Proceedings of the 7th Symposium on Advances in Approximate Bayesian Inference, 2025 1-26

Divide, Conquer, Combine Bayesian Decision Tree Sampling

Jodie A. Cochrane JODIE.COCHRANEQNEWCASTLE.EDU.AU
Adrian Wills ADRIAN.WILLSQNEWCASTLE.EDU.AU
Sarah J. Johnson SARAH.JOHNSONQNEWCASTLE.EDU.AU

University of Newcastle

Abstract

Decision trees are commonly used predictive models due to their flexibility and inter-
pretability. This paper is directed at quantifying the uncertainty of decision tree predictions
by employing a Bayesian inference approach. This is challenging because these approaches
need to explore both the tree structure space and the space of decision parameters asso-
ciated with each tree structure. Importantly, the structure and the decision parameters
are tightly coupled; small changes in the tree structure can demand vastly different de-
cision parameters to provide accurate predictions. A challenge for existing sample-based
approaches is proposing joint changes in both the tree structure and the decision param-
eters that result in efficient sampling. This paper takes a different approach, where each
distinct tree structure is associated with a unique set of decision parameters. The proposed
approach, entitled DCC-Tree, is inspired by the work in Zhou et al. (2020) for probabilistic
programs and Cochrane et al. (2023) for Hamiltonian Monte Carlo (HMC) based sampling
for decision trees. Results show that DCC-Tree performs comparably to other HMC-based
methods and better than existing Bayesian tree methods while improving on consistency
and reducing the per-proposal complexity.

1. Introduction

The decision tree model is used extensively in various industries as it provides both flexibility
to describe data relations and model interpretability. Decision trees define a set of hierar-
chical splits that partition the input space into a union of disjoint subspaces. Datapoints
associated with each subspace are assumed to originate from the same distribution, defining
the model predictions. Standard decision tree methods are CART (Breiman et al., 1984),
ID3 (Quinlan, 1986), and C4.5 (Quinlan, 1993), which provide point-estimate predictions.
It is important for any decision-making process to consider the uncertainty associated
with a point-estimate prediction. As such, there has recently been growing emphasis on
estimating the prediction uncertainty for machine learning models (Ghahramani, 2015).
Under the Bayesian paradigm, probability distributions are used to define anything about
the model that is not known for certain, including the model parameters themselves. The
uncertainty in the model parameters induces uncertainty in the resulting predictions, which
can be used to estimate confidence intervals via evaluation of an expectation integral.
However, a current challenge in applying Bayesian inference to decision trees is that a
change in the tree structure fundamentally changes the meaning of the parameter vector.
This issue manifests in the coupling between the tree topology and the associated decision
parameters. Evaluating the expectation integral therefore requires consideration of both
the nonlinearity of the model and the association between the parameter vector and the

© J.A. Cochrane, A. Wills & S.J. Johnson.

COCHRANE WILLS JOHNSON

tree topology. A common approach is to approximate the integral based on useful samples
from the parameter distribution using a method known as Monte Carlo integration. The
problem then shifts to how to generate these useful samples for the decision tree model.

To date, the literature has focused on Markov chain Monte Carlo (MCMC) approaches
to address this problem and attempt to explore the posterior distribution of the decision
tree parameters. Random-walk MCMC was first proposed by Chipman et al. (1998) and
Denison et al. (1998) where a set of local, tree-inspired proposals are used to move around the
space. Over time, improvements have been made to that original set of proposal methods,
but have remained based on random-walk methods (Wu et al., 2007; Gramacy and Lee,
2008; Pratola et al., 2016). Separately, there have been attempts to use Sequential Monte
Carlo (SMC) sampling methods to explore the posterior distribution (Taddy et al., 2011;
Lakshminarayanan et al., 2013). However, these transitions are similar to the localised,
random-walk proposals of MCMC-based methods, although Lakshminarayanan et al. (2013)
does provide a locally optimal proposal option to try and improve on the random-walk issues.

The recent work of Cochrane et al. (2023) has shown the efficacy of using Hamiltonian
Monte Carlo (HMC) within the MCMC framework to explore the decision tree space, where
the decision tree structure has been softened to enable full use of the HMC benefits while
remaining interpretable. HMC is a more efficient sampling method that uses gradient infor-
mation from the likelihood to generate subsequent samples (Neal et al., 2011; Betancourt,
2017). Although the benefits of using HMC are clear, the authors note that one main im-
pediment to their method is the number of intermediate HMC samples required at every
iteration, drastically increasing computational overhead for each proposal.

In this paper, we investigate a different perspective by which to explore the posterior
distribution of decision trees. Inspired by the work of Zhou et al. (2020), which proposes the
Divide, Conquer, Combine (DCC) inference framework in the context of probabilistic single-
line programs, the parameter space of the decision tree is described by an all-encompassing
parameter vector with constant dimension. This is in contrast to previous Bayesian deci-
sion tree algorithms, where the dimension of the parameter vector varied throughout the
sampling routine. Parameters corresponding to all possible tree topologies are included in
the parameter vector, with a subset of this vector considered at each iteration, such that
each distinct tree structure is associated with a unique set of decision parameters. This
concept forms the basis of the novel DCC-Tree sampling method presented in this paper.

2. Preliminaries

We consider the situation in which the model is assumed to be a decision tree and we wish
to determine the uncertainty on the decision tree parameters. Although relatively easy to
use to make point-wise predictions, defining uncertainty for the predictions from a decision
tree model is a more difficult task. This section will first define the decision tree model and
then an alternative parameterisation required for the implemented sampling method.

2.1. Decision Trees

A standard binary decision tree is parameterised as

T=(T,k,T1,0), (1)

DiviDE, CONQUER, COMBINE BAYESIAN DECISION TREE SAMPLING

where: T denotes the tree topology, which encompasses information about the set of internal
nodes n; € Z,7 = 1,...,n, the set of leaf nodes n,, € L,k = 1,...,ny, and the set of
interconnections; kK = [K1, kK2, ..., ks] denotes the splitting indices of each internal node
nj € I; T = [T1,T2,. .., Ty) represent the splitting thresholds for each internal node n; € Z;
0 = [01,0,,...,0,,] represents the leaf node parameters for n,, € £. We refer to the dataset
as D = {(x;,yi)}, which is comprised of N sets of inputs x; € X and outputs y; € V.
The input and output dimensionalities are denoted n, and n, respectively. In this paper,
we will consider both regression and classification problems where)V = R or Z, and the
input space is real-valued X = R"=,

The traditional approach to constructing a decision tree is via a greedy one-step-ahead
heuristic. Predictions for a given input are made by traversing the tree, starting at the
root node and recursively moving to one of the children nodes corresponding to the value
of the relevant splitting indices for the given input. The traversal stops once a leaf node
has been reached. The output is then related to the datapoints that are in that leaf node.
In a standard decision tree, this corresponds to a point-estimate output prediction.

2.2. Trees as Disjoint Subspaces

The premise behind the DCC-Tree algorithm is to consider the sample space as a union of
disjoint subspaces of varying dimensions. The method exploits this underlying structure to
the problem in an attempt to explore the posterior distribution of decision tree parameters.

In this paper, we will use the variable m to refer to a distinct tree topology that defines
a specific subspace, i.e. m = 7T,,, with the remaining local parameters collected into the
vector ©,,. This implies that the tree topology parameter is discrete (and can be considered
categorical, i.e. no natural numerical /ordering). For the DCC-Tree method, the parameter
vector is all-encompassing, that is,

0=1[01 6, ... Oul. 2)

Here, ©,,, denotes the set of model parameters corresponding to the specific model structure
m which is indexed by the discrete random variable M with support {1,..., M}. Note that
this definition is in contrast to the parameter vector with varying dimensions commonly
assumed in other Bayesian decision tree methods. The target distribution is the posterior
on both the model parameters © and the discrete random variable M.

