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ABSTRACT

Deep learning models have driven significant progress in predicting protein func-
tion and interactions at the protein level. While these advancements have been
invaluable for many biological applications such as enzyme engineering and func-
tion annotation, a more detailed perspective is essential for understanding pro-
tein functional mechanisms and evaluating the biological knowledge captured by
models. This study introduces VENUSX, the first benchmark designed to assess
protein representation learning with a focus on fine-grained intra-protein func-
tional understanding. VENUSX comprises three major task categories across six
types of annotations, including residue-level binary classification, fragment-level
multi-class classification, and pairwise functional similarity scoring for identifying
critical active sites, binding sites, conserved sites, motifs, domains, and epitopes.
The benchmark features over 878, 000 samples curated from major open-source
databases such as InterPro, BioLiP, and SAbDab. By providing mixed-family and
cross-family splits at three sequence identity thresholds, our benchmark enables a
comprehensive assessment of model performance on both in-distribution and out-
of-distribution scenarios. For baseline evaluation, we assess a diverse set of popular
and open-source models, including pre-trained protein language models, sequence-
structure hybrids, structure-based methods, and alignment-based techniques. Their
performance is reported across all benchmark datasets and evaluation settings using
multiple metrics, offering a thorough comparison and a strong foundation for future
research. Our code, data, and a leaderboard are provided as open-source resource

1 INTRODUCTION

Deep learning has significantly advanced the analysis of large-scale protein data, enabling efficient
solutions to key inference tasks across sequence, structure, and function. Notable successes include
structure prediction (Jumper et al.,[2021; |Abramson et al., 2024)), sequence engineering (Lu et al.,
2022¢[Zhou et al.| 20244} [Tan et al., [2025b)), and functional annotation (Yu et al ., [2023; [Zhou et al.|
2024b)). The rapid progress in this field is supported not only by the models’ scientific and practical
value, but also by the availability of high-quality benchmarks that define clear learning objectives and
ensure fair, reproducible evaluation.

A wide range of datasets and evaluation protocols have been developed to facilitate model training
and assessment, especially those centered on large-scale protein sequence and structure data (Orengo
et al., |1997}; [Varadi et al.l 2022} |(Consortium, [2025)). While some benchmarks include functional
annotations, they predominantly target protein-level properties, where the goal is to assign a single
label to an entire protein or protein pair. Some representative tasks include function annotation (Tan
et al., 20244} |Li et al., |2025)), protein—protein interaction prediction (Pan et al., 2010; [Szklarczyk
et al., [2019; Jankauskaité et al., [2019; Moine-Franel et al., |2024b), and protein fitness estimation
(Gray et al., 2018} Riesselman et al., [2018} |[Notin et al., [2024} [Zhang et al., [2025)).

Despite the overwhelming focus on protein-level benchmarks, biological functions are often governed
by specific subregions within proteins rather than the entire molecule. Global labels can obscure
mechanistic details and may even lead models to rely on biologically implausible features for
prediction. This increases the risk of overfitting to noise, reduces interpretability, and compromises

'Code (VenusX Github), dataset (VenusX Huggingface), and leaderboard (VenusX Website).
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Figure 1: Overview of the VENUSX benchmark. (a) Six types of functional annotations collected
from InterPro, BioLiP, and SAbDab (Section . (b) Three benchmark task categories: residue-level
and fragment-level classification, and pairwise similarity scoring (Sections[3.1}3.3). (c) Sequence
identity—based clustering and mix-family and cross-family data split strategies (Sections @

o

accuracy in tasks where local features are critical, such as function annotation (Cagiada et al, 2023}
and paratope design (Attique et al.,2023). As a result, there is a growing demand
for benchmarks that support supervision and evaluation at a fine-grained resolution. It is
essential not only for advancing functional understanding but also for systematically assessing how
well learned representations capture biologically meaningful signals beyond sequence similarity.

We address this gap by introducing VENUSX, the first large-scale and biologically grounded bench-
mark for fine-grained protein understanding. VENUSX spans multiple subprotein levels—including
residues, motifs, fragments, and domains—and is designed to evaluate model performance across
three task categories: (1) residue-level binary classification, which assesses whether individual
amino acids contribute critically to protein function, such as catalysis, ligand binding, evolutionary
constraint, or domain boundaries; (2) fragment-level multi-class classification, which identifies
functional subregions within a protein and assigns them to specific biological roles; and (3) pairwise
functional similarity scoring, which matches functionally similar proteins or substructures without
requiring explicit function labels.

The raw residue-level annotations are sourced from three high-quality databases: InterPro (Paysan-
Lafosse et al.l [2023)), BioLiP (Yang et al.,[2012), and SAbDab (Dunbar et al 2014). We curate
over 878, 000 high-confidence samples and form diverse tasks across three categories of fine-grained
functional prediction. To enable comprehensive evaluation of model fitness, robustness, and general-
izability, we consider both label distribution and input similarity at the fragment and protein levels
and define multiple evaluation setups with different partitioning strategies for training and testing.

We benchmark a broad spectrum of popular protein representative models to assess their effectiveness
on VENUSX. These include pre-trained protein language models (Rives et al., 2021}; [EInaggar et al.,
[2021}, 2023}, Heinzinger et al., 2023}, [Lin et al.| 2023} [Hamamsy et al., 2024), sequence-structure
hybrid models (Su et al.} [2023]; [Tan et al., [2025¢), inverse folding models (Yang et al.} 2023} [Hsu
2022), structure-based geometric networks 2021), and traditional alignment-based
methods (Altschul et al. [1990; [Zhang & Skolnick, 2005; [Van Kempen et all, [2024). We observe

substantial variation in performance across annotation types, sequence identity thresholds, and task
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formulations. These findings reveal that strong performance on conventional global protein-level
tasks does not necessarily translate to fine-grained functional understanding. The results further
suggest that many current models rely heavily on global or distributional cues, rather than capturing
precise, localized biological signals. These limitations highlight the need for future model designs
that are better aligned with the demands of fine-grained benchmarks, which emphasize robustness,
generalization across protein families, and biological interpretability.

In summary, while prior benchmarks have focused on protein-level properties, VENUSX establishes
the first comprehensive, multi-level benchmark for fine-grained protein understanding by introducing
a suite of tasks at the residue, fragment, and domain levels. It offers biologically meaningful
evaluation dimensions for future protein models and enables systematic assessment of their ability to
capture true biological knowledge. All datasets, task definitions, evaluation protocols, and baseline
leaderboards are publicly available to support followup research in the future.

2 DATA COLLECTION AND CURATION

We collect residue- and fragment-level annotations from InterPro (Paysan-Lafosse et al., [2023)),
BioLiP (Yang et al., [2012), and SAbDab (Dunbar et al., 2014), followed by thorough cleaning,
redundancy removal, identity-based clustering, and alignment with structure and annotations.

2.1 INTERPRO: FUNCTIONAL ANNOTATIONS ACROSS DIVERSE PROTEIN FAMILIES

We use InterPro (Paysan-Lafosse et al., [2023) to collect residue-level entries from various annotation
categories, such as active sites (Act), binding sites (Bind), conserved sites (Evo), functional motifs,
and domains, detailed definitions for each of these annotation types are provided in Appendix
Section For each category, metadata are retrieved from InterPro Website E] in . json format,
including InterPro family identifiers, associated Gene Ontology (GO) terms, and annotated residue
positions. The raw data of UniProt identifiers and their corresponding functional annotations are
downloaded by VenusFactory (Tan et al.,2025a). Canonical protein sequences are obtained from
UniProt (Consortium), [2025)), and predicted structures are retrieved from the AlphaFold Protein
Structure Database (Varadi et al., 2022), retaining only entries with available structural models.

To ensure non-redundancy, we remove additional entries with identical annotated fragments. If a
protein contains multiple distinct fragments annotated with the same function, the annotations are
consolidated into a single entry. These fragments, along with their aligned sequence-structure pairs,
form the basis for the various downstream benchmark tasks.

2.2 BIOLIP: EXPERIMENTALLY-DERIVED LIGAND BINDING SITES

We incorporate additional residue-level binding site annotations from BioLiP (Yang et al., [2012), a
curated resource of protein—ligand interactions derived from experimentally resolved complexes in the
Protein Data Bank (PDB) (Burley et al.,2019). Binding residues are identified using a distance-based
criterion. A residue is labeled as part of the binding site if any of its atoms lie within the sum of the
Van der Waals radii of the interacting atom pair plus a 0.5 A empirical margin. This approach captures
steric interactions and enables robust identification of physiologically relevant binding interfaces.

For each entry, we extracted the complete receptor sequence, its PDB chain identifier, the annotated
binding site residues, and the ligand identity specified by its Chemical Component Dictionary (CCD)
code. Sequence and coordinate information were parsed directly from the corresponding PDB files,
and ligand annotations were stringently curated to retain only biologically relevant molecules. This
curated dataset augments the InterPro-derived entries with high-resolution protein—ligand binding-site
pairs, providing a biologically meaningful benchmark for training and evaluating deep learning
models on protein-ligand complexes.

2.3 SABDAB: ANTIBODY-INDEPENDENT EPITOPE PREDICTION

This benchmark introduces a task for antibody-independent epitope prediction, a well-established
and critical challenge in computational biology that is pivotal for accelerating the design of next-

https://www.ebi.ac.uk/interpro/
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Table 1: Summary of the 7 residue-level classification tasks. For sequence length, number of positive
residues, and proportion of positives, averages are shown with standard deviations in parentheses.

Target Description # Proteins Seq. Len. # Positive % Positive Cross Mix
Act active sites (InterPro) 9,667  482.5 (349.0) 16.7 (7.0 4.6 (2.8 v v
Bindl  binding sites (InterPro) 8,950 486.5 (3305  24.5 (20 7903 vV v
BindB  binding sites (BioLiP) 115,505  348.7 (272.0) 9.4 (9.6 4.1 57 v
Evo evolutionary pressure (InterPro) 59,948  365.9 (290.8) 23.4 (13.1) 10.4 (9.2 v v
Motif  motif (InterPro) 10,271 595.2 (3835  78.0 (73.4)  20.2 (o0 V v
Dom  domain (InterPro) 595,454  537.5 (3739) 169.2 1172) 403 951y V) v
Epi epitope (SAbDab) 5,370 374.9 013 248 (105 106 (9.9 v

generation therapeutic antibodies and vaccines (Cia et al., |2023; |Zeng et al., 2023; |Carroll et al.,
2024])). The task aims to identify an antigen’s intrinsically bindable or druggable regions, which serve
as high-potential targets for therapeutic antibodies. This approach is motivated by the observation that
functional antibodies often target specific, high-affinity regions rather than the entire exposed protein
surface (Hastie et al., 2021). To construct a dataset for this task, we extract epitope annotations
from antibody-antigen complexes curated in SAbDab (Dunbar et al.,|2014)), restricting our analysis
to entries where the antigen is a protein. Metadata are sourced from curated .tsv files from
SAbDab Websiteﬂ including antibody heavy and light chains, as well as the associated antigen chains.
Structures are parsed using BioPython (Cock et al.,|2009). We only retain standard residues with
defined C|, coordinates. An antigen residue is considered part of the epitope if the Euclidean distance
between its C,, atom and any antibody C,, atom is less than 10 A. This geometric criterion captures
both continuous epitopes (adjacent in sequence) and conformational epitopes (spatially clustered but
sequence-distant).

