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Abstract

Efficiently modeling historical information is a001
critical component in addressing user queries002
within a conversational question-answering003
(QA) context, as historical context plays a vi-004
tal role in clarifying the user’s questions. How-005
ever, irrelevant history induces noise in the rea-006
soning process, especially for those questions007
with a considerable historical context. In our008
novel model-agnostic approach, referred to009
as CoTaH (Consistency-Trained augmented010
History), we augment the historical informa-011
tion with synthetic questions and subsequently012
employ consistency training to train a model013
that utilizes both real and augmented historical014
data to implicitly make the reasoning robust to015
irrelevant history. To the best of our knowl-016
edge, this is the first instance of research us-017
ing data augmentation to model conversational018
QA settings. By citing a common modeling019
error prevalent in previous research, we intro-020
duce a new baseline model and compare our021
model’s performance against it, demonstrating022
an improvement in results, particularly when023
dealing with questions that include a substan-024
tial amount of historical context.025

1 Introduction026

Humans often seek data through an information-027

seeking process, in which users engage in multiple028

interactions with machines to acquire information029

about a particular concept. Prominent examples of030

this phenomenon include the introduction of Chat-031

GPT (OpenAI, 2023) and the adoption of indus-032

trial systems like Amazon Alexa. Conversational033

Question-Answering (CQA) systems address user034

questions within the context of information-seeking035

interactions. In CQA, unlike conventional question036

answering, questions are interconnected, relying037

on previous questions and their corresponding an-038

swers to be fully understood without ambiguities.039

Although many researchers have proposed solu-040

tions to model history in CQA, a common mod-041

eling mistake made in these studies is using the 042

gold answers of the history instead of the predicted 043

ones. Our work aligns with the framework of ad- 044

dressing irrelevant history, as introduced by Qiu 045

et al. (2021). However, unlike Qiu et al. (2021), our 046

method abstains from utilizing the gold answers 047

of history. Moreover, unlike Qiu et al. (2021), we 048

utilize only one transformer during prediction, re- 049

sulting in reduced time and memory. Initially, we 050

augment the history of questions in the training set 051

with synthetic questions. Our underlying idea is to 052

maintain the model’s consistency in its reasoning, 053

whether utilizing the original historical data or the 054

augmented version. Bert-HAE (Qu et al., 2019a) 055

and HAM (Qu et al., 2019b) have previously served 056

as baselines for several prior methods, but Sib- 057

lini et al. (2021) conducted a re-implementation 058

of these models using predicted history answers, 059

which resulted in a significant performance de- 060

crease. As a result, in this paper, we employ the 061

base transformer of our method as the baseline, as 062

its performance surpasses the re-implementation of 063

the mentioned methods. Our method results in a 064

1.8% upgrade in overall F1 score, with causing a 065

significant improvement in the scores of questions 066

with a large historical context. 067

2 Related Works 068

The task of CQA has been introduced to extend 069

question answering to a conversational setting. 070

CoQA (Reddy et al., 2019) and QuAC (Choi 071

et al., 2018) have been proposed as two extrac- 072

tive datasets in the CQA task. Bert-HAE (Qu et al., 073

2019a) employs a manually defined embedding 074

layer to annotate tokens from previous answers 075

within the document, and Qu et al. (2019b) extends 076

this approach introducing an ordering to these an- 077

notations. FlowQA (Huang et al., 2019) utilizes 078

multiple blocks of Flow and Context Integration to 079

facilitate the transfer of information between the 080
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context, the question, and the history. Qiu et al.081