If the discrete random variable takes on the value m, then the posterior distribution is
proportional to the local parameter distribution (see Appendix A),

p(©,m | D) o< p(On, | m, D). 3)

As a result, each tree topology can be considered separately with respect to the local
inference method, and later combined appropriately to give an estimate of the overall space.

2.3. Soft Decision Tree Model Definition

One of the major difficulties in applying HMC to the decision tree model is the hard split
parameterisation. To take full advantage of the HMC sampling method, we adopt the soft
decision function and input selection (HMC-DFI) parameterisation used in Cochrane et al.

COCHRANE WILLS JOHNSON

(2023), where both the hard split function and splitting indices (k) are softened. This
section will summarise this information for the notation used in this paper.

Under the HMC-DFT specification, the splitting index x; is instead parameterised as a
unit simplex and denoted A, for internal node n;, where A, = [wnj,lvw%% e ,wnj7nz] ,
with wy, ; > 0 and Z?il wy; i = 1. Therefore, if the discrete random variable takes on the
value m, the corresponding local parameter vector is O, = (A, T, Om).

Further, the hard split function is softened such that each datapoint is no longer associ-
ated with a single leaf node, but instead now has an associated probability of being assigned
to each leave node. For a specific tree subspace which we denote m, the probability that a
datapoint (x;,y;) goes to the left at internal node 7; is defined as,

zAm i — Tm,n;
zb(xz-|em,nj)=f<x - i "> (4)

where A, ;. and 7y, 5, denote the splitting index and splitting threshold respectively of the
internal node 7;. Note that f is any function that provides a soft approximation for binary
splits (here the logistic function f(z) = (14 exp(—x)) '), and h is the corresponding split
sharpness parameter (Cochrane et al., 2023). The probability that a datapoint is assigned
to a specific leaf node can then be computed as the total probability along the path required
to reach the leaf node. If we denote the probability of a datapoint (x;,y;) being assigned
to leaf node 7y, in decision tree m as ¢; , i, the probability can be expressed as follows,

(bi,m,k(xi ‘ 9m,77€k) = H TZJ(XZ ’ Gm,W)R"(l - 1/J(xz ‘ van))liRm (5)
nEA(ng,)

where A(7n) and R,, denote the set of ancestor nodes and direction vector for node 7.

PRIOR SPECIFICATION

The prior on the joint mixed discrete-continuous distribution can be split into a prior on
the discrete variable M and a prior on the continuous parameters ©,, for each subspace.
The prior on the discrete variable is taken to align with the standard tree structure prior
as originally defined in Chipman et al. (1998). This relates the probability of each tree
subspace m to the corresponding tree structure 7,,. Let Z,, and L,, denote the set of
internal and leaf nodes corresponding to the specific tree subspace m. The probability that
the discrete random variable takes on the value m is then defined as,

p(m) o H pspm(nj) X H (1 = pspurr(ne,)), (6)

M5 €Lm ey, €Lm

where pgprir(n) denotes the probability that a node n will split. Again, the definition used
in Chipman et al. (1998) is adopted here, where pgprir = (1 —i—dn)*ﬁ, with hyperparameters
a € (0,1) and § > 0 and where d,, represents the depth of the node in the tree.

The priors on the local parameters for each tree subspace are defined independently
based on the specific decision tree model under consideration. If the discrete random variable
takes on the value m, then the prior can be expressed as

P(Om) = pa(Am [m)pr(Tm | m)py(0m |). (7)

DiviDE, CONQUER, COMBINE BAYESIAN DECISION TREE SAMPLING

The discrete variable m refers to a specific tree topology T,, which dictates the dimension
of the remaining parameters (i.e. A, /7T /60m) through the number of internal nodes n and
leaf nodes ny. The priors on these continuous variables are defined to be,

Am,j ~ Dir(a), Tm,j ™~ B(la 1)7 Hm k.~ N(Ozu, ﬁu)v Om ~ Pil(am /60)7

forn; € Z,,, j=1,...,nandn, € Ly, k=1,...,n, Here, Dir denotes the Dirichlet
distribution, B the beta distribution, N the normal distribution and I'"! the inverse-gamma
distribution. For regression problems, fi,, . denotes the mean value of the assumed normal
distribution within each leaf node 7y, € £,, and o, is the assumed constant variance across
all leaf nodes for tree subspace m.

LIKELIHOOD DEFINITIONS

The likelihood for soft classification trees is taken to be the Dirichlet-Multinomial joint
compound as defined as,

S SRR s S
E(Y|:s<,em,m)_k]'[1 F(<I>k+A)C:Hl o) (8)

where C refers to the number of output classes, ny is the number of leaf nodes in the tree
structure m and ® = > ., for each leaf 1)y, . The variable ¢ j represents the probability
of each datapoint (x;,¥;), for which the output class is y; = ¢, being assigned to leaf node
e, in tree T and is expressed as ¢, = Zf\il Gimk(Xi | T,me,)I(yi = ¢) where @, 1 is as
previously defined in Equation 5.

Following Linero and Yang (2018), the likelihood for regression trees is defined to be,

N

[y 2
((Y | X, 0p,m) =[] (270%) 2 x exp —% (Z Gim ke (X3) - (Hm e — Z/i)) (9)
k=1

=1

where again ¢; ,, . is as defined in Equation 5.

3. DCC-Tree Sampling Algorithm

The DCC-Tree algorithm is based on the idea that the overall parameter space, which
is defined by a joint discrete-continuous distribution, can be broken up into subspaces
depending on the value of the discrete variable. The method progresses by considering
a subset of all parameter values at each iteration. See Appendix A for details on the
correctness of the overall strategy.

3.1. Overall Algorithm

The overall DCC-Tree sampling algorithm is shown in Algorithm 1. The method starts by
generating an initial set of tree topologies 7, from the prior distribution, keeping track of
those proposed and the corresponding number of times proposed C,,. Any tree topologies
that have been selected more than a user-specified threshold Cy are then stored in the set
of currently active trees. The sampling method is run to initialise any new active tree for

COCHRANE WILLS JOHNSON

each of the N, independent parallel chains using Ny r burn-in samples. This initialises the
sampling method by adapting hyperparameters, such as the mass matrix and step size, and
also provides a good starting point for subsequent local inference. The active tree with the
highest utility value is then selected for local inference, in which an additional Ny samples
are generated for each of the N, parallel chains. Using the total number of local inference
samples N7 (including the new Ny samples) the marginal likelihood of the current tree can
be computed.

After local inference is complete, a global updating step is performed in which a new
tree topology is proposed based on the current topology. If tree topology is already in
the set of discovered trees, then the number of times the tree has been proposed C,, is
incremented, otherwise, it is added to the set. The algorithm continues to run for 7" global
iterations after which a set of samples that approximates the local posterior distribution
and an estimate of the log marginal likelihood for each explored subspace is returned. The
remainder of this section will provide specific details for the exploration of tree structures,
marginal likelihood calculation and local density estimation components of the algorithm.