We treat antigens with identified epitope residues from this procedure as valid entries. For each of
them, we extract the complete amino acid sequence, the epitope residue indices (start from 0), and
associated structure files. Entries with non-protein antigens, missing chain information, or structural
inconsistencies are excluded. The resulting dataset offers structure-derived epitope labels aligned
with sequence data to support targeted development and evaluation of immune-related protein models.

3 BENCHMARK TASKS

3.1 RESIDUE-LEVEL BINARY CLASSIFICATION

Task Description The first category of tasks focuses on identifying functionally important residues
within a protein. Each task is framed as a binary classification problem at the residue level, where
positions are labeled as either functionally relevant (positive) or irrelevant (negative). Related
functions involve catalysis, binding, or other biological processes (Section [2). Table [T] summarizes all
7 subtasks. Unlike conventional protein-level function prediction, these tasks assess whether models
can detect critical residues independent of global function or family context. They encourage models
to go beyond coarse representations and capture residue-level signals that may support model analysis
in terms of interpretability or explanability. In practice, accurate residue-level predictions can aid
enzyme engineering, mutational effect analysis, and active-site redesign.

Labeling Strategy For these residue-level classification tasks, we adopt a specific labeling approach.
If a protein contains multiple, spatially distinct sites annotated with the same function (e.g., several
separate binding sites), all residues belonging to any of these sites are labeled as positive (1), while
all other residues are labeled as negative (0).

Evaluation Metrics These tasks exhibit strong class imbalance, as most residues are non-functional
(see “% Positive" in Table[I). To better assess model performance on the minority class, we prioritize
metrics that emphasize positive predictions. Specifically, we report class-specific precision, recall,
and F1 score for the positive class, along with the area under the precision-recall curve (AUPR).

Shttps://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabdab/search/
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Table 2: Summary of the 5 fragment-level Table 3: Summary of the five pairwise similarity
multi-class classification tasks. scoring tasks (in millions).

Target # Fragments Seq. Len. # Class Protein Fragment

Target # Positive # Negative # Positive # Negative

Act 9,767 18.7 (7.0) 132 -
BindI 10,562 26.6 (517 76 Act L3 45.4 1.3 46.4
BindI 3.5 36.6 5.0 50.8
Evo 66,916 25.5 (13.3) 740 E
. vo 77 1,789.1 100 2,228.9
Motif 13,244 80.23 (73.5) 454 Motif 2.4 50.3 6.0 817
Dom 656,669 171.3 1174y 13,459 Dom 217.7  177,064.8 346.0  215,260.7

3.2 FRAGMENT-LEVEL MULTI-CLASS CLASSIFICATION

Task Description The second category task evaluates a model’s ability to classify pre-identified
functional regions. Unlike remote homology detection (Rao et al.,|2019), which typically uses a
full-length protein as input, this task provides only the annotated fragment sequence. The objective is
to assign this fragment to its corresponding InterPro family (see Table[Z). This reflects a practical two-
stage inference pipeline that first locates functionally relevant regions, then assigns them to functional
families. Since proteins often contain multiple functional fragments, the task also supports multi-label
(InterPro family) annotations and encourages models to capture compositional functionality. It also
bridges residue-level predictions with interpretable biological labels grounded in existing ontologies.
Crucially, inputs for this task are continuous sequence motifs (e.g., signature sequences defined by
InterPro). We do not artificially concatenate non-consecutive residues. Consequently, tasks defined
solely by 3D spatial proximity without conserved 1D motifs (e.g., BioLiP binding sites, SAbDab
epitopes) are excluded from this category and handled exclusively in residue-level tasks.

Labeling Strategy The label for each functional fragment is its corresponding InterPro family ID,
as curated from the source database. Since a single protein region can occasionally be assigned to
multiple overlapping InterPro families, the task is formulated as a multi-label classification problem,
though most instances have a single label.

Evaluation Metrics These tasks assign each functional fragment to its corresponding InterPro
family, which may include hundreds to tens of thousands of distinct classes (see “# Class” in
Table [2). We report accuracy (ACC), macro-averaged precision, recall, F1 score, and Matthews
correlation coefficient (MCC). We take ACC and macro-F1 as the primary metrics to reflect both
overall correctness and class-balanced performance.

3.3 PAIRWISE FUNCTIONAL SIMILARITY SCORING

Task Description This third category of tasks evaluates how well learned representations can
capture functional similarity in a zero-shot, unsupervised setting. Given a pair of inputs (either
proteins or fragments), the goal is for a model to produce a similarity score reflecting their functional
relatedness. This task provides a retrieval-style evaluation of representation quality, particularly for
identifying subtle but biologically relevant similarities. It has important practical value in applications
such as enzyme mining, remote homolog detection, and functional clustering in metagenomic datasets.
A full dataset summary is provided in Table[3]

Labeling Strategy The ground truth for this task is defined by InterPro family membership. A pair
of proteins or fragments is considered a positive sample if both members are annotated with the same
InterPro family ID. Conversely, a pair is considered a negative sample if they belong to different
InterPro families.

Evaluation Metrics Pairwise similarity scoring tasks are evaluated using the area under the ROC
curve (AUC). We use cosine similarity between protein representations as the similarity score
for embedding-based methods. For alignment-based methods that explicitly compute sequence
or structure alignments, we employ the negative logarithm of the E-value (e.g., for FOLDSEEK
(Van Kempen et al.,2024) and BLAST (Altschul et al.,[1990)) or the bi-directional average TM-score
(e.g., for TM-ALIGN (Zhang & Skolnick, [2005)).
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3.4 PARTITIONING PROTOCOL FOR TRAINING AND EVALUATION

Classification Tasks We evaluate both in-distribution and out-of-distribution prediction perfor-
mance. To this end, we construct mix-family and cross-family data splits for both residue-level
and fragment-level tasks. (1) Mix-family splits assess in-distribution generalization by randomly
partitioning proteins (or fragments) into training, validation, and test sets in an 8:1:1 ratio, without
considering family assignments. (2) Cross-family splits evaluate out-of-distribution generalization by
assigning entire InterPro families to training, validation, and test sets in the same 8:1:1 ratio. For both
strategies, we first apply MMseqs2 clustering (Steinegger & Soding) [2017) at 50%, 70%, and 90%
sequence identity thresholds to reduce redundancy before splitting. Note that, due to limitations in
available data and family annotations across the original source databases, mix-family splits on pro-
teins are applied to datasets from all three sources. In contrast, fragment-level splits and cross-family
splits based on family identity are applied only to InterPro-sourced datasets. Detailed availability and
train/validation/test set statistics are provided in Tables[OHIO]in Appendix Section [A.5]

Similarity Scoring Tasks As the third task category of pairwise functional similarity scoring does
not involve model supervision, we do not perform data partitioning. Instead, following a similar
strategy to (Tan et al.} 2024c), we uniformly subsample a set of positive and negative pairs from the
complete dataset for evaluation. This random subsampling is necessary due to the combinatorially
large number of possible protein pairs in the similarity scoring task (for instance, see Table [3).
Specifically, for both pairing tasks on fragments and proteins, we randomly sample 10, 000 positive
pairs (i.e., proteins from the same InterPro family) and 10, 000 negative pairs (i.e., proteins from
different InterPro families) as one evaluation dataset. We repeat the procedure using three different
random seeds, and the final performance scores are averaged across the three repetitions.

3.5 NAMING PROTOCOL FOR BENCHMARK DATASETS

Following the construction options introduced in Sections [3.T{3.4] VENUSX includes a total of 56
datasets. For clarity, each dataset is named by VENUSX_ [category]_[target]_[split],
where each part denotes the task category, prediction target, and data split strategy.

* [category] refers to the task category, with three choices of Re s, Frag, and Pair to represent
Residue-level tasks, fragment-level tasks, and pairwise scoring tasks.

* [target] represents the 7 cases of targets, including Act (active sites), BindI (binding sites
from InterPro), BindB (binding sites from BioLiP), Evo (evolutionary pressure), Mot i £ (func-
tional motif), Dom (functional domain), and Epi (epitope sites).

* [split] denotes the partitioning strategies, with X for cross-family and M for mix-family splits,
P and F indicating protein or fragment, and the final number representing the clustering threshold.

For instance: (1) VENUsX_Res_BindB_X is a residue-level binary classification task that predicts
binding sites (from BioLiP), using a cross-family split. (2) VENUSX_Frag_Act_MF90 denotes
a fragment-level multi-class classification task targeting active sites, with a mix-family split on
fragment entries clustered at 90% identity. This benchmark is designed for community expansion,
and we welcome contributions. Upon acceptance, a public repository will be made available for
contributions via Pull Request. The primary data requirement is a format including a seq_full
field for the full-length sequence and a 1abel field for the corresponding residue-level annotation
array, with detailed instructions provided in the supplementary materials.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Model Setup For both residue- and fragment-level classification tasks, pretrained sequence-based
models (e.g., ESM2 (Lin et al.,|2023), PROTBERT (Elnaggar et al.| 2021))) and sequence—structure
models (SAPROT Su et al.| (2023), PROTSSN (Tan et al.,|2025c)) are used as frozen feature extractors.
This protocol isolates the intrinsic quality of pre-trained representations from fine-tuning confounders
and ensures computational accessibility on this large-scale benchmark. In contrast, the structure-based
GVP-GNN (Jing et al., [2021])) is trained from scratch with all parameters updated, this approach
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Table 4: Residue-level classification performance across datasets and data splits. “MF50” and “MP50”
refer to mixed-family splits with 50% sequence identity filtering applied to fragments and proteins,
respectively. Top-1, Top-2, and Top-3 results for each target dataset are highlighted, respectively.
Models are grouped by input modality. AUPR scores for each task are reported, and detailed results
are provided in Tables[I9}2T] of the Appendix Section|F|