(2021) introduces the idea of irrelevant history and082

its effect in degrading performance, proposing a083

policy network to select the relevant history before084

reasoning. However, Qu et al. (2019a,b); Huang085

et al. (2019); Qiu et al. (2021) employ the gold086

answers from history in their modeling. This ap-087

proach deviates from real-world scenarios, where088

systems should rely on their previous predictions089

to answer current questions (Siblini et al., 2021).090

Siblini et al. (2021) re-implements Bert-HAE and091

HAM using the model’s predictions, reporting a092

sharp decrease in performance. FlowQA experi-093

ences a performance drop from 64.4% to 59.0% on094

the development set when gold answers in history095

are not used (Huang et al., 2019).096

3 Problem Definition097

To model a CQA setting, at dialog turn k, a model098

receives a question (qk), a document containing099

the answer (D), and the history of the question100

(Hk), which is represented as a set of tuples, such101

as Hk = {(q0, apred0 ), · · · , (qk−1, a
pred
k−1 )}, where102

apredi is the model’s prediction for qi. It’s important103

to note that the model may utilize only some of this104

information. For instance, we only employ history105

questions while excluding history answers. The106

primary objective is to predict the answer apredk for107

qk.108

apredk = argmax
ak

P (ak|qk, Hk, D) (1)109

4 Methodology110

We seek to make the reasoning robust to irrelevant111

history implicitly by augmenting the dataset. To112

this end, for question qk, we augment its history by113

injecting some synthetic questions. Let H?
k be the114

augmented history. The intuition is that irrespective115

of whether the reasoning is performed with Hk or116

with H?
k , the result should be the same. In other117

words:118

P (ak|qk, Hk, D) = P (ak|qk, H?
k , D) (2)119

To achieve this goal, we establish a two-stage120

pipeline. Our pipeline consists of a history aug-121

mentation module, whose goal is to augment the122

history and a question-answering module, whose123

objective is to consistently train a QA network so124

that the reasoning is consistent. The overall archi-125

tecture of our model is depicted in Figure 1.126

4.1 History Augmentation Module 127

This module includes a conversational question 128

generator, denoted as CQGθ, where θ represents 129

the parameter set of the generator, and a question 130

selector, denoted as QS, which is responsible for 131

choosing a set of S synthetic questions generated 132

to augment the history. 133

Training The first step involves training CQGθ. 134

While there has been research aimed at generat- 135

ing conversational questions (Gu et al., 2021; Pan 136

et al., 2019), for the sake of simplifying the imple- 137

mentation, we employ a straightforward generative 138

transformer for this task. To train this network, we 139

input D, Hk, and ak into the network, intending 140

to generate qk. We train this network using cross- 141

entropy loss in an auto-regressive manner. In 9.2, 142

question generation result is described. 143

Question Generation After training CQGθ, we 144

aim to generate synthetic conversational questions 145

for the training set. Suppose that we want to gen- 146

erate synthetic conversational questions between 147

qk and qk+1. Suppose that ak is located in the i-th 148

sentence of the document. We extract noun phrases 149

from sentences i − 1, i, and i + 1 as potential 150

answers. We make this choice as we want these 151

answers to be similar to the flow of conversation 152

and if these answers are extracted from local re- 153

gions, the likelihood increases. Let one of these 154

answers be called asynk . We feed D, Hk, asynk to 155

CQGθ to obtain qsynk . We iterate this process for 156

all 0 ≤ j ≤ k, and generate synthetic questions. 157

We refer to all generated synthetic questions and 158

real questions of the history as pool of questions 159

(Pk) for qk. 160

Question Filtering & Injection We could set 161

Pk as H?
k , however, Pk contains a multitude of 162

synthetic questions which induces too much noise. 163

Additionally, in the consistency training setting, 164

the noise (perturbation) should be small. Thus, 165

we only select S of synthetic questions from Pk, 166

where S is a hyperparameter. Not all synthetic 167

questions are helpful, necessitating the need to fil- 168

ter out degenerate ones. We want our selected 169

synthetic questions to be similar to the trend of the 170

conversation. To this end, we compute a score for 171

each synthetic question and only keep the top M 172

synthetic questions with the highest score. To com- 173

pute the score, each question (real or synthetic) is 174

encoded with LaBSE (Feng et al., 2022). For each 175

synthetic question qsyn which is located between 176
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Figure 1: Architecture of the Model: For a given question qk, the conversational question generator CQGθ
constructs a pool of questions denoted as Pk. questions in Hk are shown in blue, and synthetic questions are
depicted in green and red. The synthetic questions, which are similar to Hk questions, are marked in red, while
dissimilar ones are in green. The question selector QS discards red synthetic questions, selects M ones with the
highest scores, and chooses S = 3 synthetic questions from the green questions according to uniform distribution,
along withHk questions, to createH?

k . The QA networkQAθ′ computes its output using bothHk andH?
k as input.