Algorithm 1: DCC-Tree Sampling Algorithm

Input: No. iterations 7', no. initial trees Ty, no. parallel chains N,, no. local samples
per iteration Ny, times proposed threshold Cp, no. burn-in samples Niyyr.
Init: Set of discovered trees D = (), set of currently active trees A = ().
Generate Tp trees from the prior and store D = {T,,}.
for t=0to T do
if any T,, € D selected more than Cy times then
‘ Add T,, to set of active trees A.

if any new T,, € A then
Run Ny burn-in samples for each of the N, parallel chains via standard
adaption phase procedure (increasing Nj,;; as necessary).
1. Calculate utility U, for each T,, € A via Equation 10 — select T,,, with
highest Uy, to perform local inference.
2. Generate N samples for each N, parallel chain for the selected tree T,,.

3. Calculate marginal likelihood estimate Zm of tree T, via Equation 11.
4. Apply global update to selected T,, to propose T*.
if T* € D then
‘ Increase by one the number of times selected C,+ for T*.
else
| Add T* to D.
end

end
for m =0 to M = len(A) do

‘ Compute estimate of p,,(0,,) via Equation 14.
end

Output: Generated samples and marginal-likelihood estimates {f, (O), Zm }M_,.

DiviDE, CONQUER, COMBINE BAYESIAN DECISION TREE SAMPLING

3.2. Exploring Tree Structures

A challenging aspect of applying Bayesian inference to decision trees is adequately explor-
ing the different tree structures. It is desirable to spend most of the computational effort
considering trees with high posterior probability in order to better approximate the overall
density. The standard grow/prune/stay random walk method is used to propose new tree
topologies to be considered, such that there is a non-zero probability of exploring any topol-
ogy. When a tree topology is first considered, the No-U-Turn-Sampler (NUTS) algorithm
(Hoffman and Gelman, 2014) is run to initialise the sampling method for that topology. Af-
ter the burn-in phase, a set of samples is collected, again via NUTS, and used to compute
the marginal likelihood estimate Zm. This in turn is used in the calculation used to select
the next tree for local inference.

The chosen function by which to select the next tree originates from Rainforth et al.
(2018) and is defined for tree subspace m as,

U. — i (1—0)7m + 0pm + Blog>_,, Sm
me max,,{7m} max, {pm} VS,

where S, is the number of times local inference has been performed on tree subspace m; 7,
denotes the exploitation term; p,, is the exploration term; Calculations of these terms are
described further in Appendix B.2. There are also two user-specified parameters: 0 < § < 1
is a hyperparameter controlling the trade-off between exploration and exploitation; 5 > 0
is the standard optimism boost hyper-parameter (Zhou et al., 2020).

(10)

3.3. Marginal Likelihood Calculation

In the DCC-Tree algorithm, samples generated within each individual tree subspace provide
an estimate of the local distribution. However, each subspace may not be equally important
to the overall parameter space and must be assigned an associated weight. This weighting
is related to the marginal likelihood of the local distribution. The method by which the
marginal likelihood is estimated using MCMC-based samples is discussed here.

LAYERED ADAPTIVE IMPORTANCE SAMPLING
The marginal likelihood for each tree topology is estimated via the IS-after-MCMC method,
layered adaptive importance sampling (see Section 5.4 of Llorente et al. (2023) for further
details). Intuitively, this method attempts to create pseudo-samples to be used as impor-
tance samples from which the marginal likelihood can be approximated.

Consider a specific tree subspace m. Let the set of samples generated via HMC for this

subspace be denoted V,(,i’j) = {A,(f;jj), Tr(rf’j), 0,9;7j)} fori =1,..., Np total number samples for
each 7 =1,..., N, parallel chains. The estimate uses each sample VT(,ZLJ) to define a proposal
distribution ¢; jm(§ | 1/7(73[]), ¥;) from which k& = 1,..., Ny pseudo-importance samples

P 7:’ . .
€(3k) are drawn. Here, V,(n]) acts as the mean value and >; as a covariance matrix. These

pseudo-importance samples are used to produce an estimate of the marginal likelihood via

1 Nt Ne. Ny :)
A — Bk 11
" NN 2 2 2 "

COCHRANE WILLS JOHNSON

~(i,4,k) _ pm(EB9R))
where w0y, = G (T

parameters for tree subspace m, evaluated at each pseudo-importance sample £@95) . The
term @m(f(’J’k)) is also computed using these pseudo-importance samples (see Appendix
B.1 for details), and is taken here to be the spatial definition,

Here, fy,(£(7F)) is the unnormalised posterior distribution on

D,,, (£GIR)) j{jqnﬂ,n (G3k) | 1 nd) 314y, (12)

where the proposal distributions g will be dlscussed next.

PrROPOSAL DISTRIBUTIONS

The proposal density is defined jointly for all parameters within a given tree topology. Due to
the possible multi-modality of the posterior distribution (more discussion on this in Section
3.4), the covariance of each proposal density is calculated only on the within-chain samples.
The proposal distribution is defined in the unconstrained space to ensure valid proposals.
The pseudo-importance samples for each parameter are drawn from a multivariate normal
distribution centered around the original samples V,(f{]) transformed to the unconstrained
space,

glak) MVN (f (yfgvj)) ,zj) . (13)
Here, MVN denotes the multivariate-normal distribution, X; is the parameter covariance
of chain j and f is the transformation to the unconstrainted space.

3.4. Local Density Estimation

The NUTS algorithm uses the burn-in phase to adapt relevant hyperparameters to the
sampling algorithm, while simultaneously encouraging movement to areas of high likelihood.
However, it is possible that after this burn-in phase, samples corresponding to different
chains within the same tree subspace may explore different modes. As a result, there
is a potential multi-modality of each local parameter distribution p,,(©,,). Furthermore,
these modes may have different posterior masses within the subspace, motivating the use of
pseudo-importance samples with normalised weights. Equation 14 shows how the weighted
importance samples can be used to approximate the posterior for tree subspace m,

Nt N. Ny
=22 D P eean () 14
i=1 j=1 k=1
~(i k)
where w(k) - ’ Nir G d(+) is the Dirac delta function and the unnormalised
S SN SR M wi
weights w() are as deﬁned in Equation 11.

4. Experiments

The DCC-Tree algorithm was tested on a range of synthetic and real-world datasets com-
monly used in the Bayesian decision tree and machine learning literature. Each method
was compared based on either the mean-square error or the accuracy across the testing and
training datasets for regression and classification problems respectively.

DiviDE, CONQUER, COMBINE BAYESIAN DECISION TREE SAMPLING

4.1. Bayesian Tree Synthetic Datasets

The DCC-Tree algorithm was tested against two synthetic datasets common in the Bayesian
decision tree literature, namely, the datasets from Chipman et al. (1998) and Wu et al.
(2007), which will be referred to as CGM and WU respectively. Details of these datasets
are presented in Appendix C. The DCC-Tree algorithm was run for 7" = 500 iterations, with
Ng = 100 local inference samples per iteration. Each new tree subspace was initialised using
Nt = 2000 burn-in samples for the WU dataset and Ny = 5000 for the CGM dataset.
For each, Nj; = 10 pseudo-importance samples were drawn to compute the marginal like-
lihood estimate. The DCC-Tree method was run 10 times for different initialisation values
with metrics averaged across all runs. A relatively non-informative prior on the tree struc-
ture (agprr = 0.95, Bspuir = 1.0), with the values of the split hyperparameters hyr and
hpvar summarised in Table 5 in Appendix D. The results for the DCC-Tree algorithm and
comparison to other methods for the WU and CGM datasets are shown in Table 1.

