LocalMinimax Algorithm

The standard gradient-descent-ascent (GDA) algorithm can only find stationary points, i.e., ∇Φ(x) = 0, in
nonconvex-strongly-concave minimax optimization (Lin et al., 2020). Such a type of convergence guarantee
does not rule out the possibility that GDA may get stuck at suboptimal saddle points of the envelope function
Φ, which are known to be the major challenge for training high-dimensional machine learning models (Dauphin
et al., 2014; Jin et al., 2017; Zhou and Liang, 2018). Therefore, we are motivated to escape the saddle points
and target at finding second-order stationary points. Importantly, the previous Fact 1 shows that these
second-order stationary points of Φ are guaranteed to be local minimax points in nonconvex-strongly-concave
minimax optimization.

In the existing literature, many second-order optimization algorithms have been developed for finding second-
order stationary points of nonconvex minimization problems (Nesterov and Polyak, 2006; Agarwal et al.,
2017; Yue et al., 2019; Zhou et al., 2018). Hence, one may want to apply them to minimize the nonconvex
function Φ(x) and find local minimax points of the minimax problem (P). However, these algorithms are
not directly applicable, as the function Φ(x) involves a special maximization structure and hence its specific
function form Φ as well as the gradient ∇Φ and Hessian ∇2Φ are implicit. Instead, our algorithm design can
only leverage information of the bi-variate function f .

Our algorithm design is inspired by the classic cubic regularization algorithm (Nesterov and Polyak, 2006).
Specifically, to find a second-order stationary point of the envelope function Φ(x), the conventional cubic
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regularization algorithm would perform the following iterative update.

st+1 ∈ arg min
s
∇Φ(xt)⊤s + 1

2s⊤∇2Φ(xt)s + 1
6ηx
∥s∥3,

xt+1 = xt + st+1, (2)

where ηx > 0 is a proper learning rate. However, due to the special maximization structure of Φ, its gradient
and Hessian have complex formulas (see Propositions 1 and 2) that involve the mapping y∗(x), which
cannot be computed exactly in practice. Hence, we aim to develop an algorithm that efficiently computes
approximations of ∇Φ(x),∇2Φ(x), and use them to perform the cubic regularization update.

To perform the cubic regularization update in eq. (2), we need to compute ∇Φ(xt) = ∇1f(xt, y∗(xt)) (by
Proposition 1) and ∇2Φ(xt) = G(xt, y∗(xt)) (by Proposition 2), both of which depend on the maximizer
y∗(xt) of the function f(xt, ·). Since f(xt, ·) is strongly-concave, we can run Nt iterations of gradient ascent to
obtain an approximated maximizer ỹNt

≈ y∗(xt), and then approximate ∇Φ(xt),∇2Φ(xt) using ∇1f(xt, ỹNt
)

and G(xt, ỹNt
), respectively. Intuitively, these are good approximations due to two reasons: (i) ỹNt

converges
to y∗(xt) at a fast linear convergence rate; and (ii) both ∇1f and G are shown to be Lipschitz continuous
in their second argument. We refer to this algorithm as Cubic Regularization for Local Minimax
(Cubic-LocalMinimax), and summarize its update rule in Algorithm 1 below, which terminates whenever
the maximum of the previous two increments ∥st−1∥ ∨ ∥st∥ is below a certain threshold ϵ′. Such an output
rule helps characterize the computation complexity of the algorithm. In Section 5, we provide a comprehensive
discussion on how to solve the cubic subproblem with the special Hessian matrix G(xt, yt+1) using first-order
GDA type algorithms.

Algorithm 1 Cubic-LocalMinimax
Input: Initialize x0, y0, learning rates ηx, ηy, threshold ϵ′, numbers of iterations T , Nt

Define ∥s0∥ = ϵ′

for t = 0, 1, 2, . . . , T − 1 do
Initialize ỹ0 = yt

for k = 0, 1, 2, . . . , Nt − 1 do
ỹk+1 = ỹk + ηy∇2f(xt, ỹk)

end
Set yt+1 = ỹNt

. Solve the cubic problem for st+1:
argmins∇1f(xt,yt+1)⊤s + 1

2 s⊤G(xt,yt+1)s + 1
6ηx
∥s∥3

Update xt+1 = xt + st+1
end
Output: xT ′ , yT ′ , T ′ = min{t : ∥st−1∥ ∨ ∥st∥ ≤ ϵ′}

4 Convergence and Iteration Complexity of Cubic-LocalMinimax

In this section, we study the global convergence properties and the iteration complexity of Cubic-LocalMinimax.
The key to our convergence analysis is characterizing an intrinsic potential function of Cubic-LocalMinimax
in nonconvex minimax optimization. We formally present this result in the following proposition.
Proposition 3 (Potential function). Let Assumption 1 hold. For any α, β > 0, choose ϵ′ ≤ αL1

βLG
, ηx ≤

(9LΦ + 18α + 28β)−1 and ηy = 2
L1+µ . Define the potential function Ht := Φ(xt) + (LΦ + 2α + 3β)∥st∥3. Then,

when Nt ≥ O
(
κ ln L1α∥st−1∥+L1(α+L2κ)∥st∥

LGβϵ′2

)
, the output of Cubic-LocalMinimax satisfy the following potential

function decrease property for all t ∈ N.

Ht+1 −Ht ≤ −(LΦ + α + β)
(
∥st+1∥3 + ∥st∥3). (3)

Proposition 3 reveals that Cubic-LocalMinimax admits an intrinsic potential function Ht, which takes the
form of the envelope function Φ(x) plus the cubic increment term ∥st∥3. Moreover, the potential function Ht

is monotonically decreasing along the optimization path of Cubic-LocalMinimax, implying that the algorithm
continuously makes optimization progress.
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The key for establishing such a potential function is that, by running a sufficient number of inner gradient
ascent iterations, we can obtain a sufficiently accurate approximated maximizer yt+1 ≈ y∗(xt). Consequently,
the ∇1f(xt, yt+1) and G(xt, yt+1) involved in the cubic sub-problem are good approximations of ∇Φ(xt) and
∇2Φ(xt), respectively. In fact, the approximation errors are proven to satisfy the following bounds.

∥∇Φ(xt)−∇1f(xt, yt+1)∥ ≤ β(∥st∥2 + ϵ′2), (4)
∥∇2Φ(xt)−G(xt, yt+1)∥ ≤ α(∥st∥+ ϵ′). (5)

On one hand, the above bounds are tight enough to establish the decreasing potential function. On the
other hand, they are flexible and are adapted to the increment ∥st∥ = ∥xt − xt−1∥ produced by the previous
cubic update. Therefore, when the increment is large in the initial iterations, it suffices to use coarse
approximations, and hence only a few number of inner gradient ascent iterations are needed. Such an idea of
adapting the inexactness to the previous increment in eqs. (4) and (5) are further leveraged to develop a
scalable stochastic variant of Cubic-LocalMinimax in Section 6. As a comparison, the Minimax Cubic-Newton
algorithm proposed in the concurrent work (Luo and Chen, 2021) adopts constant-level approximation errors,
i.e., ∥∇Φ(xt) − ∇1f(xt, yt+1)∥ ≤ O(ϵ′2) and ∥∇2Φ(xt) − G(xt, yt+1)∥ ≤ O(ϵ′)1, which may require more
gradient ascent iterations in practice.

Based on Proposition 3, we obtain the following global convergence rate of Cubic-LocalMinimax to a second-
order stationary point of Φ. Throughout, we adopt the following standard measure of second-order stationary
introduced in (Nesterov and Polyak, 2006).

µ(x) =
√
∥∇Φ(x)∥ ∨

−λmin
(
∇2Φ(x)

)
√

33LΦ
.

Intuitively, a smaller µ(x) means that the point x is closer to being second-order stationary.
Theorem 1 (Convergence and complexity of Cubic-LocalMinimax). Let the conditions of Proposition 3 hold
with α = β = LΦ. For any 0 < ϵ ≤ L1

√
33LΦ

LG
, choose ϵ′ = ϵ√

33LΦ
and T ≥ Φ(x0)−Φ∗+8LΦϵ′2

3LΦϵ′3 . Then, the output
of Cubic-LocalMinimax satisfies

µ(xT ′) ≤ ϵ. (6)

Consequently, the total number of required cubic iterations satisfies T ′ ≤ O
(√

L2κ1.5ϵ−3), and the total
number of required gradient ascent iterations satisfies

∑T ′−1
t=0 Nt ≤ Õ

(√
L2κ2.5ϵ−3).

Remark: We note that the gradient ascent steps for updating ỹk+1 in Algorithm 1 can be accelerated by
using the standard Nesterov’s momentum. In this way, the total number of required gradient ascent iterations
will reduce to the order Õ

(√
L2κ2ϵ−3), which matches that of the Minimax Cubic-Newton algorithm proposed

in (Luo and Chen, 2021).

The above theorem shows that the gradient norm ∥∇Φ(xt)∥ vanishes at a sublinear rate O(T − 2
3 ), and the

second-order stationary measure −λmin
(
∇2Φ(x)

)
converges at a sublinear rate O(T − 1

3 ). Both results match
the convergence rates of the cubic regularization algorithm for nonconvex minimization (Nesterov and Polyak,
2006). As a comparison, the standard GDA does not guarantee the convergence of −λmin

(
∇2Φ(x)

)
, and

its convergence rate of ∥∇Φ(xt)∥ is of the order O(T − 1
2 ) (Lin et al., 2020), which is orderwise slower than

that of Cubic-LocalMinimax. Therefore, by leveraging the curvature of the approximated Hessian matrix
G(xt, yt+1), Cubic-LocalMinimax is able to find second-order stationary points of Φ at a fast rate.

We note that the proof of the global convergence results in Theorem 1 is critically based on the intrinsic
potential function Ht that we characterized in Proposition 3. Specifically, note that the cubic subproblem in
Cubic-LocalMinimax involves an approximated gradient ∇1f(xt, yt+1) and Hessian matrix G(xt, yt+1). Such
inexactness of the gradient and Hessian introduces non-negligible noise to the cubic regularization update of
Cubic-LocalMinimax. Consequently, Cubic-LocalMinimax cannot make monotonic progress on decreasing
the function value Φ, as opposed to the standard cubic regularization algorithm in nonconvex minimization

1Our ϵ′ corresponds to O(
√

ϵ) in Luo and Chen (2021).
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(which uses exact gradient and Hessian). Instead, we take a different approach and show that as long as the
gradient and Hessian approximations are sufficiently accurate, one can construct a monotonically decreasing
potential function Ht that leads to the desired global convergence guarantee.

5 How to Solve the Cubic Subproblem of Cubic-LocalMinimax?

The Cubic-LocalMinimax presented in Algorithm 1 involves a cubic subproblem that takes the following form.

st+1 = arg min
s

ϕ(s) := g⊤s + 1
2s⊤As + 1

6ηx
∥s∥3, (7)

where g = ∇1f(xt, yt+1), A = H11 −H12H−1
22 H21 with Hkℓ = ∇kℓf(xt, yt+1).

To solve the above cubic subproblem, one standard approach is to apply the existing gradient-based solvers
(Carmon and Duchi, 2019; Tripuraneni et al., 2018), which requires computing the Hessian-vector product
A · s. However, in Cubic-LocalMinimax, the Hessian matrix takes the complex form A = H11 −H12H−1

22 H21
that involves product of block Jacobian matrices as well as matrix inverse. Hence, directly computing the
product of such a Hessian matrix with any vector can be highly inefficient. On the other hand, in the
concurrent work (Luo and Chen, 2021), the authors proposed two-timescale update rules for computing
such Hessian-vector product, where they approximate the matrix inverse H−1

22 via Chebyshev polynomials2.
To further simplify these update rules and reduce computation, we next propose an efficient GDA type
algorithm to solve this cubic subproblem with the special Hessian matrix A.

Our main idea is to reformulate the cubic subproblem in order to avoid the matrix inverse H−1
22 involved

in the Hessian matrix A. Specifically, we observe that the above cubic subproblem can be rewritten as the
following minimax optimization problem.

min
s

max
v

ϕ̃(s, v) := g⊤s + 1
2s⊤H11s + s⊤H12v + 1

2v⊤H22v + 1
6ηx
∥s∥3. (8)

To explain, note that the above bi-variate function ϕ̃ is strongly concave in v with the unique maximizer given
by v∗(s) := arg maxv ϕ̃(s, v) = −H−1

22 H21s. Substituting this maximizer into the function ϕ̃
(
s, ·) yields the

original cubic subproblem, i.e., ϕ̃
(
s, v∗(s)

)
= ϕ(s). Moreover, since ϕ̃(s, v) is a nonconvex-strongly-concave

function (because H22 ⪯ −µI), we are motivated to develop a GDA type solver to solve it. Specifically,
our solver, named GDA-Cubic Solver, is partially inspired by the existing gradient-based cubic solvers
(Tripuraneni et al., 2018) and is summarized in Algorithms 4 and 5 in the appendix. To elaborate, the solver
performs updates based on the following two cases.

• Large gradient ∥g∥ ≥ 4L2
1κ2ηx: In this case, the first-order gradient g is far from being stationary, and

it is more preferable to constrain the solution of the cubic subproblem in eq. (7) to s = − γ
∥g∥ g for some

γ > 0 (Tripuraneni et al., 2018). In particular, the optimal choice γ∗, named as Cauchy radius, has been
shown in (Conn et al., 2000) to take the following form.

γ∗ := argmin
γ≥0

ϕ
(
− γ

g

∥g∥

)
=

√(ηxg⊤Ag

∥g∥2

)2
+ 2ηx∥g∥ −

ηxg⊤Ag

∥g∥2 . (9)

Here, to compute the quantity g⊤Ag
∥g∥2 with A = H11 −H12H−1

22 H21, we propose to rewrite it as

g⊤Ag

∥g∥2 = g⊤H11g

∥g∥2 − (H21g)⊤w∗

∥g∥
, where w∗ := H−1

22
H21g

∥g∥
. (10)

Note that both H11g and H21g are Jacobian-vector products that can be efficiently computed by the
popular machine learning platforms such as TensorFlow (Abadi, 2015) and PyTorch (Paszke, 2019). To
compute w∗, note that it can be viewed as the unique maximizer of the µ-strongly concave problem
maxw

1
2 w⊤H22w − (H21g)⊤

∥g∥ w. We can solve this problem by performing K gradient descent steps (see
eq. (59)) and obtain an approximated minimizer wK ≈ w∗ with high accuracy.
2See eqs. (36)-(37) of (Luo and Chen, 2021).
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• Small gradient ∥g∥ < 4L2
1κ2ηx: In this case, we propose to solve the equivalent cubic subproblem in eq. (8)

via a nested-loop GDA type algorithm, as it is nonconvex-strongly-concave. Specifically, we first fix s and
maximize ϕ̃(s, ·) via gradient ascent for multiple iterations to estimate the maximizer v∗(s) (see eq. (60)).
Then, we fix v and minimize ϕ̃(·, v) via one step of perturbed gradient descent (see eq. (61)).