Target Split Sequence-only Sequence-Structure Structure-only
ESM2-130 ESM2-133 PROTBERT ANKH-BASE SAPROT-35M  SAPROT-650M PROTSSN GVP-GNN
MF50 0.855 0.852 0.764 0.873 0.688 0.745 0.465 0.523
Act MP50 0.932 0.955 0.895 0.960 0.905 0.945 0.917 0.898
Cross 0.143 0.143 0.131 0.166 0.114 0.185 0.156 0.101
MF50 0.912 0.904 0.857 0.907 0.807 0.838 0.801 0.611
Bindl MP50 0.963 0.971 0.926 0.970 0.927 0.960 0.907 0.883
Cross 0.133 0.159 0.112 0.145 0.230 0.182 0.182 0.040
MF50 0.862 0.899 0.771 0.895 0.724 0.734 0.715 0.342
Evo MP50 0.897 0.926 0.803 0.932 0.775 0.912 0.895 0.792
Cross 0.235 0.262 0.243 0.275 0.272 0.274 0.227 0.101
MF50 0.855 0.874 0.779 0.884 0.767 0.802 0.716 0.661
Motif MP50 0.850 0.857 0.796 0.870 0.784 0.841 0.765 0.736
Cross 0.433 0.456 0.348 0.394 0.408 0.441 0.390 0.329
MF50 0.634 0.666 0.591 0.673 0.574 0.642 - 0.560
Dom MP50 0.645 0.657 0.592 0.665 0.584 0.640 - 0.557
Cross 0.470 0.506 0.508 0.449 0.525 0.564 - 0.468
MP50 0.409 0.446 0.340 0.421 0.374 0.388 - 0.301
BindP MP70 0.465 0.494 0.410 0.487 0.330 0.389 - 0.337
MP90 0.496 0.535 0.466 0.527 0.354 0.411 - 0.374
MP50 0.186 0.174 0.169 0.167 0.182 0.195 0.196 0.118
Epi MP70 0.184 0.202 0.177 0.215 0.194 0.237 0.200 0.139
MP90 0.277 0.290 0.266 0.270 0.256 0.308 0.274 0.196

Table 5: Fragment-level classification performance across InterPro datasets and data splits under
50% sequence identity. Top-1, Top-2, and Top-3 results for each metric are highlighted, respectively.
Detailed results are provided in Table @ of Appendix Section E

T . Sequence-only Sequence-Structure Structure-only
arget Metric
ESM2-130 ESM2-T33 PROTBERT ANKH-BASE SAPROT-35M SAPROT-650M PROTSSN GVP-GNN
Act ACC 0.819 0.814 0.736 0.824 0.928 0.928 0.891 0.907
Macro-F1 0.647 0.605 0.609 0.647 0.807 0.825 0.764 0.906
Bindl ACC 0.937 0.934 0.927 0.920 0.976 0.986 0.972 0.972
Macro-F1 0913 0.753 0.790 0.718 0.809 0.957 0.931 0.884
Evo ACC 0.853 0.841 0.828 0.866 0.939 0.950 0.915 0.914
Macro-F1 0.667 0.669 0.627 0.716 0.849 0.863 0.793 0.757
Motif ACC 0.884 0.906 0.884 0.901 0.901 0.927 0914 0.807
Macro-F1 0.457 0.542 0.452 0.499 0.504 0.552 0.556 0.370

aligns with standard evaluation protocols for geometric GNNs (Jamasb et al., 2024) and ensures
fairness in computational scale. For residue-level tasks, the encoders output embeddings of each
residue, which are passed through two linear layers with ReLU activation and dropout. For fragment-
level classification, mean pooling is applied to obtain fragment representations for InterPro family
prediction. In pair-level similarity evaluation, full-length sequences or fragments are encoded, mean-
pooled, and compared via similarity metrics to assess family-level relationships. Parameter statistics
for all models are provided in Table[I3]in Appendix Section B}

Training Setup For all tasks, full-length protein sequences are truncated to a maximum of 1022
residues. For sequence-structure models, 3D structure files were truncated in parallel to include only
the atoms of the retained residues, ensuring a perfect residue-to-coordinate mapping. Fragments are
capped at 128 residues for Act, BindI, Evo, and Motif, and at 512 residues for Dom. All models are
trained with a fixed random seed of 3407 to ensure reproducibility. Optimization is performed using
AdamW (Loshchilov et al [2017) with a learning rate of 0.001 and an effective batch size of 128
via gradient accumulation. Training proceeds for up to 100 epochs, with early stopping triggered
if validation performance does not improve for 10 epochs. For residue-level and fragment-level
classification tasks, AUPR and accuracy on the validation set are used as early stopping criteria,
respectively. All experiments are conducted on 16 NVIDIA RTX 4090D GPUs and 192 Intel(R)
Xeon(R) Gold 6248R CPUs with 2 TB of memory for 45 days.
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Table 6: AUC (%) of baseline models on InterPro family alignment under two evaluation settings:
F50 (fragment-level inputs with 50% sequence identity filtering) and P50 (full-sequence inputs with
50% identity). Models are grouped by modality. Cell colors indicate ranking: Top-1, Top-2,

Top-3, Top-4. Standard deviation over three folds is shown in parentheses.
Model Information Act BindI Evo Motif Dom
Name Version F50 P50 F50 P50 F50 P50 F50 P50 F50 P50
Alignment-based Methods
FOLDSEEK 3Di 96.00.1) | 965(0.2) 92602y 80.6(0.2) 8830.1) 99001 | 4802 64.90.1 - -
3DI-AA | 961001 96509 92602 80.10s) | 884way 99001 74702 64702 - -
TM-ALIGN mean 94.6(0.0) - 90.1(0.1) - 67.70.1) - 76.6(0.0) - - -
BLAST - 529020 TL701) 5240.1) 5l.1go)  54.0(0.3) - 49.90.1) 56.2(0.3) - -
Sequence-only Encoder Methods
30 69405 69202 77604 65502 52405 87502 84305 68203 78002 7740
ESM2 33 50205 70.003) 73.00.4) 62303 49305 89002 92103 66.101) 62202 66.40.1)
136 65803 72902 Tl30s 67604 63901 92100 9010z [70001) | 66.502 66.7(0.0)
ESM-1B 133 67.602) 73802 84502 69802 57005 88403 87203 584w 89202 ThT02)
PROTBERT bfd Tlds 68703 84904 66801 54604 84203 85102 68203 85302 77903

Sequence-only Encoder-Decoder Methods
PrROTTS xI_unirefS0  91.8¢9.1) 7812y 98501 7711  TL.0w2 95.60.1) 98200 67.600.3 98501 851.1)
ANKH base 69.6(0.5) | 90.40.2) 88902 [9B8@2) 6390.4) | 98901 86.702 69703 97.6(0.1) | 88:50.1)

Sequence-structure Methods

3SM_AF2  95.8(0.0) 746001y 94.3001) T1.9¢0.2) y 92702 85.30.1) 66.602 96.00.1) 78.8(0.3)
650M_PDB  82.8(2) 68201 98101 Tllg1 62605 93.80.1) | 98900 68303 91.701) 76.10.2)
PROTSSN k20_h512  79.1¢p3 64.802) 8844 61204 60.904) 86.201) 72403 64.002 82902 69.40.0)
ESM-IF - 96O 70202y  95.000.1)  65.6(0.1) 61.300.3 90.604) 80402y 66.00.2 9712 70.5(0.2)
( ) (
)
)

SAPROT

MIF-ST - 65.90.6) 65903 86.1g.1) 59203 61303 80302 50204y 66.30.6 78.6(0.2) 66.7(0.0)
TM-VEC swiss_large  93.602)  89.9(0.2) 98.600.0) 82400y 67402 96.200.1) [ 99400 T1.703 98201 5990.2)
PROSTTS AA2fold 90.8(0.1y  80.7(0.3) [9950.0) | 79200 55605 98.2(0.0)  98:50.0) 69.800.2) | 98501y 79-3(0.2)

4.2 EVALUATED METHODS

The summary of all baseline models, including architecture type, version, task scope, parameter
count, and implementation source, is presented in Table[I3]in Appendix.

Classification Baselines For the residue-level and fragment-level classification tasks, we evaluate
a set of pretrained models spanning diverse architectures. These include sequence-based language
models such as ESM2 (Lin et al.,[2023)), PROTBERT (Elnaggar et al.,[2021)), and ANKH (Elnaggar
et al., [2023)); sequence—structure hybrid models such as SAPROT (Su et al.| 2023 and PROTSSN
(Tan et al.} 2025c); and a structure-only geometric network, GVP-GNN (Jing et al., 2021).

Similarity Scoring Baselines For the pair-wise similarity evaluation task, we extract mean embed-
dings from pretrained language models, including ESM?2 (Lin et al., 2023), PROTBERT (Elnaggar
et al.| 2021), ESM-1B (Rives et al.|[2021), PROTTS (Elnaggar et al.l[2021), ANKH (Elnaggar et al.|
2023)), TM-VEC (Hamamsy et al.,[2024), and two inverse folding models, MIS-ST (Yang et al.|[2023)
and ESM-IF1 (Hsu et al.| [2022). For traditional alignment-based methods, we include BLAST
(Altschul et al.l [1990) (sequence alignment), TM-ALIGN (Zhang & Skolnick} 2005) (structure align-
ment), and FOLDSEEK (Van Kempen et al.| 2024)), which supports both structure-only (3Di) and joint
sequence-structure (3Di-AA) comparisons.

4.3 RESIDUE-LEVEL BINARY CALSSIFICATION

Table 4] lists AUPR on seven residue-annotation benchmarks under mixed-family (in-distribution)
and cross-family (out-of-distribution) splits. Some experiments are omitted due to missing structural
inputs or prohibitive computational costs. Key observations are:

* Language models perform strongly on in-distribution splits. ANKH-BASE attains the high-
est AUPR on 7/15 InterPro Mix tasks, while ESM2-T33 dominates the BindP and Epi mixes,
confirming that sequence is sufficient when test proteins remain close to the training set.

* Sequence-structure models generalize better for unseen families. SAPROT-650M achieves the
best or second-best performance across all InterPro Cross splits, and shows a notable advantage in
domain-level classification (e.g., +5.6% AUPR over PROTBERT).
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* Cross-family residue prediction remains highly challenging. On Act and BindI the best AUPR
plummets by 70-80% in Cross, whereas Dom drops by < 10%, suggesting that catalytic and
binding residues are harder to extrapolate than domain-wide patterns.

* Dataset properties strongly affect difficulty. Mix splits from InterPro are relatively well-
structured and easier to predict. In contrast, Epi remains extremely difficult—no model achieves an
AUPR above 0.3 across all sequence identity levels.

4.4 FRAGMENT-LEVEL MULTI-CLASS CLASSIFICATION

Table E] reports ACC and Macro-F1 on four InterPro targets (Act, Bindl, Evo, Motif) with 50%
sequence-identity filtering.

* Sequence-structure models are consistently superior. SAPROT-650M or PROTSSN ranks first
on 7/8 metrics; e.g. SAPROT-650M outperforms the strongest protein language model (ESM2-133)
on Act by +11.4% ACC and +22% Macro-F1.

* Structure-only models show strong task-specific performance. GVP-GNN matches alignment-
aware models on Act and Bindl (Macro-F1 = 0.906 / 0.884) but lags on Motif, indicating pure
structure is task-dependent.

* Sequence models are more sensitive to class imbalance. While ACC exceeds 80%, their Macro-
F1 is 15-20% lower; sequence-structure models cut this gap to ~10%, showing better robustness
to skewed label distributions.