CGM WU HMC-DF HMC-DFI DCC-Tree

Train MSE 0.043(1.9e-4) 0.042(5.8e-5) 0.043(2.0e-4) 0.043(1.9e-4) 0.043(5.2¢-5)
Test MSE 0.064(0.014) 0.062(0.001) 0.041(4.6e-4) 0.041(4.5¢-4) 0.040(1.4e-4)

)

(()
Train MSE 0.059(2.3¢-4) 0.054(1.4e-3) 0.060(7.4e-4) 0.060(4.4e-4) 0.058(3.3¢-5)
Test MSE 0.112(0.034) 0.073(0.038) 0.059(2.1e-3) 0.060(2.5¢-3) 0.059(5.3e-4)

CGM

WU

Table 1: Testing and training MSE for various methods for the synthetic datasets of Chip-
man et al. (1998) and Wu et al. (2007).

The DCC-Tree algorithm exhibits the best testing performance across the different meth-
ods for both datasets, although only just better than the other HMC-based methods. No-
tably, the variance of the DCC-Tree method is lower than other methods, and in some cases,
by nearly an order of 10. Both CGM and WU methods show signs of overfitting on the two
datasets, clearly noted when comparing the difference in training and testing performance.
In fact, the WU method performs best on the training data for both datasets but is much
worse than all HMC-based methods with respect to the testing performance.

The marginal posterior distribution on the tree structure was also visualised for the
DCC-Tree method, as defined by the marginal likelihood estimate Z,, for each tree subspace.
Figure 1 shows this for both the WU and CGM datasets for a single run, with the label
for the true tree structure highlighted in red. Using a relatively non-informative prior on
the tree structure meant that the marginal likelihood estimate was affected mainly by the
likelihood. However, Figure 1 does illustrate that this can be an issue when considering the
marginal likelihood plot for the CGM dataset. The tree structure used to generate the data
has a very low posterior probability. Instead, a tree structure with the same number of leaf
nodes and which provides the same partition of the data (see Figure 4(b) in the appendix)
has a posterior probability close to one. Further investigation into this issue showed that
none of the parallel chains used for local inference discovered the correct mode for the true
tree, resulting in a much lower marginal likelihood.

COCHRANE WILLS JOHNSON

o

=

L
o o =
= 0 =3
| | L

S
=

Marginal Likelihood Z
Marginal Likelihood Z

<
o

!
i

vvvvvvvvvvvvvvvvvvvvvv

o
o
1

vvvvvvvvvvvvvvvvvvvvvvv

3411126
3451314
111121314
11125266
78456
7171842
15168456
1527282930
1516171842

7891051314
71718451314

(a) Marginal likelihood for the WU dataset. (b) Marginal likelihood for the CGM dataset.

Figure 1: Marginal likelihood of each tree structure for the DCC-Tree method. The tree
structure used to generate the data is highlighted in red.

It is straightforward to plot the posterior predictive distribution for both the RJHMC-
Tree and DCC-Tree methods as leaf parameters are not marginalised out and are therefore
easily accessible for each method. For both the CGM and WU datasets, two testing data-
points were randomly selected for which to compute the posterior predictive distributions.
Figure 2 shows the posterior predictive distribution for the randomly selected testing data-
points. The predictive distributions are compared to the predicted output from the standard
CART model and the true output. It can be seen that in all cases, the distributions pro-
duced by the DCC-Tree method line up nearly exactly with the RJHMC-Tree methods.
Furthermore, each strongly predicts the true value, in that the posterior distributions are
highly peaked around the true output.

4.2. Real-world Datasets

The DCC-Tree method was also tested against a range of real-world datasets: Iris, Breast
Cancer Wisconsin (Original), Wine, and Raisin Datasets (all available from Dua and Graff
(2017)) and compared to other Bayesian decision tree methods. The DCC-Tree method was
run for T = 500 iterations with Ny = 100 local inference samples generated per iteration.
Split hyperparameters used for each dataset are summarised in Table 5 in Appendix D
with a relatively uninformative prior on the tree structure again used. Training and testing
metrics were averaged across 10 runs of the DCC-Tree method with different initialisation
values. The results are shown in Table 2, along with the results for the other Bayesian tree
methods. The standard deviation across the different runs is presented in parentheses. The
best-performing method for each dataset is shown in bold.

The DCC-Tree method was also compared to other HMC-based samplers with respect
to computational complexity. Table 6 in the appendix shows that the DCC-Tree method,
which performs similarly to other HMC-based methods in terms of performance metrics,
exhibits substantially improved computational efficiency across nearly all synthetic and
real-world datasets.

10

DiviDeE, CONQUER, COMBINE BAYESIAN DECISION TREE SAMPLING

0.8 —— HMC-DF 0.8 —— HMC-DF
HMC-DFI HMC-DFI
) —— DCC-Tree —— DCC-Tree
06 - CART Output | — 00 - CART Output
Qﬁ - True Output Qﬁ - True Output
x %
804 804
% %
> >
= =
0.2 0.2
0.0 0.0
-5 0 5 10 15 -5 0 5 10 15
Y y*
(a) (b)
—— HMC-DF —— HMC-DF
0.8 HMC-DFI 0.8 HMC-DFI
—— DCC-Tree —— DCC-Tree
~——~0.61 ~—~~- CART Output =06 ---- CART Output
@" = True Output Q = True Output
% %
= 5
04 % 04
> >
2, Y
0.2 0.2
0.0 0.0
=5 0 5 10 15 -5 0 5 10 15
* £
y Y
(c) (d)

Figure 2: Posterior predictive distributions for randomly selected testing datapoints from
the synthetic WU (a),(b) and CGM (c),(d) datasets.

CGM SMC WU HMC-DF HMC-DFI DCC-Tree
Train Acc. 0.983(0.004) 0.987(0.004) 0.978(0.005) 0.973(0.005) 0.981(0.003) 0.982(0.001)

))
BOW Test Acc. 0.939(0.014) 0.924(0.010) 0.922(0.017) 0.940(0.010) 0.952(0.007) 0.952(0.004)
Lje Train Acc. 0.985(0.007) 0.981(0.004) /a1 0.977(0.010) 0.975(0.009) 0.981(0.000)2
Test Acc. 0.908(0.022) 0.909(0.022) 0.906(0.026) 0.917(0.023) 0.911(1.2¢-16)>
Wine Train Acc. 0.957(0.016) 0.985(0.011) Jar 0:949(0.021) 0.952(0.016) 0.958(0.010)
Test Acc. 0.916(0.046) 0.978(0.022) 0.950(0.039) 0.948(0.022) 0.958(0.020)
Rajeiy, Train Acc. 0.864(0.007) 0.863(0.004) 0.862(0.007) 0.866(0.003) ~0.864(0.005) 0.867(0.001)
Test Acc. 0.843(0.010) 0.842(0.010) 0.843(0.012) 0.847(0.004) 0.838(0.007) 0.844(0.002)

! Uses Binomial likelihood (only two output classes allowed).
2 The DCC-Tree algorithm predicted similar class probabilities across each chain when applied to the
Iris dataset, resulting in the small variance in the metrics as shown here.

Table 2: Comparison of metrics for various methods for different real-world datasets.

5. Discussion and Future Work

We have proposed a novel sampling method for Bayesian decision trees that incorporates the
efficiency of HMC into the DCC framework to provide efficient and fast sampling. Motivated

11

COCHRANE WILLS JOHNSON

by the work of Zhou et al. (2020) in the context of probabilistic programming, the tree-
sampling problem has been reduced into its constituents such that local inference can be
applied, and then appropriately combined to give an overall estimate of the distribution.
The efficacy of the sampling method developed in this paper has been demonstrated on a
range of synthetic and real-world datasets and compared to existing methods.