We note that all the steps of GDA-Cubic Solver are based on computing Jacobian-vector products, which can
be efficiently computed and does not require storing the Hessian matrix. Equipped with this GDA-Cubic
Solver, we propose the following Inexact Cubic-LocalMinimax algorithm summarized in Algorithm 2.

Algorithm 2 Inexact Cubic-LocalMinimax
Input: Initialize x0, y0, learning rates ηx, ηy, threshold ϵ′, numbers of iterations T , Nt

Define ∥s̃0∥ = ϵ′

for t = 0, 1, 2, . . . , T − 1 do
Initialize ỹ0 = yt

for k = 0, 1, 2, . . . , Nt − 1 do
ỹk+1 = ỹk + ηy∇2f(xt, ỹk)

end
Set yt+1 = ỹNt

Approximately solve the cubic problem argmins∇1f(xt,yt+1)⊤s + 1
2 s⊤G(xt,yt+1)s + 1

6ηx
∥s∥3 for s̃t+1 using

Algorithm 4 with g := ∇1f(xt,yt+1) and Hkℓ := ∇kℓf(xt, yt+1) (k, ℓ ∈ {1, 2})
Update xt+1 = xt + s̃t+1
if ∥s̃t−1∥ ∨ ∥s̃t∥ ≤ ϵ′ then

Obtain s̃ using Algorithm 5 with g := ∇1f(xt,yt+1) and Hkℓ := ∇kℓf(xt, yt+1) (k, ℓ ∈ {1, 2})
T ′ := min{t : ∥s̃t−1∥ ∨ ∥s̃t∥ ≤ ϵ′} ← t
x̃T ′ = xT ′−1 + s̃
Output: x̃T ′ , yT ′

end
end

We note that our Algorithm 2 is different from the Inexact Minimax Cubic-Newton Algorithm proposed in
Algorithm 3 of the concurrent work (Luo and Chen, 2021) in the following aspects.

• First, as mentioned in Section 4, we adopt the more relaxed adaptive gradient and Hessian approximations
in eqs. (4) & (5) for the gradient ascent steps, whereas they adopt constant approximation errors.

• Second, our GDA-based cubic solver is simpler and very different from their gradient descent-based
cubic solver that uses Chebyshev polynomials to handle the matrix inverse. Specifically, our cubic solver
computes the complex Hessian-vector product A · s via one-timescale gradient ascent steps (see eq. (60) in
Algorithm 4), whereas their solver uses two-timescale updates (see eqs. (32)-(33) of (Luo and Chen, 2021))
that require more Hessian-vector product computations per iteration.

• Third, both our Inexact Cubic-LocalMinimax (Algorithm 2) and our GDA-based cubic solver (Algorithm 4)
adopt simple termination rules that are purely based on tracking the norm of the increments ∥st−1∥, ∥st∥,
which are directly accessible in each iteration. As a comparison, the termination rules of their Inexact
Minimax Cubic-Newton Algorithm and its cubic solver need to additionally track the approximate objective
function value of the cubic subproblem, which requires additional computation.

We obtain the following overall computation complexity result of Algorithm 2.
Theorem 2 (Computation complexity of Inexact Cubic-LocalMinimax). Let Assumption 1 hold. For any 0 <

ϵ ≤ min
(

53L1κ
228

√
LΦ

, L2
1L

−1/2
2 κ1/2, L2κ2

L1

)
and δ ∈ (0, 1), choose ϵ′ = ϵ

106
√

LΦ
, T = Θ

(√
LΦ[Φ(x0)−Φ∗ + ϵ2]ϵ−3),

ηx = Θ
(
(LΦ)−1), ηy = 2

L1+µ and Nt = Θ
(

κ ln L1α∥s̃t−1∥+L1(α+L2κ)∥s̃t∥
LGϵ2

)
(see eq. (45)) in Algorithm 2.

When implementing Algorithm 4 at the t-th iteration, use hyperparameters in Lemma 6 with δ′ = δ/T
if ∥∇1f(xt, yt+1)∥ ≤ 4L2

1κ2ηx, and use those in Lemma 7 otherwise. When implementing Algorithm 5,
use the hyperparameter choices in Lemma 8. Then, with probability at least 1 − δ, the output of Inexact

9
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Cubic-LocalMinimax satisfies

µ(x̃T ′) ≤ ϵ. (11)

Consequently, the total number of required cubic iterations satisfies T ′ ≤ O
(√

L2κ1.5ϵ−3), the total number
of required gradient ascent iterations satisfies

∑T ′−1
t=0 Nt ≤ Õ

(√
L2κ2.5ϵ−3), and the total number of required

Hessian-vector product computation (in Algorithms 4 & 5) is of the order Õ(L1κ2ϵ−4).

Remark: We can apply the standard Nesterov’s momentum to further accelerate the convergence rate of
the gradient ascent steps of Algorithms 2, 4 and 5. The resulting total number of gradient ascent iterations
and total number of Hessian-vector products will then be improved to Õ

(√
L2κ2ϵ−3) and Õ(L1κ1.5ϵ−4),

respectively, which match those of the Inexact Minimax Cubic-Newton algorithm in (Luo and Chen, 2021).

Compared with Theorem 1, it can be seen from the above Theorem 2 that the total number of cubic iterations
and that of gradient ascent iterations remain the same, demonstraing the effectiveness of our proposed
GDA-based cubic solver. Moreover, since our algorithm design and cubic solver design are different from
those of (Luo and Chen, 2021), our convergence proof of Theorem 2 is therefore substantially different from
that of (Luo and Chen, 2021) in the following aspects.

• First, our Algorithm 2 adopts the more relaxed adaptive approximation criteria (4) & (5) to save
computation in practice, and thus cannot guarantee monotonic decrease of Φ(xt). Instead, we established
Φ(xt+1)−Φ(xt) ≤ −(11LΦ + 8α + 11β)∥s̃t+1∥3 + (9LΦ + 6α + 9β)∥s̃t∥3 (see eq. (99)), which implies that
our constructed potential function Ht := Φ(xt) + (10LΦ + 7α + 10β)∥s̃t∥3 is monotonically decreasing as
shown in Proposition 4.

• Second, as our Inexact Cubic-LocalMinimax (Algorithm 2) uses the termination rule ∥s̃t−1∥ ∨ ∥s̃t∥ ≤ ϵ′

that only relies on the norm of the increments, we need to prove ∥sT ′∥, ∥s̃∥ ≤ O(ϵ′) in order to ensure the
second-order stationary condition µ(x) ≤ ϵ. In particular, we have proved eq. (77) in Lemma 7, which
implies that ∥s̃T ′∥ ≤ ϵ′ cannot hold under large gradient, so we conclude that ∥∇1f(xT ′ , yT ′+1)∥ ≤ 4L2

1κ2ηx.
In this small gradient case, the eq. (65) we proved in Lemma 6 implies that the exact CR solution sT ′

satisfies ∥sT ′∥ ≤ 3ϵ′, which combined with the final cubic solver (Algorithm 5) yields that the final CR
solution s̃ must satisfy eq. (83) (i.e., ∥s̃∥ ≤ 7ϵ′) in Lemma 8. As a comparison, the Inexact Minimax
Cubic-Newton Algorithm in (Luo and Chen, 2021) terminates based on tracking the objective function
value of the cubic subproblem, which requires additional Hessian-vector product computation in practice
and does not involve these technical developments.

6 Stochastic Cubic-LocalMinimax

In this section, we apply stochastic sub-sampling to further improve the performance and complexity of
Cubic-LocalMinimax in large-scale nonconvex minimax optimization with big data. Specifically, we consider
the following stochastic finite-sum minimax optimization problem (Q).

min
x∈Rm

max
y∈Rn

f(x, y) := 1
N

N∑
i=1

fi(x, y), (Q)

where N denotes the total number of training samples and fi corresponds to the loss function on the i-th
sample. We adopt the following assumptions.
Assumption 2. The stochastic minimax optimization problem (Q) satisfies:

1. For any sample i, function fi(·, ·) is L1-smooth, function fi(·, y) is L0-Lipschitz for any fixed y, and
function fi(x, ·) is µ-strongly concave for any fixed x;

2. For any sample i, the Jacobian mappings ∇11fi, ∇12fi, ∇21fi, ∇22fi are L2-Lipschitz continuous;

3. Function Φ(x) := maxy∈Rn f(x, y) is bounded below and has bounded sub-level sets.

10
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Applying Cubic-LocalMinimax to solve the above problem (Q) would require querying full partial gradients
and full Jacobian matrices that involve all the training samples. Instead, it is more efficient to approximate
these quantities via stochastic sub-sampling. Therefore, we propose a stochastic Cubic-LocalMinimax
algorithm, which replaces the exact quantities ∇1f and G involved in the cubic update by their corresponding
stochastic approximations.

Specifically, to approximate the partial gradient ∇1f , we sub-sample a mini-batch of samples B1 with
replacement from the training set and construct the following sample average approximation.

∇̂1f(x, y) = 1
|B1|

∑
i∈B1

∇1fi(x, y). (12)

On the other hand, to approximate the matrix G, we sub-sample mini-batches of samples B11, B12, B21, B22
with replacement and construct approximated Jacobian matrices ∇̂11f, ∇̂12f, ∇̂21f, ∇̂22f in the same way as
above. Then, we construct the following approximation of G.

Ĝ(x, y) =
[
∇̂11f − ∇̂12f(∇̂22f)−1∇̂21f

]
(x, y). (13)

We summarize the update rule of stochastic Cubic-LocalMinimax in Algorithm 3 below. In particular, we
run stochastic gradient ascent in the inner iterations to obtain the approximated maximizer yt+1, and its
high-probability convergence rate has been established in the existing stochastic optimization literature
(Harvey et al., 2019).

Algorithm 3 Stochastic Cubic-LocalMinimax
Input: Initialize x0, y0, learning rates ηx, threshold ϵ′, numbers of iterations T , Nt

Define ∥s0∥ = ϵ′

for t = 0, 1, 2, . . . , T − 1 do
Initialize ỹ0 = yt

for k = 0, 1, 2, . . . , Nt − 1 do
Query a sample ξ to compute ∇2fξ(xt, ỹk)
ỹk+1 = ỹk + 2

µ(k+1)∇2fξ(xt, ỹk)
end
Set yt+1 =

∑Nt−1
k=0

2k
Nt(Nt−1) ỹk

Sample minibatch B1(t), B11(t), B12(t), B21(t), B22(t) to compute eq. (12) and eq. (13). Then, solve the
following cubic problem for st+1:
argmins∇̂1f(xt,yt+1)⊤s + 1

2 s⊤Ĝ(xt,yt+1)s + 1
6ηx
∥s∥3

Update xt+1 = xt + st+1
end
Output: xT ′ , yT ′ with T ′ = min{t : ∥st−1∥ ∨ ∥st∥ ≤ ϵ′}

The following lemma characterizes the sample complexities of all the stochastic approximators for achieving a
certain approximation accuracy.
Lemma 1. Fix any 0 < ϵ1 ≤ 2L0, 0 < ϵ2≤ 4L1 and choose the following batch sizes

|B1| ≥ O
(L2

0
ϵ2

1
ln m

δ

)
, (14)

|B11|, |B12|, |B21|, |B22| ≥ O
(L2

1
ϵ2

2
ln m + n

δ

)
. (15)

Then, the stochastic approximators satisfy the following error bounds with probability at least 1− δ.

∥∇̂1f(x, y)−∇1f(x, y)∥ ≤ ϵ1, (16)
∥∇̂2

kℓf(x, y)−∇2
kℓf(x, y)∥ ≤ ϵ2, ∀k, ℓ ∈ {1, 2}, (17)

∥Ĝ(x, y)−G(x, y)∥ ≤ (κ + 1)2ϵ2. (18)

11
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Therefore, by choosing proper batch sizes, the inexactness of the stochastic gradient, Jacobian and Hessian
estimators can be controlled within a desired range. From this perspective, stochastic Cubic-LocalMinimax
can be viewed as an inexact version of the Cubic-LocalMinimax algorithm.

To characterize the convergence and sample complexity of stochastic Cubic-LocalMinimax, we adopt an
adaptive inexactness criterion for the sub-sampling scheme. Specifically, we choose time-varying batch sizes
in a way such that the gradient and Jacobian inexactness in iteration t are proportional to the previous
increment, i.e., ϵ1(t) ∝ ∥st∥2, ϵ2(t) ∝ ∥st∥. Such an adaptive inexact criterion has been justified in the cubic
regularization literature (Wang et al., 2018a; 2019) with the following advantages: 1) it is adapted to the
optimization increment and hence leads to reduced batch sizes when the increment is large in the early
iterations; 2) it makes the batch size scheduling scheme in Lemma 1 practical, as the batch sizes in iteration
t now depend on the increment ∥st∥ obtained in the previous iteration t− 1. We also note that since the
sub-sampling scheme is adapted to the previous increment, the output rule of Algorithm 3 is designed to
control the value of both the current and the previous increments. This termination rule is critical to bound
the adapted gradient and Jacobian inexactness in the analysis.

We obtain the following global convergence and sample complexity result of stochastic Cubic-LocalMinimax.
Theorem 3 (Convergence and sample complexity). Let Assumption 2 and Theorem 4 hold. For any 0 < ϵ ≤
L1

√
33LΦ

LG
, choose ϵ′ = ϵ√

33LΦ
, ηx ≤ 1

55LΦ
, T ≥ Φ(x0)−Φ∗+8LΦϵ′2

3LΦϵ′3 and Nt ≥ O
( L0 ln(1/δ)+L2

0
κ−2(L2

Φ∥st∥4+ϵ4)∧L2
1(∥st∥2+ϵ2/LΦ)

)
.

Moreover, in iteration t, choose the batch sizes according to eqs. (14) and (15) with the inexactness given by

ϵ1(t) =LΦ

2

(
∥st∥2 + ϵ2

33LΦ

)
∧ 2L0, ϵ2(t) = LΦ

2(κ + 1)2

(
∥st∥+ ϵ√

33LΦ

)
∧ 4L1.

Then, the output of Stochastic Cubic-LocalMinimax satisfies

µ(xT ′) ≤ ϵ. (19)

Consequently, the total number of cubic iterations satisfies T ′ ≤ O(
√

L2κ1.5ϵ−3), the total number of queried
gradient samples satisfies

∑T ′

t′=0
(
Nt+|B1(t)|

)
≤ O

(
L2

0κ3.5√
L2

ϵ7 ln m
δ

)
, and the total number of queried Jacobian

samples satisfies
∑T ′−1

t=0
∑2

k=1
∑2

ℓ=1 |Bk,ℓ(t)| ≤ O
(

L2
1κ2.5

√
L2ϵ5 ln m+n

δ

)
.

