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A B S T R A C T

Heterogeneous graphs, which are also called heterogeneous information networks, analyze the different types
of nodes in an information network and the different types of links between them to accurately tell the
difference between different semantics. In recent years, there have been several GNN-based models to process
heterogeneous graph data and achieve good performance. The model faces the challenge of first considering
how to deal with the challenges posed by embedding different types of nodes in a heterogeneous graph;
secondly, analyzing the node attribute information, which requires satisfying all nodes with attributes, which
is not easy to achieve due to the existence of individual nodes and their neighbors that do not carry attributes.
Previous network structures have added attributes to nodes by handcrafted methods, thus neglecting the
overall learnability of the model, which in turn leads to poor performance. This paper analyzes the reasons
for this phenomenon and aims to design a learning-competent heterogeneous graph neural networks(HGNN)
framework. The understanding in this study embeds different types of nodes into the same feature space
for node embedding, using the topological embedding of heterogeneous graphs as a guide to complete the
process of complementing non-attributed nodes through learnable ways in the model and the use of residual
attention mechanisms to handle attributes between nodes. Therefore, this paper proposes a general framework
for Attribute Completion of Heterogeneous Graph Neural Network Based on Residual Attention Mechanism
(RA-HGNN) , and combines it with other GNN models to enable end-to-end execution of the entire model.
Experimental verification was completed on real-world data sets to prove the feasibility of the model, and the
experimental results showed state-of-the-art performance.
1. Introduction

In our natural world, there are many complex systems, such as
social networks, shopping systems, and documentation systems, which
graph data structures can represent. In recent years, graph neural
networks (GNNs) (Liu et al., 2021; Liu, Yang, Wang, Lu, & Li, 2023; Liu,
Yang, Wang, & Su, 2022; Veličković et al., 2018) have generated much
interest. They have become a popular direction in neural networks,
but they are initially proposed for use in processing graph data. They
have excellent performance in applications such as node classification,
image classification and connection prediction. Especially the hetero-
geneous graph composed of multiple types of nodes and edges can
better describe the real system, as shown in the Fig. 1(a), the IMDB
can be regarded as a heterogeneous graph in which there are three
types of Nodes (director, movie and actor) and two types of edges
(movie-director, and movie-actor). The advantage of heterogeneous
graphs is that they can include richer semantic information, while
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homogeneous graphs have certain limitations in this respect, which has
caused scholars to study heterogeneous networks.

In recent years, heterogeneous graphs have been gradually attract-
ing attention, and more and more heterogeneous models have been
proposed. For example, HetG (Zhang, Song, Huang, Swami, & Chawla,
2019) is to transform graph data into sequence data, using Bi-LSTM (Liu
et al., 2017) to capture feature interaction information. For different
types of nodes, the same type of aggregation or different types of aggre-
gation are used to complete the embedding information of nodes, and
finally, the whole model is optimized by loss function as well as back
propagation. MAGNN (Fu, Zhang, Meng, & King, 2020) is an analysis of
heterogeneous graph neural networks based around artificially defined
meta-paths (Sun, Han, Yan, Yu, & Wu, 2011), performing aggrega-
tion within and between meta-paths, mainly addressing the problem
of embedding learning of heterogeneous graphs. Currently, existing
embedding methods applied in heterogeneous networks are relatively
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Fig. 1. This is the network structure of the IMDB dataset and the ACM dataset. Only the movie node in the IMDB dataset and the paper node in the ACM dataset have the
original attributes.
limited as well as using artificial ways to define the meta-path, which
inevitably results in information loss. The nature of heterogeneous
nodes is the existence of multi-dimensional features. In this paper,
a type conversion matrix is used for a same-dimensional node map-
ping, and existing methods are used for node embedding. This reduces
the complexity of embedding and makes sure that the information is
correct.

In deep learning (LeCun, Bengio, & Hinton, 2015), the attention
mechanism (Choromanski et al., 2021; Guan, Wang, & Zhu, 2021; Liu
et al., 2022; Wu et al., 2021; Xiang et al., 2022) plays an essential
role in neural networks. From homogeneous graphs in the beginning
to heterogeneous graphs now, the attention mechanism has been used
to aggregate information about node attributes and has had the ef-
fect that was wanted in HGNN. For example, in HAN (Wang et al.,
2019), the node and semantic levels are considered using the attention
mechanism to weight the fusion of neighborhood and semantic infor-
mation, which allows for a more comprehensive representation of node
information and shows a stronger representation of the learned node
representation. HRAN (Li, Liu et al., 2022) is a new heterogeneous GNN
framework based on an attention mechanism that not only aggregates
entity attributes from different semantic aspects but also assigns them
appropriate weights to capture complex structures and rich semantics.

In most neural networks, operations are performed on the nodes in
the graph structure, so information about the attributes (Xiang et al.,
2020) of the nodes is essential. In performing task analysis, ideally the
nodes would all be able to carry the original attributes, but in practice
not all nodes are present with attributes. What is needed is to have
as many contributing nodes as possible in the graph, therefore adding
attributes to nodes that are non-attributes of high importance. For the
problem of completing attributes, this study needs to classify the nodes
in the graph structure into two categories. One is that the nodes to be
considered do not have attribute information, and since the number
of non-attributes is too large, only nodes of higher importance can
be complemented, such as the author in Fig. 1(b); the other is that
attribute information does not exist in the nodes that are not analyzed,
such as actor in Fig. 1(a). IMDB has three different types of nodes, but
only the movie attributes come from the bag-of-words of the plot. Also
in ACM, only the paper node has attributes directly from its key. The
specific explanation is that in ACM, the author node is usually analyzed
for task processing, but the corresponding key attributes are lacking.
In IMDB, task processing is usually performed on movie nodes with
attributes, but experiments show that the lack of attributes on director
and actor nodes will also affect the effect of tasks.

In heterogeneous information networks, for nodes with missing
attributes, there will be neighbor nodes with attributes. Studying neigh-
bor nodes with attributes to complete attribute completion work for
nodes with missing attributes is something that existing heterogeneous
2

networks lack. This paper proposes a framework for attribute comple-
tion of heterogeneous graph neural network based on residual attention
mechanism to achieve feature conversion and cross-type information
transfer of heterogeneous data, which is more conducive to model
training and learning. Specifically, in the node embedding, a type
conversion matrix is introduced, which can map the nodes in the
heterogeneous network to the same feature space, aiming to optimize
the heterogeneous network graph embedding problem, solving the
problem of difficulty in dealing with multi-dimensional node features
in traditional graph neural networks (Luan et al., 2022; Park, Rossi,
Ahmed, & Faloutsos, 2022; Zhang, Luo, Wang, & He, 2022), and
facilitating the learnability of the heterogeneous network to ensure the
accuracy of the node information. The resulting topological network
then uses the residual attention mechanism to aggregate the attribute
node information and perform attribute complementation for nodes
with missing attributes, which not only effectively increases the number
of training layers, but also solves the problems of over-smoothing,
vanishing gradient of training, and missing attributes (Li, Ni et al.,
2022; Lu, Li, & Wei, 2022; Yan et al., 2023) in the network of existing
heterogeneous models (Xu, Dai, Zhang, & Wang, 2022; Yang, Yan, Pan,
Ye, & Fan, 2023). This processing mechanism allows the framework
proposed in this paper to be combined with many GNN-based hetero-
geneous models, and optimize the model learning process by combining
the predictive loss of the model as well as the weakly supervised loss
in experiments, making the whole system end-to-end complete.