By associating a unique parameter vector to each tree topology, the DCC-Tree method
successfully implements a more natural way of sampling from the posterior distribution. The
space is divided based on the different tree topologies and local inference is conducted within
each subspace, combining the samples to recover the overall posterior. The method keeps
track of each considered tree topology such that the burn-in period is only required once
per unique structure, reducing the per-proposal complexity of other HMC-based approaches.
This also enables the full benefits of the HMC sampling routine to be exploited.

Comparing the performance on the synthetic datasets shows that the DCC-Tree algo-
rithm gives the best testing performance out of all Bayesian tree methods (see Table 1),
however, only just better than other HMC-based algorithms. The performance on real-
world data sets, Table 2, show that the DCC-Tree method performs similarly to the other
HMC-based methods, outperforming the non-HMC methods on all but one dataset. On
top of the performance, one major benefit of the DCC-Tree method is consistency. This is
best shown by considering the standard deviation of the test performance in both Table 1
and 2. For the synthetic datasets, the standard deviation values are nearly an order of ten
better than the next best method. For real-world datasets, in nearly all cases, the standard
deviation values are close to half that of any other method.

One clear benefit of the DCC-Tree method is the improvement in computational effi-
ciency via reducing overhead, which could account for the dramatic reduction observed in
Table 6. However, this could be attributed to the difference in implementations; RJHMC-
Tree methods run one chain at a time, whereas the DCC-Tree method runs multiple parallel
chains within each run. Nevertheless, the possibility to run parallel chains within the infer-
ence algorithm itself should be interpreted as a benefit of the DCC-Tree implementation.

However, there are some shortcomings to the DCC-Tree algorithm. Similar to existing
methods, new tree topologies are discovered in a random-walk-like fashion, although some
improvement has been made using the function in Equation 10. In addition to this, the
estimated marginal likelihood of the true tree is similar to those that contain it as a subtree.
As a result, this function does allocate significant exploration effort to these larger trees.
Nonetheless, these trees could be considered just as good as the true tree if only considering
predictive ability. Lastly, once a tree structure has been initialised, further sampling remains
around the discovered area of the local posterior distribution. Although somewhat mitigated
through the use of multiple chains, this problem remains, and is particularly evident when
considering the CGM marginal likelihood estimates in Figure 1. Possible extensions of this
work could attempt to address this issue by ‘restarting’ to discover possible new modes.

Overall, the DCC-Tree algorithm appears to have made a significant improvement in
exploring the posterior distribution of the decision tree. By altering the underlying ideology,
the approach has moved from one where the proposal scheme couples the tree structure
and decision parameters to one where each distinct topology is uniquely associated with a
parameter vector. This paper demonstrated that this way of exploring the Bayesian decision
tree posterior improved performance and consistency compared to other inference methods.

12

DiviDE, CONQUER, COMBINE BAYESIAN DECISION TREE SAMPLING

References

Michael Betancourt. A Conceptual Introduction to Hamiltonian Monte Carlo. arXiv
preprint arXiv:1701.02434, 2017.

Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. Classification and
regression trees. Wadsworth Int. Group, 37(15):237-251, 1984.

Hugh A Chipman, Edward I George, and Robert E McCulloch. Bayesian CART Model
Search. Journal of the American Statistical Association, 93(443):935-948, 1998.

Jodie A Cochrane, Adrian G Wills, and Sarah J Johnson. RJHMC-Tree for Exploration of
the Bayesian Decision Tree Posterior. arXiv preprint arXiw:2312.01577, 2023.

David GT Denison, Bani K Mallick, and Adrian FM Smith. A Bayesian CART algorithm.
Biometrika, 85(2):363-377, 1998.

Dheeru Dua and Casey Graff. "UCI Machine Learning Repository”, 2017. URL http:
//archive.ics.uci.edu/ml.

Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521
(7553):452-459, 2015.

Robert B Gramacy and Herbert K H Lee. Bayesian Treed Gaussian Process Models with
an Application to Computer Modeling. Journal of the American Statistical Association,
103(483):1119-1130, 2008.

W Keith Hastings. Monte Carlo sampling methods using Markov chains and their applica-
tions. Biometrika, 57(1):97-109, 1970.

Matthew D Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adaptively Setting
Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15
(1):1593-1623, 2014.

Balaji Lakshminarayanan, Daniel Roy, and Yee Whye Teh. Top-down particle filtering
for Bayesian decision trees. In International Conference on Machine Learning, pages
280-288. PMLR, 2013.

Antonio R Linero and Yun Yang. Bayesian regression tree ensembles that adapt to smooth-
ness and sparsity. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 80(5):1087-1110, 2018.

Fernando Llorente, Luca Martino, David Delgado, and Javier Lopez-Santiago. Marginal
likelihood computation for model selection and hypothesis testing: An extensive review.
SIAM Review, 65(1):3-58, 2023.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller,
and Edward Teller. Equation of State Calculations by Fast Computing Machines. The
Journal of Chemical Physics, 21(6):1087-1092, 1953.

13

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

COCHRANE WILLS JOHNSON

Radford M Neal et al. MCMC using Hamiltonian dynamics. Handbook of Markov Chain
Monte Carlo, 2(11), 2011.

Matthew T Pratola et al. Efficient Metropolis—Hastings Proposal Mechanisms for Bayesian
Regression Tree Models. Bayesian Analysis, 11(3):885-911, 2016.

J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
J Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

Tom Rainforth, Yuan Zhou, Xiaoyu Lu, Yee Whye Teh, Frank Wood, Hongseok Yang, and
Jan-Willem van de Meent. Inference trees: Adaptive inference with exploration. arXiv
preprint arXiv:1806.09550, 2018.

Matthew A Taddy, Robert B Gramacy, and Nicholas G Polson. Dynamic trees for learning
and design. Journal of the American Statistical Association, 106(493):109-123, 2011.

Yuhong Wu, Hakon Tjelmeland, and Mike West. Bayesian CART: Prior Specification and
Posterior Simulation. Journal of Computational and Graphical Statistics, 16(1):44-66,
2007.

Yuan Zhou, Hongseok Yang, Yee Whye Teh, and Tom Rainforth. Divide, Conquer, and
Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support.
In International Conference on Machine Learning, pages 11534-11545. PMLR, 2020.

Appendix A. Validity of Method

A.1. Problem Statement and Assumptions

An important prerequisite for the proof of correctness is ensuring that the division and
recombination of the parameter space results in the correct overall posterior distribution.
These assumptions and definitions required for this discussion will be presented now, start-
ing with the parameter vector in Definition 1.

Definition 1 (DCC-Tree Parameter Vector) Let M be a discrete random variable
whose value specifies a unique tree structure. Further, let the random variable ©,, € ©,, C
R™™ represent the associated parameters of each local tree subspace with appropriate dimen-

sion. Assume that there are M topologies that span the entire parameter space such that
Me{l,...,M}. The DCC-Tree parameter vector is then defined as,

e = [@1 @2 s @M] S @, (15)
where
M M
e = H 0, CR"™, ng= an (16)
m=1 m=1

14

DiviDE, CONQUER, COMBINE BAYESIAN DECISION TREE SAMPLING

Careful consideration needs to be made as to the precise definition of the sample space.
First, it is assumed that each subspace ®; has compact support. Second, each parameter
subspace is disjoint and covers the entire space, i.e. ®; N1 ®; = (). The overall parameter
space includes both the parameter vector ©, which represents the continuous variables, and
the discrete variable M, as is shown in Definition 2.

Definition 2 (DCC-Tree Parameter Space) The DCC-Tree joint parameter-index vec-
tor (©, M) is defined on the mixed discrete-continuous space,

S:=R"® x Z. (17)

Assumption 3 defines how the output distribution can be simplified when given the tree
subspace m.