Therefore, under adaptive sub-sampling, the induced gradient and Jacobian inexactness ϵ1(t), ϵ2(t) are
properly controlled so that the iteration complexity T ′ of stochastic Cubic-LocalMinimax remains in the same
level as that of Cubic-LocalMinimax. Moreover, as opposed to the sample complexity of Cubic-LocalMinimax
that scales linearly with regard to the data size N , the sample complexity of stochastic Cubic-LocalMinimax
is independent of N . For example, by comparing the more expensive Jacobian sample complexity between
Cubic-LocalMinimax and stochastic Cubic-LocalMinimax, we conclude that stochastic sub-sampling helps
reduce the sample complexity so long as the data size is large, i.e., N ≥ Õ

(
L2

1κ
L2ϵ2

)
.

7 Experiments

In this section, we test the numerical performance of Cubic-LocalMinimax and compare it with the performance
of the standard gradient-descent-ascent (GDA) algorithm in solving a synthetic minimax optimization problem
and an adversarial machine learning problem.

7.1 Synthetic Minimax Optimization Problem

We consider the following finite-sum minimax optimization problem with parameters x = [x1, x2, x3] ∈ R3

and y = [y1, y2] ∈ R2.

min
x∈R3

max
y∈R2

f(x, y) := 1
N

N∑
i=1

fi(x, y), with fi(x, y) = w(x3)− y2
1

40 + Aix1y1 −
5y2

2
2 + Bix2y2, (20)

12



Under review as submission to TMLR

where Ai, Bi > 0 are independently drawn from a uniform distribution over the interval [0.5, 1.5], N = 1000
is the total number of samples, and the function w(·) is a W-shaped nonconvex function whose exact form is
presented in Appendix H. In this setting, each function fi is nonconvex-strongly-concave.

We apply our stochastic Cubic-LocalMinimax algorithm to solve the above synthetic problem. We choose
the initialization point to be x = [0; 0; 1], y = [1; 1] and set the batch size |B1(t)| = |B11(t)| = |B12(t)| =
|B21(t)| = |B22(t)| to be 20, 100, 500, respectively. We choose the number of gradient ascent steps Nt = 10
for each outer loop, the strong concavity constant µ = 1, and choose the learning rate ηx = 0.01. To solve the
cubic subproblem, we use the standard gradient descent with learning rate 0.01, as the gradient and Hessian
of Φ(x) can be analytically computed for this synthetic problem.

Figure 1: Sample complexity (left) and time complexity of stochastic Cubic-LocalMinimax under different
batch sizes. The y-axis denotes the function value of Φ(x) = maxy f(x, y) that we aim to minimize.

Figure 1 shows the sample complexity (left figure) and time complexity (right figure) of stochastic Cubic-
LocalMinimax under different batch sizes. Here, the y-axis denotes the function value of Φ(x) = maxy f(x, y),
which we aim to minimize. It can be seen that stochastic Cubic-LocalMinimax converges faster under a
smaller batch size. This is because the synthetic minimax problem involves relatively small noise so that the
stochastic gradients computed over a small batch of samples are sufficiently accurate.

We further compare the performance of stochastic Cubic-LocalMinimax with that of the standard stochastic
GDA using batch size 100 and the fixed initialization point x = [0; 0; 1], y = [1; 1]. For both algorithms, we
choose the gradient ascent steps Nt = 10 and µ = 1. We do one step of cubic descent and one step of gradient
descend in each algorithm, respectively. The difference between the two algorithms is that the cubic solver
in Algorithm 3 is replaced with one gradient descent step, and both cubic solver and gradient descent step
have the same stepsize 0.01. Figure 2 shows the comparison of the sample complexity and time complexity
for both algorithms. It can be seen that our stochastic Cubic-LocalMinimax converges much faster than
stochastic GDA under both sample complexity measure and time complexity measure, demonstrating the
effectiveness of both the cubic regularization approach and our proposed GDA-Cubic Solver.

Figure 2: Comparison of sample complexity (left) and time complexity (right) between stochastic Cubic-
LocalMinimax and stochastic GDA.
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7.2 Adversarial Deep Learning

We further compare the stochastic Cubic-LocalMinimax with the classical GDA in the application of adversarial
deep learning, which aims to train an adversarially-robust convolutional neural network model (see Section
H.2 for the detail of the neural network structure) by solving the following minimax optimization problem
using the MNIST dataset with 50k training samples and 10k test samples.

min
θ

max
{ξi}n

i=1

1
n

n∑
i=1

[
ℓ(hθ(ξi, yi))− λ∥ξi − xi∥2] , (21)

where n = 50k is the number of training samples, θ is the parameter of the neural network hθ, (xi, yi)
corresponds to the i-th image and label respectively, ξi refers to the adversarial sample corresponding to xi,
and we choose cross-entropy loss function as ℓ and penalty coefficient λ = 2.0.

When implementing stochastic Cubic-LocalMinimax (Algorithm 3), we choose batchsize |B1(t)| = |B11(t)| =
|B12(t)| = |B21(t)| = |B22(t)| = 512 and implement Nt = 20 gradient ascent steps with stepsize 0.1. For the
cubic solver, we implement Algorithm 4 with ηv = 1 when ∥g∥ > 10 until K = 500 iterations is reached or
∥H22wk − H21g

∥g∥ ∥ < 10−5 in the update rule (59); Otherwise, we choose σ = 0 (i.e. no random perturbation),
K = 500, ηx = 0.01, ηs = 0.001, ηv = 0.1 and N ′

k = 5 until either K = 500 iterations is reached or the gradient
terms of both s′

k and vk are sufficiently small (i.e., max
(
∥H⊤

12s′
k + H22vk,ℓ∥,

∥∥g + H11s′
k + H12vk + ∥s′

k∥
2ηx

s′
k

∥∥) <

10−4 in the update rules (60) & (61)). When implementing the classical GDA algorithm, we replace the cubic
solver of stochastic Cubic-LocalMinimax with 10 stochastic gradient descent steps to update θ using also
batchsize 512 and stepsize 0.01, while the rest hyperparameters are not changed.

Figure 3: Comparison of Φ(x) between stochas-
tic Cubic-LocalMinimax and stochastic GDA.

Figure 4: Comparison of robust test accuracy
between stochastic Cubic-LocalMinimax and
stochastic GDA.

Figure 3 compares the objective function value Φ(x) at each epoch of both algorithms, which is estimated
via 50 gradient ascent steps with stepsize 0.1 to obtain the approximate maximizer {ξi}n

i=1. It can be seen
that our stochastic Cubic-LocalMinimax algorithm has significantly faster convergence than GDA. Figure 4
further demonstrates the advantage of stochastic cubic in robust test accuracy which is estimated on test
samples. It can be seen that the robust model trained by stochastic Cubic-LocalMinimax is also more robust
in generalization.

8 Conclusion

We developed cubic regularization type algorithms that globally converge to local minimax points in nonconvex-
strongly-concave minimax optimization. These algorithms include the basic Cubic-LocalMinimax, Inexact
Cubic-LocalMinimax with our proposed GDA-based cubic solver and stochastic Cubic-LocalMinimax for large-
scale minimax optimization. By designing and leveraging an intrinsic potential function that monotonically
decreases over the iterations, we have obtained the computation or sample complexities required by each
algorithm to achieve an ϵ-approximate local-minimax point. Experimental results demonstrate faster
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convergence of our stochastic Cubic-LocalMinimax than the standard stochastic GDA algorithm. A future
direction is to extend the proposed algorithms to bilevel optimization, which is a generalization of minimax
optimization.
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A Supporting Lemmas

We first prove the following auxiliary lemma that bounds the spectral norm of the Jacobian matrices.
Lemma 2. Let Assumption 1 hold. Then, for any x ∈ Rm and y ∈ Rn, the Jacobian matrices of f(x, y) and
G(x, y) =

[
∇11f −∇12f(∇22f)−1∇21f

]
(x, y) satisfy the following bounds.

∥[∇22f(x, y)]−1∥ ≤ µ−1, (22)
∥∇12f(x, y)∥ = ∥∇21f(x, y)∥ ≤ L1, (23)
∥∇11f(x, y)∥ ≤ L1, (24)
∥G(x, y)∥ ≤ L1(1 + κ). (25)

The same bounds also hold for ∇̂11f , ∇̂12f , ∇̂21f , ∇̂22f and Ĝ defined in Section 6 under Assumption 2.

Proof. We first prove eq. (22). Consider any x ∈ Rm and y ∈ Rn. By Assumption 1 we know that f(x, ·) is
µ-strongy concave, which implies that −∇22f(x, y) ⪰ µI. Thus, we further conclude that

∥[∇22f(x, y)]−1∥ = λmax
(
[−∇22f(x, y)]−1) =

(
λmin

(
−∇22f(x, y)

))−1
≤ µ−1.

Next, we prove eq. (23). Consider any x, u ∈ Rm and y ∈ Rn, we have

∥∇21f(x, y)u∥ =
∥∥∥ ∂

∂t
∇2f(x + tu, y)

∣∣∣
t=0

∥∥∥
=
∥∥∥ lim

t→0

1
t

[
∇2f(x + tu, y)−∇2f(x, y)

]∥∥∥
= lim

t→0

1
|t|
∥∥∇2f(x + tu, y)−∇2f(x, y)

∥∥
≤ lim

t→0

L1

|t|
∥∥tu
∥∥ = L1∥u∥, (26)

which implies that ∥∇21f(x, y)∥ ≤ L1. Since f is twice differentiable and has continuous second-order
derivative, we have ∇12f(x, y)⊤ = ∇21f(x, y), and hence eq. (23) follows. The proof of eq. (24) is similar.

Finally, eq. (25) can be proved as follows using eqs. (22)&(23).

∥G(x, y)∥ ≤ ∥∇11f(x, y)∥+ ∥∇12f(x, y)∥∥∇22f−1(x, y)∥∥∇21f(x, y)∥ ≤ L1 + L1µ−1L1 = L1(1 + κ).

The proof is similar for the stochastic minimax optimization problem (Q) in Section 6 under Assumption 2.

The following lemma restates Lemma 3 of (Wang et al., 2018a).
Lemma 3. The solution sk+1 of the cubic regularization problem in Algorithm 1 satisfies the following
conditions,

∇1f(xt, yt+1) + G(xt, yt+1)st+1 + 1
2ηx
∥st+1∥st+1 = 0, (27)

G(xt, yt+1) + 1
2ηx
∥st+1∥I ⪰ O, (28)

∇1f(xt, yt+1)⊤st+1 + 1
2s⊤

t+1G(xt, yt+1)st+1 ≤−
1

4ηx
∥st+1∥3. (29)

Lemma 4. Suppose the gradient ∇1f(xt, yt+1) and Hessian G(xt, yt+1) involved in the cubic-regularization
step in Algorithm 1 satisfy the following bounds for all t ≤ T ′ − 1 with T ′ = min{t ≥ 0 : ∥st−1∥ ∨ ∥st∥ ≤ ϵ′}:

∥∇Φ(xt)−∇1f(xt, yt+1)∥ ≤ β(∥st∥2 + ϵ′2), (30)
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∥∇2Φ(xt)−G(xt, yt+1)∥ ≤ α(∥st∥+ ϵ′). (31)

Then, choosing ηx ≤ (9LΦ + 18α + 28β)−1, the sequence {xt}t generated by Algorithm 1 satisfies that for all
t ≤ T ′ − 2,

Ht+1 −Ht ≤ −(LΦ + α + β)(∥st+1∥3 + ∥st∥3), (32)

where Ht = Φ(xt) + (LΦ + 2α + 3β)∥xt − xt−1∥3. The same conclusion holds for Algorithm 3 by replacing
∇1f(xt, yt+1), G(xt, yt+1) with their stochastic estimators ∇̂1f(xt, yt+1), Ĝ(xt, yt+1) respectively.

Proof. By the Lipschitz continuity of the Hessian of Φ, we obtain that

Φ(xt+1)− Φ(xt)

≤ ∇Φ(xt)⊤(xt+1 − xt) + 1
2(xt+1 − xt)⊤∇2Φ(xt)(xt+1 − xt) + LΦ

6 ∥xt+1 − xt∥3

= ∇1f(xt, yt+1)⊤st+1 + 1
2s⊤

t+1G(xt, yt+1)st+1 + LΦ

6 ∥st+1∥3

+
(
∇Φ(xt)−∇1f(xt, yt+1)

)⊤
st+1 + 1

2s⊤
t+1
(
∇2Φ(xt)−G(xt, yt+1)

)
st+1

(i)
≤
(LΦ

6 −
1

4ηx

)
∥st+1∥3 + β∥st+1∥(∥st∥2 + ϵ′2) + α

2 ∥st+1∥2(∥st∥+ ϵ′)

(ii)
≤
(LΦ

6 −
1

4ηx

)
∥st+1∥3 +

(α

2 + β
)

(2∥st+1∥3 + ∥st∥3 + ϵ′3)

(iii)
≤
(LΦ

6 −
1

4ηx

)
∥st+1∥3 +

(α

2 + β
)

(3∥st+1∥3 + 2∥st∥3)

≤ −
( 1

4ηx
− LΦ

6 −
3α

2 − 3β
)
∥st+1∥3 + (α + 2β)∥st∥3,

(iv)
≤ −(2LΦ + 3α + 4β)∥st+1∥3 + (α + 2β)∥st∥3

where (i) uses eqs. (29), (30)& (31), (ii) uses the inequality that ab2 ≤ a3 ∨ b3 ≤ a3 + b3,∀a, b ≥ 0,
(iii) uses ϵ′3 ≤ ∥st∥3 ∨ ∥st+1∥3 ≤ ∥st∥3 + ∥st+1∥3,∀0 ≤ t ≤ T ′ − 2 based on the termination criterion of
T ′, and (iv) uses ηx ≤ (9LΦ + 18α + 28β)−1. Eq. (32) follows from the above inequality by defining
Ht = Φ(xt) + (LΦ + 2α + 3β)∥xt − xt−1∥2.

Note that the cubic-regularization step in Algorithm 3 simply replaces ∇1f(xt, yt+1), G(xt, yt+1) in Algorithm
1 with their stochastic estimators ∇̂1f(xt, yt+1), Ĝ(xt, yt+1) respectively. Hence, eq. (32) holds for Algorithm
3 after such replacement in eqs. (30) & (31).

Lemma 5. Suppose all the conditions of Lemma 4 hold. If T ≥ Φ(x0)−Φ∗+(LΦ+3α+4β)ϵ′2

(LΦ+α+β)ϵ′3 in Algorithm 1, then
T ′ = min{t ≥ 1 : ∥st−1∥ ∨ ∥st∥ ≤ ϵ′} ≤ Φ(x0)−Φ∗+(LΦ+3α+4β)ϵ′2

(LΦ+α+β)ϵ′3 ≤ T . Consequently, the output of Algorithm
1 has the following convergence rate

∥∇Φ(xT ′)∥ ≤
( 1

2ηx
+ LΦ + 2α + 2β

)
ϵ′2, (33)

∇2Φ(xT ′) ⪰ −
( 1

2ηx
+ LΦ + 2α

)
ϵ′I. (34)

The same conclusion holds for Algorithm 3 by replacing ∇1f(xt, yt+1), G(xt, yt+1) in the conditions (30) &
(31) with their stochastic estimators ∇̂1f(xt, yt+1), Ĝ(xt, yt+1) respectively.