4.5 PAIRWISE FUNCTIONAL SIMILARITY SCORING

Table[6] reports AUC (%) for family-level alignment under two low-identity conditions—F50 (frag-
ment inputs clustered at 50% identity) and P50 (protein inputs at 50% identity). Because exhaustive
structural alignment (e.g., TM-ALIGN) is prohibitively expensive at this scale, several entries are left
blank; baseline models description and full command lines are given in Appendix Section[B.2]

* Structure-based aligners remain the gold standard. FOLDSEEK delivers near-perfect perfor-
mance, topping 3/8 settings and peaking at 99.0% AUC on Evo_P50. TM-ALIGN is likewise
competitive when evaluated, whereas sequence-only BLAST trails by > 40% on every task,
underscoring the advantage of structural information.

* Large encoder—decoder models close much of the gap. PROTTS attains 98.5% on BindI_F50 and
98.2% on Motif F50, outperforming all pure sequence encoders (ESM2, ESM-1B, PROTBERT)
by 7-20% and surpassing TM-ALIGN on three fragment settings. Ankh shows similar strength on
full-sequence inputs (Act_P50: 90.4% vs. 69—74% for vanilla encoders).

* Sequence-structure hybrids are highly alignment-aware. TM-VEC reaches top-2 ranking in
5 of 10 cells (e.g., 99.4% on Motif _P50; 98.2% on Dom_P50), while SAPROT-650M attains
98.1% on BindI_P50. These results indicate that injecting structural inductive bias enables LM
embeddings to rival specialised aligners at a fraction of the computational cost.

5 RELATED WORK

Protein-wise Tasks A variety of benchmarks have been developed to support machine learning on
protein sequence and structure data. Early efforts such as TAPE [Rao et al.|(2019) and ProteinNet
AlQuraishi| (2019) focused on sequence-level tasks including secondary structure prediction, contact
prediction, and remote homology classification. More recently, benchmarks like PEER Xu et al.
(2022), PETA [Tan et al.| (2024b)), VenusFactory Tan et al.| (2025a), and ProteinGLUE |Capel et al.
(2022)) introduced multi-task evaluations for protein sequence understanding, emphasizing sequence-
level predictions across diverse annotation types /Almagro Armenteros et al.| (2017); |Khurana et al.
(2018)). Envision |Gray et al.|(2018)), DeepSequence Riesselman et al.| (2018)), and ProteinGym Notin
et al.| (2024)) advanced large-scale evaluation for fitness prediction under zero-shot or supervised
mode, while FLIP Dallago et al.| (2021) curated different split strategies (e.g., one-vs-rest, which
trains models on single mutations and tests on the rest of the high-order mutations) to cover various
scenarios. ProteinShake |Kucera et al.| (2023) standardized structural datasets and task formulations
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across graph, point cloud, and voxel-based representations for protein structures. ProteinBench
(2025)) evaluates various methods for different tasks such as protein structure prediction,
sequence design, structure design, sequence-structure design, and molecular dynamics.

Protein-pair Tasks Protein-pair modeling tasks encompass a broad spectrum of physical and
functional interactions. PEER includes interaction classification in human
et al| (2010) and yeast/Guo et al.|(2008) PPI networks, as well as affinity regression using SKEMPI
Jankauskaité et al.| (2019). Structural datasets such as MaSIF|Gainza et al.|(2020) and DIPS-plus
Morehead et al|(2023) provide high-quality annotations of protein—protein interfaces, enabling
geometric modeling of interaction surfaces. The recent HDPL pocketome Moine-Franel et al.|
expands this scope by offering pocket-centric structural data related to PPIs and PPI-related
ligand binding sites. Functional networks like STRING [Szklarczyk et al.| (2019) support large-scale
classification of biological associations. In the protein—ligand domain, PDBbind [Wang et al.| (2005))
and the Ligand Binding Affinity (LBA) tasks in Atom3D [Townshend et al.|(2020) provide affinity
labels derived from co-crystal structures. While these resources facilitate pairwise prediction and
interaction modeling, they generally lack residue-level supervision, limiting their utility in evaluating
fine-grained functional inference.

6 DISCUSSION AND CONCLUSION

This work introduces VENUSX, a large-scale benchmark for assessing protein representation learning
at fine-grained residue and fragment resolutions. By targeting precise localized signals rather than
coarse global labels, VENUSX enables rigorous evaluation of mechanistic understanding.

Our extended experiments demonstrate that traditional alignment methods (BLAST) cannot effectively
transfer fine-grained functional labels (AUPR = 0.04, Appendix [E), validating the necessity of deep
representation learning. We further show that sequence-structure models significantly outperform
sequence-only baselines in low-identity settings (e.g., MP30), suggesting that structural priors are
critical for generalization when sequence homology is weak (Appendix [D4). However, current
models perform poorly on epitope prediction, revealing limitations in reasoning about conformational
and antibody-independent features. Cross-task correlations confirm that these fine-grained capabilities
are distinct (Appendix [C).

Reliability was verified through stability analysis across random seeds and ablation studies on
predicted structure fidelity (Appendix [D.I). VENUSX provides the community with a biologically
grounded benchmark emphasizing rigorous out-of-distribution evaluation, serving as a resource for
advancing functional protein modeling.

REPRODUCIBILITY AND ETHICS STATEMENT

Reproducibility Statement To ensure reproducibility, all code, data, and a leaderboard are made
publicly available as open-source resources’} We detail our data curation in Section task definitions
and splitting protocols in Section [3] and experimental setup with hyperparameters in Section4.T]and
the Appendix (Section [B).

Ethics Statement Our benchmark is constructed exclusively from public, anonymized protein
databases and involves no human subjects. We adhere to the Code of Ethics and acknowledge that our
data may reflect historical biases from these sources, a point further discussed in our dataset analysis.

The Use of Large Language Models (LLM) In the preparation of this manuscript, we utilized
LLMs, specifically Gemini 2.5 Pro and ChatGPT 4o, as writing assistants in the preparation of
this manuscript. To refine the text, we prompted the models with role-playing instructions, such as
"Act as a professional scientific editor...". The use of these tools was strictly limited to improving
grammar, clarity, and overall readability. All scientific ideas, experimental results, and conclusions
were conceived and formulated exclusively by the authors. All text polished or modified by the LLM
was subsequently reviewed and edited by the authors to ensure that the original scientific meaning
was accurately preserved.

4Code (VenusX Github), dataset (VenusX Huggingface) and leaderboard (VenusX Website).
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A  DATASET

A.1 DEFINITIONS OF INTERPRO ANNOTATION TYPES

To ensure clarity for the benchmark tasks, we provide the definitions for the functional site annotation
types sourced from the InterPro database:

* Domain: Domains are distinct functional, structural or sequence units that may exist in a variety of
biological contexts. A match to an InterPro entry of this type indicates the presence of a domain.
Common examples of protein domains are the PH domain, Immunoglobulin domain or the classical
C2H2 zinc finger.

* Motif: A short, conserved sequence of amino acids that is associated with a specific function.
Motifs are typically shorter than domains and may not fold into a stable structure on their own.
They often serve as signatures for a particular protein family or function.

* Active Site: A short sequence that contains one or more conserved residues, which allow the
protein to bind to a ligand and carry out a catalytic activity.

* Binding Site: A short sequence that contains one or more conserved residues, which form a protein
interaction site.

» Conserved site: A short sequence that contains one or more conserved residues, typically implying
structural or functional importance.

A.2 SEQUENCE LENGTH DISTRIBUTION

Table 7: Summary of fragment and full-sequence length statistics for each InterPro category.

Target Type #Samples Min Max Mean Median
Fragment 9,767 6 39 16.54 14.00

Act Protein 9,667 39 2,753 482.51 379.00
BindI Fragment 10,562 4 100 20.75 19.00
Protein 8,959 45 2,631 486.54 415.00

Evo Fragment 66,916 5 149 20.93 19.00
v Protein 59,948 16 2,896 365.88 305.00
Dom Fragment 653,259 2 600  150.54  124.00
Protein 595,443 16 2,988 53741 444.00

Motif Fragment 13,137 5 228 57.02 62.00

Protein 10,271 30 2,699 595.15  558.00

Figures[2]to ] and Table[7]show the length distributions of annotated protein fragments (top) and their
corresponding full-length protein sequences (bottom) across five InterPro categories. To facilitate
visualization, outliers were excluded: domain fragments longer than 600 residues, motif fragments
exceeding 230 residues, and full-length proteins longer than 3000 residues.

Several trends can be observed:
* At the fragment level, Act, BindI, and Evo sites exhibit relatively short lengths, typically under 50

residues, with Act sites showing clear multimodal peaks due to specific catalytic motifs. Dom and
Mootif fragments show broader distributions, with domain fragments exhibiting a long tail.

* In contrast, full-length proteins follow a typical long-tailed distribution across all categories, with
most proteins under 1000 residues but a small number extending beyond 2000. The distributions
are highly skewed, especially in the Dom and Evo datasets, reflecting the diversity of protein sizes.

These distributions motivate the design of separate fragment- and full-sequence benchmarks, as the
input length significantly impacts model performance and scalability.

16



Under review as a conference paper at ICLR 2026

864 Length Distribution of Fragments and Full Sequences (Clustered by Fragment Similarity)
865 Active Site ) Binding Site Evolutionary Pressure Domain s Motif
866 = . * .
867 S0 . * = '
868 £, 0s ’ w0 '
869 10 Egngth 30 40 o 20 AEeng;: 80 100 o 50 Lengthloﬂ 150 o ZOULength‘QUO 600 o 50 tl;l:ll"gtr:SO 200
870 o 1 . 60 12
871 g ; ‘ o o
872 g 05 04 4 20 05
8 0.2 2 0.2
873 [ 500 1000 1500 2000 2500 [ 500 1000 1500 2000 2500 [ 1000 2000 3000 o 1000 2000 3000 0 500 1000 1500 2000 2500
874 Length Length Length Length Length
75 g . : ;
876 e : s .
877 g o :
878 10 Eeongth 30 40 o 20 4Eeng:ﬂ 80 100 o 50 Lengthlcﬂ 150 o 50 tDeCIV"gtr:SU 200
879 : .
880 £ 5
: -
882 ) 500 1000 1500 2000 2500 1000 1500 2000 2500 ] 1 3000 1000 1500 2000 2500
883 Length Length Length Length
884 g ” : l’j
885 ¢ z: : :::
886 - 0 :
887 o 20 AEengiﬂ 80 100 o 50 Lengthlcﬂ 150 o 50 :‘Oé)ngtﬁsﬂ 200
888 203 03 2 *
889 . o
890 o1 o .
891 o 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 o 1000 2000 3000 o 1000 2000 3000 0 500 1000 1500 2000 2500
892 Length Length Length Length Length
893 [ Fragment =3 Full
894
895 Figure 2: Sequence length distribution of the VENUSX InterPro benchmark under different levels of
896 sequence similarity, clustered by fragment.
897
s Table 8: Statistics of InterPro type label frequency across five categories, computed separately on
899 annotated fragments and full sequences.
900
901 Target Type #Iypes Min Max Mean Median
902 At Fragment 132 1 1176 7399  37.50
903 Protein 132 1 1172 73.23 37.50
904 Binar Fragment 76 2 2293 13897 53.50
905 Protein 76 2 2279  117.88 53.00
906 Evo Fragment 740 1 1418 90.43 36.00
907 Protein 740 1 1074 81.01 31.50
908 Dom Fragment 12,529 1 12002  52.14 6.00
909 Protein 12,580 1 8109 4733  6.00
910 Motif Fragment 440 1 2222 29.86 3.00
911 Protein 454 1 1247 22.62 3.00
912
913
914 A.3 INTERPRO LABEL DISTRIBUTION
915
916 Based on Table 8] Figures|S|and |6, we analyze the distribution of residue-level labels across InterPro
; g . Y : .
917 categories. Due to the extreme imbalance in class sizes, we apply a log-scale transformation when

visualizing the number of annotations per InterPro type.
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Figure 3: Sequence length distribution of the VENUSX InterPro benchmark under different levels of
sequence similarity, clustered by full sequences.