Assumption 3 It is assumed that given the subtree under consideration, the output can
be modelled as,

p(y | z,0,M = m) Ep(y ’ x7®m) (18)

where M denotes the discrete random variable representing the tree topology under con-
sideration. That is to say, given that the value of the discrete variable is m, the output
distribution depends only on the corresponding random variable ©,,.

Note that the remainder of this section will use the simplification in notation whereby
when the discrete variable takes on a specific value then the discrete random variable will
be dropped, i.e. instead of M = m is simplified to just m.

The following assumption defines an important property of the sample space once a
specific subspace has been selected. In particular, it assumes that the space corresponding
to the remaining parameter vector is uniform over the compact space, such that it integrates
to one. This is necessary for the last theorem of this section, which will show that under
this assumption, only local samples are required for the approximation of the posterior
predictive distribution.

Assumption 4 Let ©\,, € ©,\,, denote the component of the parameter vector defined by
©\Oy,. When considering subspace m, the distribution of ©\,, is assumed to be uniform
over the compact space ©\,,. That is,

P(Ovm | m) = cm (19)

where the value of ¢, is such that

/ (O | M)dO\,, = 1. (20)
(C]

\m

Assumption 4 enables simplification of the joint prior distribution across the continuous
random variables © and the discrete random variable M, as is discussed in the following
lemma.

15

COCHRANE WILLS JOHNSON

Lemma 5 (Prior Distribution) If the discrete random variable takes on the value m,
the joint prior distribution p(©,m) can be expressed as,

p(@,m) = Cmp(®m | m)p(m) (21)

Proof Through the repeated application of conditional probability, the joint prior distribu-
tion can be written as,

p(©,m) = p(© | m)p(m) (22)
= P(Om [m)p(Ory, | m)p(m) (23)
= cmp(Om | m)p(m) (24)

where the second line is due to the independence of Oy, and ©\,, and the third follows from
Assumption 4. |

The purpose of this method is to approximate the posterior distribution such that expec-
tations with respect to this distribution can be evaluated. Given a dataset D = {X,Y }, this
corresponds to generating samples from the joint posterior distribution p(©, M | D). The
challenge with drawing samples from this joint posterior is that it is a mixed continuous-
discrete distribution. However, once a particular subspace has been selected, inference on
that subset of parameters is straightforward. The remainder of this section will discuss the
connection between the posterior distribution p(©,m | D) and the distribution on the local
parameters p(©,, | D, m). This discussion begins by first introducing some notation that
will simplify the later theorems.

Definition 6 Let the discrete random wvariable take on the value m. Then the following
notation is defined with respect to the distribution p(O., | D, m),

Pm(Om) = p(On | D, m) (25)
Zon 2 p(Y | m,X). (26)
Note that this implies the following relationship,

pm(@m) Zm = p(Y ’ GmaX) p(@m ‘ m) (27)

The following theorem provides the relationship between the posterior distribution
p(©,m | D) and the distribution on the local parameters p(©,, | D, m).

Theorem 7 (Posterior Distribution) Given a dataset D, the posterior distribution can
be expressed with respect to the local parameter distribution as,

p(@,m | D) = W Cm pm(@m)' (28)

where
o - Zmp(m) 99
"N Znp(m) 2

16

DiviDE, CONQUER, COMBINE BAYESIAN DECISION TREE SAMPLING

Proof The application of Bayes Theorem to the posterior distribution gives the following,

p(Y | ©,m,X)p(0,m | X)

p(@,m ’ D) = p(Y ’ X)) (30)
~ p(Y | 0,,X) p(O, | m) p(m) 1y
- P(Y [X) ’ 31
_ Pm(Om) Zmp(m) cm
Y x) ()

where the second line follows from Equation 21, and the third line from Equation 27. Using
the law of total probability, the denominator can be expressed as,

M

p(Y [X) =Y p(Y,m|X) (33)

3
[

-

p(Y | m, X) p(m) (34)

3
[

-

Zm p(m). (35)
1

3
Il

Substitution into Equation 32 gives the required expression,

Zm p(m)
p(©,m | D) = Cm Pm(Om) (36)
et Zm p(m)
= W Cm pm(@m>v (37)
with the normalised weights defined as,
Zm
By = p(m) _ (38)

Sy Zim p(m)

Theorem 7 shows that the parameter space for the DCC-Tree algorithm can be thought
of as a distribution where, once a subspace has been selected, only the corresponding subset
of the overall parameter vector is important. The only concern is the presence of the
constant ¢, which is difficult to compute. Fortunately, as will be shown in the following
theorem, this is not of concern when evaluating expectation integrals due to the cancellation
of the term.

Theorem 8 (Estimation of Posterior Predictive Distribution) Given a new data-
point {x*,y*}, the posterior predictive distribution p(y* | x*,D) can be approzimated using
samples from the joint posterior distribution p(©,m | D) as follows,

1

L
ply* | x5, D)~ =3 ply | x5, 0%), (m',00.) K W po(On). (39)
=1

il

17

COCHRANE WILLS JOHNSON

Proof Recall that the posterior predictive distribution is an expectation with respect to
some distribution. In this case, this is the joint discrete-continuous distribution, with the
expectation defined to be,

M
py |xD) =Y /@ p(y* | x*,0,m, D) p(€,m | D)dO (40)
m=1

Using Assumption 3, Assumption 4 and the result from Theorem 7, this expression can be
sitmplified in the following manner,

p(y* | x*,D) Z/ / y* | x*,0,m, D) p(6,m | D)dO\,,dO, (41)

m=1 e\m
M
= Z / / y* | X%, Om) Win Cm P (Om) O\, dO, (42)
=len Je.
M
s /@ (Y | X" 00m) T s (Orm) O (43)
1 m

3
Il

where it has been used that y* is independent of D given the parameter vector ©. The final
expression shows that the posterior predictive distribution can be evaluated by considering
only the weighted local distribution for each subspace m. This means that the integral can
be approximated using Monte Carlo integration via

L .
‘ x* 8) Wiy pml(gzmi) PRy .0.d.
(’ x" D E Z ml o!) ’ <m 7@mi) ~ Q(m’ @m) <44)

where q(-) is a user-specified proposal distribution. In particular, this proposal can be taken
as

q(m, O) = Wy i (Om) (45)

which results in the following simplification

P(y" | ", D) ~

h\H

L
. . . " "d' _
Z | X*7 (_)Zml) (mz’ @f;nl) "R Wm pm(@m)a (46)
giving the required expression. |

It is clear from Theorem 7 that, when a particular subspace ©,, is under consideration,
the joint posterior simplifies down to the weighted local distribution. Further, Theorem 8
shows that only samples from each parameter subspace ©,, are required to generate the
estimate of p,,,(©,,) and therefore approximate integrals regarding the overall distribution.
It was important to establish these concepts before continuing to the next section, which
details the correctness of the method by considering the sampling method to be broken up
into local and global components.

18

DiviDE, CONQUER, COMBINE BAYESIAN DECISION TREE SAMPLING

A.2. Correctness of Method

The correctness of the overall DCC-Tree sampling method relies on two parts: the validity
of the local inference method to converge to the local target posterior distribution and the
consistency of the local density approximations to recover the overall distribution. The
method is based on the idea that the sample space can be split up and approximated as
follows,

@;D:ip@mw f: o Zn (M) o) D) (47)
m=1 m=1 i\n/lzl Zm p(m) " 7

M CmZmp(m) ~ A A
~ > Ay, mp) 20 1D) 9
m=1 m=1 Zm P\

where Z,, and p(© | m,D) are the approximations for Z,, and p(© | m, D) respectively.
Note that this shows that the distribution p(© | D) can not be expressed directly as it
contains the term c¢,,, but as shown in Theorem 8 for the posterior predictive distribution,
the samples generated from the local distribution p(©,, | m,D) can be used to evaluate
expectation integrals with respect to this distribution. For the DCC-Tree algorithm, HMC
is used to generate these local samples that can be used to provide these estimates.