The following is a summary of contributions:

(1) This paper introduces a type conversion matrix for node embed-
ding in HINs, which can map nodes in heterogeneous networks
to the same space for processing, facilitating the learnability
of the network and ensuring the accuracy of node information.
This solves the node embedding problem with multi-dimensional
feature spaces in heterogeneous networks.

(2) This paper proposes a framework for attribute complementation
of Heterogeneous Graph Neural Networks based on the Residual
Attention mechanism (RA-HGNN), which can effectively solve
the problems of missing attributes, over-smoothing and van-
ishing gradients of nodes in heterogeneous networks, and in a
learnable manner solve the defect of artificially added attributes
and can be easily combined with heterogeneous information
networks.

(3) This paper conducted extensive classification and clustering ex-
periments by combining the proposed framework with other
heterogeneous models and evaluating the model’s effectiveness.
The datasets used in the experiments are DBLP, IMDB, and
ACM, and the results show that models incorporated into this
framework exhibit powerful performance and outperform other
baselines.
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2. Related work

2.1. Heterogeneous graph neural network

In the current world, a vast quantity of data may be represented
using graph structures, and graph neural networks are advocated pri-
marily for solving issues of this kind. One is that the spatial do-
main Hamilton, Ying, and Leskovec (2017), Jia et al. (2021), Liu
et al. (2017), Wang, Xu, Chen, and Lin (2021) tries to apply the
convolution operation directly to the graph, while the other is that
the spectral domain Cai, Wang, and Wang (2021), Cao et al. (2020),
Defferrard, Bresson, and Vandergheynst (2016) uses the eigenvalues
and eigenvectors of the graph’s laplacian matrix to investigate its
attributes. For the spatial-GNN model, in DCNN (Atwood & Towsley,
2016), each node (or edge, or graph) is represented by H hop matrices,
and each hop represents the adjacent information of the adjacent range.
Therefore, the effect of getting local information is better, and the
nodes that are gotten have a strong ability to represent. Also, for
example, in GAT (Veličković et al., 2018) and GraphSAGE (Hamilton
et al., 2017), the core concept of GAT (Veličković et al., 2018) is to
implicitly apply different weights to various sorts of nodes, as opposed
to manually defining the metrics between nodes as in MoNet (Xiao,
Feng, Lin, Liu, & Zhang, 2018), and can be learned and used for
semi-supervised learning. The network model that is more relevant
to real-world problems today is the heterogeneous graph, so many
have found so far that scaling from a homogeneous graph to a hetero-
geneous graph in the GNN model enables superior performance. For
example HAE𝐺𝑁𝑁 (Li et al., 2021) addresses the problem of learning
epresentation in heterogeneous networks by aggregating higher-order
eta-path attribute information. Various attention mechanisms are
tilized for different aggregate types of node neighbors in IHGAT (Liu
t al., 2021), such as the attention mechanism for aggregating intent
eighbors and the multi-head attention mechanism for aggregating
ransaction neighbors. However, there are missing attributes in the
xisting heterogeneous mapping, which leads to the missing of im-
ortant node information. Therefore, HGNN-AC (Jin, Huo, Liang, &
ang, 2021) proposes an end-to-end heterogeneous network attribute
omplementation framework. AC-HEN (Wang, Yu, Huang, Zhao, &
ong, 2022) utilizes feature aggregation, structural aggregation and
ulti-view embedding fusion to achieve node attribute completion.
etReGAT-FC (Li, Yan, Fu, Zhao, & Zeng, 2023) utilizes type mapping

o achieve attribute completion through residual GAT network for the
eterogeneous nodes with different node types. AutoAC (Zhu et al.,
023) proposes differentiable attribute completion framework, which
ptimizes the heterogeneous model training and complementation pro-
ess. In addition to this, HGCA (He et al., 2022) is an unsupervised
lgorithm that utilizes a comparative learning approach to achieve at-
ribute complementation and representation learning for heterogeneous
raphs.

Heterogeneous network attribute complementation frameworks face
ultiple challenges such as data sparsity, cross-type information fusion,

ttribute correlation, etc., which need to be considered comprehen-
ively to design efficient and accurate models. However, the existing
odels face the problem that it is difficult to improve the model accu-

acy while reducing the model complexity, and it is often only possible
o do one or the other. In this paper, an efficient attribute processing
re-training approach is adopted, and deep residual attention networks
re utilized to achieve attribute complementation, which effectively
ompensates for the defects exposed above.

.2. Graph embedding

Graph embedding reduces the dimensionality of the actual graph
etwork from high to low dimensions. It represents the nodes of the
raph as a low-dimensional vector space while keeping the network
3

opology and node information. Initially, graph embedding techniques
were mainly used for homogeneous graphs, including DeepWalk (Per-
ozzi, Al-Rfou, & Skiena, 2014), node2vec (Grover & Leskovec, 2016),
LINE (Tang et al., 2015), GCN (Kipf & Welling, 2016), and Graph-
SAGE (Hamilton et al., 2017). All of these are ways to learn how to
represent a graph based on how similar two vertices are, and they only
keep the features of a small part of the graph. Due to the emergence of
heterogeneous graph networks, there has been corresponding research
work on algorithms for heterogeneous graph embedding, but heteroge-
neous graphs predominate in practical business scenarios. The primary
obstacles are: considering the information of various types of nodes
and edges in heterogeneous networks; aggregation of neighbor nodes;
encoding of heterogeneous content; and capturing deeper semantic
information. For example, in metapath2vec (Dong, Chawla, & Swami,
2017), the way of embedding is similar to DeepWalk (Perozzi et al.,
2014); a random walk of meta-path is used to obtain the sequence
information of the nodes in a graph, and then a skip-gram (Mikolov,
Chen, Corrado, & Dean, 2013) is used to learn the embedding repre-
sentation of the nodes. There is a flaw in metapath2vec in that the
node type is not considered; metapath2vec++ (Dong et al., 2017) is an
upgrade of metapath2vec that primarily samples the negative samples
of the core node’s type. All of the approaches above for heterogeneous
graph embedding are based on meta-path. At the same time, meta-
graph2vec (Zhang, Yin, Zhu, & Zhang, 2018) is a random walk directed
by a meta-graph to build heterogeneous node sequences and then uses
skip-gram technology to learn node embedding. The advantage of the
heterogeneous graph embedding model described above is that it works
well in parallel, but the disadvantage is also clear: it takes a lot of
computation and memory to handle the low-dimensional embedding of
each node. R-GCN (Schlichtkrull et al., 2018) projects node embeddings
into several relational spaces using multiple weight matrices, which is
different from metapath2vec and metagraph2vec and can capture the
heterogeneity of the graph.

All the graph embedding methods mentioned above can have a good
effect on the representation of node information and also show good
performance indicators for processing downstream tasks. However, the
problem of missing node attributes has not been solved. In the process
of node embedding, the phenomenon of node information loss can
occur, so that the model cannot achieve the optimal effect. Taking into
account that nodes have different feature spaces, this paper introduces
a type conversion matrix. Its goal is to ensure that the topological
network’s node attributes have integrity after embedding.