Proof. Suppose T ′ ≤ T does not hold, i.e., ∥st−1∥ ∨ ∥st∥ > ϵ′,∀1 ≤ t ≤ T , which implies that eq. (32) holds
for all 0 ≤ t ≤ T − 1 based on Lemma 4.
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On one hand, telescoping eq. (32) over t = 0, 1, . . . , T − 1 yield that

H0 −HT ≥ (LΦ + α + β)
T −1∑
t=0

(∥st+1∥3 + ∥st∥3)

≥ (LΦ + α + β)
T −1∑
t=0

(∥st∥ ∨ ∥st+1∥)3

> T (LΦ + α + β)ϵ′3 (35)

On the other hand, recalling the definition of Ht in Lemma 4, we have

H0 −HT = Φ(x0)− Φ(xT ) + (LΦ + 2α + 3β)(∥s0∥2 − ∥sT ∥2)
(i)
≤ Φ(x0)− Φ∗ + (LΦ + 3α + 4β)ϵ′2, (36)

where (i) uses ∥s0∥ = ϵ′ and Φ(xT ) ≥ Φ∗ = minx∈Rm Φ(x). Note that eqs. (35) & (36) contradict.
Therefore, we must have 1 ≤ T ′ ≤ T for any T ≥ Φ(x0)−Φ∗+(LΦ+3α+4β)ϵ′2

(LΦ+α+β)ϵ′3 , which implies that T ′ ≤
Φ(x0)−Φ∗+(LΦ+3α+4β)ϵ′2

(LΦ+α+β)ϵ′3 ≤ T .

Finally, we conclude that

∥∇Φ(xT ′)∥
(i)=
∥∥∥∇Φ(xT ′)−∇1f(xT ′−1, yT ′)−G(xT ′−1, yT ′)sT ′ − 1

2ηx
∥sT ′∥sT ′

∥∥∥
≤ ∥∇Φ(xT ′)−∇Φ(xT ′−1)−∇2Φ(xT ′−1)sT ′∥+ ∥∇Φ(xT ′−1)−∇1f(xT ′−1, yT ′)∥

+ ∥∇2Φ(xT ′−1)sT ′ −G(xT ′−1, yT ′)sT ′∥+ 1
2ηx
∥sT ′∥2

(ii)
≤
(

LΦ + 1
2ηx

)
∥sT ′∥2 + β(∥sT ′−1∥2 + ϵ′2) + α(∥sT ′−1∥+ ϵ′)∥sT ′∥

(iii)
≤
( 1

2ηx
+ LΦ + 2α + 2β

)
ϵ′2, (37)

where (i) uses eq. (27), (ii) uses eqs. (30) & (31) and the item 2 of Proposition 2 that ∇2Φ is LΦ-Lipschitz,
and (iii) uses ∥sT ′−1∥ ∨ ∥sT ′∥ ≤ ϵ′. Also,

∇2Φ(xT ′)
(i)
⪰ G(xT ′−1, yT ′)− ∥G(xT ′−1, yT ′)−∇2Φ(xT ′)∥I
(ii)
⪰ − 1

2ηx
∥sT ′∥I − ∥G(xT ′−1, yT ′)−∇2Φ(xT ′−1)∥I − ∥∇2Φ(xT ′)−∇2Φ(xT ′−1)∥I

(iii)
⪰ −

( 1
2ηx

+ LΦ

)
∥sT ′∥I − α(∥sT ′−1∥+ ϵ′)I

(iv)
⪰ −

( 1
2ηx

+ LΦ + 2α
)

ϵ′I, (38)

where (i) uses Weyl’s inequality, (ii) uses eq. (28), (iii) uses eq. (31) and the item 2 of Proposition 2 that
∇2Φ is LΦ-Lipschitz, and (iv) uses ∥sT ′−1∥ ∨ ∥sT ′∥ ≤ ϵ′.

For the stochastic minimax optimization problem (Q) in Section 6, we prove the following supporting lemma
on the error of the stochastic estimators.
Lemma 1. Fix any 0 < ϵ1 ≤ 2L0, 0 < ϵ2≤ 4L1 and choose the following batch sizes

|B1| ≥ O
(L2

0
ϵ2

1
ln m

δ

)
, (14)
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|B11|, |B12|, |B21|, |B22| ≥ O
(L2

1
ϵ2

2
ln m + n

δ

)
. (15)

Then, the stochastic approximators satisfy the following error bounds with probability at least 1− δ.

∥∇̂1f(x, y)−∇1f(x, y)∥ ≤ ϵ1, (16)
∥∇̂2

kℓf(x, y)−∇2
kℓf(x, y)∥ ≤ ϵ2, ∀k, ℓ ∈ {1, 2}, (17)

∥Ĝ(x, y)−G(x, y)∥ ≤ (κ + 1)2ϵ2. (18)

Proof. Based on Lemmas 6 & 8 of (Kohler and Lucchi, 2017), we obtain that with probability at least 1− δ,
the following bounds hold. (We replaced δ in (Kohler and Lucchi, 2017) with δ/5 by applying union bound
to the following 5 events.)

∥∇̂1f(x, y)−∇1f(x, y)∥ ≤ 4
√

2L0

√
ln(10m/δ) + 1/4

|B1|
≤ ϵ1, (39)

∥∇̂2
k,ℓf(x, y)−∇2

k,ℓf(x, y)∥ ≤ 4L1

√
ln
(
10(m ∨ n)/δ

)
|Bk,ℓ|

≤ ϵ2; k, ℓ ∈ {1, 2}. (40)

Note that here we only consider the cases that |B1|, |Bk,ℓ| < N for all k, ℓ ∈ {1, 2}. Otherwise, |B1| = N

yields ∥∇̂1f(x, y)−∇1f(x, y)∥ = 0 < ϵ1 and |Bk,ℓ| = N yields ∥∇̂2
k,ℓf(x, y)−∇2

k,ℓf(x, y)∥ = 0 < ϵ2. Hence,
in both cases, the above high probability bounds hold, which further implies eq. (18) following the argument
below.

∥Ĝ(x, y)−G(x, y)∥
≤ ∥∇̂11f(x, y)−∇11f(x, y)∥+ ∥(∇̂12f(∇̂22f)−1∇̂21f)(x, y)− (∇12f(∇22f)−1∇21f)(x, y)∥
≤ ϵ2 + ∥(∇̂12f −∇12f)

(
(∇̂22f)−1∇̂21f

)
(x, y)∥

+ ∥∇12f
(
(∇̂22f)−1 − (∇22f)−1)∇̂21f(x, y)∥+ ∥∇12f(∇22f)−1(∇̂21f −∇21f)(x, y)∥

(i)
≤ ϵ2 + ϵ2µ−1L1 + L2

1∥∇22f(x, y)−1∥∥(∇22f − ∇̂22f)(x, y)∥∥∇̂22f(x, y)−1∥+ L1µ−1ϵ2

(ii)
≤ ϵ2 + 2κϵ2 + L2

1µ−2ϵ2 ≤ (κ + 1)2ϵ2. (41)

where (i) and (ii) use Lemma 2.

Regarding the high-probability convergence rate of the inner stochastic gradient ascent (SGA) in Algorithm
3, the following result is a direct application of Theorem 3.1 in (Harvey et al., 2019).

B Proof of Proposition 2

Proposition 2. Let Assumption 1 hold. Then, the following statements hold.

1. Define mapping G(x, y) =
[
∇11f −∇12f(∇22f)−1∇21f

]
(x, y). Then, G is a Lipschitz continuous mapping

with Lipschitz constant LG = L2(1 + κ)2;

2. The Hessian of Φ satisfies ∇2Φ(x) = G(x, y∗(x)), and it is Lipschitz continuous with Lipschitz constant
LΦ = LG(1 + κ) = L2(1 + κ)3.

Proof. We first prove the item 1. Consider any x, x′ ∈ Rm and y, y′ ∈ Rn. For convenience we denote
z = (x, y) and z′ = (x′, y′). Then, by Assumption 1 and using the bounds of Lemma 2, we have that

∥G(x′, y′)−G(x, y)∥
≤ ∥∇11f(x′, y′)−∇11f(x, y)∥+ ∥∇12f(x′, y′)−∇12f(x, y)∥∥[∇22f(x′, y′)]−1∥∥∇21f(x′, y′)∥
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+ ∥∇12f(x, y)∥∥[∇22f(x′, y′)]−1 − [∇22f(x, y)]−1∥∥∇21f(x′, y′)∥
+ ∥∇12f(x, y)∥∥[∇22f(x, y)−1]∥∥∇21f(x′, y′)−∇21f(x, y)∥
≤ L2∥z′ − z∥+ (L2∥z′ − z∥)µ−1L1

+ L2
1∥[∇22f(x′, y′)]−1∥∥∇22f(x, y)−∇22f(x′, y′)∥∥[∇22f(x, y)]−1∥+ L1µ−1(L2∥z′ − z∥)

≤ L2(1 + 2κ)∥z′ − z∥+ L2
1µ−1(L2∥z′ − z∥)µ−1

≤ L2(1 + κ)2∥z′ − z∥.

Next, we prove the item 2. Consider any fixed x ∈ Rm, we know that f(x, ·) achieves its maximum at y∗(x),
where the gradient vanishes, i.e., ∇2f(x, y∗(x)) = 0. Thus, we further obtain that

0 = ∇x∇2f(x, y∗(x)) = ∇21f(x, y∗(x)) +∇22f(x, y∗(x))∇y∗(x),

which implies that

∇y∗(x) = −[∇22f(x, y∗(x))]−1∇21f(x, y∗(x)). (42)

With the above equation, we take derivative of ∇Φ(x) = ∇1f(x, y∗(x)) and obtain that

∇2Φ(x) =∇11f(x, y∗(x)) +∇12f(x, y∗(x))∇y∗(x)
=∇11f(x, y∗(x))−∇12f(x, y∗(x))[∇22f(x, y∗(x))]−1∇21f(x, y∗(x)) (43)
=G(x, y∗(x)).

Moreover, we have that

∥∇2Φ(x′)−∇2Φ(x)∥ =∥G(x′, y∗(x′))−G(x, y∗(x))∥
≤LG

[
∥x′ − x∥+ ∥y∗(x′)− y∗(x)∥

]
≤LG(1 + κ)∥x′ − x∥, (44)

where the last step uses the item 1 of Proposition 1. This proves the item 2.

C Proof of Proposition 3

Proposition 3 (Potential function). Let Assumption 1 hold. For any α, β > 0, choose ϵ′ ≤ αL1
βLG

, ηx ≤
(9LΦ + 18α + 28β)−1 and ηy = 2

L1+µ . Define the potential function Ht := Φ(xt) + (LΦ + 2α + 3β)∥st∥3. Then,
when Nt ≥ O

(
κ ln L1α∥st−1∥+L1(α+L2κ)∥st∥

LGβϵ′2

)
, the output of Cubic-LocalMinimax satisfy the following potential

function decrease property for all t ∈ N.

Ht+1 −Ht ≤ −(LΦ + α + β)
(
∥st+1∥3 + ∥st∥3). (3)

Proof. The required number of inner gradient ascent steps is shown below

N0 ≥ κ ln
(
L1∥y0 − y∗(x0)∥/(2βϵ′2)

)
Nt ≥ κ ln

(2L1α∥st−1∥+ L1(α + LGκ)∥st∥
LGβϵ′2

)
= O

(
κ ln L1α∥st−1∥+ L1(α + L2κ)∥st∥

LGβϵ′2

)
; 1 ≤ t ≤ T ′. (45)

To prove eq. (3), we first prove by induction that for any t ≥ 0.

∥yt+1 − y∗(xt)∥ ≤
α(∥st∥+ ϵ′)

LG
∧ β(∥st∥2 + ϵ′2)

L1
; 0 ≤ t ≤ T ′ − 1. (46)
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Note that yt+1 is obtained by applying Nt gradient ascent steps starting from yt. Hence, by the convergence
rate of gradient ascent algorithm under strong concavity, we conclude that with learning rate ηy = 2

L+µ ,

∥yt+1 − y∗(xt)∥ ≤(1− κ−1)Nt∥yt − y∗(xt)∥. (47)

When t = 0, eq. (47) implies that

∥y1 − y∗(x0)∥ ≤ ∥y0 − y∗(x0)∥ exp
(
N0 ln(1− κ−1)

)
(i)
≤ ∥y0 − y∗(x0)∥ exp

(
− ln

(L1∥y0 − y∗(x0)∥
2βϵ′2

))
= 2βϵ′2

L1

(ii)
≤ α(∥s0∥+ ϵ′)

LG
∧ β(∥s0∥2 + ϵ′2)

L1
(48)

where (i) uses eq. (45) and ln(1− x) ≤ −x < 0 for x = κ−1 ∈ (0, 1) and (ii) uses ∥s0∥ = ϵ′ ≤ αL1
βLG

. Hence, eq.
(46) holds when t = 0.

If eq. (46) holds for t = k − 1 ∈ [0, T ′ − 2], then

∥yk+1 − y∗(xk)∥
≤ (1− κ−1)Nk∥yk − y∗(xk−1)∥+ (1− κ−1)Nk∥y∗(xk−1)− y∗(xk)∥
(i)
≤ exp

(
Nk ln(1− κ−1)

)((α(∥sk−1∥+ ϵ′)
LG

∧ β(∥sk−1∥2 + ϵ′2)
L1

)
+ κ∥sk∥

)
(ii)
≤ exp

(
− ln

(2L1α∥sk−1∥+ L1(α + LGκ)∥sk∥
LGβϵ′2

))(α(∥sk−1∥+ ϵ′)
LG

+ κ∥sk∥
)

(iii)
≤ LGβϵ′2

2L1α∥sk−1∥+ L1(α + LGκ)∥sk∥
α(2∥sk−1∥+ ∥sk∥) + LGκ∥sk∥

LG

= βϵ′2

L1

(iv)= αϵ′

LG
∧ βϵ′2

L1
≤ α(∥sk∥+ ϵ′)

LG
∧ β(∥sk∥2 + ϵ′2)

L1

where (i) uses eq. (46) for t = k−1 and the fact that y∗ is κ-Lipschitz mapping (see (Lin et al., 2020; Chen et al.,
2021) for the proof), (ii) uses ln(1− κ−1) ≤ −κ−1 and eq. (45), (iii) uses ϵ′ ≤ ∥sk−1∥ ∨ ∥sk∥ ≤ ∥sk−1∥+ ∥sk∥
for k ≤ T ′ − 1, and (iv) uses the condition that ϵ′ ≤ αL1

βLG
. This proves eq. (46) holds for t = k and thus for

all t ∈ [0, T ′ − 1], which further implies eqs. (30) & (31). Hence, by Lemma 4, we prove that eq. (3) holds for
all 0 ≤ t ≤ T ′ − 1.