Severe long-tail distribution across datasets. All five datasets exhibit substantial class imbalance.
For example, the domain task has over 12,000 InterPro types, but a median of only 6 annotated
proteins per type at both the fragment and full-sequence level. Similarly, motif labels have a median
count of 3, emphasizing the prevalence of rare classes.

Skewed distribution dominated by few frequent families. In most datasets, a small number of
InterPro types contribute a disproportionate number of samples. For instance, the top 5 types in the
binding site fragments account for over 5,000 samples, while many other types appear fewer than
10 times.

Fragments exhibit slightly denser annotation than full sequences. Across all datasets, the mean
and median counts per InterPro type are consistently higher at the fragment level than for full
sequences. This suggests fragments are more focused on annotated functional regions, whereas full
sequences dilute sparse labels across longer chains.

These trends reinforce the importance of using macro-averaged metrics and highlight the difficulty of
learning under class-imbalanced, fine-grained label regimes—especially for tasks such as domain
and motif classification.

A.4 DISTRIBUTION OF FUNCTIONAL DOMAIN START POSITIONS

Figures [7]and 8] show the distribution of relative start positions of protein functional domains. For
an underlying protein, relative start position describes the normalized start location of its functional
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Figure 4: Sequence length distribution of BioLip and SAbDab benchmarks under different levels of
sequence similarity, clustered by full sequences.

region divided by the full sequence length, with the range between 0 (start of the sequence) and 1
(end of the sequence). Distribution of starting positions reveals that different functional site types
exhibit strong and distinct positional preferences along the sequence (e.g., active sites tend to appear
around the middle of the sequence, while motifs favor the termini). This positional bias may introduce
misleading signals for models trained on full-length sequences. When the positional distribution of
functional domains in the training data is skewed toward one end of the sequence, models may overfit
to these positional cues, limiting their ability to generalize to more diverse or unbiased scenarios.
This underscores the need for our fine-grained benchmark to ensure that models learn true functional
patterns rather than relying on location-based shortcuts.

A.5 DATASET NUMERICAL SPLIT DETAIL

Table 9: Residue-level: Number of train/validation/test examples under mixed-family (Mix50) and
cross-family splits. “Fragment” and ‘“Protein” refer to clustering at the fragment and full-sequence
levels, respectively.

T # Train/Validation/Test (Mix50) # Train/Validation/Test (Cross)
arget Data Source

Fragment Protein Family Protein
Act InterPro|Paysan-Lafosse et al.|(2023) 1,488/186/186 2,929/366/367 104/14/14 7,701/880/1086
Bindl  InterPro|Paysan-Lafosse et al.|(2023) 1,640/205/205 2,366/296/296 60/8/8 7,729/551/679
BindB  BioLiP|Yang et al.[(2012}) - 19,412/2,426/2,427 - -
Evo InterPro|Paysan-Latosse et al.|(2023)  10,383/1,298/1,298 13,552/1,694/1,694 592/74/74 48,437/5,445/6,006
Motif  InterPro|Paysan-Lafosse et al.|(2023) 2,008/251/251 2,720/340/341 362/46/46 7,799/1,045/1,427
Dom InterPro|Paysan-Lafosse et al.|(2023)  84,489/10,561/10,562  113,607/14,201/14,201  10,065/1,258/1,260  477,149/56,600/61,705
Epi SAbDab |Dunbar et al.|(2014) - 828/103/104 - -

Pre-filtering and Clustering. For all InterPro-based datasets, we apply a pre-filtering step to
remove sequences lacking predicted structures from the AlphaFold Protein Structure Database [Varadi
et al.| (2022)), ensuring structural consistency for downstream evaluations. Following this, we perform
sequence identity clustering using MMseqs2 |Steinegger & Soding| (2017) under varying identity
thresholds (50%, 70%, and 90%) to construct non-redundant splits at both the fragment and full-
sequence levels. Clustering is conducted with a coverage mode of 1 (query coverage), and a minimum
coverage of 0.8.

19



Under review as a conference paper at ICLR 2026
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Figure 5: InterPro label distribution of the VENUSX InterPro benchmark under different levels of

sequence similarity, clustered by fragment.

Table 10: Residue-level: Number of train/validation/test examples under mixed-family at 70% and
90% sequence identity. “Fragment” and “Protein” refer to clustering at the fragment and protein

levels.
T # Train/Validation/Test (Mix70) # Train/Validation/Test (Mix90)
arget Data Source

Fragment Protein Fragment Protein
Act InterPro Paysan-Lafosse et al. (2023} 2,724/340/341 5,378/672/673 5,269/659/659 7,279/910/910
Bindl  InterPro/Paysan-Lafosse et al. (2023} 3,016/377/377 4,432/554/555 5,306/663/664 6,428/803/804
BindB BioLiPr ang et al. - 25,137/3,142/3,142 - 32,394/4,049/4,050
Evo InterPro|Paysan-Lafosse et al.|(2023 17,459/2,182/2,183 27,848/3,481/3,481 33,636/4,205/4,205 42,869/5,359/5,359
Motif  InterPro|Paysan-Lafosse et al. |(2023) 3,539/442/443 4,624/578/579 5,472/684/685 6,715/839/840
Dom InterPro|Paysan-Lafosse et al.|(2023)  160,201/20,025/20,026  215,652/26,957/26,957  263,870/32,984/32,984  348,944/43,618/43,618
Epi SAbDab|Dunbar et al.]q2014' - 996/124/125 - 1,524/190/191

Residue-level Split Settings. Tables[9]and [I0] summarize the number of train/validation/test ex-
amples under different split strategies. Table [9] reports counts under the mixed-family (Mix50)
and cross-family splits, where fragment-level and full-sequence clustering are applied separately.
Table [I0] further breaks down the mixed-family splits at 70% and 90% sequence identity thresholds.
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1118

1119
1120 Table 11: Fragment-level: Number of train/validation/test examples under mixed-family at 50%,
1121 70%, and 90% sequence identity clustering at the fragment level.

1122

1123 Target # Train/Validation/Test

1124 MF50 MF70 MF90

1125 Act 1,545/191/193 2,777/352/358 5,344/670/670

1126 BindI 2,558/294/287 4,075/511/472 6,487/830/826

1127 Evo 12,880/1,596/1,613 21,140/2,604/2,596 38,736/4,910/4,843
Motif 3,083/362/372 5,123/630/589 7,516/949/928

1128 Dom 105,110/13,112/13,011  188,870/23,565/23,762  300,661/37,539/37,742

1129

1130

1131

1132 InterPro-based datasets support all three types of splits, while BioLiP and SAbDab only provide
1133 full-sequence annotations and thus are limited to full-protein splits. Dom and conserved datasets are
the largest in scale, enabling more comprehensive evaluations across clustering thresholds.
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Distribution of Functional Domain Start Positions (Clustered by Fragment Similarity)
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Figure 7: Protein functional domain start position density of the VENUSX InterPro benchmark under
different levels of sequence similarity, clustered by fragment.

Table 12: Detailed number information of the unsupervised pair similarity evaluation task. “# Protein-
P/N” and “# Frag-P/N” denote the total number of positive and negative pairs sampled by Protein
sequences or fragments within InterPro families. “# Protein/Frag-pdb” denotes whether the structures
of protein sequences or fragments are available.

Target Data Source # Protein-P # Protein-N # Frag-P # Frag-N Protein-pdb  Frag-pdb
Act InterProPaysan-Lafosse et al.|(2023 1,314,757 45,405,854 1,331,749 46,360,512 v v
Bindl  InterPro|Paysan-Lafosse et al.[(2023) 3,550,288 36,577,073 4,957,073 50,815,568 v v
Evo InterPro|Paysan-Lafosse et al. 2023 7,710,941 1,789,140,437 9,990,111 2,228,851,959 v v
Motif  InterPro|Paysan-Latosse et al. 2023 2,415,212 50,326,373 5,962,485 81,732,661 v v
Dom InterPro|Paysan-Lafosse et al. 2023 217,681,629 177,064,753,702 346,047,386 215,260,712,060 v v

Fragment-level Split Settings. Table [T presents the number of train/validation/test examples
across five InterPro targets under mixed-family splits with increasing sequence identity thresholds
(50%, 70%, and 90%) applied at the fragment level. As expected, raising the identity threshold
increases the number of retained fragments, approximately doubling the dataset size from MF50 to
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Distribution of Functional Domain Start Positions (Clustered by Full-sequence Similarity)
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Figure 8: Protein functional domain start position density of the VENUSX InterPro benchmark under
different levels of sequence similarity, clustered by full-sequence.

MF90. For instance, Act expands from 1.5k to 5.3k training fragments, while Dom scales from 105k
to over 300k. This progression supports finer-grained control over redundancy and task difficulty,
enabling evaluation across a spectrum of local similarity conditions. The setting facilitates analysis
of model robustness to fragment diversity and homologous signal dilution.

Pair-level Statistics. Table[T2]reports the number of positive and negative pairs for unsupervised
similarity evaluation. Positive pairs share the same InterPro family, while negatives are drawn from
different families. All tasks exhibit a strong imbalance, especially in large-scale domains (e.g., over
177 billion negative pairs). Structural coverage remains high across both full sequences and fragments,
enabling comprehensive evaluation under both sequence- and structure-based settings.
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Table 13: Summary of baseline models by input modality. “Task” indicates evaluation scope: “All”
denotes all three tasks, “Sup.” refers to supervised classification tasks only, and “Pair” to the pairwise
functional similarity scoring task. We report model type, version, parameters, embedding size, and
implementation source (via Hugging Face, GitHub, or Conda).