3. Methodology

This paper proposes attribute complementation for heterogeneous
graph neural networks based on the residual attention mechanism(RA-
HGNN) framework. The main idea behind this framework is to comple-
ment nodes with attributes for nodes without attributes based on the
residual attention mechanism with the topological information of the
heterogeneous graph as a guide.

3.1. Preliminary

This paper gives some terms related to heterogeneous graphs with
their corresponding explanations, which will be used in some of the
relevant mathematical expressions in this paper. As shown in Table 1.

Heterogeneous graph.  is the definition of a heterogeneous graph,
expressed as ( ,  , ,),  specifies the kind of node set,  specifies
the kind of edge set, each node 𝒊 ∈  corresponds to a node type
mapping function 𝜹, 𝜹 ∶  →  , and each edge 𝒆 ∈  corresponds
to a node type mapping function 𝜇, 𝜇 ∶  → .

ncomplete attributes. The completeness of node attributes inside a
heterogeneous graph  refers to ∃ ′ ⊂  and  ′ ≠ ∅, each node 𝒊 ∈ 
corresponds to a node type mapping function 𝜑, 𝜑 ∶  →  ′ and  ′
lacks attributes.
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Table 1
Notations & Explanations.

Notations Explanations

 A heterogeneous graph
+ The set of nodes with attributes
− The set of nodes non-attributes
𝜐 A node 𝜐 ∈ 
𝑁+

𝑣 The set of node’s neighbors in 𝜐 ∈ +

𝜙 A meta-path
ℎ Initial node attribute
ℎ′ Node attribute after mapping
𝜙 Special types of transformation matrices
 Topological structure
𝑋 The attribute of node
𝑋𝑐 Attribute of nodes after attribute completion
𝐻 The embedding of nodes

Residual attention mechanism. The primary task is performing residual
onnections on the 𝒍𝒕𝒉 nodes and edges and then aggregating them.
fter embedding the graph topology has been completed, this approach
ay successfully prevent over-smoothing and improve the model’s

xpressiveness via multi-head attention.

.2. Overview

In this framework, the problem of some nodes’ non-attributes in
eterogeneous graphs is dealt with by using nodes with attributes to
omplete the attributes of non-attributed nodes through the topology
f the heterogeneous graph. The Fig. 2 shows the entire framework
tructure. First, map different types of nodes to the same attribute
ype in a heterogeneous graph. The node embedding 𝐻 is calculated

through the corresponding topology , and then through the attention
layer, which adds an edge residual connection operation to prevent
over-smoothing and vanishing gradient, and calculates the sortable
attention score between nodes, which is used to identify which nodes
can add attributes to directly connected non-attribute nodes. Then, RA-
HGNN does a weighted aggregation of the best-obtained attribute nodes
+ to complete the attributes of the nodes in −. At the same time,
some of the attributes with attribute nodes will be dropped in the
framework, and then these attributes will be reconstructed through the
RA-HGNN framework. The complete loss will be calculated between the
dropped attributes and reconstructed attributes to verify the completed
attributes’ correctness. Finally, the node topology with the completed
attributes will be fed to the HINs model. The final loss will be made up
of the predicted loss and the completion loss, which will optimize the
whole model in an end-to-end manner.

3.3. Topological embedding

Topological embedding may retain the topology structure, node
semantic information, and attribute information in a heterogeneous
network. However, the degree of similarity between adjacent nodes in
a homogeneous graph is generally more significant than that between
different types of nodes in a heterogeneous graph. Due to the nature
of homogeneous graphs, the topology of the nodes and their attributes
do not differ much. For example, the director is closely related to
the actors used and the film created in the film and television fields.
Since these nodes exist in the same field, the topological structure
between the director, the actor, and the film will be similar and have
the same attributes. For different types of nodes, there will be different
topological structures and the problem of missing attributes. Through
topology embedding, the attribute relationships between nodes can be
better reflected. For example, the metapath2vec embedding method is
based on the embedding method of a single meta-path, which ignores
much important information. And embedding based on a meta-graph
requires more memory space, and the execution efficiency is relatively
poor. To get a better embedding structure, RA-HGNN maps all nodes
4

into the same feature space, uses a random walk algorithm to get more
detailed sequence information for multiple meta-paths, and then puts
the obtained sequence information into the skip-gram model to learn
node embeddings.

3.4. Attribute completion of residual attention mechanism

In earlier research, both GTN and MAGNN (Fu et al., 2020) ad-
dressed the problem of missing attributes in heterogeneous networks by
aggregating information from neighboring nodes. Due to the different
node types, most of the more similar nodes have a higher degree of
correlation, and there are the same factors in semantic information,
topology information, and attribute information, but this processing
method does not guarantee that all adjacent nodes have similar in-
formation. Assuming that a node has a large number of neighbors,
the importance of each neighbor’s information to this node will de-
crease. In the RA-HGNN framework, the importance of node neighbors
to the target node is actively learned, and the attribute information
between nodes is aggregated through the residual attention mechanism.
Then the attributes are further complemented by directly connected
neighboring nodes with attributes for nodes without attributes.

Considering that there are a large number of different types of
nodes in the heterogeneous graph, which also leads to different types
of feature spaces, this framework needs to convert the different types of
nodes into the same feature space within the type-specific conversion
matrix involved here. This mapping operation is just a conversion for
the different types of nodes in the heterogeneous graph. The specific
mapping operation is as follows:

ℎ′𝑖 = 𝑀𝑖 ⋅ ℎ𝑖 (1)

Here, ℎ𝑖 represents the node’s initial attribute, and ℎ′𝑖 represents the
apped attribute. Various kinds of nodes are mapped to a particular

eature space through the type-specific conversion matrix 𝑀𝑖.
At the framework’s attention level, the significance of neighboring

odes is primarily calculated. For instance, if there exists a directly
onnected node pair (𝑖, 𝑗), the importance value 𝑒𝜙𝑖𝑗 of node 𝑗 to node 𝑖
ay be estimated using the following method:

𝜙
𝑖𝑗 = 𝑎𝑡𝑡𝑛𝑜𝑑𝑒

(

ℎ′𝑖 , ℎ
′
𝑗

)

(2)

Here, 𝜙 represents a meta-path in the topology, ℎ𝑖 and ℎ𝑗 represent
the topological embeddings of nodes 𝑖 and 𝑗, where 𝑗 ∈ +, 𝑎𝑡𝑡𝑛𝑜𝑑𝑒(⋅)
represents the execution of the attention mechanism and is available
for all node pairs.