The QA network is trained by minimizing LCE and LCons.

history turns qi and qi+1, the score is computed177

as Sim(h(qi), h(q
syn)) + Sim(h(qi+1), h(q

syn)),178

where Sim is the cosine similarity function and179

h(x) is the LaBSE’s encoding of the sentence x.180

Additionally, Sometimes, we generate questions181

that are too similar to previous or future questions,182

which are invaluable. Thus, we compare the sim-183

ilarity of generated question qsyn with questions184

in {qk}
⋃
Hk and if the similarity is above γ, qsyn185

is discarded. This situation is depicted in Figure186

1, where Pk contains real history questions, de-187

picted in blue, and synthetic questions, depicted in188

red and green. Those synthetic questions that have189

high similarity with {qk}
⋃
Hk, are depicted in red.190

As it can be seen two questions “Did she have any191

children” and “How many children did they have”192

have high similarity with the question “Did they193

have children”, and thus, they’re discarded. The194

effectiveness of question filtering is approved in195

Section 9.4. In addition, we need to set a distribu-196

tion to guide the selection of S number of generated197

questions, for which we adopt a uniform distribu-198

tion. More details on the distribution selection are199

available in Section 9.5.200

4.2 Question Answering Module201

For each question qk, as illustrated in Figure 1, we202

feed qk, Hk, and D to the QA network (QAθ′) to203

compute the answer distribution. In parallel, we204

feed qk, H?
k , and D to the QA network to com- 205

pute another answer distribution. As mentioned 206

in Section 4, we need to impose the condition out- 207

lined in Equation 2. To achieve this, we employ 208

KL-Divergence between the answer distributions. 209

Additionally, we use cross-entropy loss to train the 210

QA network for answer prediction. The losses are 211

calculated as per Equation 3, where LCE , LCons, 212

and LT represent the cross-entropy loss, consis- 213

tency loss, and total loss. λ is a hyperparameter 214

used to determine the ratio of the two losses. 215

LCE = CE(QAθ′(qk, Hk, D), agoldk ) 216

LCons = DKL(QAθ′(qk, Hk, D), (3) 217

QAθ′(qk, H
?
k , D)) 218

LT = LCE + λLCons 219

Furthermore, we acknowledge that augmenting 220

the history for all questions may not be optimal, 221

as initial questions in a dialog, due to their little 222

historical context, may not require augmentation 223

for robust reasoning. In this case augmenting their 224

history might add unnecessary noise, potentially de- 225

grading performance. Thus, we introduce a thresh- 226

old named τ and only augment the history of qk if 227

k ≥ τ . According to Miyato et al. (2019), we only 228

pass the gradients through one network. As shown 229

in the Figure 1, the symbol × is used to denote 230

gradient cut. It should be noted that our method is 231
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Table 1: Comparison of our methods with other benchmarks on the test set

Model Name F1 HEQ-Q HEQ-D Unrealistic Settings

Bert-HAE-Real (Siblini et al., 2021) 53.5 - -
HAM-Real (Siblini et al., 2021) 54.2 - -

Bert (Our Model) 58.9 52.9 5.3
CoTaH-Bert (Our Model) 60.7 55.3 5.9

Bert-HAE (Qu et al., 2019a) 62.4 57.8 5.1 X
HAM (Qu et al., 2019b) 64.4 60.2 6.1 X