HMC attempts to sample from a target distribution by using well-informed proposals
that incorporate information about the likelihood distribution into the proposal scheme. For
the DCC-Tree method, the target distribution is the distribution on the local parameters
P(Oy, | m, D). HMC draws samples from this distribution by using the relationship via
Bayes’ theorem as follows (note that the dependence on data on data D = {X,Y} is
explicitly included here):

p(Y | Om,m, X)p(Op | m)

(49)
Samples from the target distribution p(©,, | m,D) are generated in a way where only the
unnormalised density (the numerator) is required due to the cancellation of terms in the
accept/reject step of the algorithm Metropolis et al. (1953); Hastings (1970). Note that as
a result of this, the denominator — which is referred to as the marginal likelihood — is also
not required by the algorithm to produce the desired samples.

The correctness of using HMC as the local inference scheme results from the validity of
the sample algorithm itself, as is described in Lemma 9.

Lemma 9 (Validity of Local Inference (HMC)) Given the discrete random variable
takes on the value m, the HMC algorithm generates samples from the local distribution
P(O | m, D) as defined by Equation 49.
Proof As is standard with HMC sampling methods, the potential function is aligned with the
negative-log likelihood of the unnormalised target distribution. For the DCC-Tree algorithm,
this is defined to be,

U £ —log (p(Y | Om,m, X) p(On, | m)) (50)

where p(Y | ©p,,m,X) is defined by either Equation 8 for classification or Equation 9
for regression and p(©,, | m) by Equation 7. The standard application of HMC under this

19

COCHRANE WILLS JOHNSON

potential energy definition then ensures that samples are generated from the normalised local
distribution p(©y, | m, D). [|

The rest of this section focuses on the idea that, given the approximation techniques
satisfy some assumptions, the estimated distribution can be recombined to give an estimate
of the overall posterior distribution. Note that the rest of the section, including the next
set of assumptions, follows the original proof provided in Appendix C of Zhou et al. (2020)
but where the notation has been changed to reflect that used in this paper.

Assumption 10 [t is assumed that the total number M of tree subspaces O, is finite.

Assumption 11 [t is assumed that the number of iterations T required to find all tree
subspaces is almost surely finite.

Assumption 12 FEwvery tree subspace m € {1,..., M} has an associated local density esti-
mate p(© | m, D) that converges weakly in the limit of large numbers to the true distribution
p(© | m,D) corresponding to that subspace. Further, each tree subspace m has a local
marginal likelihood estimate Zm that converges in probability to the true marginal likelihood
of that subspace Z,,.

With the above assumptions, Theorem 13 proves the consistency of the DCC-Tree al-
gorithm.

Theorem 13 (Correctness of DCC-Tree Algorithm Zhou et al. (2020)) If Assump-
tions 10 to 12 hold, then the estimate of the posterior density defined by Equation 48 gen-
erated by the DCC-Tree method converges weakly to the true distribution in the limit, that
18,

p(© | D) — p(© | D) as T — oo. (51)

Proof The proof follows that presented in Theorem 1 in Appendiz C of the supplementary
material for Zhou et al. (2020), but is presented here with the notation related to this paper.

20

DiviDE, CONQUER, COMBINE BAYESIAN DECISION TREE SAMPLING

For an arbitrary function f, the following result holds,

Eyorm) [/(©)] = [£(6)3(0 | D)do (52)
’”Zmp(m) 5O | m, D)dO
/ f m= lzm 1 (m) p(‘ ’) <53)
Cm Zmp(m) A
= S} - O | m,D)dO
mzl/ef O Zpto 1P oy
M
_ Cm Zm p(Mm) m
= 2 Lo O S iy O | o
il Cm Zm p()
:/ f©) > p(© | m,D)dO (56)
m=1 Z m)
/ f(©)p(© | D)do (57)
= Eyem) [f(©)] (58)

where Equation 55 is due to Slutsky’s theorem. Therefore, the expectation of the function f
with respect to the approzimated posterior distribution p(© | D) converges to the expectation
under the true distribution p(© | D). As f was defined to be an arbitrary function then this
result holds true in general, as required. |

The next section will discuss the practical implementation of the DCC-Tree algorithm,
and in particular, the methods for estimating the local distribution p(© | m, D) and the
marginal likelihood Z,, for each subspace m.

Appendix B. DCC-Tree Implementation Details

Exact details on how certain calculations have been implemented are presented in this
section.

B.1. Log-Marginal Likelihood Calculation

From Section 3.3, the marginal likelihood estimate for tree T,, is calculated via

Nt N: Npp ~ ik
7 D RIFRELFERT)
" NTN Ny 4 et 0,3,k Jk B, (£IR))
where 7, (£(i7j7k)) is the posterior distribution on parameters and £(#9%) are the k = 1, ..., Ny

new parameter samples at iteration ¢ of chain j. The term ®,,(¢ (i’j’k)) is computed using
either the basic or spatial formulation,

Dy (€071) = Gy (4 [V37), 5), or, By (6491)) an,m G E)

(60)

21

COCHRANE WILLS JOHNSON

These calculations are converted to log space as follows. The estimated log marginal likeli-
hood is computed via

log Z, = logsumexp (log 1[;52%) —log(NpN.Nyy) (61)
where N N
log u?l(zn;f = log 7 (f(z’j’k)) —log ®,, (f(”’k)> . (62)

Access to log mp, (§ (i ’k)) is available directly throughout the simulation. The term log ®,,, (§ (i’j’k))
is calculated either as

log ®,, <§(i’j’k)> = logsumexp (log qi,j,m(é(i’j’k))) , (63)

for the basic expression, or as the spatial version,

log @, (£074)) = logsumexp (10g g jm (€")) ~ log(N7), (64)

where the proposal distribution ¢ are initialised in log-form as required (see Section 3.3 for
details).

Lastly, the log-marginal likelihood does not need to be recalculated at each additional
visit to the tree. Instead, it can be updated via,

log Z!) = logsumexp ([log ZU=Y £ log((t — 1)N,N.Nys), log wZ(Z._kl)]) — log(tNsNeNay)
(65)
where ¢t € N denotes the visit number to that tree.

B.2. Calculation of Exploitation Term

Through the simulation, the terms log(Z,,) and log(c2,) for each tree T,, are recorded.
However, the value of these can be large, resulting in either 0 or an infinite value when
taking the exponent and the loss of any relative information. Therefore, a numerically
stable way is required to approximate the calculation of the exploitation term, which is
computed as follows,

Tm

max;,{7m}’

B =\ 22+ (14 £)o2. (66)

Only access to log(Zm) and log(o2,) is provided as the method progresses. As such, the
above expression for 7, is rewritten as

\/Z?n +(1+k)o2 = \/exp (2 log Zm) + (1 + k) exp (log 02)). (67)

Taking A,, = max {QIOg(Zm), log(a,%l)}, the following transforms can be used to alter the

above expression,

—_—
—_~—

210g(2m) =2 log(Zm) — A, log(o2,) = log(agl) — A,

22

DiviDE, CONQUER, COMBINE BAYESIAN DECISION TREE SAMPLING

where A,, is now large. This changes the expression in Equation 67 to

\/ZAEH + (14 k)02, = \/exp (Am + 2log Zm> + (1 + k) exp (Am + log U,Qn) (68)

= Vop(An) \/exp (210820) + (1 wyexp (1og0R) (09
Yerp(dn)

unstable

~~

can be calculated

Since both the square root and exponential functions are monotonically increasing, the
ratio in Equation 66 can be computed by evaluating the relative expression between tree
topologies. To compute this ratio, assume that there are two tree topologies with subscripts
p and ¢ and assume without loss of generality that ¢ corresponds to the value for which 7,,
is maximum. The ratio for topology p is then given by,

hS]

R \/exp <2 log Zp> +(1+k)exp (log 02>

2
£ =/exp(4p — Ag) ———
\/exp <2 log 2q) + (1+k)exp <logo)

max, {7m}
where all terms are now numerically stable to calculate. This method also handles cases
when either the log-marginal likelihood or log-variance is significantly larger than the other.