D Proof of Theorem 1

Theorem 1 (Convergence and complexity of Cubic-LocalMinimax). Let the conditions of Proposition 3 hold
with α = β = LΦ. For any 0 < ϵ ≤ L1

√
33LΦ

LG
, choose ϵ′ = ϵ√

33LΦ
and T ≥ Φ(x0)−Φ∗+8LΦϵ′2

3LΦϵ′3 . Then, the output
of Cubic-LocalMinimax satisfies

µ(xT ′) ≤ ϵ. (6)

Consequently, the total number of required cubic iterations satisfies T ′ ≤ O
(√

L2κ1.5ϵ−3), and the total
number of required gradient ascent iterations satisfies

∑T ′−1
t=0 Nt ≤ Õ

(√
L2κ2.5ϵ−3).

Proof. Substituting α = β = LΦ = L2(1 + κ)3 and ϵ′ = ϵ√
33LΦ

into Lemma 5 yields that when T ≥
√

33LΦ
33(Φ(x0)−Φ∗)+8ϵ2

3ϵ3 and ηx = (55LΦ)−1, we have T ′ ≤
√

33LΦ
33(Φ(x0)−Φ∗)+8ϵ2

3ϵ3 = O
(√

L2κ1.5ϵ−3) ≤ T ,
and moreover,

∥∇Φ(xT ′)∥ ≤
( 1

2ηx
+ LΦ + 2α + 2β

)
ϵ′2 ≤ ϵ2,
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λmin
(
∇2Φ(xT ′)

)
≥ −

( 1
2ηx

+ LΦ + 2α
)

ϵ′ ≥ −
√

33LΦϵ.

This proves eq. (6).

Note that the number of gradient ascent iterations Nt should satisfy eq. (45). Substituting α = β = LΦ =
L2(1 + κ)3 and ϵ′ = ϵ√

33LΦ
into eq. (45) yields that

N0 ≥ κ ln
(
L1∥y0 − y∗(x0)∥/(2βϵ′2)

)
= κ ln

(
33L1∥y0 − y∗(x0)∥/(2ϵ2)

)
Nt ≥ κ ln

(2L1α∥st−1∥+ L1(α + LGκ)∥st∥
LGβϵ′2

)
(i)= κ ln

(66L1(1 + κ)∥st−1∥+ 33L1(2 + κ)∥st∥
ϵ2

)
; 1 ≤ t ≤ T ′

where (i) uses LG = L2(1 + κ)2 and LΦ = L2(1 + κ)3 in Proposition 2.

When we select Nt such that the above holds with equality, then the total number of gradient ascent iterations
is upper bounded as follows

T ′−1∑
t=0

Nt =κ ln
(
33L1∥y0 − y∗(x0)∥/(2ϵ2)

)
+κ

T ′−1∑
t=0

ln
(66L1(1 + κ)∥st−1∥+33L1(2 + κ)∥st∥

ϵ2

)

≤κ ln
(
33L1∥y0 − y∗(x0)∥/(2ϵ2)

)
+κ

T ′−1∑
t=0

ln
(
∥st−1∥+ ∥st∥

)
+κT ′ ln

(
66L1ϵ−2(1 + κ)

)
(i)
≤ κ ln

(
33L1∥y0 − y∗(x0)∥/(2ϵ2)

)
+ κT ′

3
1
T ′

T ′−1∑
t=0

ln
(
4∥st−1∥3 + 4∥st∥3)

+ κT ′ ln
(
66L1ϵ−2(1 + κ)

)
(ii)
≤ κ ln

(
33L1∥y0 − y∗(x0)∥/(2ϵ2)

)
+ κT ′

3 ln
( 4

T ′

T ′−1∑
t=0

(
∥st−1∥3 + ∥st∥3))

+ κT ′ ln
(
66L1ϵ−2(1 + κ)

)
(iii)
≤ κ ln

(
33L1∥y0 − y∗(x0)∥/(2ϵ2)

)
+ κT ′

3 ln
(4(H0 −H∗)

3LΦT ′

)
+ κT ′ ln

(
66L1ϵ−2(1 + κ)

)
= Õ(κT ′) ≤ Õ

(√
L2κ2.5ϵ−3)

where (i) uses (a + b)3 ≤ 4(a3 + b3) for any a, b ≥ 0, (ii) applies Jensen’s inequality to the concave function
ln(·), and (iii) telescopes eq. (3) over t = 0, 1, . . . , T ′ − 1.

E Proof of Theorem 3

Theorem 3 (Convergence and sample complexity). Let Assumption 2 and Theorem 4 hold. For any 0 < ϵ ≤
L1

√
33LΦ

LG
, choose ϵ′ = ϵ√

33LΦ
, ηx ≤ 1

55LΦ
, T ≥ Φ(x0)−Φ∗+8LΦϵ′2

3LΦϵ′3 and Nt ≥ O
( L0 ln(1/δ)+L2

0
κ−2(L2

Φ∥st∥4+ϵ4)∧L2
1(∥st∥2+ϵ2/LΦ)

)
.

Moreover, in iteration t, choose the batch sizes according to eqs. (14) and (15) with the inexactness given by

ϵ1(t) =LΦ

2

(
∥st∥2 + ϵ2

33LΦ

)
∧ 2L0, ϵ2(t) = LΦ

2(κ + 1)2

(
∥st∥+ ϵ√

33LΦ

)
∧ 4L1.

Then, the output of Stochastic Cubic-LocalMinimax satisfies

µ(xT ′) ≤ ϵ. (19)
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Consequently, the total number of cubic iterations satisfies T ′ ≤ O(
√

L2κ1.5ϵ−3), the total number of queried
gradient samples satisfies

∑T ′

t′=0
(
Nt+|B1(t)|

)
≤ O

(
L2

0κ3.5√
L2

ϵ7 ln m
δ

)
, and the total number of queried Jacobian

samples satisfies
∑T ′−1

t=0
∑2

k=1
∑2

ℓ=1 |Bk,ℓ(t)| ≤ O
(

L2
1κ2.5

√
L2ϵ5 ln m+n

δ

)
.

Proof. In Lemma 1, replace x, y with xt, yt, B1 with B1(t), and Bk,ℓ with Bk,ℓ(t) for any k, ℓ ∈ {1, 2}, and
substitute the following hyperparameters.

ϵ1(t) =LΦ

2

(
∥st∥2 + ϵ2

33LΦ

)
∧ 2L0 = O(LΦ∥st∥2 + ϵ2),

ϵ2(t) = LΦ

2(κ + 1)2

(
∥st∥+ ϵ√

33LΦ

)
∧ 4L1 = O

(
κ−2(LΦ∥st∥+

√
LΦϵ)

)
.

Then, we obtain that using the following batchsizes
|B1(t)| ≥ O

( L2
0

(L2
Φ∥st∥4 + ϵ4) ln m

δ

)
|Bk,ℓ(t)| ≥ O

( L2
1κ4

LΦ(LΦ∥st∥2 + ϵ2) ln m + n

δ

) , (49)

the stochastic approximators satisfy the following error bounds with probability at least 1− δ.

∥∇̂1f(xt, yt)−∇1f(xt, yt)∥ ≤ ϵ1(t) ≤ LΦ

2

(
∥st∥2 + ϵ2

33LΦ

)
, (50)

∥Ĝ(xt, yt)−G(xt, yt)∥ ≤ ϵ2(t) ≤ LΦ

2

(
∥st∥+ ϵ√

33LΦ

)
. (51)

Based on Theorem 4, using the following number of stochastic gradient ascent steps

Nt ≥ O
( L0 ln(1/δ) + L2

0

µ2L2
Φ
(
([∥st∥2 + ϵ2/(33LΦ)]/L1) ∧ ([∥st∥+ ϵ/

√
33LΦ]/LG)

)2

)
(i)= O

( L0 ln(1/δ) + L2
0(

([LΦ∥st∥2 + ϵ2]/κ) ∧ L1(∥st∥+ ϵ/
√

LΦ)
)2

)
= O

( L0 ln(1/δ) + L2
0

κ−2(L2
Φ∥st∥4 + ϵ4) ∧ L2

1(∥st∥2 + ϵ2/LΦ)

)
, (52)

where (i) uses κ = L1/µ and LΦ = LG(1 + κ) (Proposition 2). we have

∥yt+1 − y∗(xt)∥ ≤ O
(√L0 ln(1/δ) + L2

0
µ2Nt

)
≤ LΦ

2 min
( 1

L1

(
∥st∥2 + ϵ2

33LΦ

)
,

1
LG

(
∥st∥+ ϵ√

33LΦ

))
. (53)

Therefore,

∥∇Φ(xt)− ∇̂1f(xt, yt+1)∥
(i)
≤ ∥∇1f(xt, y∗(xt))−∇1f(xt, yt+1)∥+ ∥∇̂1f(xt, yt+1)−∇1f(xt, yt+1)∥
(ii)
≤ L1∥yt+1 − y∗(xt)∥+ LΦ

2

(
∥st∥2 + ϵ2

33LΦ

)
(iii)
≤ LΦ

(
∥st∥2 + ϵ2

33LΦ

)
, (54)
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where (i) uses ∇Φ(x) = ∇1f(x, y∗(x)) in Proposition 1, (ii) uses eq. (50) and Assumption 1, and (iii) uses eq.
(53).

∥∇2Φ(xt)− Ĝ(xt, yt+1)∥
(i)
≤ ∥G(xt, y∗(xt))−G(xt, yt+1)∥+ ∥Ĝ(xt, yt+1)−G(xt, yt+1)∥
(ii)
≤ LG∥yt+1 − y∗(xt)∥+ LΦ

2

(
∥st∥+ ϵ√

33LΦ

)
(iii)
≤ LΦ

(
∥st∥+ ϵ√

33LΦ

)
, (55)

where (i) uses ∇2Φ(x) = G(x, y∗(x)) in Proposition 2, (ii) uses eq. (51) and the item 1 of Proposition 2, and
(iii) uses eq. (53). Eqs. (54) & (55) imply that the conditions (30) & (31) hold with α = β = LΦ = L2(1 +κ)3

and ϵ′ = ϵ√
33LΦ

. In Lemma 5, by substituting these values of α, β, ϵ′ and ηx = (55LΦ)−1, we obtain that
when T ≥ Φ(x0)−Φ∗+8LΦϵ′2

3LΦϵ′3 , we have T ′ ≤
√

33LΦ
33(Φ(x0)−Φ∗)+8ϵ2

3ϵ3 = O
(√

L2κ1.5ϵ−3) ≤ T , and moreover,

∥∇Φ(xT ′)∥ ≤
( 1

2ηx
+ LΦ + 2α + 2β

)
ϵ′2 ≤ ϵ2,

λmin
(
∇2Φ(xT ′)

)
≥ −

( 1
2ηx

+ LΦ + 2α
)

ϵ′
(i)
≥ −

√
33LΦϵ,

This proves that eq. (19) holds with probability at least 1− δ.

Choosing both Nt in eq. (52) and the batchsizes in eq. (49) with equality, the number of gradient computations
has the following upper bound.

T ′−1∑
t=0

(
Nt + |B1(t)|

)
=

T ′−1∑
t=0
O
( L0 ln(1/δ) + L2

0
κ−2(L2

Φ∥st∥4 + ϵ4) ∧ L2
1(∥st∥2 + ϵ2/LΦ) + L2

0
L2

Φ∥st∥4 + ϵ4 ln m

δ

)

≤
T ′−1∑
t=0
O
( L0 ln(1/δ) + L2

0
ϵ4κ−2 ∧ L2

1ϵ2/LΦ
+ L2

0
ϵ4 ln m

δ

)
(i)
≤ T ′O

(L0κ2

ϵ4

(
ln(1/δ) + L0

)
+ L2

0
ϵ4 ln m

δ

)
(ii)
≤ O

(√
L2κ1.5ϵ−3)O(L2

0κ2

ϵ4 ln m

δ

)
≤ O

(L2
0κ3.5√L2

ϵ7 ln m

δ

)
(56)

where (i) uses ϵ′ = ϵ√
33LΦ

≤ L1
LG

= L1(1+κ)
LΦ

which implies that ϵ4κ−2 ≤ O(L2
1ϵ2/LΦ), (ii) uses T ′ ≤

O
(√

L2κ1.5ϵ−3) we proved above. The number of Hessian computations has the following upper bound.

T ′−1∑
t=0

2∑
k=1

2∑
ℓ=1
|Bk,ℓ(t)|

=
T ′−1∑
t=0
O
( L2

1κ4

LΦ(LΦ∥st∥2 + ϵ2) ln m + n

δ

)

≤
T ′−1∑
t=0
O
(L2

1κ4

LΦϵ2 ln m + n

δ

)
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(i)
≤ T ′O

( L2
1κ

L2ϵ2 ln m + n

δ

)
(ii)
≤ O

(L2
1κ2.5
√

L2ϵ5 ln m + n

δ

)
(57)

where (i) uses LΦ = L2(1 + κ)3 = O(L2κ3), (ii) uses T ′ ≤
√

33LΦ
33(Φ(x0)−Φ∗)+8ϵ2

3ϵ3 = O
(√

L2κ1.5ϵ−3) we
proved above.

F Convergence Rate of SGA

The following high-probability convergence rate of SGA is a direct application of the Theorem 3.1 of (Harvey
et al., 2019).
Theorem 4. Let Assumption 2 hold. For all t, k, assume that ∥∇2f(xt, ỹk)∥ ≤ L0 and ∥∇̂2f(xt, ỹk) −
∇2f(xt, ỹk)∥ ≤ 1 almost surely. The inner stochastic gradient ascent steps in Algorithm 3 converges at the
following rate with probability at least 1− δ.

∥yt+1 − y∗(xt)∥ ≤ O
(√L0 ln(1/δ) + L2

0
µ2Nt

)
.

Proof. Based on Theorem 3.1 of (Harvey et al., 2019), the inner SGA steps in Algorithm 3 has the following
convergence rate with probability at least 1− δ.

f(xt, y∗(xt))− f(xt, yt+1) ≤ O
(L0 ln(1/δ) + L2

0
µNt

)
, (58)

which by µ-strong concavity of f(xt, ·) proves the following convergence rate.

∥yt+1 − y∗(xt)∥ ≤
√

2
(
f(xt, y∗(xt))− f(xt, yt+1)

)
/µ ≤ O

(√L0 ln(1/δ) + L2
0

µ2Nt

)
.