Reinforced Backtracking (Qiu et al., 2021) 66.1 62.2 7.3 X

model-agnostic, and any architecture could be used232

as the QA network.233

5 Setup234

We utilize the QuAC dataset (Choi et al., 2018),235

to conduct our experiments on, and data splitting236

is described in 9.1. We utilize Bert (Devlin et al.,237

2019) as our base model to conduct experiments238

following the previous research. For question gen-239

eration, we adopt Bart-Large (Lewis et al., 2020).240

Following Choi et al. (2018), we use F1, HEQ-Q,241

and HEQ-D as our evaluation metrics. F1 measures242

the overlap between agoldk and apredk . HEQ-Q and243

HEQ-D are the ratio of questions and dialogs, for244

which the model performs better than human (Choi245

et al., 2018). In Section 9.3, the process of choos-246

ing all other hyperparameters and their analysis is247

described. For all of our models, we concatenate248

the question with history questions, feeding them249

to the network. More details on reproducibility are250

presented in Section 9.7.251

6 Results252

In Table 1, we have depicted our results on the253

test set division in comparison to previous rele-254

vant models. It should be noted that our test set is255

different from previous methods, but it has been256

drawn from the same distribution. As stated before,257

Bert-HAE and HAM leverage the gold answers258

of history. Their re-implementations by Siblini259

et al. (2021) are shown in the Table as Bert-HAE-260

Real and HAM-Real, which indicate a significant261

drop in performance. In this scenario where com-262

mon baselines experience a substantial decrease,263

we examine a basic Bert model with history con-264

catenation as the baseline, as its performance is265

superior. Our model outperforms this baseline by266

1.8% in the F1 score. According to Figure 2, this267

improvement is mostly due to an improvement in268

the performance of questions with a large amount 269

of history. This confirms that our intuition is valid 270

that our method enhances the base model’s ability 271

to answer questions with a large historical context. 272

Moreover, while Bert-HAE outperforms CoTaH- 273

Bert in terms of F1 score, CoTaH-Bert exhibits 274

superior performance in HEQ-D. This highlights 275

the better consistency of our model to maintain its 276

performance throughout the entire dialog, which is 277

achieved through superiority in answering the ques- 278

tions in the latter turns. Additionally, we include 279

the results of the history backtracking model (Qiu 280

et al., 2021) in the table. Since this model’s code is 281

not publicly available, we have been unable to re- 282

implement it with the correct settings and perform 283

a meaningful comparison. However, it’s worth not- 284

ing that this model utilizes unrealistic settings in 285

two stages: once for history selection and once for 286

question answering, potentially exacerbating the 287

modeling issues even further. We have used “Unre- 288

alistic Settings” as a term to indicate that a model 289

uses gold answers of history in its modeling. 290

7 Conclusions 291

In this paper, we introduced a novel model-agnostic 292

method to make the reasoning of conversational 293

question-answering models robust to irrelevant his- 294

tory. We coped with this issue by augmenting the 295

history and training the model with consistency 296

training. In our experiments, we didn’t follow the 297

wrong modeling of past research in using the gold 298

answers of history. We examined our method with 299

Bert which exhibited a 1.8% performance boost 300

compared to the baseline model. It was demon- 301

strated that this improvement is primarily attributed 302

to the enhancement of the model’s performance 303

on questions with a substantial historical context, 304

suggesting that our method has been successful in 305

making the reasoning robust for these questions. 306
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8 Limitations307

Our model requires a phase of question generation.308

For synthetic question generation, the history aug-309

mentation module could be slow and the speed is310

directly correlated to the number of questions that311

one opts to generate. However, question generation312

is trained only once and all questions are generated313

in a single run, and all of other experiments are314

conducted by only training the QA module. More-315

over, although our model doesn’t need any further316

computation during evaluation than merely running317

the QA network, we need two forward passes dur-318

ing the training phase, which makes the training of319

the QA network a bit more time-consuming than320

training the baseline model.321
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9 Appendix438