In this framework, since the contribution of the first-order neighbor
𝑗 to 𝑖 is the largest among all the neighbors of node 𝑖, for 𝑒𝜙𝑖𝑗 calculated
above, node 𝑗 represents the attribute mapping of the first-degree
neighbors of the node 𝑖, where 𝑖 ∈ + and 𝑗 ∈ 𝑁+

𝑣 . Consequently, this
measure can filter a large number of irrelevant attribute nodes, and it
minimizes the calculation of nodes in − and improves a portion of the
efficiency by using the masked attention mechanism:

𝑒𝜙𝑖𝑗 = 𝜎
[

(

ℎ′𝑖
)𝑇 𝑊 ℎ′𝑗

]

(3)

𝑊 represents a parameter matrix, and 𝜎 is the activation function.
The above calculation can obtain the attention scores of all nodes

with attributes and their direct neighbors. Then the softmax activation
function is used to determine the weight normalization parameters:

�̂�𝑖𝑗 = sof tmax
(

𝑒𝜙𝑖𝑗
)

=
exp

(

𝑒𝜙𝑖𝑗
)

∑

𝑗∈𝑁+
𝑖
exp

(

𝑒𝑖𝑗
) (4)

Then, through the obtained weight parameter �̂�𝑖𝑗 , RA-HGNN will
weigh the aggregated attribute information for node 𝑖 based on the final
attention score 𝑎𝑖𝑗 :

𝑥𝐶𝑖 =
∑

𝑎𝑖𝑗𝑥
′
𝑗 (5)
𝑗∈𝑁+
𝑣
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Fig. 2. A description of the framework. Given a heterogeneous graph with different types of nodes, first map to the same feature space, ensure that the nodes have the same
attribute dimensions, and compute the node embeddings via the network topology A; then, randomly drop some attributes and perform attribute complementation. The essence
of attribute complementation is to aggregate the weighted aggregation of neighbor nodes with attributes by residual attention, and the weights are determined by the attention
scores. After attribute completion, and the heterogeneous graph topology with attributes is input into the HINs model, the model is optimized using predictive loss and completion
loss back propagation, and the whole model is completed end-to-end.
Finally, this paper uses multi-head attention to boost a model’s
expression capacity and uses this method to aggregate the attributes
of node 𝑖:

𝑥𝐶𝑖 = mean
⎛

⎜

⎜

⎝

𝐾
∑

𝑘

∑

𝑗∈𝑁+
𝑖

𝑎𝑖𝑗𝑥
′
𝑗

⎞

⎟

⎟

⎠

(6)

𝐾 indicates that this paper conducted K distinct attention processes,
and mean(⋅) refers to that averaged these results.

In heterogeneous graphs, there will be some exceptional cases. For
example, node 𝑖 does not have any neighbors with attributes. That is,
the neighbors of a node 𝑖 do not have attributes (i.e. 𝑁+

𝑖 = ∅
)

, In
practice, these circumstances are mostly nonexistent. Hence, its effect
on results is minimal.

In some GNNs (Ding et al., 2021; Kipf & Welling, 2016), there are
always some over-smoothing and vanishing gradient problems, and this
paper uses a residual connection to deal with such problems.

Node residual. Since the node attribute dimensions are the same, per-
forming pre-activation residual connection on the input node attribute
and aggregating the node attributes, the specific implementation is as
follows:

ℎ′(𝑚+1)𝑖 = 𝜎
⎡

⎢

⎢

⎣

∑

𝑗∈𝑁+
𝑖

𝑎(𝑚+1)𝑖𝑗 𝑊 (𝑚+1)
(

ℎ′𝑗
)𝑚

+
(

ℎ′𝑖
)𝑚

⎤

⎥

⎥

⎦

(7)

The above case is designed with a pre-trained residual connection
that aggregates over the (𝑚+1)𝑡ℎ layer, considering when the node layer
changes.

When the dimension changes, an additional learnable linear trans-
formation matrix 𝑊 (𝑚+1)

res is used here.

ℎ′(𝑚+1)𝑖 = 𝜎
⎡

⎢

⎢

∑

+
𝑎(𝑚+1)𝑖𝑗 𝑊 (𝑚+1)

(

ℎ′𝑗
)𝑚

+𝑊 (𝑚+1)
𝑟𝑒𝑠

(

ℎ′𝑖
)𝑚

⎤

⎥

⎥

(8)
5

⎣
𝑗∈𝑁𝑖 ⎦
Edge residual. The raw attention scores �̂�𝑖𝑗 between nodes are obtained
by Eq. (4), and for the different layers, this paper adds the residual
connections:

𝑎(𝑚+1)𝑖𝑗 = (1 − 𝛽)�̂�(𝑚+1)𝑖𝑗 + 𝛽𝑎(𝑚)𝑖𝑗 (9)

where hyperparameter 𝛽 ∈ [0, 1] is a scaling factor.
In particular, this paper performs 𝐾 independent attention mecha-

nisms and aggregates these results as the final expression:

𝑎(𝑚+1)𝑖𝑗𝑘 = (1 − 𝛽)�̂�(𝑚+1)𝑖𝑗𝑘 + 𝛽𝑎(𝑚)𝑖𝑗𝑘 (10)

ℎ̂(𝑚+1)𝑖𝑘 =
∑

𝑗∈𝑁+
𝑖

𝑎(𝑚+1)𝑖𝑗𝑘 𝑊 (𝑚+1)
𝑘

(

ℎ′𝑗
)𝑚

(11)

𝒉′(𝑚+1)𝑖 = 𝜎
(

∥𝐾𝑘=1 �̂�
(𝑚+1)
𝑖𝑘 +𝑾 (𝑚+1)

res(𝑘) (𝒉
′
𝑖)
𝑚
)

(12)

𝒉(𝑀)
𝑖 = 1

𝐾

𝐾
∑

𝑘=1
�̂�(𝑀)
𝑖𝑘 (13)

Here, ∥ represents the concatenation operation, and 𝑎(𝑚+1)𝑖𝑗𝑘 is the at-
tention score calculated by the 𝑘𝑡ℎ linear transformation 𝑊 (𝑚+1)

𝑘 . Since
the output dimension cannot be divided precisely by 𝐾, an averaging
method is used to determine the final number of layers (𝑀 𝑡ℎ).

In summary, in traditional deep networks, the gradient shrinks dur-
ing back propagation, resulting in extremely small parameter updates
for shallower layers, which makes it difficult to train effectively. By
summing the input attributes with the output attributes through node
residuals and edge residuals (Eqs. (7)–(13)), the path of the original
information is preserved, mitigating the attenuation of the gradient
as it propagates. This means that during back propagation, even if
the gradient decreases in some layers, it is still possible to pass the
gradient directly from shallower layers through the residual connec-
tion, avoiding the gradient vanishing problem. Residual connections
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R

3



𝑋

allow the network to gradually adjust the original inputs by learning
the residuals, thus making it easier to learn the constant mapping
(i.e., inputs and outputs are equal) and the residual part. This allows the
network to selectively learn hard-to-capture changes and learn simpler
changes as residuals. This helps the network to fit the data better and
thus improves the expressive power of the network.

The Algorithm 1 implements the attribute completion part of the
residual attention mechanism in the framework.

Algorithm 1 RA-HGNN
Input:  = ( , )
1: for each 𝑖 ∈

{

−,+} do
2: Map different nodes to the same feature space by Eq. (1);
3: Topology 𝐴 computes node embedding information;
4: for each ℎ′𝑖 do
5: The weight normalization parameters are obtained 𝑎𝑖𝑗

by Eq. (4);
6: The (𝑚 + 1)𝑡ℎ layer attention score is obtained via the edge

residual Eq. (9);
7: Node feature of the (𝑚 + 1)𝑡ℎ layer are obtained by node

residual Eq. (8);
8: Eq. (13) obtains the final feature expression;
9: Get the aggregation of attributes of the node by Eq. (6);

10: end for
11: end for
Output: The node attribute information 𝑥𝐶𝑖 after residual connection

is calculated;
12: The prediction loss  is calculated;
13: Back propagation is used to optimize the model;
Output: All the knowns.