G Solving Cubic-Regularization problem

In this section, we present the cubic-regularization solvers below, including GDA-Cubic Solver (Algorithm 4)
and GDA-Cubic FinalSolver (Algorithm 5). Then, we obtain the properties of these solvers in Lemmas 6-8,
and show in Proposition 4 that Algorithm 2 using these cubic solvers admits a Lyapunov function Ht intrinsic
potential function Ht (see Proposition 3) that monotonically decreases over the iterations. Finally, using
these lemmas and Proposition 4, we will prove Theorem 2 on the computation complexity of Algorithm 2.
Lemma 6. For any 0 < δ′ < 1, when ∥g∥ ≤ 4L2

1κ2ηx, implement Algorithm 4 with initialization s′
0 =

0 and hyperparameters K = Θ
(

L1κηxϵ′−1
[

ln
(

1 +
√

m(L2
1κ2ηx+LΦϵ′2)
LΦϵ′2δ′

)
+ ln(L1κηxϵ′−1)

])
], N ′

k = N ′ =

Θ
(

ln[(L3
1κ3η2

x)/(LΦϵ′3)]
ln[(1−κ−1)−1]

)
, ηv = 1

L1
, ηs = 1

22L1κ , σ = LΦϵ′3

108L1κηx
. Then, the output s′

K satisfies the following
inequalities with probability at least 1− δ′ where s∗ := arg mins ϕ(s).

ϕ(s′
K)− ϕ(s∗) ≤ ϵ′∥s∗∥2

240ηx
+ 2LΦϵ′3 (64)

∥s∗∥ ≤ 2∥s′
K∥+ ϵ′

20 + 24ηxLΦϵ′3

∥s∗∥3 (65)

Proof. The gradient ascent step (60) can be rewritten as vk,ℓ+1 = (I + ηvH22)vk,ℓ + ηvH⊤
12s′

k. By iterating it
over ℓ = 0, 1, . . . , N ′ and using vk,0 = 0, we obtain that

vk = vk,N ′ = ηv

N ′−1∑
ℓ=0

(I + ηvH22)ℓH⊤
12s′

k = −H−1
22
(
I − (I + ηvH22)N ′)

H⊤
12s′

k. (66)
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Algorithm 4 GDA-Cubic Solver
Input: Gradient g, Hessians H11, H12, H22, perturbation magnitude σ, learning rates ηx, ηv, ηs, numbers of
iterations K, {N ′

k}
K−1
k=0 .

if ∥g∥ ≥ 4L2
1κ2ηx then

w0 = 0
for k = 0, . . . , K − 1 do

wk+1 = wk + ηv

(
H22wk −

H21g

∥g∥

)
(59)

end
βK = g⊤

∥g∥ H11
g

∥g∥ −
(H21g)⊤wK

∥g∥ .

γK =
√

(ηxβK)2 + 2ηx∥g∥ − ηxβK .
s′

K = −γKg.
else

ξ ∼ Uniform({x ∈ Rm : ∥x∥ = 1}).
for k = 0, . . . , K − 1 do

vk,0 = 0
for ℓ = 0, . . . , N ′

k − 1 do

vk,ℓ+1 = vk,ℓ + ηv(H⊤
12s′

k + H22vk,ℓ) (60)

end
vk = vk,N ′

k
.

s′
k+1 =s′

k−ηs

(
g+σξ + H11s′

k + H12vk + ∥s
′
k∥

2ηx
s′

k

)
(61)

end
end
Output: s′

K .

Algorithm 5 GDA-Cubic FinalSolver
Input: Gradient g, Hessians H11, H12, H22, learning rates ηx, ηv, ηs, numbers of iterations K, {N ′

k}
K−1
k=0 .

for k = 0, . . . , K − 1 do
vk,0 = 0
for ℓ = 0, . . . , N ′

k − 1 do
Obtain vk,ℓ+1 using eq. (60) with learning rate ηv.

end
vk = vk,N ′

k
.

gk =g + H11s′
k + H12vk + ∥s

′
k∥

2ηx
s′

k (62)

s′
k+1 =s′

k − ηsgk (63)

end
Output: s′

K′ , K ′ = min{k : ∥gk∥ ≤ LΦϵ′2}
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By substituting the above equality, the gradient descent step (61) can be rewritten as

s′
k+1 =s′

k−ηs

(
g+σξ + AN ′s′

k + ∥s
′
k∥

2ηx
s′

k

)
, where AN ′ := H11 −H12H−1

22
(
I − (I + ηvH22)N ′)

H⊤
12. (67)

It can be easily verified that the above update rule (67) can be seen as gradient descent steps with random
perturbation σξ on the following cubic-regularization problem

s∗
N ′ = arg min

s
ϕN ′(s) := g⊤s + 1

2s⊤AN ′s + 1
6ηx
∥s∥3 (68)

Note that

∥AN ′∥ ≤∥H11∥+ ∥H12∥∥H−1
22 ∥

∥∥I − (I + ηvH22)N ′∥∥∥H12∥
(i)
≤∥H11∥+ ∥H12∥∥H−1

22 ∥∥H12∥
(ii)
≤ L1 + L1µ−1L1 ≤ Amax := 2L1κ (69)

where (i) uses −L1I ⪯ H22 ⪯ −µI (Assumption 1) and ηv = 1/L1 which imply that O ⪯ I + ηvH22 ⪯
(1 − κ−1)I and thus ∥I − (I + ηvH22)N ′∥ ≤ 1, and (ii) uses ∥H11∥ ≤ L1, ∥H12∥ ≤ L1, ∥H−1

22 ∥ ≤ µ−1

(Assumption 1). Similarly, we obtain that

∥A∥ ≤∥H11∥+ ∥H12∥∥H−1
22 ∥

∥∥H12 ≤ Amax := 2L1κ, (70)

and that

∥AN ′ −A∥ = ∥(I + ηvH22)N ′
∥

(i)
≤ (1− κ−1)N ′

∥A0 −A∥
(ii)
≤ LΦϵ′3

(7L1κηx)2 , (71)

where (i) uses −L1I ⪯ H22 ⪯ −µI (Assumption 1) and ηv = 1/L1 which imply that O ⪯ I + ηvH22 ⪯
(1− κ−1)I, and (ii) uses N ′ = ln[(98L3

1κ3η2
x)/(LΦϵ′3)]

ln[(1−κ−1)−1] , A0 = O and ∥A∥ ≤ 2L1κ.

Hence, the optimal solutions s∗ := arg mins ϕ(s) satisfies

∥s∗∥
(i)
≤ ∥A∥ηx +

√
(∥A∥ηx)2 + 2ηx∥g∥

(ii)
≤ 2∥A∥ηx +

√
2ηx∥g∥

(iii)
≤ 7L1κηx := smax, (72)

where the proof of (i) is in eq. (7a) of (Carmon and Duchi, 2019), (ii) uses the inequality that
√

a + b ≤
√

a+
√

b
for any a, b ≥ 0, and (iii) uses ∥A∥ ≤ 2L1κ and ∥g∥ ≤ 4L2

1κ2ηx. Similarly, s∗
N ′ := argmin ϕN ′(s) satisfies

∥s∗
N ′∥ ≤ smax. (73)

Then, based on Lemma 2.3 and Theorem 3.2 of (Carmon and Duchi, 2019), the gradient descent step (67)
of the cubic-regularization problem (68) yields that ∥s′

k∥ ≤ ∥s∗
N ′∥ ≤ smax for all k and that ϕN ′(s′

k) ≤
ϕN ′(s∗

N ′) + ϵ′∥s∗
N′ ∥2

240ηx
+ LΦϵ′3 with probability at least 1− δ′, using the hyperparameter choices below which

can be easily verified to be satisfied by those used in this Lemma.

s′
0 =0

ηs = 1
4
(
Amax + smax/(2ηx)

) = 1
22L1κ

σ =[ϵ′∥s∗
N ′∥2/(240ηx) + LΦϵ′3]/(2ηx)

Amax + ∥s∗
N ′∥/ηx

σ

12 = (2LΦϵ′3)/(2ηx)
12(2L1κ + smax/ηx) = LΦϵ′3

108L1κηx
(74)
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K ≥
6 ln

(
1 + 3

√
m

δ′σmin

)
+ 14 ln ∥s∗

N′ ∥2(Amax+smax/ηx)
ϵ′∥s∗

N′ ∥2/(240ηx)+LΦϵ′3

(1/2)ηs

10∥s∗
N ′∥2

ϵ′∥s∗
N ′∥2/(240ηx) + LΦϵ′3 (75)

=
211200L1κηx

[
3 ln

(
1 + 3

√
m(5L2

1κ2ηx+24LΦϵ′2)
10LΦϵ′2δ′

)
+ 7 ln 2160L1κηx

ϵ′+240ηxLΦϵ′3∥s∗
N′ ∥−2

]
ϵ′ + 240ηxLΦϵ′3∥s∗

N ′∥−2 ,

where eq. (74) corresponds to σ = Amax+∥s∗
N′ ∥/ηx

Amax+smax/ηx

2LΦϵ′3

ϵ′∥s∗
N′ ∥2/(240ηx)+LΦϵ′3 ∈

[
σmin, 1

]
(σmin := 10LΦϵ′2

5L2
1κ2ηx+24LΦϵ′2 ,

since 0 ≤ ∥s∗
N ′∥ ≤ smax = 7L1κηx) defined in Theorem 3.2 of (Carmon and Duchi, 2019), which yields σmin

and (1/2)η in eq. (75).

Then, eq. (64) can be proved as follows

ϕ(s′
K)− ϕ(s∗) =

(
ϕ(s′

K)− ϕN ′(s′
K)
)

+
(
ϕN ′(s′

K)− ϕN ′(s∗
N ′)
)

+
(
ϕN ′(s∗

N ′)− ϕ(s∗)
)

(i)
≤
(
ϕ(s′

K)− ϕN ′(s′
K)
)

+ ϵ′∥s∗
N ′∥2

240ηx
+ LΦϵ′3 +

(
ϕN ′(s∗)− ϕ(s∗)

)
(ii)
≤ 1

2s′⊤
K (A−AN ′)s′

K + ϵ′∥s∗
N ′∥2

240ηx
+ LΦϵ′3 + 1

2s∗⊤(A−AN ′)s∗,

(iii)
≤ (7L1κηx)2 · LΦϵ′3

(7L1κηx)2 + ϵ′∥s∗
N ′∥2

240ηx
+ LΦϵ′3

= ϵ′∥s∗
N ′∥2

240ηx
+ 2LΦϵ′3 (76)

where (i) uses ϕN ′(s′
k) ≤ ϕN ′(s∗

N ′) + ϵ′∥s∗
N′ ∥2

240ηx
+ LΦϵ′3 and ϕN ′(s∗

N ′) ≤ ϕN ′(s∗), (ii) uses the definitions of ϕ(·)
and ϕN ′(·) in eqs. (7) & (68) respectively, (iii) uses eq. (71) and max(∥s∗∥, ∥s′

k∥) ≤ smax := 7L1κηx.

Eq. (65) can be proved as follows.

ϵ′∥s∗∥2

240ηx
+ 2LΦϵ′3

(i)
≥ϕ(s′

K)− ϕ(s∗)

(ii)= 1
2(s′

K − s∗)⊤
(

A + ∥s
∗∥

2ηx
I
)

(s′
K − s∗) + 1

12ηx
(∥s∗∥ − ∥s′

K∥)2(∥s∗∥+ 2∥s′
K∥)

(iii)
≥ ∥s

∗∥
12ηx

(∥s∗∥2 + ∥s′
K∥2 − 2∥s′

K∥∥s∗∥)

≥∥s
∗∥2

12ηx
(∥s∗∥ − 2∥s′

K∥),

where (i) uses eq. (64) proved above, (ii) uses eq. (6) of (Carmon and Duchi, 2019) and (iii) uses Proposition
2.1 of (Carmon and Duchi, 2019) which states that A + ∥s∗∥

2ηx
I ⪰ O.

Lemma 7. When ∥g∥ > 4L2
1κ2ηx, implement Algorithm 4 with hyperparameters K ≥ 2 ln[100/(7ηx)]

ln[(1−κ−1)−1] , ηv = 1/L1

and initialize s0 = 0. Then, the output s′
K satisfies ϕ(s′

K) ≤ 7
20

√
ϵ3

L2
with probability at least 1 − δ.

Correspondingly, the approximate CR solution st in Algorithm 1 satisfies

∥s′
K∥ ≥L1κηx (77)

ϕ(s′
K) ≤− 1

4L3
1κ3η2

x (78)

Proof. γ∗ has the following lower bound.

γ∗ =

√(ηxg⊤Ag

∥g∥2

)2
+ 2ηx∥g∥ −

ηxg⊤Ag

∥g∥2
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(i)
≥ ηx

(√(g⊤Ag

∥g∥2

)2
+ 8L2

1κ2 − g⊤Ag

∥g∥2

)
(ii)
≥ 7

5L1κηx (79)

where (i) uses ∥g∥ ≥ 4L2
1κ2ηx, and (ii) uses the monotonically decreasing property of the function

√
x2 + 8L2

1−
x and ∥A∥ ≤ ∥H11∥+ ∥H12∥∥H−1

22 ∥∥H21∥ ≤ L1(1 + κ) ≤ 2L1κ based on Lemma 2.

γ∗ = arg minγ≥0 ϕ(−γg/∥g∥) also satisfies the stationary condition below

0 = ∂ϕ(−γg)
∂γ

∣∣∣
γ=γ∗

= −∥g∥+ γ∗

∥g∥2 g⊤Ag + γ∗2

2ηx
. (80)

Note that the gradient steps (59) aim at the L1-smooth, µ-strongly concave maximization problem w∗ :=
arg maxw

1
2 w⊤H22w − (H21g)⊤

∥g∥ w. Therefore, these gradient steps with stepsize ηv = 1/L1 and initialization
w0 = 0 have the following convergence rate

∥wK − w∗∥ ≤ (1− κ−1)K/2∥w0 − w∗∥
(i)
≤ 7

100κηx, (81)

where (i) uses w0 = 0, ∥w∗∥ ≤
∥∥H−1

22
H21g
∥g∥

∥∥ ≤ ∥H−1
22 ∥∥H21∥ ≤ µ−1L1 = κ and K ≥ 2 ln[40/(7ηx)]

ln[(1−κ−1)−1] .

Denote the function ξ(u) =
√

u2 + 2ηx∥g∥ − u(u ∈ R). Then we have

|γK − γ∗| =
∣∣∣ξ( g⊤

∥g∥
H11

g

∥g∥
− (H21g)⊤wK

∥g∥

)
− ξ
( g⊤

∥g∥
H11

g

∥g∥
− (H21g)⊤w∗

∥g∥

)∣∣∣
(i)=
∣∣∣ξ′
( g⊤

∥g∥
H11

g

∥g∥
− (H21g)⊤[ωwK + (1− ω)w∗]

∥g∥

) (H21g)⊤(wK − w∗)
∥g∥

∣∣∣
(ii)
≤ 7

50L1κηx

(iii)
≤ 0.1γ∗

where (i) applies the Lagrange Mean Value Theorem to the function ξ with ω ∈ [0, 1], (ii) uses |ξ′(x)| =∣∣ x√
x2+2ηx∥g∥

− 1
∣∣ ≤ 2, ∥H21∥ ≤ L1 and eq. (81), and (iii) uses eq. (79). The above inequality implies that

0.9γ∗ ≤ γK ≤ 1.1γ∗ (82)

Therefore, eq. (77) can be proved as follows.