9.1 Data Splitting439

Since the test set of QuAC is not publicly available,440

we divide the development (dev) set into dev/test441

sets randomly, such that the number of questions in442

dev and test sets is almost equal. The total number443

of dev and test questions is 3678 and 3676 respec-444

tively after splitting. In our splitting, each dialog,445

with all of its questions, is either attributed to the446

dev set or the test set, in order to prevent test data447

leakage. Further, according to Choi et al. (2018),448

original dev set of QuAC contains unique docu-449

ments, meaning that a single document will not be450

shared among the final dev and test sets, potentially451

preventing test data leakage.452

9.2 Question Generation Results453

The results of question generation are evaluated454

in Table 2. These scores are obtained from the455

dev data. Bleu-1,4 (Papineni et al., 2002), Rouge456

(Lin, 2004), and Bert-Score (Zhang et al., 2020)457

are used for criteria. We use the evaluate library1 to458

implement these metrics. Gu et al. (2021) reports459

better results for the question generation, yet we460

didn’t aim to optimize Bart-Large meticulously as461

the generated questions have a good quality for462

our task. The point is that in this research, we463

only utilize questions alone without considering464

answers. Thus, if the generated questions have less465

1https://github.com/huggingface/evaluate

correlations with answers, it’s tolerable as they are 466

still relevant questions considering the overall flow 467

of conversation. it should be noted that if a future 468

research wants to incorporate predicted answers in 469

its modeling, it should be more cautious about the 470

quality of the question generation to ensure that the 471

right synthetic questions are generated concerning 472

their answers. 473

Table 2: Question generation results on the dev set

Bleu-1 Bleu-4 Rouge-L Bert-Score

33.6 9.5 29.0 90.5

9.3 Hyperparameter Selection & Sensitivity 474

Analysis 475

Initially, we determine M and γ by assessing some 476

examples of the dev data, setting M = 10 and 477

γ = 0.8 based on our appraisal. Next, we deter- 478

mine the values of S, λ, and τ by conducting exper- 479

iments on the dev set. In Table 3, we evaluate the 480

effects of the model’s two main hyperparameters, 481

S and λ, through a grid search with the follow- 482

ing values: S ∈ {1, 2, 3} and λ ∈ {1.0, 1.5, 2.0}. 483

Firstly, it is evident that the model performs better 484

when S ∈ 1, 2 compared to when S = 3 over- 485

all. This suggests that S = 3 introduces too much 486

noise, which could be detrimental for performance. 487

Furthermore, when λ ∈ 1.5, 2.0, the performance 488

is better compared to λ = 1.0, indicating that the 489

introduction of λ is helpful, as simply adding LCE 490

and LKL (or equally setting λ = 1.0) produces in- 491

ferior performance. For the remaining experiments, 492

we set S = 2 and λ = 2.0 as these settings yield 493

the best F1 and HEQ-Q scores. 494

Table 3: The effect of S and λ on the dev set

F1 HEQ-Q HEQ-D

λ = 1.0 58.6 53.5 4.8
S = 1 λ = 1.5 59.1 54.8 5.5

λ = 2.0 59.0 54.2 4.4

λ = 1.0 57.9 52.7 4.0
S = 2 λ = 1.5 58.2 53.5 4.2

λ = 2.0 59.4 54.8 5.1

λ = 1.0 58.3 53.5 5.1
S = 3 λ = 1.5 58.6 53.5 5.0

λ = 2.0 58.8 54.1 4.2
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After setting the right amount for S and λ, we495