3.5. Dropping some attributes

The model framework this paper proposes is based on a residual
attention mechanism to complete the attributes of nodes in hetero-
geneous graphs. What this paper wants to aim for is to enhance the
model’s performance. When nodes are completed, all nodes with first-
order attributes are used. How to judge the effect of this learnable
result?

In response to the above questions, in RA-HGNN, a part of the nodes
in + is randomly selected, the attributes are dropped, and then the

A-HGNN framework is used to complete the attributes in − again.
At the same time, attribute completion is performed on nodes that
drop attributes. The completion loss calculated by this whole process
is derived from the drop attribute and the reconstruction attribute.

Through the above analysis, the node in +, will be divided into
two parts +

𝑑𝑟𝑜𝑝 and +
𝑟𝑒, for the node in +

𝑑𝑟𝑜𝑝, a parameter 𝛼 will be
set as the drop rate, expressed as |+

𝑑𝑟𝑜𝑝| = 𝛼|+
|, for the nodes with

attributes in the heterogeneous graph, the set of nodes with dropped
attributes is +

𝑑𝑟𝑜𝑝, which is reconstructed by the set of nodes in +
𝑟𝑒.

The reconstructed attribute node 𝑖 is represented as:

𝑥𝐶𝑖 = mean
⎛

⎜

⎜

⎝

𝐾
∑

𝑘

∑

𝑗∈+
𝑟𝑒∩+

𝑛

𝑎𝑖𝑗𝑥
′
𝑗

⎞

⎟

⎟

⎠

(14)

Masked attention is also used here, where 𝐾 and the function
mean(⋅) are the same as mentioned above.

To reconstruct the node attributes in the set +
𝑑𝑟𝑜𝑝, the goal of this

paper is to be as close to the original attribute value as possible, so
optimization scheme of this paper is to use weak supervision loss. The
Euclidean distance of attribute nodes to express completion loss:

completion = 1
|+

𝑑𝑟𝑜𝑝|

∑

+

√

(

𝑋𝐶
𝑛 −𝑋𝑛

)2 (15)
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𝑛∈𝑉𝑑𝑟𝑜𝑝
.6. Analysis of the HIN model

Through RA-HGNN, the attribute completion of the nodes in the sets
+
𝑑𝑟𝑜𝑝 and − is completed. The completed nodes are defined as:

𝑛𝑒𝑤 =
{

𝑋𝐶
𝑛 , 𝑋

𝐶
𝑚 , 𝑋𝑟 ∣ ∀𝑛 ∈ −,∀𝑚 ∈ +

𝑑𝑟𝑜𝑝,∀𝑟 ∈ +
𝑟𝑒

}

(16)

The designed completion framework is mainly applied to different
HINs models, and during the execution of this framework, it will not
affect the topology of the graph, so this paper will get the node 𝑋𝑛𝑒𝑤

and the topology of the graph structures can be sent directly to the HINs
model:

𝑌 = 𝛥
(

𝐴,𝑋𝑛𝑒𝑤) (17)

prediction = 𝑓 (𝑌 , 𝑌 ) (18)

 = 𝜀𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 + 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (19)

Here, 𝛥 represents different HINs models, 𝐴 represents the topology,
𝑌 represents the label, 𝑓 represents the loss function, and 𝜀 represents
a weight parameter that balances the two parts.

Finally, this paper applies the framework to different HINs models,
and the final loss function is expressed as the prediction loss for labels
and the complete loss for attributes. Excellent performance can be
obtained through the combination of this framework and the model,
and the performance is excellent in the backpropagation process.

4. Experiments

4.1. Datasets

To more clearly describe the information in the heterogeneous
graph, this paper used three different datasets for the representation: a
subset of DBLP, ACM, and IMDB. The analysis is described in Table 2.

(1) DBLP. This paper selected a portion of the node information in
the DBLP dataset, including 14,458 papers (P), 4057 authors (A),
20 venues (V), and 8694 terms (T). The authors’ attribute is the
bag-of-words representation of keywords, the venues’ attribute
is a one-hot vector, and the terms’ attribute has no pre-trained
word vectors (Pennington, Socher, & Manning, 2014). Only the
papers’ attributes are directly from the dataset.

(2) ACM. This paper selected a portion of the node information in
the ACM dataset, including 4108 papers (P), 7235 authors (A)
and 59 subjects (S). The attribute of paper is the bag-of-words
representation of keywords, and the attribute vectors of authors
and subjects are derived from the attribute vectors of directly
related papers. Only the papers’ attributes come directly from
this dataset in this dataset.

(3) IMDB. This paper selected a portion of the node information in
the IMDB dataset, including 4801 movies (M), 5796 actors (A)
and 2304 directors (D). There are three categories for movies: ac-
tion, comedy, and drama. In this dataset, the movies’ attributes
are represented by a bag-of-words, the actors’ and directors’ at-
tribute vectors are obtained directly from the movies’ attributes
vector, and only the movies’ attributes come directly from the
dataset.

4.2. Baselines

In the experiment, different models will be used to compare with
the model combined with this framework. This framework is con-
nected with the current state-of-the-art model MAGNN, defined as
RA-MAGNN. Then RA-MAGNN is combined with the original MAGNN,
which conducts comparative experiments and processes the data. The

specific baselines are as follows.
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Table 2
Datasets.

Dataset Node Edge Attribute

paper(P):4,019 paper-paper:9,615 paper:raw
ACMa author(A):7,167 paper-author:13,407 author:handcrafted

subject(S):60 paper-subject:4,019 subject:handcrafted

DBLPb

author(A):4,057 author-paper:19,645 author:handcrafted
paper(P):14,328 paper-term:85,810 paper:raw
term(T):7,723 paper-venue:14,328 term:handcrafted
venue(V):20 venue:handcrafted

IMDBc
movie(M):4,278 movie-director:4,278 movie:raw
director(D):2,081 movie-actor:12,828 director:handcrafted
actor(A):5,257 actor:handcrafted

a http://dl.acm.org/.
b https://dblp.uni-trier.de/.
c https://www.imdb.com/.

(1) Metapath2vec (Dong et al., 2017): A meta-path based random
walk is used to construct the heterogeneous neighborhood of
each vertex, and then a skip-gram is used to complete the model
of vertex embedding. This paper will test all the meta-paths of
the model and record the best experimental results.

(2) GCN (Kipf & Welling, 2016): A semi-supervised graph convolu-
tional network is a homogeneous GNN that can work directly
on graphs and exploit the structural information of graphs. This
paper tests the effect of GCN based on different meta-paths in
homogeneous graphs and records the best results.

(3) HAN (Wang et al., 2019): It is a heterogeneous GNN. This model
is divided into two layers in the attention mechanism: node layer
attention and semantic layer attention, and node embedding is
performed through the attributes of neighbor-based meta-path
aggregation.

(4) MAGNN (Fu et al., 2020): It is a heterogeneous GNN that
solves the embedding learning problem of heterogeneous graphs.
Model components include node information translation, intra-
meta-path and inter-meta-path aggregation.

(5) GAT (Veličković et al., 2018): It is a homogeneous GNN. It does
not depend on the graph’s structure and uses masked attention
to complete the model operation. This paper trains GAT through
a meta-path and records the results.

