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Abstract

At the NeurIPS 2024 LLM-Merging competition, we successfully developed a
simple and effective model merging approach that generates a versatile, generalist
model, applicable to a wide range of scenarios. Specifically, this method is easy to
implement, prevents significant conflicts among component models, and improves
overall model accuracy to some extent. Additionally, it is memory-efficient, al-
lowing for the combination of multiple foundational models, further optimizing
resource utilization.

1 Introduction

Current methods for model merging primarily include Parameter Averaging, MoE-based merging,
Model Stacking, Model Zipping, and Model Routing [1]. The NeurIPS 2024 LLM-Merging competi-
tion aims to create functionally comprehensive models by merging various domain-specific models
efficiently. Our approach utilizes a combination of model routing and model stacking, which has
yielded significant accuracy improvements. Furthermore, this method is highly adaptable and can be
effectively extended to multiple domains, offering both scalability and flexibility for a wide range of
applications.

2 Method

Our approach is primarily reflected in three aspects: model selection, model merging, and staged
responses.

2.1 Model Selection

For model selection, we approached it from two directions: base models and fine-tuned models. First,
we identified a base model by initially screening five options that met the competition’s criteria. Using
the capabilities of large models listed on Hugging Face’s Open LLM Leaderboard2, we narrowed
it down to three high-accuracy base models: Meta-Llama-3-8B-Instruct, Phi-3-mini-4k-instruct,
and Phi-3-small-8k-instruct. We used the Im-evaluation-harness tool to test each base model’s
performance on several public datasets. Results showed that Meta-Llama-3-8B-Instruct and Phi-3-
small-8k-instruct had their own advantages, displaying similar patterns across our internal test sets.
Consequently, we selected Meta-Llama-3-8B-Instruct and Phi-3-small-8k-instruct as our final base
models.

For fine-tuned models, we divided task types by knowledge area, including history, medicine,
mathematics, physics, and coding. Using datasets integrated within Im-evaluation-harness, combined
with our proprietary datasets, we assessed each fine-tuned model’s GPU memory usage and accuracy
gains over the base models. Ultimately, we selected medical and coding models as our final fine-tuned
models, balancing memory efficiency with performance enhancements.
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2.2 Model Merging

We observed that using parameter averaging method to merge models often reduces performance
on tasks where the base models excel. Therefore, we chose a model combination approach similar
to model routing, which typically requires substantial memory. To address this, we merged models
with identical architectures by compressing differences, preserving each base model’s task-specific
strengths while minimizing inference overhead. In our trials, this approach only increased inference
costs by around 10%, maintaining efficiency without sacrificing performance.

2.2.1 Weights Merging

In our solution, we combine several fully fine-tuned Llama3 8B models. We assume that the weights
of a base model and the fine-tuned models can each be represented as a common component plus a
differentiated component. The common component can be obtained through parameter averaging,
while the unique components are compressed separately. Besides retaining their own embeddings,
Im_head layer weights, and biases (if any) for each model, other layers are merged and compressed.
For faster compression, we employed randomized SVD (rSVD) instead of standard SVD. When
the compression ratio is set to 0, the result is equivalent to using multiple independent models; at
100%, it corresponds to parameter averaging. Interestingly, after this combined compression, each
branch model showed an improvement in general task performance, though due to time constraints,
we didn’t delve into this further.

The pseudocode for weight merging and compression for a specific layer is as follows:

Algorithm: Weight compression for a layer in models
Input:

W ={W,,W,,.. Wy}

compress_rate
Output:

scales = {scale,,scale,, ...,scaley}

Wi

compressed_diff = {Uy, Uy, ..., Uy, V1, Vo, ..., Vi
1. For each weight matrix W; € W:

scale; = ||Will

—~ Wi

i =

scale;

# Normalize weight matrix W;.
2. Wang =+ ZW;
3. For each normalized weight matrix W;:
U, V; = RSVD(W, — Wapg, COMpTess_rate)
4. Return scales, wyy,g, compressed_dif f

Figure 1: Weight compression for a layer in models

The pseudocode for inference in a specific layer of a branch model is as follows:



Algorithm: Inference for Compressed Model Layer
Input:

x

bias # Uncompressed bias

scales = {scaley,scale,, ...,scaley}

Warg

compressed_dif f = {Uy, Uy, ..., Uy, Vi, V3, ..., Vi }
Output:

y=0nY2 N}
Ly = linear(x,wyyg) + linear(linear(x,V;),U;) * scale;
2. If bias is hot null:
y; += bias;

3. Returny # Return the final output.

Figure 2: Inference for Compressed Model Layer

In our approach, we set the compression rate to 95%. We loaded one independent Phi3small model
and three fully fine-tuned Llama3 8B models, compressed using this method, into 48GB of VRAM.
In practical applications, this method allows for compressing and combining more models as needed.

2.2.2 Router

In our approach, we utilized four branches: one standalone Phi-3-small model and three Llama-3-8B
models merged through compression. To determine the appropriate branch for answering each input,
we route the question based on relevance. To avoid potential generalization issues and minimize
processing time, we did not train a dedicated router. Instead, we designed a set of representative
samples for each branch. Therefore, we designed 17 samples that were carefully crafted to cover
each branch’s focus area and do not overlap with the competition data.

We utilized a decoder-only model and carefully designed our routing method to maximize the router’s
ability to distinguish between questions from different domains. For each sample or input question,
we extract the embedding from the segment "{input}.\n Let’s think about what task these questions
belong to. These questions belong to the field of" specifically from the phrase "These questions belong
to the field of". Due to the attention mechanism, this embedding effectively captures information from
the preceding input. Since both input questions and samples rely on this structure, they achieve high
alignment. In our experiments, this method significantly improved the router’s ability to differentiate
between domains compared to extracting the embedding from the input alone.

For classification, we calculate the cosine similarity between input questions and the sample embed-
dings, with pre-extracted embeddings for each sample to reduce inference time during evaluation.

2.3 Staged Responses

In the competition, we found that achieving high-quality responses requires two key factors: accuracy
and clarity. While Llama-3’s responses were generally more structured compared to Phi-3-small,
Llama-3’s accuracy was often weaker. For Phi-3-small (instruct), although prompts can be adjusted
to encourage more concise responses, using system-level prompts to enforce brevity sometimes
interfered with the model’s reasoning, leading to incorrect answers. Conversely, if we aimed for
comprehensive reasoning in response to complex questions, the answers tended to be overly detailed
(e.g., an SQL question might include additional, unwanted explanations). Moreover, overly complex
prompts sometimes unintentionally reduced overall accuracy. This led us to adopt a two-stage
response approach.



Unfortunately, due to a time zone miscalculation of the competition deadline, our two-staged solution
was only partially submitted, with the full version missing from official scoring. However, in our
experiments, the complete two-stage method showed a 6-point improvement in accuracy, compared
to only a 2-point gain from early-stage submissions. This section describes the full version of the
two-stage approach as a technical demonstration.

In our method, tasks that leveraged Phi-3-small’s strengths, like reasoning, were initially answered by
Phi-3-small. Llama-3 then refined these answers for clarity and structure through prompt engineering.
For some scenarios, we introduced an alternative two-stage response format: Stage 1 generates a
guided, heuristic-based answer, while Stage 2 formats the output. Since Stage 2 avoids triggering
chain-of-thought processes, it generally produces concise answers without significantly increasing
inference time. Notably, Stages 1 and 2 can be handled by the same or different models, depending
on the task.
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