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ABSTRACT

Thinking Large Language Models (LLMs) used as judges for pairwise preferences
remain noisy at the single-sample level, and common aggregation rules (majority
vote, soft self-consistency, or instruction-based self-aggregation) are inconsistent
when ties are allowed. We study inference-time compute (ITC) for evaluators that
generate n independent thinking–rating samples per item, and propose a princi-
pled, distribution-calibrated aggregation scheme. Our method models three-way
preferences with a Bradley–Terry-Davidson formulation on rating counts, lever-
aging both polarity (margin among non-ties) and decisiveness (non-tie rate) to
distinguish narrow margins from strong consensus. Across various evaluation
benchmarks, our approach consistently reduces MAE and increases pairwise ac-
curacy versus standard baselines, and when evaluated against human-consensus
meta-labels, matches or exceeds individual human raters. These results show that
carefully allocating ITC and aggregating with distribution-aware methods turns
noisy individual model judgments into reliable ratings for evaluation.

1 INTRODUCTION

Thinking large language models (LLMs) are increasingly being employed as automated judges
for evaluating the output of other generative systems, a paradigm known as “Thinking-LLM-as-
a-Judge” (Saha et al., 2025). This approach offers a scalable and cost-effective alternative to human
evaluation, which is often slow and expensive. To mitigate the inherent stochasticity and noise of
single-pass judgments, a common strategy is to leverage inference-time compute (ITC) Snell et al.
(2024) by generating multiple independent reasoning and rating samples for each item being evalu-
ated. However, the reliability of the final judgment hinges critically on how these multiple outputs
are aggregated.

Current aggregation methods, such as majority voting (Self-Consistency, (Wang et al., 2023b)) or
heuristics based on model confidence scores or LLM generated aggregators, are often brittle and
statistically suboptimal. These approaches are particularly fragile in the presence of ties. For in-
stance, a simple majority vote cannot distinguish between a narrow 5-to-4 decision and a decisive
9-to-0 consensus, discarding valuable information about the strength of evidence contained within
the full distribution of votes. This insensitivity to evidential strength leads to less reliable and robust
evaluations.

In this work, we argue that the aggregation step is not an afterthought but a critical component for
effectively utilizing ITC. We propose a principled, Distribution-Calibrated Aggregation scheme that
moves beyond simple vote-counting. Our method operates directly on the full counts of positive,
negative, and tie votes, preserving the full signal in the sample distribution. Specifically, we model
the three-way preference outcomes using a Bradley-Terry-Davidson (Davidson, 1970) formulation,
which explicitly parametrizes both the preference margin and the global propensity for ties. By
estimating parameters via maximum likelihood on a small calibration set and then using the Mean
Absolute Error (MAE) Bayes action at inference, our approach stays aligned with the evaluation
metric while leveraging a well-behaved probabilistic fit, avoiding loss–metric mismatch and yield-
ing more accurate judgments. Conceptually, this calibration step modifies the decision boundary
compared to a simple majority voting as demonstrated in Figure 1.

We conduct extensive experiments on a diverse set of benchmarks, including machine translation
evaluation (WMT23) (Song et al., 2025) and reward model assessment (Reward Bench 2) (Malik
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Figure 1: Behavior of Different Aggregation Methods with 20 Votes. Our proposed method’s be-
havior is shown using two different hyperparameters. The number of ‘Tie’ votes is computed as 20
- (# of A votes) - (# of B votes)

et al., 2025). Our results demonstrate that our distribution-calibrated approach considerably outper-
forms a suite of strong self-consistency baselines. By carefully modeling the entire vote distribution,
our method turns noisy individual model judgments into more reliable ratings, matching or exceed-
ing the performance of individual human raters when evaluated against a human-consensus gold
standard.

Contributions: Our main contributions are threefold: (1) We show that the existing aggregation
methods for inference time compute for LLM judges are suboptimal and that a carefully designed
aggregation approach is critical. (2) We propose an Expected Risk Minimization (ERM)-based
Bradley–Terry–Davidson aggregation fit on a small calibration set, and show that it consistently
outperforms existing aggregation methods across different tasks in both reward benchmarks and
MT. (3) For MT in particular, we adopt a consensus-based meta-evaluation to form higher-fidelity
ground truths where labels are noisy, enabling fair comparison to human raters and revealing regimes
where LLM judges approach “super-human” evaluation quality.