∥s′
K∥

(i)= γK

(ii)
≥ 0.9γ∗

(iii)
≥ 7(0.9)

5 L1κηx ≥ L1κηx

where (i) uses s′
K = − γK

∥g∥ g, (ii) uses eq. (82), and (iii) uses eq. (79).

Eq. (78) can be proved as follows.

ϕ(s′
K) = −γK∥g∥+ γ2

K

2∥g∥2 g⊤Ag + γ3
K

6ηx

(i)
≤ −9γ∗

10 ∥g∥+ (1.1γ∗)2

2∥g∥2 g⊤Ag + (1.1γ∗)3

6ηx

(ii)
≤ −γ∗

4 ∥g∥ −
(γ∗)3

20ηx

(iii)
≤ − (1.4L1κηx)(4L2

1κ2ηx)
20 − (1.4L1κηx)3

2500ηx

= −1
4L3

1κ3η2
x

where (i) uses eq. (82), (ii) uses eq. (80), and (iii) uses eq. (79) and ∥g∥ ≥ 4L2
1κ2ηx.
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Lemma 8. Implement Algorithm 5 with initialization s′
0 = 0 and hyperparameters K = Θ

(
L2

1κ2

L2
Φϵ′2

)
, N ′

k =

N ′ = ln[2L1κϵ′−1 max(24ηx,7/LΦ)]
ln[(1−κ−1)−1] , ηv = 1

L1
, ηs = 1

22L1κ . Then, if ∥s∗∥ ≤ 3ϵ′ and ∥g∥ ≤ 4L2
1κ2ηx, the algorithm

will terminate with K ′ = min{k : ∥gk∥ ≤ LΦϵ′2} ≤ K and the output s′
K′ satisfies

∥s′
K′∥ ≤ 7ϵ′. (83)

∥∇ϕ(s′
K′)∥ =

∥∥∥g + As′
K′ + ∥s

′
K′∥

2ηx
s′

K′

∥∥∥ ≤ 2LΦϵ′2. (84)

Proof. Since s∗ = argmins ϕ(s), 0 = ∇ϕ(s∗) = g + As∗ + ∥s∗∥
2ηx

s∗, which implies that

∥g∥ =
∥∥∥As∗ + ∥s

∗∥
2ηx

s∗
∥∥∥ ≤ ∥A∥∥s∗∥+ ∥s

∗∥2

2ηx

(i)
≤ 2L1κ(3ϵ′) + (3ϵ′)(7L1κηx)

2ηx
≤ 13L1κϵ′ (85)

where (i) uses ∥A∥ ≤ 2L1κ, ∥s∗∥ ≤ 3ϵ′ and ∥s∗∥ ≤ smax := 7L1κηx.

Following the proof of eq. (71), we can prove that when N ′ = ln[2L1κϵ′−1 max(24ηx,7/LΦ)
ln[(1−κ−1)−1]

∥AN ′ −A∥ = ∥(I + ηvH22)N ′
∥ ≤ (1− κ−1)N ′

∥A0 −A∥ ≤ 2L1κ(1− κ−1)N ′
≤ min

( ϵ′

24ηx
,

LΦϵ′

7

)
, (86)

Substituting eqs. (66) & (67) into eq. (62), we obtain that

gk =g + AN ′s′
k + ∥s

′
k∥

2ηx
s′

k = ∇ϕN ′(s′
k). (87)

Hence, the update rule (63) can be seen as gradient descent step on solving the cubic-regularization problem
(68) without random perturbation. Therefore, based on Lemmas 2.3 and eq. (11) of (Carmon and Duchi,
2019), ∥s′

k∥ ≤ ∥s∗
N ′∥ ≤ smax and that when ηs = 1

22L1κ ≤
1

4(∥A∥+smax/(2ηx)) , we have

ηs

2

K−1∑
k=0
∥gk∥2 ≤ϕN ′(s′

0)− ϕN ′(s∗)

(i)
≤∥g∥∥s∗∥+ 1

2∥AN ′∥∥s∗∥2 + ∥s
∗∥3

6ηx

(ii)
≤ 3ϵ′(13L1κϵ′ + L1κ(3ϵ′) + (3ϵ′)(7L1κηx)/(6ηx)

)
≤115

2 L1κϵ′2,

where (i) uses s′′
0 = 0 and the definition of function ϕN ′ in eq. (68), (ii) uses eq. (85), ∥s∗∥ ≤ max(3ϵ′, 7L1κηx)

and ∥AN ′∥ ≤ 2L1κ. Rearranging the above inequality, we obtain that

min
0≤k≤K−1

∥gk∥2 ≤ 1
K

K−1∑
k=0
∥gk∥2 ≤ 115L1κϵ′2

Kηs

(i)
≤ L2

Φϵ′4,

where (i) uses K = 2530L2
1κ2

L2
Φϵ′2 and ηs = 1

22L1κ . Hence, K ′ = min{k : ∥gk∥ ≤ LΦϵ′2} ≤ K − 1.

Next, we will prove eq. (83). On one hand, using the same proof logic as that of eq. (65) (see the end of the
proof of Lemma 6), we obtain that

ϕN ′(s∗)− ϕN ′(s∗
N ′)

(i)= 1
2(s∗ − s∗

N ′)⊤
(

AN ′ + ∥s
∗
N ′∥

2ηx
I
)

(s∗ − s∗
N ′) + 1

12ηx
(∥s∗

N ′∥ − ∥s∗∥)2(∥s∗
N ′∥+ 2∥s∗∥)

(ii)
≥ ∥s

∗
N ′∥

12ηx
(∥s∗

N ′∥2 + ∥s∗∥2 − 2∥s∗∥∥s∗
N ′∥)
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(iii)
≥ ∥s

∗
N ′∥2

12ηx
(∥s∗

N ′∥ − 6ϵ′), (88)

where (i) uses eq. (6) of (Carmon and Duchi, 2019), (ii) uses Proposition 2.1 of (Carmon and Duchi, 2019)
which states that A + ∥s∗

N′ ∥
2ηx

I ⪰ O and (iii) uses ∥s∗∥ ≤ 3ϵ′. On the other hand,

ϕN ′(s∗)− ϕN ′(s∗
N ′)

≤
(
ϕN ′(s∗)− ϕ(s∗)

)
+
(
ϕ(s∗)− ϕN ′(s∗

N ′)
)

(i)
≤
(
ϕN ′(s∗)− ϕ(s∗)

)
+
(
ϕ(s∗

N ′)− ϕN ′(s∗
N ′)
)

(ii)
≤ 1

2s∗⊤(AN ′ −A)s∗ + 1
2s∗⊤

N ′ (A−AN ′)s∗
N ′

(iii)
≤ ϵ′

24ηx
(9ϵ′2 + ∥s∗

N ′∥2), (89)

where (i) uses ϕ(s∗) = mins ϕ(s) ≤ ϕ(s∗
N ′), (ii) uses the definitions of ϕ(·) and ϕN ′(·) in eqs. (7) & (68)

respectively, and (iii) uses eq. (86) and ∥s∗∥ ≤ 3ϵ′. Combining eqs. (88) & (89) yields that

∥s∗
N ′∥ ≤ 6ϵ′ + ϵ′

2∥s∗
N ′∥2 (9ϵ′2 + ∥s∗

N ′∥2) = 6.5ϵ′ + 9ϵ′3

2∥s∗
N ′∥2 .

Suppose ∥s∗
N ′∥ > 7ϵ′ and substitute it into the right side of the above inequality. Then we obtain the

contradiction that ∥s∗
N ′∥ < 6.8ϵ′. Therefore, ∥sK′∥ ≤ ∥s∗

N ′∥ ≤ 7ϵ′, i.e., eq. (83) is proved. Finally, eq. (84)
can be proved as follows

∥∇ϕ(sK′)∥ ≤∥∇ϕ(sK′)− gK′∥+ ∥gK′∥
(i)
≤∥(A−AN ′)sK′∥+ LΦϵ′2

(ii)
≤ LΦϵ′

7 (7ϵ′) + LΦϵ′2 = 2LΦϵ′2, (90)

where (i) uses ∥gK′∥ ≤ LΦϵ′2 and the definitions of ϕ(·) and ϕN ′(·) in eqs. (7) & (68) respectively, (ii) uses
eq. (86) and ∥sK′∥ ≤ 7ϵ′.

Proposition 4 (Potential decrease for Inexact Cubic-LocalMinimax). Let Assumption 1 hold. For any
α, β > 0, 0 < ϵ′ ≤ αL1

βLG
and δ ∈ (0, 1), choose ηx = (168LΦ + 120α + 168β)−1, ηy = 2

L1+µ and Nt ≥

Θ
(

κ ln L1α∥s̃t−1∥+L1(α+L2κ)∥s̃t∥
LGβϵ′2

)
(see eq. (45)). When implementing Algorithm 4 at the t-th iteration, use

hyperparameters in Lemma 6 with δ′ = δ/T if ∥∇1f(xt, yt+1)∥ ≤ 4L2
1κ2ηx, and use those in Lemma 7

otherwise. Define the potential function Ht := Φ(xt) + (10LΦ + 7α + 10β)∥s̃t∥3. Then, the output of
Cubic-LocalMinimax satisfies the following potential decrease property with probability at least 1− δ.

Ht+1 −Ht ≤ −(LΦ + α + β)(∥s̃t+1∥3 + ∥s̃t∥3). (91)

Proof. Following the proof of Proposition C, it can be seen that when ϵ′ ≤ αL1
βLG

and Nt ≥

Θ
(

κ ln L1α∥s̃t−1∥+L1(α+L2κ)∥s̃t∥
LGβϵ′2

)
, the following bounds always hold, which are analogous to eqs. (30) &

(31) with exact solutions st−1 and st replaced by s̃t−1 and s̃t respectively.

∥∇Φ(xt)−∇1f(xt, yt+1)∥ ≤ β(∥s̃t∥2 + ϵ′2), (92)
∥∇2Φ(xt)−G(xt, yt+1)∥ ≤ α(∥s̃t∥+ ϵ′). (93)

Then we consider the following two cases.

(Case 1) When ∥∇1f(xt, yt+1)∥ ≤ 4L2
1κ2ηx, the output s′

K satisfies eqs. (64) & (95) with probability at least
1 − δ′. Also note that the input variables of Algorithm 4 are g := ∇1f(xt, yt+1) and A := G(xt, yt+1) =
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H11 − H12H−1
22 H21, the output s′

K of Algorithm 4 is assigned to s̃t+1 which is later used for the update
xt+1 = xt + s̃t+1, and the optimal CR solution s∗ in Algorithm 4 corresponds to st+1 in Algorithm 1.
Therefore, eqs. (64) & (65) transform to the following inequalities at the t-th iteration of Algorithm 1, which
by applying union bound hold simultaneously for all 0 ≤ t ≤ T − 1 with probability at least 1− Tδ′ = 1− δ.

∇1f(xt,yt+1)⊤(s̃t+1−st+1)+ 1
2 s̃⊤

t+1G(xt,yt+1)s̃t+1−
1
2s⊤

t+1G(xt,yt+1)st+1+ ∥s̃t+1∥3−∥st+1∥3

6ηx

≤ϵ′∥st+1∥2

240ηx
+ 2LΦϵ′3 (94)

∥st∥ ≤ 2∥s̃t∥+ ϵ′

20 + 24ηxLΦϵ′3

∥st∥2 . (95)

Based on eq. (95), if ∥st∥ > ϵ′, then ∥st∥ ≤ 2∥s̃t∥+ϵ′ since ηx ≤ (168LΦ)−1. Otherwise, ∥st∥ ≤ ϵ′. Combining
the two cases yields the following inequality.

∥st∥ ≤ 2∥s̃t∥+ ϵ′ ⇒ ∥st∥2 ≤ 8∥s̃t∥2 + 2ϵ′2. (96)

Therefore,

Φ(xt+1)− Φ(xt)
(i)
≤ s̃⊤

t+1∇Φ(xt) + 1
2 s̃⊤

t+1∇2Φ(xt)s̃t+1 + LΦ

6 ∥s̃t+1∥3

= s̃⊤
t+1
(
∇Φ(xt)−∇1f(xt, yt+1)

)
+ s̃⊤

t+1∇1f(xt, yt+1)

+ 1
2 s̃⊤

t+1
(
∇2Φ(xt)−G(xt, yt+1)

)
s̃t+1 + 1

2 s̃⊤
t+1G(xt, yt+1)s̃t+1 + LΦ

6 ∥s̃t+1∥3

(ii)
≤ β∥s̃t+1∥(∥s̃t∥2 + ϵ′2) + α

2 ∥s̃t+1∥2(∥s̃t∥+ ϵ′) + s⊤
t+1∇1f(xt, yt+1) + 1

2s⊤
t+1G(xt,yt+1)st+1

+ ∥st+1∥3

6ηx
+
(LΦ

6 −
1

6ηx

)
∥s̃t+1∥3 + ϵ′∥st+1∥2

240ηx
+ 2LΦϵ′3

(iii)
≤
(α

2 + β
)

(2∥s̃t+1∥3 + ∥s̃t∥3 + ϵ′3)− ∥st+1∥3

12ηx
+
(LΦ

6 −
1

6ηx

)
∥s̃t+1∥3 + 4ϵ′∥s̃t+1∥2 + ϵ′3

120ηx
+ 2LΦϵ′3

(iv)
≤
(α

2 + β
)

(3∥s̃t+1∥3 + 2∥s̃t∥3) +
(LΦ

6 −
1

6ηx

)
∥s̃t+1∥3

+ 4∥s̃t+1∥2(∥s̃t+1∥+ ∥s̃t∥) + ∥s̃t+1∥3 + ∥s̃t∥3

120ηx
+ 2LΦ(∥s̃t+1∥3 + ∥s̃t∥3)

(v)
≤
(α

2 + β
)

(3∥s̃t+1∥3 + 2∥s̃t∥3) +
(LΦ

6 −
1

6ηx

)
∥s̃t+1∥3

+ 4∥s̃t+1∥3 + 4(∥s̃t∥3 + ∥s̃t+1∥3) + ∥s̃t+1∥3 + ∥s̃t∥3

120ηx
+ 2LΦ(∥s̃t+1∥3 + ∥s̃t∥3)

≤
(3α

2 + 3β + 13LΦ

6 − 1
12ηx

)
∥s̃t+1∥3 +

(
α + 2β + 2LΦ + 1

24ηx

)
∥s̃t∥3

(vi)
≤ −(11LΦ + 8α + 11β)∥s̃t+1∥3 + (9LΦ + 6α + 9β)∥s̃t∥3 (97)

where (i) uses xt+1 = xt + st+1 and the fact that ∇2Φ(x) is LΦ-Lipschitz continuous (see the item 2
of Proposition 2), (ii) uses eqs. (92), (93) & (94), (iii) uses eqs. (29) & (96) and the inequality that
ab2 ≤ a3∨b3 ≤ a3 +b3,∀a, b ≥ 0, (iv) uses ϵ′n ≤ ∥s̃t∥n∨∥s̃t+1∥n ≤ ∥s̃t∥n +∥s̃t+1∥n,∀0 ≤ t ≤ T ′−2, n ∈ {1, 3}
based on the termination criterion of T ′ in Algorithm 2, (v) uses ab2 ≤ a3 ∨ b3 ≤ a3 + b3,∀a, b ≥ 0, and (vi)
uses ηx = (168LΦ + 120α + 168β)−1.

