
A Model Merging Method

Anonymous Author(s)
Affiliation
Address
email

Abstract

At the NeurIPS 2024 LLM-Merging competition, we successfully developed a1

simple and effective model merging approach that generates a versatile, generalist2

model, applicable to a wide range of scenarios. Specifically, this method is easy to3

implement, prevents significant conflicts among component models, and improves4

overall model accuracy to some extent. Additionally, it is memory-efficient, al-5

lowing for the combination of multiple foundational models, further optimizing6

resource utilization.7

1 Introduction8

Current methods for model merging primarily include Parameter Averaging, MoE-based merging,9

Model Stacking, Model Zipping, and Model Routing [1]. The NeurIPS 2024 LLM-Merging competi-10

tion aims to create functionally comprehensive models by merging various domain-specific models11

efficiently. Our approach utilizes a combination of model routing and model stacking, which has12

yielded significant accuracy improvements. Furthermore, this method is highly adaptable and can be13

effectively extended to multiple domains, offering both scalability and flexibility for a wide range of14

applications.15

2 Method16

Our approach is primarily reflected in three aspects: model selection, model merging, and staged17

responses.18

2.1 Model Selection19

For model selection, we approached it from two directions: base models and fine-tuned models. First,20

we identified a base model by initially screening five options that met the competition’s criteria. Using21

the capabilities of large models listed on Hugging Face’s Open LLM Leaderboard2, we narrowed22

it down to three high-accuracy base models: Meta-Llama-3-8B-Instruct, Phi-3-mini-4k-instruct,23

and Phi-3-small-8k-instruct. We used the lm-evaluation-harness tool to test each base model’s24

performance on several public datasets. Results showed that Meta-Llama-3-8B-Instruct and Phi-3-25

small-8k-instruct had their own advantages, displaying similar patterns across our internal test sets.26

Consequently, we selected Meta-Llama-3-8B-Instruct and Phi-3-small-8k-instruct as our final base27

models.28

For fine-tuned models, we divided task types by knowledge area, including history, medicine,29

mathematics, physics, and coding. Using datasets integrated within lm-evaluation-harness, combined30

with our proprietary datasets, we assessed each fine-tuned model’s GPU memory usage and accuracy31

gains over the base models. Ultimately, we selected medical and coding models as our final fine-tuned32

models, balancing memory efficiency with performance enhancements.33

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



2.2 Model Merging34

We observed that using parameter averaging method to merge models often reduces performance35

on tasks where the base models excel. Therefore, we chose a model combination approach similar36

to model routing, which typically requires substantial memory. To address this, we merged models37

with identical architectures by compressing differences, preserving each base model’s task-specific38

strengths while minimizing inference overhead. In our trials, this approach only increased inference39

costs by around 10%, maintaining efficiency without sacrificing performance.40

2.2.1 Weights Merging41

In our solution, we combine several fully fine-tuned Llama3 8B models. We assume that the weights42

of a base model and the fine-tuned models can each be represented as a common component plus a43

differentiated component. The common component can be obtained through parameter averaging,44

while the unique components are compressed separately. Besides retaining their own embeddings,45

lm_head layer weights, and biases (if any) for each model, other layers are merged and compressed.46

For faster compression, we employed randomized SVD (rSVD) instead of standard SVD. When47

the compression ratio is set to 0, the result is equivalent to using multiple independent models; at48

100%, it corresponds to parameter averaging. Interestingly, after this combined compression, each49

branch model showed an improvement in general task performance, though due to time constraints,50

we didn’t delve into this further.51

The pseudocode for weight merging and compression for a specific layer is as follows:52

i n p u t s :53

weigh t s ,54

c o m p r e s s _ r a t e ,55

o u t p u t s :56

s c a l e s ,57

# common component w e i g h t s58

w_avg ,59

# d i f f e r e n t i a t e d component weight , i n c l u d i n g U and V.60

c o m p r e s s e d _ d i f f ,61

s c a l e s = [ norm (w) f o r w i n w e i g h t s ]62

n o r m a l i z e d _ w e i g h t s = [63

w / s c a l e f o r w, s c a l e i n z i p ( we igh t s , s c a l e s ) ]64

w_avg = mean ( s t a c k ( n o r m a l i z e d _ w e i g h t s , dim = 0) , dim =0)65