Input Model Version Task #Params # Train. Params Embed. Dim Implementation
30 All 150M 410K 640 HF: ESM2-t30
ESM2 Lin et al.|(2023) 33 All 652M 1.6M 1,280 HF: ESM2-t33
36 Pair. ~ 3,000M - 2,560 HF: ESM2-t36
ESM-1B|Rives et al.|(2021) 33 Pair. 652M - 1,280 HF: ESM-1b
Sequence-Only PROTBERT |Elnaggar et al.|(2021) uniref All 420M 1.0M 1,024 HF: ProtBert
PROTTS [Elnaggar et al.|(2021) xI_uniref50  Pair. 3,000M - 1,024 HEF: ProtT5
ANKH [Elnaggar et al.|(2023) base All 450M 591K 768 HF: Ankh
TM-VEC|Hamamsy et al.[(2024) swiss_large  Pair. 3,034M - 512 Github: TM-vec
PROSTTS|Heinzinger et al.[(2023) AA2fold Pair. 3,000M - 1024 HEF: ProstT5
BLAST |Altschul et al.|(1990) - Pair. - - - Conda: BLAST
: 35M_AF2 All 35M 231K 480 HF: SaProt-AF2
SaPro|Su ct al [{2023} 650M_PDB Al  650M 1.6M 1,280 HF: SaProt-PDB
Sequence-Structure PROTSSN |Tan et al.|(2025¢) k20_h512 All 800M 1.6M 1,280 HEF: ProtSSN
ESM-IF1 |Hsu et al.|(2022) - Pair. 148M - 512 HF: ESM-IF1
MIF-ST|Yang et al.[(2023) - Pair. 643M - 256 Github: MIF-ST
FOLDSEEK|Van Kempen et al.|(2024) 3Di-AA Pair. - - - Conda: Foldseek
GVP-GNN Jing et al.|(2021) 3-layers Sup. 3M 3M 512 GitHub: GVP
Structure-Only FoLDSEEK|Van Kempen et al.|(2024) 3Di Pair. - - - Conda: Foldseek
TM-ALIGN |[Zhang & Skolnick|(2005) mean Pair. - - - Conda: TM-align

B BASELINES

B.1 DEEP LEARNING MODELS

Sequence-Only. Sequence-only baselines include both encoder-only and encoder—decoder archi-
tectures. Encoder-only models such as ESM2 (t30, t33, t36) [Lin et al.|(2023), ESM-1B Rives
et al.|(2021), and PROTBERT [Elnaggar et al.|(2021) are pretrained protein language models using
masked language modeling on large sequence corpora. ANKH [Elnaggar et al.|(2023)) and PROTTS
Elnaggar et al.|(2021), in contrast, adopt encoder—decoder architectures, enabling bidirectional con-
textualization and autoregressive decoding. While TM-VEC Hamamsy et al.| (2024) and PROSTTS
Heinzinger et al.| (2023) only require sequence inputs, both incorporate structural inductive signals
during training: TM-VEC is trained to regress TM-scores, and PROSTTS is fine-tuned to translate
Foldseek-derived structural tokens.

Sequence-Structure. Sequence-structure models combine sequence and structural information in
diverse ways. SAPROT [Su et al.| (2023) fuses amino acid tokens with Foldseek-derived structural
tokens and is trained using multi-modal masked language modeling. PROTSSN |Tan et al.[(2025c)
integrates ESM2 |Lin et al.| (2023)) embeddings with geometric graph neural networks, enabling joint
sequence—structure representation learning. Both ESM-IF1 Hsu et al.| (2022)) and MIF-ST |Yang et al.
(2023) are inverse folding models: ESM-IF1 is pretrained on large-scale backbone recovery, while
MIF-ST uses structure-conditioned geometric networks initialized from large protein transformers.

Structure-Only. Structure-only baselines rely purely on 3D geometric inputs. GVP-GNN lJing
et al.| (2021)) is a non-pretrained geometric deep learning model that uses residue type and atomic
coordinate features for message passing.

B.2 ALIGNMENT-BASED METHODS

Foldseek. We employ FOLDSEEK [Van Kempen et al.|(2024) to evaluate structural similarity be-
tween query and target proteins under two alignment modes: 3Di-only (—alignment—-type 0)and
3Di+AA (-alignment-type 2). To maximize sensitivity, we activate exhaustive pairwise com-
parison via —exhaustive-search, set a high —e threshold of 1,000, and use -min-seg-id
0.0 to allow all sequence identity levels. We retain up to 100,000 alignments per query using
-max—-seqgs 100000, and parallelize computation across available CPU threads. The output
alignment scores are used to compute similarity for unsupervised pair-level evaluation (e.g., AUC).
FOLDSEEK achieves state-of-the-art tradeoffs between alignment speed and accuracy for large-scale
protein structure comparison.
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Figure 9: Spearman’s rank correlation (p) of model performance across tasks. (a) Correlation of
AUPR scores for Residue-Level tasks on the MP50 split. We observe strong correlations between
Act, Bindl, and Evo tasks. (b) Correlation of Macro-F1 scores for Fragment-Level tasks on the MF50
split. We find a striking zero correlation between Act and Motif tasks.

0.419

-0.012

BLASTp. We adopt BLAST |Altschul et al.| (1990) as a classical sequence-based alignment
baseline. Our setup disables low-complexity masking (-seg no) to preserve short functional
regions and sets a permissive [Z-value threshold (-evalue 1000000) to retain weak similarities.
Word size is reduced to 2 (-word_size 2)toimprove alignment sensitivity, and a large hit buffer
(-max_target_seqgs 100000000) ensures comprehensive coverage. The output is recorded in
tabular format (-out fmt 6), including sequence IDs, identity, alignment length, mismatches, gaps,
and bit scores. BLAST is used as a baseline for fragment-level and full-sequence pair similarity
evaluation.

TM-align. To benchmark structure-only alignment, we apply TM-ALIGN Zhang & Skolnick| (2005)
on PDB-format query and reference proteins via the default command-line interface (TMalign
query.pdb ref.pdb). TM-ALIGN returns key statistics, including RMSD, sequence identity,
aligned length, and two TM-scores (normalized by query and reference, respectively). We record the
average TM-score between the two directions as the final similarity metric for evaluation. TM-ALIGN
is widely regarded as a reliable tool for structure-based homology assessment, though its quadratic
computational complexity limits scalability on large benchmarks.

C CROSS-TASK CORRELATION ANALYSIS

We performed a cross-task correlation analysis to determine if model strengths are task-specific or
general. We computed the Spearman’s rank correlation (p) on the model performance scores (AUPR
for residue tasks [MPS50 split], Macro-F1 for fragment tasks [MF50 split]). The results are visualized
in the heatmaps in Figure 0]

Residue-Level Analysis (Figure[Oh): We observe strong, positive correlations across the Act (Active
Site), BindI (Binding Site), and Evo (Evolutionary Pressure) tasks (p ranging from 0.79 to 0.90). This
is intuitive and confirms the validity of our tasks, as active and binding sites are, by definition, under
high evolutionary pressure and functionally related. Models that excel at identifying one typically
excel at the others. The Motif task shows a weaker correlation, suggesting that identifying these
(often longer) fragments is a partially distinct capability.

Fragment-Level Analysis (Figure[Pp): A similar pattern emerges for fragment classification, where
Act, Bindl, and Evo tasks are highly correlated (p ~ 0.75 — 0.78). However, we find a striking result:
there is effectively zero correlation (p = —0.01) between the Act and Motif tasks. This empirically
demonstrates that the model features required to classify a general "Motif" are completely different
from those required to classify a specific "Active Site motif."
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Table 14: Ablation study on structure quality. (a) Performance comparison (AUPR) of SaProt models
on the Epitope (Epi) task using experimental PDB structures versus AlphaFold2 (AF2) predicted
structures. Both settings use the MP50 split. (b) Distribution of pLDDT confidence scores for the
AlphaFold structures used in VENUSX, indicating high structural reliability.

(a) Model Performance (b) AlphaFold pLDDT Statistics
Model PDB AF2 Level Mean Min Max 25% 50%

SaProt 35M  0.1820 0.1721 Protein  91.01 42.00 9871 89.10 92.70
SaProt 650M  0.1948 0.1889 Residue 91.40 19.44 99.00 89.75 94.88

Table 15: AUPR comparison between GVP-GNN (from scratch) and GearNet (pre-trained) on the
Epitope task.

Model Res_Epi_MP50 Res_Epi_MP70 Res_Epi_MP90
GVP-GNN 0.118 0.139 0.196
GearNet 0.116 0.129 0.167

D ABLATION STUDIES

D.1 IMPACT OF STRUCTURE SOURCE (PREDICTED VS. EXPERIMENTAL)

To address concerns regarding the use of predicted structures (AlphaFold DB) instead of experimental
ones (PDB), we performed an ablation study on the Epitope (Epi) task. We evaluated the structure-
aware SaProt models on the subset of the MP50 split where experimental PDB structures were
available, and compared this to the standard setting using AlphaFold structures.

Results: Table[T4]a) presents the performance comparison. We observe that the AUPR scores are
highly consistent between the two settings. For instance, SaProt-650M achieves an AUPR of 0.1948
on PDB structures and 0.1889 on AlphaFold structures. This minimal performance difference is
attributable to the high confidence of the predicted structures used in VENUSX. As shown in Table
@b), the mean pLDDT score is >91 at both the protein and residue levels, with a median of 94.88
for residues. This indicates that the predicted structures are of sufficient quality to serve as a reliable
proxy for experimental structures, justifying their use to scale up the benchmark.

D.2 EVALUATION OF PRE-TRAINED STRUCTURE-ONLY MODELS

To assess the impact of structural pre-training, we compared GearNet (pre-trained) against GVP-GNN
(trained from scratch) on the Residue-level Epitope task (Res_Epi). As shown in Table[T5] GearNet
performs comparably to GVP-GNN across all splits (e.g., 0.116 vs. 0.118 on MP50). This indicates
that for this specific task relying on fine-grained surface properties, general structural pre-training
objectives do not immediately outperform supervised geometric learning.

D.3 TRAINING STABILITY AND RANDOM SEED SENSITIVITY
To verify that our benchmark results are robust to random initialization and not artifacts of a specific
seed, we analyzed the stability of model performance.

Methodology: We re-trained six representative baseline models (ESM2, ProtBert, ProtT5, Ankh)
on two of the most challenging datasets: Res_Act_MP30 and Res_Bindl_MP30. Each model was
trained independently using three different random seeds: 42, 3407 (our default), and 12345.

Results: TablelEl summarizes the Mean Recall and Standard Deviation (Std) for each model. We
observe:

e Low Variance: The standard deviations are consistently low across all models and tasks,
typically ranging from 0.003 to 0.014.
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Table 16: Stability analysis of model performance (Recall) across three different random seeds
(42, 3407, 12345) on the challenging MP30 split. We report the Mean 4 Standard Deviation. The
consistently low standard deviation (< 0.015) across diverse models and tasks confirms that the
benchmark rankings are robust to random initialization.

Res_Act MP30 Res_Bindl_ MP30

Model Mean Std Mean Std

ESM2 t30 0.765 0.011 0.818 0.003
ESM2 t33 0.785 0.004 0.826 0.012
ProtBert 0.587  0.007 0.668 0.014
ProtT5 xI_uniref50 0.767 0.006  0.883 0.010
Ankh base 0.798 0.010 0.895 0.008
Ankh large 0.776  0.010  0.842 0.008

Table 17: Performance comparison (Recall) on Active Site (Act) and Evolutionary Pressure (Evo)
tasks.