(6) MAGNN-AC (Jin et al., 2021): It is MAGNN that combines the
HGNN-AC (Jin et al., 2021) framework for heterogeneous GNNs
to solve the problem of missing attributes in heterogeneous
networks.

(7) AC-HEN (Wang et al., 2022): It is a generalized attribute com-
plementation framework for heterogeneous networks that uti-
lizes feature aggregation, structure aggregation, and multi-view
embedding fusion to achieve attribute complementation.

(8) HetReGAT-FC (Li et al., 2023): It is a deep heterogeneous net-
work that complements the feature information in the heteroge-
neous graph.

4.3. Implementation details

The baseline models described in the preceding section maintain
their initial configuration settings and do not change. For this frame-
work (RA-HGNN), set the parameters’ learning rate to 0.005; this
paper’s loss rate when using mask attention is 0.5. In the extended
multi-head attention mechanism, the number of attention heads is set to
𝐾=8. The attribute drop rate for nodes with attributes is set to 0.3. For
a fair comparison, this paper sets this embedding dimension to 64 for
all models. The node parameters of the dataset are consistent with (Fu
et al., 2020; Jin et al., 2021; Wang et al., 2019), and the experimental
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data in this paper will be referred to in Tables 3 and 4.
4.4. Classification

In the graph, the classification of nodes is a very critical task. In
this framework, node classification is usually the task of classifying
nodes with attributes and without attributes, so this paper needs to
set up two different datasets to operate this task. Among them, the
nodes of the first classification are nodes with attributes, and here in
this paper, the datasets for experiments on ACM and IMDB are chosen.
Another classified node is the node without original attributes, and
this paper uses the DBLP dataset for experiments. The three datasets
are processed using the baseline model, and the effectiveness of the
framework proposed in this paper is demonstrated by combining it with
the MAGNN model and simultaneously comparing it with the currently
optimal attribute complementation networks (HGNN-AC,AC-HEN and
HetReGAT-FC). In order to improve the credibility of the classification
task, we chose a linear support vector machine (SVM) (Suykens, 2001)
and set the training ratio from 1% to 80%. Since in the semi-supervised
experiment, the labels in the training set and the test set are involved
in the training of the model, in order to maintain consistency, only the
labels in the test set are put into the linear SVM. Due to the significant
data differences for different graph structures, this paper repeated the
test 5 times and recorded the average value of Macro-F1 and Micro-F1.

Table 3 shows the results of experiments after performing the node
classification task in the datasets ACM, DBLP, and IMDB. Paper nodes
and movie nodes are nodes with original attributes in the ACM and
IMDB datasets, respectively. In contrast, the other types of nodes are
nodes without original attributes, where paper and movie are the
nodes performing the classification task. By combining to maintain
consistency, it can be seen through the results that there is a significant
reduction in the error rate compared to other models and that RA-
MAGNN works better overall. Different training ratios are adopted in
the DBLP dataset, and the author node without the original attribute
is used to perform classification task. RA-MAGNN completes the at-
tributes of author, venue, and term nodes through the paper node.
Overall, as shown in Tables 3, the baseline MAGNN-AC and MAGNNN
are superior to the other baseline models, and more importantly, RA-
MAGNN improves accuracy by 0.04%–4.66% compared to MAGNN-AC
and 0.03%–3.35% compared to MAGNN for the same training ratio.
Meanwhile, in Table 3, the performance of RA-HGNN is also signifi-
cantly improved compared with the complementary models AC-HEN
and HetReGAT-FC. It can be seen that RA-HGNN has a significant
advantage in representing node attributes and shows strong stability
when combined with the HINs model.

Through the above analysis, according to the topological relation-
ship, this paper performs attribute completion on nodes through a
residual attention mechanism, which shows superior performance. For
a particular node, this approach can learn the attention score of this
node’s neighbors to this node efficiently instead of setting an impor-
tance value manually, which will ignore the importance of this node’s
neighbors. Therefore, this framework can address the problems of
missing node attributes and over-smoothing in heterogeneous graphs.

In order to verify that this framework can be widely applied with
other heterogeneous network models, therefore, HAN and MAGNN
networks are selected as the baseline heterogeneous models and are
combined with them using the attribute complementation frameworks
AC-HEN, HGNN-AC, HetReGAT-FC, and RA-HGNN respectively with
the training ratio set to 40%, and verifying their respective per-
formances. The performance of each is verified. As shown in Ta-
ble 5, 𝐻𝐴𝑁𝐻𝐸𝑁 , 𝐻𝐴𝑁𝐻𝐺𝑁𝑁−𝐴𝐶 , 𝐻𝐴𝑁𝐹𝐶 , and 𝐻𝐴𝑁𝑅𝐴 are AC-HEN,
HGNN-AC, HetReGAT-FC, and RA-HGNN variant models, respectively,
and it can be seen that 𝐻𝐴𝑁𝑅𝐴 has the largest performance im-
provement in the three different datasets, when compared with the
optimal performance of 𝐻𝐴𝑁𝐹𝐶 in the baseline. datasets, with the
biggest performance improvement of 1.57% and 1.11% for Macro-F1

and Micro-F1, respectively. Compared with the optimal performance

http://dl.acm.org/
https://dblp.uni-trier.de/
https://www.imdb.com/
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Table 3
Results (%) on ACM, IMDB and DBLP datasets on the node classification task.

Datasets Metrics Training Without attribute completion With attribute completion

Metapath2vec GCN HAN GAT MAGNN MAGNN-AC AC-HEN HetReGAT-FC RA-MAGNN

ACM

Macro-F1

1% 35.23 66.83 86.95 88.58 85.58 84.27 85.11 85.37 88.93
5% 42.37 72.45 88.65 89.20 86.12 85.47 86.72 86.51 89.25
10% 44.29 70.79 89.39 89.29 86.60 86.23 86.95 87.69 89.51
20% 69.95 70.41 89.40 89.59 88.01 88.44 88.15 88.25 89.55
40% 71.15 70.82 89.79 89.77 89.42 89.93 89.33 89.51 90.69
60% 71.47 69.67 89.51 89.72 90.39 90.67 90.66 90.42 91.52
80% 72.18 67.23 90.63 89.42 90.79 91.08 90.82 90.93 91.96

Micro-F1

1% 63.18 71.74 87.37 88.60 85.95 84.82 85.05 85.33 88.96
5% 68.88 74.95 88.62 89.10 86.24 85.52 86.73 87.21 89.26
10% 70.29 71.40 89.32 89.19 86.67 86.19 87.52 87.39 89.34
20% 72.12 74.02 89.22 89.47 88.08 88.42 88.25 88.26 89.41
40% 73.17 74.57 89.64 89.65 89.48 89.95 89.51 89.63 90.70
60% 73.65 74.10 89.33 89.60 90.42 90.66 90.46 90.77 91.55
80% 74.14 72.69 90.54 89.29 90.80 91.05 90.83 90.92 91.98