(Case 2) When ∥∇1f(xt, yt+1)∥ > 4L2
1κ2ηx, similar to case 1, eq. (78) transforms as follows in Algorithm 1.

∇1f(xt,yt+1)⊤̃st+1 + 1
2 s̃⊤

t+1G(xt,yt+1)s̃t+1 + 1
6ηx
∥s̃t+1∥3 ≤ −1

4L3
1κ3η2

x (98)
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Then, we obtain that

Φ(xt+1)− Φ(xt)

≤ s⊤
t+1∇Φ(xt) + 1

2s⊤
t+1∇2Φ(xt)st+1 + LΦ

6 ∥st+1∥3

= s⊤
t+1
(
∇Φ(xt)−∇1f(xt, yt+1)

)
+ s⊤

t+1∇1f(xt, yt+1)

+ 1
2s⊤

t+1
(
∇2Φ(xt)−G(xt, yt+1)

)
st+1 + 1

2s⊤
t+1G(xt, yt+1)st+1 + LΦ

6 ∥st+1∥3

(i)
≤ β∥st+1∥(∥st∥2 + ϵ′2) + α

2 ∥st+1∥2(∥st∥+ ϵ′) +
(LΦ

6 −
1

6ηx

)
∥st+1∥3 − 1

4L3
1κ3η2

x

(ii)
≤ −(11LΦ + 8α + 11β)∥s̃t+1∥3 + (9LΦ + 6α + 9β)∥s̃t∥3 (99)

where (i) uses eqs. (92), (93) & (98), and (ii) follows the same proof logic as that of eq. (97).

Eq. (97) in case 1 and eq. (91) in case 2 are the same. By rearranging them and using Ht := Φ(xt) + (10LΦ +
7α + 10β)∥s̃t∥3, we can prove eq. (91).

Theorem 2 (Computation complexity of Inexact Cubic-LocalMinimax). Let Assumption 1 hold. For any 0 <

ϵ ≤ min
(

53L1κ
228

√
LΦ

, L2
1L

−1/2
2 κ1/2, L2κ2

L1

)
and δ ∈ (0, 1), choose ϵ′ = ϵ

106
√

LΦ
, T = Θ

(√
LΦ[Φ(x0)−Φ∗ + ϵ2]ϵ−3),

ηx = Θ
(
(LΦ)−1), ηy = 2

L1+µ and Nt = Θ
(

κ ln L1α∥s̃t−1∥+L1(α+L2κ)∥s̃t∥
LGϵ2

)
(see eq. (45)) in Algorithm 2.

When implementing Algorithm 4 at the t-th iteration, use hyperparameters in Lemma 6 with δ′ = δ/T
if ∥∇1f(xt, yt+1)∥ ≤ 4L2

1κ2ηx, and use those in Lemma 7 otherwise. When implementing Algorithm 5,
use the hyperparameter choices in Lemma 8. Then, with probability at least 1 − δ, the output of Inexact
Cubic-LocalMinimax satisfies

µ(x̃T ′) ≤ ϵ. (11)

Consequently, the total number of required cubic iterations satisfies T ′ ≤ O
(√

L2κ1.5ϵ−3), the total number
of required gradient ascent iterations satisfies

∑T ′−1
t=0 Nt ≤ Õ

(√
L2κ2.5ϵ−3), and the total number of required

Hessian-vector product computation (in Algorithms 4 & 5) is of the order Õ(L1κ2ϵ−4).

Proof. First, it can be easily verified that the hyperparameter choices of this Theorem fits those in Proposition 4
with α = β = LΦ. In particular, ϵ′ = ϵ

106
√

LΦ
with 0 < ϵ ≤ 106L1κ√

LΦ
and δ ∈ (0, 1) satisfies 0 < ϵ′ ≤ αL1

βLG

required by Proposition 4, since ηx = (456LΦ)−1, α = β = LΦ and LG = LΦ/(1 + κ) ≤ LΦ/κ (see Proposition
2).

Suppose T ′ ≤ T does not hold, i.e., ∥st−1∥ ∨ ∥st∥ > ϵ′ = ϵ
106

√
LΦ

,∀1 ≤ t ≤ T . Then, on one hand, telescoping
eq. (91) over t = 0, 1, . . . , T − 1 yield that

H0 −HT ≥ (LΦ + α + β)
T −1∑
t=0

(∥s̃t+1∥3 + ∥s̃t∥3)

≥ 3LΦ

T −1∑
t=0

(∥st∥ ∨ ∥st+1∥)3

≥ 3TLΦ

( ϵ

106
√

LΦ

)3

(i)
≥ Φ(x0)− Φ∗ + ϵ2. (100)

where (i) uses T = 397006
√

LΦ[Φ(x0) − Φ∗ + ϵ2]ϵ−3. On the other hand, recalling the definition of Ht in
Proposition 4, we have

H0 −HT = Φ(x0)− Φ(xT ) + 27LΦ(∥s̃0∥2 − ∥s̃T ∥2)
(i)
≤ Φ(x0)− Φ∗ + ϵ2

137 , (101)
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where (i) uses ∥s0∥ = ϵ′ = ϵ
106

√
LΦ

and Φ(xT ) ≥ Φ∗ = minx∈Rm Φ(x). Note that eqs. (100) & (101) contradict.
Therefore, we must have 1 ≤ T ′ ≤ T = 397006

√
LΦ[Φ(x0)− Φ∗ + ϵ2]ϵ−3.

Since ∥s̃T ′∥ ≤ ϵ′, we have ∥∇1f(xT ′ , yT ′+1)∥ ≤ 4L2
1κ2ηx. Otherwise, eq. (77) directly implies the contradiction

that ∥s̃T ′∥ ≥ L1κηx = L1κ
456LΦ

> ϵ′ = ϵ
106

√
LΦ

(since ϵ < 53L1κ
228

√
LΦ

). Hence, ∥∇1f(xT ′ , yT ′+1)∥ ≤ 4L2
1κ2ηx, which

implies eq. (96) and thus implies ∥sT ′∥ ≤ 2∥s̃T ′∥+ ϵ′ ≤ 3ϵ′. Therefore, the conditions of Lemma 8 are met,
so eqs. (83) & (84) holds. Rewriting eqs. (83) & (84) with g ← ∇1f(xT ′−1, yT ′), A ← G(xT ′−1, yT ′) and
s̃← s′

K′ yields that

∥s̃∥ ≤ 7ϵ′ (102)∥∥∥∇1f(xT ′−1, yT ′) + G(xT ′−1, yT ′)s̃ + ∥s̃∥2ηx
s̃
∥∥∥ ≤ 2LΦϵ′2 (103)

Therefore,

∥∇Φ(x̃T ′)∥
(i)=
∥∥∥∇Φ(x̃T ′)−∇1f(xT ′−1, yT ′)−G(xT ′−1, yT ′)s̃− ∥s̃∥2ηx

s̃
∥∥∥+ 2LΦϵ′2

≤ ∥∇Φ(x̃T ′)−∇Φ(xT ′−1)−∇2Φ(xT ′−1)s̃∥+∥∇Φ(xT ′−1)−∇1f(xT ′−1, yT ′)∥

+ ∥∇2Φ(xT ′−1)s̃−G(xT ′−1, yT ′)s̃∥+ ∥s̃∥
2

2ηx
+ 2LΦϵ′2

(ii)
≤ LΦ∥s̃∥2 + β(∥s̃T ′−1∥2 + ϵ′2) + 7αϵ′(∥s̃T ′−1∥+ ϵ′) + 228LΦ(7ϵ′)2 + 2LΦϵ′2

(iii)
≤ 11191LΦϵ′2 (iv)= ϵ2, (104)

where (i) uses eq. (103), (ii) uses eqs. (92), (93) & (102), x̃T ′ = xT ′−1 + s̃ and the item 2 of Proposition 2
that ∇2Φ is LΦ-Lipschitz, (iii) uses ηx = (168LΦ + 120α + 168β)−1 = (456LΦ)−1, ∥s̃T ′−1∥ ≤ ϵ′, α = β = LΦ
and eq. (102), and (iv) uses ϵ′ = ϵ

106
√

LΦ
. Also,

∇2Φ(x̃T ′)
(i)
⪰ G(xT ′−1, yT ′)− ∥G(xT ′−1, yT ′)−∇2Φ(xT ′−1)∥I − ∥∇2Φ(x̃T ′)−∇2Φ(xT ′−1)∥I
(ii)
⪰ − 1

2ηx
∥sT ′∥I − α(∥s̃T ′−1∥+ ϵ′)I − LΦ∥s̃∥I

(iii)
⪰ −237LΦϵ′I ⪰ −3

√
LΦϵI, (105)

where (i) uses Weyl’s inequality, (ii) uses x̃T ′ = xT ′−1 + s̃, eqs. (28) & (93) and the item 2 of Proposition 2 that
∇2Φ is LΦ-Lipschitz, (iii) uses eq. (102), ηx = (456LΦ)−1, α = LΦ, ∥s̃T ′−1∥ ≤ ϵ′, and (iv) uses ϵ′ = ϵ

106
√

LΦ
.

Combining eqs. (104) & (105) proves eq. (11) where µ(x) =
√
∥∇Φ(x)∥ ∨ −λmin[∇2Φ(x)]√

33LΦ
.

Finally, we compute the computation complexities. We have proved that the total number of cubic iterations
satisfies T ′ ≤ T = 397006

√
LΦ[Φ(x0)−Φ∗ + ϵ2]ϵ−3 = O

(√
L2κ1.5ϵ−3) (LΦ = L2(1 + κ)3 = O(L2κ3) based on

Proposition 2). We can also prove that the total number of gradient ascent iterations have the same bound∑T ′−1
t=0 Nt ≤ Õ

(√
L2κ2.5ϵ−3) as that of Theorem 1, following the proof logic at the end of Appendix D. Then

we compute the total number of Hessian-vector product computations in cubic solvers (Algorithms 4 & 5).
When implementing Algorithm 4 at the t-th iteration, if ∥∇1f(xt, yt+1)∥ ≤ 4L2

1κ2ηx, then based on Lemma
6, the number of Hessian-vector product computations is proportional to

KN ′ =2 ln[(98L3
1κ3η2

x)/(LΦϵ′3)]
ln[(1− κ−1)−1] · Õ(L1κηxϵ′−1)

=Õ
[
L1κ2L−1

Φ

( ϵ√
LΦ

)−1]
=Õ(L1L

−1/2
Φ κ2ϵ−1) (i)= Õ(L1L

−1/2
2 κ1/2ϵ−1)
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where (i) uses LΦ = L2(1 + κ)3 = O(L2κ3). If ∥∇1f(xt, yt+1)∥ > 4L2
1κ2ηx, based on Lemma 7, the number of

Hessian-vector product computations is proportional to K = O(κ), whose order is not larger than the above
Õ(L2

1L
−1/2
2 κ3/2ϵ−1) since ϵ ≤ L2

1L
−1/2
2 κ1/2. Based on Lemma 8, Algorithm 5 is implemented once with the

total number of Hessian-vector product computations proportional to

KN ′ =O
( L2

1κ2

L2
Φϵ′2

)
Õ(κ) = Õ

( L2
1κ3

L2
Φ(ϵ/
√

LΦ)2

)
= Õ

( L2
1κ3

LΦ(ϵ)2

)
= Õ(L2

1L−1
2 ϵ−2).

As a result, the total number of Hessian-vector product computations in Algorithm 2 is

TÕ(L1L
−1/2
2 κ1/2ϵ−1) + Õ(L2

1L−1
2 ϵ−2)

= O(
√

LΦϵ−3)Õ(L1L
−1/2
2 κ1/2ϵ−1) + Õ(L2

1L−1
2 ϵ−2)

= Õ(
√

L2κ3L1L
−1/2
2 κ1/2ϵ−4) + Õ(L2

1L−1
2 ϵ−2)

= Õ(L1κ2ϵ−4),

where (i) uses ϵ ≤ L2κ2

L1
to absorb the term Õ(L2

1L−1
2 ϵ−2).

H Experiment Details

In this section, we present the details of both synthetic minimax problem and the neural network simulation.

H.1 Details of Synthetic Minimax Problem

In this section we aim to solve the problem below:

min
x∈R3

max
y∈R2

1
N

N∑
i=1

[
w(x3)− y2

1
40 + Aix1y1 −

5y2
2

2 + Bix2y2

]
(106)

where Ai and Bi are independent random variables from uniform distribution range from 0.5 to 1.5 and w(x3)
has the exact form below :

w(x) =



√
ϵ(x + (L + 1)

√
ϵ)2 − 1

3 (x + (L + 1)
√

ϵ)3 − 1
3 (3L + 1)ϵ3/2, x ≤ −L

√
ϵ;

ϵx + ϵ3/2

3 , −L
√

ϵ < x ≤ −
√

ϵ;
−
√

ϵx2 − x3

3 , −
√

ϵ < x ≤ 0
−
√

ϵx2 + x3

3 , 0 < x ≤
√

ϵ

−ϵx + ϵ3/2

3 ,
√

ϵ < x ≤ L
√

ϵ;
√

ϵ(x− (L + 1)
√

ϵ)2 + 1
3 (x− (L + 1)

√
ϵ)3 − 1

3 (3L + 1)ϵ3/2, L
√

ϵ ≤ x.

(107)

and we set ϵ = 0.01 and L = 5 in our experiment. Through simple computing we can calculate that:

Φ(x) = w(x3) + 10
(x1

N

N∑
i=1

Ai

)2
+ 1

10

(x2

N

N∑
i=1

Bi

)2
(108)

H.2 Details of Neural Network Simulation

The network model we use is a convolutional neural network that consists of two convolution blocks followed
by two fully connected layers. Specifically, each convolution block contains a convolution layer, a max-pooling
layer with stride step 2, and a ReLU activation layer. The convolution layers in the two blocks have 1, 10
input channels and 10, 20 output channels, respectively, and both of them have kernel size 5, stride step 1
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Figure 5: Figure of the w-shaped function w(x).

and no padding. The two fully connected layers have input dimensions 320, 50 and output dimensions 50, 10,
respectively.
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