Model Res_Act_ MP30 Res_Act_MP50 Res_Evo_MP30 Res_Evo_MP50
ESM2 (33 (Seq-only) 0.787 0.870 0.703 0.861
SaProt 650M (Seq-Struct) 0.792 0.850 0.714 0.866

 Stable Rankings: The relative performance ranking of different models remains consistent
across seeds. For example, Ankh base consistently outperforms ProtBert by a significant
margin on both tasks, regardless of the seed.

These results confirm that the performance differences observed in VENUSX, are driven by the quality
of the representations and the model architectures, rather than hyperparameter noise or initialization
luck.

D.4 ANALYSIS OF ROBUSTNESS TO LOW SEQUENCE IDENTITY

Sequence-structure hybrid models (e.g., SaProt) exhibit superior generalization on cross-family
(OOD) splits compared to sequence-only models. To investigate the mechanism behind this, we
analyzed model performance under decreasing levels of sequence identity, isolating the effect of "low
homology" which characterizes remote generalization.

Hypothesis: We hypothesized that as sequence identity drops, the predictive signal from sequence
alone weakens. However, since structural folds are often conserved even when sequences diverge,
structure-aware models should be more robust in low-identity regimes.

Results: We evaluated models on two mix-family splits with different difficulty levels: MPS0 (50%
identity) and the significantly harder MP30 (30% identity). Table[T7)summarizes the Recall scores.

* Moderate Homology (MP50): On the MP50 split, the sequence-only ESM2 model performs
comparably to or slightly better than SaProt (e.g., Recall of 0.870 vs. 0.850 on Act). This
suggests that when sequence homology is sufficient, sequence features alone are highly
effective.

* Low Homology (MP30): When the sequence identity threshold is tightened to 30%, the
advantage shifts. SaProt consistently outperforms ESM?2 on both tasks, achieving a higher
Recall of 0.792 vs. 0.787 on Act, and 0.714 vs. 0.703 on Evo.

Conclusion: These findings clarify why sequence-structure models excel in cross-family tasks. While
sequence features dominate in high-homology settings, structural information provides a critical
signal when sequence similarity fades, enabling better generalization to remote homologs.

27



Under review as a conference paper at ICLR 2026

Table 18: Performance of the BLAST baseline on residue-level active site classification (Act). We
report the specific AUPR scores for the top-3 runs out of 10 independent trials. Even the best-case
results (~0.05) are drastically lower than deep learning models (>0.85), confirming that alignment is
insufficient for this task.

Res_Act_MF50 Res_Act_MF70
P-Identity Threshold Runl Run2 Run3 Runl Run2 Run3

100 (Exact Match) 0.0407 0.0410 0.0417 0.0471 0.0480 0.0492
90 (High Identity) 0.0435 0.0431 0.0439 0.0497 0.0528 0.0520

E NON-DEEP LEARNING BASELINE PERFORMANCE

To assess whether fine-grained functional residues can be accurately identified solely through sequence
homology transfer, we evaluated a traditional alignment-based baseline for the residue-level active
site classification task (Act). This baseline utilizes NCBI BLAST+ to transfer functional annotations
from the training set to the test set.

E.1 METHODOLOGY

* Query Generation: We implemented a stratified sampling strategy to construct the query
database. For each experimental run, randomly select 100 distinct InterPro IDs from the
training set. For each selected ID, we randomly sampled 100 sequences (or all available
sequences if the family size was smaller). From these sampled sequences, we extracted
all continuous sub-sequences annotated as positive (label=1) to serve as functional motif
queries.

* Search Strategy: These fragments were compiled into a query database and searched
against the full-length protein sequences in the test set. We utilized the blastp algorithm
with the task=blastp-short option, which is optimized for aligning short sequences
that might otherwise be missed by standard parameters due to low complexity or short
length.

* Scoring Mechanism: For every residue in a test sequence covered by a significant BLAST
hit, we assigned a prediction score equal to the percentage identity (pident / 100.0) of that
alignment. If a residue was covered by multiple overlapping hits, the maximum score was
retained to represent the highest confidence match. Residues not covered by any alignment
were assigned a score of 0.

* Robust Evaluation: To minimize sampling variance and estimate an upper bound for
alignment-based performance, we independently repeated this procedure 10 times using
different random subsets of queries (different IDs and sequences). We report the specific
AUPR scores of the top-3 performing runs.

E.2 RESULTS AND ANALYSIS

Table [T8] summarizes the performance on the mixed-family splits (MF50 and MF70) under strict
(pident=100) and relaxed (pident=90) filtering thresholds.

As shown in Table[T8] the alignment-based method yields extremely low AUPR scores. Even in the
best-performing runs, the AUPR remains approximately 0.04—0.05 (e.g., 0.0528 for the best run on
Act_MF70). This poor performance stands in stark contrast to deep learning models (e.g., ESM2,
SaProt), which consistently achieve AUPR scores exceeding 0.85 on the same tasks (see Table E)

This significant performance disparity highlights the limitations of simple homology-based label
transfer for fine-grained residue-level prediction. While BLAST is effective for global homology
detection, it struggles to precisely map functional residues when the local sequence motif exhibits
variability or degenerate patterns, even within homologous families. These results empirically validate
the necessity of VENUSX, and the representation learning approach, which can capture complex,
non-linear functional signals that alignment methods miss.
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Table 19: Detailed residue-level classification performance across BindB and Epi datasets and data
splits. “MP50”, “MP70”, and “MP90” refer to mixed-family splits with 50%, 70%, and 90% sequence
identity filtering applied at the full-sequence level. Metrics reported include AUPR, Precision, Recall,
F1 scores for negative and positive classes, and Macro-F1.

| BindB Epi
‘MPSO MP70 MP90 MP50 MP70 MP90

ESM2130 | 0408 0.465 0496 0.186 0.184 0.277
ESM2133 | 0.446 0.494 0535 0.174 0.200 0.290

Metric Model

AUPR ProtBert | 0340 0410 0466 0169 0.177 0266
Ankh | 0421 0487 0527 0167 0215 0270

ESM2130 | 0598 0637 0674 10 038 0545

ccision | ESM2133 | 0605 0646 0675 00 10 0512
p ProtBert | 0.547 0.619 0.706 1.0 0432 0.534
Ankh | 0634 0660 0677 00 10 0571

ESM2130 | 0289 0317 0316 0001 0043 0091

Recall ESM2(33 | 0329 0356 038 00 0003 0.139

ProtBert | 0.238 0.264 0.257 0.001 0.005 0.072
Ankh 0260 0335 0.357 0.0 0.008  0.054

ESM2t30 | 0.987 0986 098 0958 0960 0.968
ESM21t33 | 0.987 0987 0987 0958 0961 0.968
ProtBert | 0986 0986 0986 0.958 0.961 0.968
Ankh 0987 0987 0987 0958 0961 0.968

ESM2130 | 0.390 0.423 0430 0.002 0.077 0.156
ESM21t33 | 0427 0.459 0.491 0.0 0.006  0.218
ProtBert 0.332 0370 0377 0.002 0.010 0.126
Ankh 0.369 0444 0.483 0.0 0.002  0.098

ESM2130 | 0.689 0.705 0.708 0.480 0518 0.562
ESM21t33 | 0.707 0.723 0.739 0479 0.484 0.593
ProtBert | 0.659 0.678 0.682 0480 0.486 0.547
Ankh 0.678 0.715 0.735 0.479 0489 0.533

F1-Negative

F1-Positive

Macro-F1

F DETAILED EXPERIMENTAL RESULTS

Here, we provide detailed experimental results for two tasks: Residue-Level Binary Classification
and Fragment-Level Multi-Class Classification. We report all evaluation metrics recorded during
the experiments to offer a comprehensive assessment of model performance across different aspects.
Please refer to Tables [T9H22]for the complete results.

Model scores on the mix-family tasks are relatively high. To further demonstrate the benchmark’s
remaining headroom, Table 23] presents new results from a more challenging experiment conducted
under a stricter “MP30” split (30% sequence identity). The results reveal substantial performance
variance across different models, and overall performance generally declines, with the best model
achieving an average Recall of 0.73 across the five test sets.

To evaluate the impact of data on model performance, we analyzed how model accuracy varies
with the sequence similarity of the training data in Act and Evo tasks. For each task, we filtered
the datasets using sequence identity thresholds of 90%, 70%, 50%, and 30%. Subsets with lower
sequence identity thresholds contain fewer training and testing samples (see the statistics in Tables 9]
and[I0). As shown in Table[24] model generalization performance decreases progressively as both
the sequence similarity threshold and the dataset size are reduced.
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Table 20: Detailed residue-level classification performance across Act, Bindl, and Evo datasets and
data splits. “MF50” and “MP50” refer to mixed-family splits with 50% sequence identity filtering
applied at the fragment and full-sequence levels, respectively. Metrics reported include AUPR,
Precision, Recall, F1 scores for negative and positive classes, and Macro-F1.

Metric Model | Act BindI Evo
‘MFSO MP50 Cross MF50 MP50 Cross MF50 MP50 Cross

ESM2 t30 0.855 0932 0.143 0912 0963 0.133 0.862 0.897 0.235
ESM2 t33 0.852 0955 0.143 0904 0971 0.159 0.899 0926 0.262

ProtBert 0.764 0.895 0.131 0.857 0926 0.112 0.771 0.803 0.243
Ankh base 0873 0895 0.166 0907 0970 0.145 0.895 0932 0.275

AUPR GVP-GNN | 0523 0896 0101 0611 0883 0040 0342 0792 0.101
SaProt35M | 0.688 0905 0.114 0807 0927 0230 0724 0772 0272

SaProt 650M | 0745 0945 0185 0838 0960 0182 0734 0912 0274

ProtSSN | 0465 0917 0156 0801 0907 0095 0715 0895 0227

ESM230 | 0.826 0851 0278 0859 0915 0525 0816 0879 0374

ESM233 | 0.845 0851 0126 0869 0905 0581 0856 0856 0403

ProtBert | 0791 0833 0131 0855 0897 0416 0805 0803 0.482

Precision Ankhbase | 0.862 0873 0190 0849 0919 0437 0882 0932 0387
GVP-GNN | 0735 0824 0019 0730 0874 00 0810 0781 0176

SaProt35M | 0.818 0.879 0132 0813 0902 0634 0819 0841 0382

SaProt 650M | 0.812 0845 0241 0827 0900 0661 0809 0828 0456

ProtSSN | 0523 0835 0241 0818 0887 0379 079 0815 0452

ESM2130 | 0676 0793 0060 0859 0897 0078 0783 0750 0.097

ESM2133 | 0682 0848 0031 0830 0924 0108 0806 0755 0122

ProtBert | 0565 0750 0020 0.694 0839 0048 0610 0597 0009

Recall Ankhbase | 0700 0864 0025 0866 0922 0086 0735 0744 0169

GVP-GNN 0362 0.798 0.001 0.519 0.788 0.0 0.091 0.718 0.035
SaProt35M | 0408 0.733 0.036 0.705 0.822 0.135 0.520 0.649 0.172
SaProt 650M | 0.511  0.850 0.072 0.768 0918 0.135 0.554 0.700 0.111
ProtSSN 0209 0.801 0.014 0.705 0.788 0.029 0.507 0.852 0.034