opt to examine whether the introduction of τ is496

effective. Thus, we conduct experiments on three497

different amount of this hyperparameter. In Table498

4, it’s evident that the right amount of τ has a con-499

siderable effect on the performance, confirming our500

intuition about the functionality of τ . For all tested501

values of τ within the set {5, 6, 7}, performance502

has increased compared to the base settings with503

τ = 0 (or equivalently, using no threshold). No-504

tably, the maximum performance improvement is505

observed when τ = 6.506

Table 4: The effect of τ on the dev set

F1 HEQ-Q HEQ-D

τ = 0 59.4 54.8 5.1
τ = 5 59.6 55.2 5.5
τ = 6 59.9 55.2 5.5
τ = 7 59.5 54.9 5.1

9.4 Question Filtering Effect507

After determining the optimal τ , the effectiveness508

of the question-filtering, as discussed earlier, is ex-509

amined. The results in Table 5 demonstrate that this510

filtering leads to a considerable additional perfor-511

mance boost by filtering out degenerate questions.512

Table 5: The effect of question filtering on the dev set

Filtering Type F1 HEQ-Q HEQ-D

No Filtering 59.9 55.2 5.5
Similarity Filtering 60.9 56.3 5.3

9.5 Synthetic Question Selection Distribution513

Although we select synthetic questions using a uni-514

form distribution, we have conducted experiments515

using two distributions: uniform and linear. In516

the uniform setting, the generated questions are se-517

lected with the same probability. For the linear, if518

qsyn is located between qj and qj+1, its probability519

of being selected (P (qsyn)) is P (qsyn) ∝ k − j.520

We opt for the linear distribution, as we believe that521

closer synthetic questions to the original question522

might contribute to greater robustness, as questions523

that are further away are likely less relevant. The524

results are shown in Table 6. We observe a rela-525

tively 1% drop in both F1 and HEQ-Q scores with526

the linear distribution, concluding that our hypoth-527

esis has not been true. Given the superiority of the528

uniform distribution, we choose to continue with 529

it. 530

Table 6: The effect of question selection distribution on
the dev set

Q-Selection Dist. F1 HEQ-Q HEQ-D

Uniform 60.9 56.3 5.3
Linear 59.9 55.2 5.9

9.6 Additional Results 531

In Figure 2, a comparison between the F1 scores of 532

questions for each turn in Bert and CoTaH-Bert on 533

the test set is presented. The score for the k-th turn 534

represents the average F1 score for all questions 535

in the k-th turn across all dialogs in the test set. 536

Questions with a considerable amount of histori- 537

cal context are answered more effectively with our 538

method. For 0 ≤ k ≤ 1, the performances of both 539

Bert and CoTaH-Bert are nearly equal, which is 540

sensible as these questions contain little historical 541

context, and thus, they have little irrelevant history. 542

However, for most of k > 1 dialog turns, CoTaH- 543

Bert outperforms Bert or it has on par performance 544

with Bert. The performance upgrade is especially 545

evident towards the end of dialogs, where questions 546

contain significant historical context. This find- 547

ing indicates the superiority of CoTaH-Bert over 548

Bert in establishing greater robustness in answer- 549

ing these questions, by identifying and ignoring the 550

irrelevant history turns. 551

Figure 2: The F1 score of the test set dialog turns

9.7 Reproducibility 552

The seed for all experiments, except the training 553

of CQGθ, is 1000. All of the experiments to train 554
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Figure 3: A comparison between Bert and CoTaH-Bert extracted answers to a question, showing that CoTaH-Bert
has been able to successfully ignore the irrelevant history by extracting the correct answer. However, the Bert
model has been confused and returned a wrong answer.

the QAθ′ are conducted on a single RTX 3070555

Ti with 8GB memory, on which each experiment556

takes approximately 6 hours. CQGθ is trained on557

a single Tesla T4 from Google Colab. For each558

model, Bert or CoTaH-Bert, the hyperparameters559

are optimized on the dev set, and a final model560

will be trained on the train set with the optimized561

hyperparameters. Subsequently, a single result on562

the test set will be reported as depicted in Table 1.563

9.8 Case Study564

In Figure 3, a document sample with its correspond-565

ing dialog in the dev set is depicted. In the figure,566

ninth turn question, q9, with its history, H9, are567

shown. The answers of Bert and CoTaH-Bert to q9 568

are compared, showing that CoTaH-Bert has been 569

successful to answer this question with a full F1 570

score, while Bert has been unsuccessful. q9 asks 571

about the release date of the album stated in q2. 572

This is a suitable sample for our context, as there 573

are significant irrelevant history turns between q9 574

and q2. We observe that CoTaH-Bert has been 575

successful in identifying the relevant history by an- 576

swering the question correctly. However, the Bert 577

model has mistakenly reported another date which 578

is wrong. As Bert has returned a span containing 579

the word “mixing”, it’s possible that Bert has incor- 580

rectly identified the previous turn question, q8, as 581
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relevant, and has returned a span by text matching582

encompassing the word “mixing”, and containing583

merely some random dates.584
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