IMDB

Macro-F1

1% 35.23 39.72 52.49 49.52 50.78 49.75 49.88 50.57 52.63
5% 42.37 42.95 56.16 53.08 54.28 53.60 54.49 54.41 56.29
10% 44.29 43.70 57.02 53.61 56.39 55.25 55.35 56.81 57.23
20% 46.42 44.75 50.00 54.81 58.11 58.17 58.33 58.19 58.26
40% 47.70 45.26 52.71 55.09 59.39 59.26 59.41 59.32 59.46
60% 48.25 46.72 54.24 55.71 59.97 59.45 59.82 59.91 59.95
80% 48.73 47.13 54.38 55.40 60.02 60.08 60.08 60.11 60.19

Micro-F1

1% 39.55 44.01 54.38 51.32 51.62 50.47 51.36 51.87 54.69
5% 44.33 46.41 56.74 53.73 54.46 53.77 54.22 55.35 56.90
10% 46.15 47.02 57.35 54.14 56.53 55.48 55.67 55.41 57.42
20% 48.08 47.44 55.73 55.02 58.16 57.27 58.14 58.17 58.27
40% 49.55 47.62 57.97 55.29 59.46 59.18 59.33 59.31 59.49
60% 50.06 48.49 58.32 55.91 60.05 59.58 59.57 60.08 59.98
80% 50.68 48.73 58.51 55.67 60.15 60.13 60.11 60.05 60.24

DBLP

Macro-F1

1% 88.76 86.99 89.37 32.68 92.45 92.69 92.16 92.38 92.73
5% 90.49 89.03 90.83 57.20 92.44 93.10 93.29 93.36 93.70
10% 91.09 89.53 91.24 64.57 92.44 93.18 92.98 93.34 93.97
20% 91.50 90.06 92.24 66.92 93.13 93.21 93.26 93.71 94.20
40% 92.55 90.37 92.40 73.23 93.23 93.35 93.55 93.83 94.35
60% 93.25 90.57 92.80 77.17 93.57 93.38 93.75 94.02 94.38
80% 93.48 90.74 93.08 78.20 94.10 94.02 94.22 94.19 94.63

Micro-F1

1% 89.91 87.55 90.12 48.74 93.11 93.25 92.54 93.21 93.29
5% 91.19 89.58 91.49 70.79 93.02 93.51 93.22 93.01 94.14
10% 91.74 90.02 91.88 75.90 93.02 93.55 92.37 94.02 94.39
20% 92.14 90.53 93.11 76.98 93.61 93.60 94.14 94.33 94.60
40% 93.09 90.83 93.30 79.61 93.68 93.37 93.84 94.01 94.73
60% 93.76 91.01 93.70 81.62 93.99 93.75 94.06 94.53 94.75
80% 93.94 91.15 93.99 82.22 94.47 94.17 94.68 94.52 94.98
Table 4
Quantitative results (%) on the node clustering task.

Datasets Metrics Metapath2vec GCN HAN GAT MAGNN MAGNN-AC AC-HEN HetReGAT-FC RA-MAGNN

ACM NMI 21.22 51.40 61.56 57.29 62.51 64.93 64.82 64.97 65.21
ARI 21.00 53.01 64.39 60.43 67.23 68.52 68.84 69.05 69.88

IMDB NMI 1.20 5.45 10.87 8.45 12.87 14.29 14.22 14.07 14.31
ARI 1.70 4.40 10.01 7.46 11.98 14.09 14.01 14.10 14.12

DBLP NMI 74.30 75.01 79.12 71.50 77.64 79.49 79.51 79.35 79.59
ARI 78.50 80.49 84.76 77.26 82.60 84.83 84.51 84.73 84.92
Table 5
The effect of different attribute completion on HGNNs (training ratio is 40%).

Datasets ACM IMDB DBLP

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

𝐻𝐴𝑁 89.79 89.64 52.71 57.97 92.40 93.30
𝐻𝐴𝑁𝐻𝐸𝑁 90.11 90.27 57.14 58.26 92.57 93.69
𝐻𝐴𝑁𝐻𝐺𝑁𝑁−𝐴𝐶 89.96 89.73 57.09 58.03 92.28 93.48
𝐻𝐴𝑁𝐹𝐶 90.31 90.35 57.15 58.22 93.26 93.83
𝐻𝐴𝑁𝑅𝐴 90.54 90.61 58.72 59.38 93.95 94.68

𝑀𝐴𝐺𝑁𝑁 89.42 89.48 59.39 59.46 93.23 93.68
𝑀𝐴𝐺𝑁𝑁𝐻𝐸𝑁 90.43 59.52 59.01 59.43 93.52 93.77
𝑀𝐴𝐺𝑁𝑁𝐻𝐺𝑁𝑁−𝐴𝐶 89.93 89.95 59.26 59.18 93.35 93.37
𝑀𝐴𝐺𝑁𝑁𝐹𝐶 90.58 89.51 59.43 59.46 93.78 94.21
𝑀𝐴𝐺𝑁𝑁𝑅𝐴 90.69 90.70 59.46 59.49 94.35 94.73
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Fig. 3. Experimental study of ablation of RA-HGNN.
of 𝑀𝐴𝐺𝑁𝑁𝑅𝐴 and 𝑀𝐴𝐺𝑁𝑁𝐹𝐶 in the baseline, the maximum perfor-
mance improvement of Macro-F1 and Micro-F1 is 0.57% and 1.19%,
respectively. The above results fully demonstrate that the method
proposed in this paper greatly improves the performance of the two
HGNNs.

4.5. Ablation experiment

In order to validate each component of the RA-HGNN framework,
this study will complete ablation experiments on the following variant
models. In this experimental section, the underlying experimental pa-
rameter settings and model structure will remain the same, although
the individual components are changed. The Macro-F1 and Micro-F1
performance of all variant models on the three datasets is shown in
Fig. 3.

∙ 𝑉 𝑎𝑟𝑓 : This variant model does not perform the same dimension
mapping on the initial input node dimensions, which means that
ℎ𝑖 and ℎ𝑗 are used as input attributes.

∙ 𝑉 𝑎𝑟ℎ: This varionverts the residual attention aggregation to the
feature aggregation of traditional HGNN to verify the perfor-
mance of residual attention.

∙ 𝑉 𝑎𝑟𝑠: This variant model eliminates the process of attribute com-
plementation using multiple heads of attention and uses the
self-attention mechanism instead.

Effect of feature mapping. The comparison between RA-HGNN and
𝑉 𝑎𝑟𝑓 can show the importance of node dimension mapping in pre-
processing. As can be seen from Fig. 3, the performance of RA-HGNN
is significantly higher than that of 𝑉 𝑎𝑟𝑓 in three different datasets,
respectively, which suggests that the node feature dimensionality map-
ping transformations proposed in this study play a key role in model
training.

Effect of residual attention. The comparison between RA-HGNN and
𝑉 𝑎𝑟ℎ can show the importance of residual attention on neighborhood
feature aggregation. From Fig. 3(b), it can be seen that the performance
of 𝑉 𝑎𝑟ℎ is lagging behind compared with RA-HGNN in the three
datasets, and at the same time, it shows that the attribute aggregation
module based on the mechanism of residual attention designed in this
study has an obvious advantage in capturing neighbor attributes.