ESM2 t30 0992 0995 0967 0993 0996 0975 0988 0.990 0.957
ESM2 (33 0993 099 0964 0992 099 0976 0.990 0.992 0.957
ProtBert 0991 0994 0967 0989 0994 0974 0984 0986 0.960
Ankh base 0993 099 0968 0992 099 0974 0989 0992 0.955
GVP-GNN 0989 0995 0969 0982 0993 0975 0973 0986 0.955
SaProt35M | 0.990 0.995 0964 0988 0994 0976 0982 0.985 0.955
SaProt 650M | 0.986 0.996 0965 0989 099 0977 0983 0991 0.959
ProtSSN 0988 0995 0.969 0988 0993 0975 0982 0.991 0.960

ESM2 t30 0.744 0.821 0.098 0.859 0906 0.136 0.799 0.810 0.154
ESM2 t33 0.755 0.850 0.050 0.849 0915 0.181 0.831 0.858 0.187
ProtBert 0.659 0.789 0.035 0.766 0.867 0.086 0.694 0.701 0.017
Ankh base 0773  0.869 0.045 0.857 0920 0.144 0.802 0.858 0.235
GVP-GNN 0.485 0.810 0.002 0.607 0.829 0.0 0.164 0.748  0.058
SaProt 35M | 0.544 0.800 0.056 0.755 0.860 0.223 0.636  0.689  0.238
SaProt 650M | 0.627 0.848 0.110 0.796 0909 0.224 0.658 0.851 0.178
ProtSSN 0329 0.818 0.026 0.757 0.839 0.053 0.618 0.833 0.062

ESM2 t30 0.868 0908 0.533 0926 0951 0.556 0.894 0.900 0.555
ESM2 t33 0874 0923 0.507 0921 0955 0579 0910 0.925 0.572
ProtBert 0.825 0.892 0.501 0.878 0931 0530 0.839 0.843 0.489
Ankh base 0.883 0933 0.507 0925 0958 0559 0.89 0925 0.595
GVP-GNN 0736 0903 0485 0.795 0911 0488 0569 0.867 0.506
SaProt 35M | 0.767 0.897 0.510 0.871 0927 0599 0.809 0.837 0.596
SaProt 650M | 0.808  0.922 0.538 0.893 0953 0.600 0.820 0.921 0.568
ProtSSN 0.658 0906 0498 0.873 0911 0514 0.800 0912 0.511

F1-Negative

F1-Positive

Macro-F1
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Table 21: Detailed residue-level classification performance across Motif and Dom datasets and data
splits. “MF50” and “MP50” refer to mixed-family splits with 50% sequence identity filtering applied
at the fragment and full-sequence levels, respectively. Metrics reported include AUPR, Precision,
Recall, F1 scores for negative and positive classes, and Macro-F1.

Metric Model ‘ Motif Dom
\MFSO MP50 Cross MF50 MP50 Cross

ESM2 t30 0.855 0.850 0433 0.634 0.634 0.470
ESM2 t33 0.874 0.857 0456 0.666 0.657 0.506

ProtBert 0.779 0.796 0348 0591 0592 0.508
Ankh base 0.884 0.870 0394 0.673 0.665 0.449

AUPR GVP-GNN | 0.661 0736 0329 0560 0557 0468
SaProt35M | 0767 0784 0408 0574 0584  0.525
SaProt 650M | 0.802 0.841 0441 0.642  0.640 0.564
ProtSSN | 0716 0765 0390  — - -
ESM2130 | 0.824 0802 0510 0648 00644 0496
ESM2133 | 0851 0795 0566 0661 0634 0530
ProtBert | 0784 0793 0472 0636 0596  0.588
precision Ankhbase | 0.846 0817 0499 0674 00646 0494
GVP-GNN | 0748 0756 0329 0591 0557 0519
SaProt35M | 0.821 0783 0485 0632 0615 0.548
SaProt 650M | 0.841 0818 0504 0635 0.656 0.572
ProtSSN | 0772 0775 0390 - - -
ESM2130 | 0775 0731 0432 0433 0423 0360
ESM2133 | 0748 0861 0384 0467 0478 0367
ProtBert | 0.678 0592 0231 0353 0420 0.138
Recall Ankhbase | 0789 0831 0303 0467 0490 0.280

GVP-GNN 0525 0.669 0.453 0344 0309 0.087

SaProt35M | 0.582 0954 0411 0322 0.840 0.349

SaProt 650M | 0.615 0960 0.350 0472 0414 0.444
ProtSSN 0.550 0.676  0.365 - - -

ESM2 t30 0972 0961 0946 0.839 0.849 0.738
ESM2 t33 0972 0962 0951 0.844 0.848 0.752
ProtBert 0963 0952 0945 0.834 0.837 0.779
Ankh base 0974 0963 0946 0.847 0.853 0.748
GVP-GNN 0954 0953 0924 0836 0837 0.774
SaProt 35M | 0.961 0954 0944 0.832 0.840 0.761
SaProt 650M | 0.964 0960 0946 0.837 0.850 0.765
ProtSSN 0956  0.954 0.944 - - -

ESM2 t30 0.799 0.765 0467 0519 0510 0417
ESM2 t33 0.796  0.774 0.457 0547 0.545 0.433
ProtBert 0.727 0.681 0310 0.454 0494 0.223
Ankh base 0.817 0.779 0377 0552 0557 0.357
GVP-GNN 0.618 0.710 0399 0435 0408 0.149
SaProt 35M | 0.681  0.709 0.445 0.427 0462 0.427
SaProt 650M | 0.710 0.754 0.414 0542 0.508 0.500
ProtSSN 0.642 0.720 0.412 - - -

ESM2 t30 0.885 0.863 0.707 0.679 0.680 0.578
ESM2 t33 0.884 0.868 0.704 0.696 0.697 0.593
ProtBert 0.845 0.816 0.628 0.644 0.665 0.501
Ankh base 0.895 0.871 0.662 0.700 0.745 0.552
GVP-GNN 0.786  0.831 0.661 0.636 0.623 0.462
SaProt 35M | 0.821 0.832 0.695 0.629 0.651 0.594
SaProt 650M | 0.837  0.857 0.680 0.689 0.679 0.632
ProtSSN 0.799  0.837 0.678 - - -

F1-Negative

F1-Positive

Macro-F1
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Table 22: Detailed fragment-level classification results on “MF50” split across Act, BindI, Evo, and
Motif datasets. “MF50” refers to mixed-family splits with 50% sequence identity filtering applied at
the fragment level. Metrics reported include Accuracy, Precision, Recall, Macro-F1, and Matthews
Correlation Coefficient (MCC).

Metric Model | Act Bindl Evo Motif
ESM2 t30 0.819 0937 0.853 0.884

ESM2 t33 0.814 0934 0.841 0.906

ProtBert 0.736 0927 0.828 0.884

Accuracy Ankh base 0.824 0920 0.866 0.901
GVP-GNN 0907 0972 0914 0.807

SaProt 35M 0928 0976 0.939 0.901

SaProt 650M | 0.928 0.986 0.950 0.927

ProtSSN 0.891 0972 0915 0914

ESM2 t30 0.659 0.834 0.681 0.458

ESM2 t33 0.603 0.755 0.682 0.547

ProtBert 0.618 0.838 0.644 0.455

Precision Ankh base 0.661 0.733 0.727 0.508
GVP-GNN 0.826 0901 0.763 0.387

SaProt 35M 0.810 0943 0.857 0.509

SaProt 650M | 0.830 0.968 0.868 0.546

ProtSSN 0.773 0940 0.804 0.564

ESM2 t30 0.670 0.819 0.684 0.461

ESM2 t33 0.634 0775 0.682 0.543

ProtBert 0.636 0.794 0.646 0.458

Recall Ankh base 0.665 0.732 0.729 0.501
GVP-GNN 0.833 0.882 0.768 0.371

SaProt 35M 0.823 0929 0.858 0.505

SaProt 650M | 0.830 0.956 0.875 0.562

ProtSSN 0.774 0948 0.807 0.556

ESM2 t30 0.647 0809 0.667 0.457

ESM2 t33 0.605 0.753 0.669 0.542

ProtBert 0.609 0.790 0.627 0.452

Macro-F1 Ankh base 0.647 0.718 0.716 0.499
GVP-GNN 0.822 0.884 0.757 0.370

SaProt 35M 0.807 0931 0.849 0.504

SaProt 650M | 0.825 0.957 0.863 0.552

ProtSSN 0.764 0931 0.793 0.556

ESM2 t30 0815 0926 0.852 0.875

ESM?2 t33 0.810 0922 0.840 0.898

ProtBert 0.731 0914 0.827 0.875

MCC Ankh base 0.821 0906 0.865 0.892
GVP-GNN 0906 0967 0913 0.791

SaProt 35M 0926 0971 0938 0.892

SaProt 650M | 0.926 0.984 0.950 0.921

ProtSSN 0.889 0967 00915 0.907
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Table 23: Residue-level classification results on “MP30” split across Act, BindI, Evo, Motif, and
Dom datasets. “MP30” refers to mixed-family splits with 30% sequence identity filtering applied at
the full-sequence level.

Metric Model | Act Bindl Evo Motif Dom
ESM2 t30 0.754 0.817 0.664 0.689 0.298
ESM?2 t33 0.787 0.814 0.703 0.778 0.264
Recall ProtBert 0.593 0.667 0.542 0.586 0.338
Ankh base 0.794 0.901 0.777 0.787 0.389
Ankh large 0.766 0.835 0.761 0.616 0.392

ProtT5 xI_uniref50 | 0.760 0.894 0.758 0.730 0.465

Table 24: Residue-level classification performance across Act and Evo datasets. “MP50” refers
to mixed-family splits with 50% sequence identity filtering applied at full-sequence levels. Metric
reported Recall.

Act Evo

Model

MP30 MP50 MP70 MP90 \ MP30 MP50 MP70 MP90
ESM2 t30 0.754 0.847 0.887 0.926 | 0.664 0.818 0.862 00911
ESM2 t33 0.787 0.870 0.892 0.894 | 0.703 0.843 0.884 0.932
ProtBert 0.593 0.781 0.810 0.857 | 0.542 0.677 0.823 0.866
Ankh base 0.794 0.886 0.892 0901 | 0.777 0.864 0909 0.938
Ankh large 0766 0.862 0.853 0.863 | 0.761 0.846 0.902 0.926

ProtT5 x1_uniref50 0.760 0.886 0.889 0.887 | 0.758 0.860 0.905 0.939
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