c o m p r e s s e d _ d i f f = [66

r s v d (w − w_avg , c o m p r e s s _ r a t e ) f o r w i n n o r m a l i z e d _ w e i g h t s ]67

r e t u r n s c a l e s , w_avg , c o m p r e s s e d _ d i f f68

The pseudocode for inference in a specific layer of a branch model is as follows:69

i n p u t s :70

x ,71

b i a s , # uncompressed b i a s72

s c a l e ,73

w_avg , # common component w e i g h t s74

c o m p r e s s e d _ d i f f , # d i f f e r e n t i a t e d component w e i gh t75

o u t p u t s : y ,76

y = l i n e a r ( x , w_avg ) + l i n e a r ( l i n e a r ( x , V) , U) * s c a l e77

i f b i a s :78

y += b i a s79

r e t u r n y80

In our approach, we set the compression rate to 95%. We loaded one independent Phi3small model81

and three fully fine-tuned Llama3 8B models, compressed using this method, into 48GB of VRAM.82

In practical applications, this method allows for compressing and combining more models as needed.83

2



2.2.2 Router84

In our approach, we utilized four branches: one standalone Phi-3-small model and three Llama-3-8B85

models merged through compression. To determine the appropriate branch for answering each input,86

we route the question based on relevance. To avoid potential generalization issues and minimize87

processing time, we did not train a dedicated router. Instead, we designed a set of representative88

samples for each branch. Therefore, we designed 17 samples that were carefully crafted to cover89

each branch’s focus area and do not overlap with the competition data.90

We utilized a decoder-only model and carefully designed our routing method to maximize the router’s91

ability to distinguish between questions from different domains. For each sample or input question,92

we extract the embedding from the segment "{input}.\n Let’s think about what task these questions93

belong to. These questions belong to the field of" specifically from the phrase "These questions belong94

to the field of". Due to the attention mechanism, this embedding effectively captures information from95

the preceding input. Since both input questions and samples rely on this structure, they achieve high96

alignment. In our experiments, this method significantly improved the router’s ability to differentiate97

between domains compared to extracting the embedding from the input alone.98

For classification, we calculate the cosine similarity between input questions and the sample embed-99

dings, with pre-extracted embeddings for each sample to reduce inference time during evaluation.100

2.3 Staged Responses101

In the competition, we found that achieving high-quality responses requires two key factors: accuracy102

and clarity. While Llama-3’s responses were generally more structured compared to Phi-3-small,103

Llama-3’s accuracy was often weaker. For Phi-3-small (instruct), although prompts can be adjusted104

to encourage more concise responses, using system-level prompts to enforce brevity sometimes105

interfered with the model’s reasoning, leading to incorrect answers. Conversely, if we aimed for106

comprehensive reasoning in response to complex questions, the answers tended to be overly detailed107

(e.g., an SQL question might include additional, unwanted explanations). Moreover, overly complex108

prompts sometimes unintentionally reduced overall accuracy. This led us to adopt a two-stage109

response approach.110

Unfortunately, due to a time zone miscalculation of the competition deadline, our two-staged solution111

was only partially submitted, with the full version missing from official scoring. However, in our112

experiments, the complete two-stage method showed a 6-point improvement in accuracy, compared113

to only a 2-point gain from early-stage submissions. This section describes the full version of the114

two-stage approach as a technical demonstration.115

In our method, tasks that leveraged Phi-3-small’s strengths, like reasoning, were initially answered by116

Phi-3-small. Llama-3 then refined these answers for clarity and structure through prompt engineering.117

For some scenarios, we introduced an alternative two-stage response format: Stage 1 generates a118

guided, heuristic-based answer, while Stage 2 formats the output. Since Stage 2 avoids triggering119

chain-of-thought processes, it generally produces concise answers without significantly increasing120

inference time. Notably, Stages 1 and 2 can be handled by the same or different models, depending121

on the task.122

References123

[1] Tam D. & Li M. & Yadav P. & et al. (2024) Llm merging: Building llms efficiently through merging. NeurIPS124

2024 Competition Track.125

3


	Introduction
	Method
	Model Selection
	Model Merging
	Weights Merging
	Router

	Staged Responses