Effect of multi-head attention. the comparison between RA-HGNN and
𝑉 𝑎𝑟𝑠 shows the importance of multi-head attention in capturing multi-
neighborhood relationships. As shown in Fig. 3, again in all datasets,
the RA-HGNN model is superior to the traditional self-attention mech-
anism.
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4.6. Clustering

This paper uses the clustering task to compare different models and
use the classical algorithm K-means to cluster the nodes obtained after
training, where K is the number of classifications. And utilizing NMI
and ARI to assess the clustering task outcomes, this paper performed
the experiment 5 times and reported the averaged results in Table 4.

In order to more effectively describe the clustering effect of the
baseline in different datasets, this paper adopts the NMI (Normalized
Mutual Information) and ARI (Adjusted Rand Index) metrics that are
applicable to the clustering problem of different categories of data.
From Table 4, it is clear that the MAGNN-AC model outperforms
other models not combined with the proposed framework on the ACM,
DBLP and IMDB datasets. Then this paper combine the new framework
with the MAGNN model, and the experimental findings may have
obtained excellent outcomes. Therefore, different classification types
can be distinguished in the clustering task. The advantage of RA-
MAGNN over MAGNN is that the attributes of the nodes in the initial
MAGNN are not obtained by learning the model itself but are added
by handicraft, which will lead to the result of the clustering is not
ideal. The framework this paper propose is to learn the attributes of
missing nodes in a learnable way based on the topology structure and
obtain the weighted information between each node through a residual
attention mechanism to increase the accuracy of downstream tasks and
the model’s performance.

4.7. Visualization

This paper presents a more intuitive comparison of the models
by way of a visualization task. The MAGNN, MAGNN-AC, and RA-
MAGNN models are embedded with nodes on the ACM, DBLP, and
IMDB datasets, respectively, and visualized in two dimensions. Then,
due to a large number of nodes in the dataset, paper nodes in the ACM
dataset, paper nodes in the DBLP dataset, and movie nodes in the IMDB
dataset were selected for embedding analysis in this paper and were
color classified according to the nodes.

As shown in Figs. 4–6, in the three datasets, MAGNN works better
than the original dataset, but does not perform as well as RA-MAGNN,
where some of the different categories of papers and movies cross each
other and the boundaries are blurred. The RA-MAGNN combined with
this framework can show a clearer division boundary and can clearly
distinguish different categories. The results show that accurate attribute
information is beneficial for performing heterogeneous network work.
MAGNN uses a manual process to get the attributes of nodes, which
can lead to inaccurate attributes and bad performance. Using a multi-
layered residual attention mechanism to complement the attributes in a
learnable manner, guided by a topological structure, greatly improves
the performance of the model and enables accurate classification of
papers as well as films in different domains.
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Fig. 4. Visualization of the paper nodes of embeddings in the ACM dataset.
Fig. 5. Visualization of the paper nodes of embeddings in the DBLP dataset.
Fig. 6. Visualization of the paper nodes of embeddings in the IMDB dataset.
Fig. 7. Complexity comparison of RA-HGNN with other baseline models.
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4.8. Complexity analysis

In order to verify the execution efficiency of this model, the execu-
tion time as well as the memory consumption of this model during the
run of the ACM dataset are analyzed in this section, all the experiments
are implemented on a server configured with Intel Core i9-12900K
GPUs, and the specific results are shown in Fig. 7, which compares all
baseline models involved in the experiments, with the 𝑥-axis denoting
the average runtime for one iteration, and the 𝑦-axis denoting the
memory consumed for one iteration of the model in which the iteration
is performed.

One of them, RA-MAGNN, has a small improvement in runtime
and memory consumption compared to MAGNN, which is clearly ac-
ceptable. However, RA-MAGNN is degraded compared to the attribute
complementation class algorithms HGNN-AC, AC-HEN, and HerReGAT-
FC. This study analyzes the possible reasons for this phenomenon:
in comparison with HGNN-AC and AC-HEN, which also perform pre-
training, it is seen that the execution time and memory consumption
of the present model are lower, which once again proves the high
efficiency of the mapping matrices; the HerReGAT-FC model needs to
perform additional computations each time when mapping the node
types, which in turn reduces the operational efficiency.
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Fig. 8. Parameters analysis of RA-HGNN in the ACM dataset w.r.t. Weighted coefficient 𝜆, Divided ratio 𝛼, Embedding dimension 𝑍.
Fig. 9. Parameters analysis of RA-HGNN in the DBLP dataset w.r.t. Weighted coefficient 𝜆, Divided ratio 𝛼, Embedding dimension 𝑍.
Fig. 10. Parameters analysis of RA-HGNN in the IMDB dataset w.r.t. Weighted coefficient 𝜆, Divided ratio 𝛼, Embedding dimension 𝑍.
4.9. Parameters experiments

This subsection studies the effect of parameter changes in the ACM,
DBLP and IMDB dataset on the results in detail and displays the Macro-
F1 and Micro-F1 of node classification in the form of a line graph.
According to the statistics of the division ratio of weight parameters and
node attributes, the score corresponding to each variable is the average
result value according to the training ratio. At the same time, the
embedding dimension was adjusted and the experimental results were
recorded. Please see Figs. 8–10 for details. Since the overall change
trend of the experimental results is consistent across the three datasets,
the following will be analyzed from the ACM dataset.

(1) Weight parameter 𝜆: In this paper, different weight parameters
are set to test and observe the impact on the performance of
the model. The result obtained is Fig. 8(a). It is evident from
the image that in the process of increasing the weight param-
eter value, the classification results show growth and then a
downward trend. Therefore, it can be seen that too small and
too high parameter settings will affect the model’s performance.
This paper needs to choose appropriate parameters to achieve
the optimal effect.

(2) Divided ratio 𝛼: This paper tested for different 𝛼 values. Accord-
ing to Fig. 8(b), it is evident that when the 𝛼 value increases,
the model’s performance improves at first and then drops. For
RA-HGNN, discarding too many or too few node attributes will
produce unsatisfactory results, and the model needs a suitable 𝛼
value to optimize the model’s performance.
11
(3) Embedding dimension 𝑍: This paper also tested the embedding
dimension 𝑍. The results are shown in Fig. 8(c). The findings
show that when the embedding dimension grows, performance
improves at first, then drops. The reason may be that there will
be a significant deviation when the dimension is too low. When
the dimension is too high, the embedding will have too large a
variance. Therefore, choosing 64 embedding dimensions is the
best performance for the model.

5. Conclusion and future work

This paper proposes the RA-HGNN framework to solve the common
problem of embedding missing information and attributes missing in
heterogeneous graphs through a learnable approach. Initially, the nodes
in the heterogeneous graph are mapped into the same feature space
for node topology embedding. Then the residual attention mechanism
is used to add attributes to the non-attribute nodes by aggregating
the weight fractions of the nodes with attributes according to the
embedding results. Finally, through back-propagation optimization, an
end-to-end model is obtained. This paper can solve the over-smoothing
and vanishing gradient problems in models by combining the frame-
work with the HINs model. Experiments show that this framework
exhibits state-of-the-art performance. There is still some potential room
for improvement of this framework, for example, evolutionary algo-
rithms can be introduced to optimize the initial graph structure and
improve the accuracy of the arithmetic model, which is currently being
researched by our team in this direction and can be addressed in the
future. The team goal is to further reduce the complexity of RA-HGNN,
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and a more exciting challenge is to apply the framework to directed
graphs. In addition, there are different types of information in the real
world, and attempting to broaden this method to handle multiple types
of information like images.
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