(70)

|

QN

B.3. Calculation of Exploration Term

The exploration term p,, as first described in Rainforth et al. (2018) is adopted here. This
term is used to help define the possible improvement in the marginal likelihood estimation
with additional inference samples. The expression relates to the log-weights of the current
set of samples as follows,

Pm = P (wm(Ta) > wth) ~1 - \I’m(log wth)Taa (71)

and defines the probability that at least one new sample in a “look-ahead” horizon would
have a log-weight greater than some threshold weight wy,. The function ¥,, is taken to be
the cumulative distribution function for the normal distribution with mean and variance
based on the current samples for tree T,,. The value of the threshold weight wy, is taken
to be the maximum weight of the samples discovered so far across all active trees. The
variable T, is a hyperparameter that represents the number of “look-ahead” samples in
the horizon. As per Rainforth et al. (2018), a default value of T, = 1000 is used for the
DCC-Tree algorithm.

23

COCHRANE WILLS JOHNSON

Appendix C. True Tree Definitions for Synthetic Datasets

The synthetic dataset proposed by Wu et al. (2007) is defined such that the input space is
given by,

(w1, 72,73) where x1 ~ U104 T2 ~ Ujo.1,0.4), T3 ~ Un6,0.9), for i =1,...,100,
Ty = (331, x2, x?)) where xry ~ u[0.1,0.4]5 I ~ u[0.6,0.9]7x3 ~ U[O.ﬁ,o.g}» for i =]-017 s ZOOa
(1’1, 2, LE3) where Ty ~ U[O.G,O.Q]a T ~ U[O'Lo‘g],xg ~ U[0.1,0.4], for i = 201, ceey 300,

where U, ;) represents the uniform distribution over the interval [a,b]. The corresponding
outputs are then defined to be,

1+ N(0,0.25) if 21 < 0.5 and x5 < 0.5,
y=4¢3+N(0,0.25) if 21 <0.5 and a2 > 0.5,
5+ N(0,0.25) if 21 > 0.5,

with the two trees that are consistent with the data (equally as likely) shown in Figure 3.

[700 | 2 | e, | 2
(a) (b)

Figure 3: The two trees consistent with the synthetic dataset defined in Wu et al. (2007).

The synthetic dataset of Chipman et al. (1998) was adapted in the same manner as
Cochrane et al. (2023). This differs from the original version by making the first split
defined by a continuous input not categorical. All inputs are numerical with n, = 2 and
simulated via the tree structure shown in Figure 4(a) to give Nigay = 800, Nygsr = 800
datapoints. The variance is assumed constant across nodes with value o2 = 0.22. Note that
Figure 4(b) shows a tree with the same partition of the data as the true tree definition.

Appendix D. Hyperparameters Optimisation

Hyperparameters used for the simulation of other Bayesian tree methods were taken from
Cochrane et al. (2023). We provide analysis of an additional dataset in this paper - the
synthetic dataset from Wu et al. (2007). Table 3 provides the values used for the grid
search, with Table 4 detailing the final hyperparameters used for each of the other Bayesian
decision tree methods. Note that the SMC method is not included as its implementation is

24

DiviDE, CONQUER, COMBINE BAYESIAN DECISION TREE SAMPLING

[=5] [n=8] [=1] [n=5]
(a) True tree definition used to gener- (b) Tree with same partition of the data.
ate dataset.

Figure 4: Tree representation of the synthetic dataset adapted from Chipman et al. (1998).

not applicable to regression datasets. The final set of hyperparameters used for the DCC-
Tree method simulations is provided in Table 5. Note that hyperparameters not listed are
default values.

Method Hyperparameters

a=1[05:05:4.0], 8=1[0.5:05:4.0], upo=[0:05:2], n =1[0.5:0.5:
1.5, A=1[8:1:10],p=1[0.3:0.2:0.7]

a=1[05:0.5:4.0, 6=1[0.5:05:25], uo=[0:0.5:2], n=1[0.3:0.1:
06], QgpriT — [045 . 025 . 095], /GSPLIT - [10 : 05 : 25]

WU

CGM

Table 3: Grid search values considered in hyperparameter optimisation via 5-fold cross-
validation for the synthetic dataset of Wu et al. (2007).

Method Hyperparameters

RJHMC hINIT - 0025, hFINAL - 0025, aSPLIT - 045, /BSPLIT - 25
WU a=40,8=40, uo=1.0,n=1.0, A =10.0, p=0.7
CGM o = 35, /B - 057 /,L() - 10, n = 05, QgpriT — 0957 BSPLIT - 10

Table 4: Final hyperparameters for the other Bayesian decision tree methods for the syn-
thetic dataset of Wu et al. (2007).

25

COCHRANE WILLS JOHNSON

Dataset Hyperparameters

BCW Apar = 0.1, hear, = 0.025
CGM Apur = 0.01, hear, = 0.001
Iris hupur = 0.01, hea, = 0.01
Raisin huur = 0.05, Apar = 0.001
Wine hupur = 0.025, Apar, = 0.025
WU hopr = 0.5, hemar = 0.025

Table 5: Hyperparameters used for the DCC-Tree method for different datasets.

Appendix E. Computational Comparison

Improvements in computational efficiency compared to other HMC-based methods was in-
vestigated with the results shown in Table 6. Note that both the time per proposal and the
time per proposal with non-zero weight (and therefore contribution to the final posterior)
are provided for the DCC-Tree method.

HMC-DF HMC-DFI DCC-Tree DCC-Tree (non-zero weight)

WU 35.83 26.37 0.008576 0.0150
CGM 64.99 68.23 0.5738 47.61
BCW 32.61 18.28 0.00626 0.00981
Iris 24.03 15.26 0.00606 0.006369
Raisin 24.67 28.27 0.01313 0.0254

Wine 36.01 22.39 0.01381 0.0392

Table 6: Time (seconds) per proposal for different HMC-based methods, averaged across
the 10 runs. Regression datasets are displayed first. Time includes any burn-in
phase for the sampling method.

26

	Introduction
	Preliminaries
	Decision Trees
	Trees as Disjoint Subspaces
	Soft Decision Tree Model Definition

	DCC-Tree Sampling Algorithm
	Overall Algorithm
	Exploring Tree Structures
	Marginal Likelihood Calculation
	Local Density Estimation

	Experiments
	Bayesian Tree Synthetic Datasets
	Real-world Datasets

	Discussion and Future Work
	Validity of Method
	Problem Statement and Assumptions
	Correctness of Method

	DCC-Tree Implementation Details
	Log-Marginal Likelihood Calculation
	Calculation of Exploitation Term
	Calculation of Exploration Term

	True Tree Definitions for Synthetic Datasets
	Hyperparameters Optimisation
	Computational Comparison