2 RELATED WORK

LLM-as-a-Judge: Recently, Large Language Models (LLMs) have achieved remarkable success
when deployed as “judges” (Zheng et al., 2023) to evaluate generated text, offering a scalable al-
ternative to traditional metrics (Gu et al., 2025). This paradigm has demonstrated high correlation
with human judgments across diverse domains. Approaches vary: some prompt general-purpose
LLMs directly (e.g., G-Eval (Liu et al., 2023); JudgeLM (Zhu et al., 2025)), while others fine-tune
specialized models optimized for evaluation tasks (e.g., Prometheus (Kim et al., 2023); Auto-J (Li
et al., 2023)). While powerful, these LLM-based approaches face significant challenges, including
sensitivity to prompt design (Gu et al., 2025) and inherent biases, such as positional bias (favoring
a specific candidate order) or verbosity bias (preferring longer outputs) (Wang et al., 2023a). More-
over, LLM judges exhibit significant variability in their decision-making, with some models being
more aggressive than others in breaking subtle distinctions or ties (Zheng et al., 2023). Our work
focuses on mitigating this noise and improving the reliability of judgments through a principled
aggregation.

Thinking in Language Models for Evaluation. The reliability of LLM judgments is often en-
hanced when the model is prompted to generate intermediate reasoning steps before emitting a final
verdict, a technique popularized by Chain-of-Thought (CoT) prompting (Wei et al., 2022). In the
context of evaluation, this ”thinking” process allows the model to articulate the criteria for judgment
and justify its decision, leading to the “Thinking-LLM-as-a-Judge” paradigm (Saha et al., 2025).
This explicit reasoning not only improves the accuracy of the judgments (Zhang et al., 2025) but
also increases their interpretability. Our work leverages the generation of these independent think-
ing traces and investigates how to best aggregate the resulting rating samples.

Inference Time Compute and Sample Aggregation: When multiple samples are generated using
ITC, an aggregation strategy is required. Self-Consistency (SC) (Wang et al., 2023b) aggregates
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multiple outputs using majority voting. Several variants incorporate confidence signals. Soft Self-
consistency (Soft-SC) (Wang et al., 2024) picks the minimum, mean, or product of confidence scores
of items in each category. Confidence-Informed Self-Consistency (CI-SC) (Taubenfeld et al., 2025)
computes a weighted majority vote based on confidence scores, which are computed as either the
length-normalized probability of the sequence or via prompting an LLM. Alternatively, some meth-
ods leverage the LLM itself for aggregation. Generative Self-Aggregation (GSA) (Li et al., 2025)
asks the LLM to synthesize a new response based on the context of multiple samples. Universal
Self-Consistency (USC) (Chen et al., 2023) leverages the LLM to select the most consistent answer
among multiple candidates. Finally, Singhi et al. (2025) and Zhang et al. (2025) showed that one can
improve the performance of reasoning-based generative verifiers via test-time compute, particularly
via majority voting.

3 MOTIVATION

A critical choice when designing an LLM-as-a-Judge for pairwise comparisons (Zheng et al., 2023)
is whether to allow the judge to declare a tie or to force it to pick a preference. In this section, we
first show that forcing the model to break ties might induce LLM biases. We then show that the
tie decisions are highly sensitive to the judge parameters which requires a more robust aggregation
method to mitigate.

Ties are important to reduce LLM biases LLM-as-a-Judge exhibit multiple types of systematic
biases (Ye et al., 2024). A well-known issue is positional bias (Shi et al., 2025), where the model’s
preference can be affected by the order in which responses are presented.

To quantify this, we evaluated several LLMs (qwen3-next-80b (Qwen Team, 2025), gpt-oss-120b
(OpenAI, 2025), deepseek-v3.1(DeepSeek-AI, 2024) and gemini-2.5-flash (Comanici et al., 2025))
on a subset of 336 pairs of responses from the WMT23 ZH→ EN dataset which we discuss in de-
tails in Section 5. The subset was limited to pairs rated as ties by humans since we are interested
in studying the behavior of the LLMs around the ties boundary. We rate each pair twice by swap-
ping the positions, thus an unbiased LLM should prefer the first and second responses on average
equally. We present results in Table 1 for the two models (qwen3-next-80b and gemini-2.5-flash)
that exhibited notable bias, in the forced-choice setting where a “tie” was not an option. For ex-
ample, gemini-2.5-flash shows a strong 14.58% bias toward the first answer, while qwen3-next-80b
exhibits an 8.04% bias toward the second.

The right side of Table 1 shows the results from the same experiment but with the prompt updated
to allow ties. The introduction of this third choice dramatically reduces positional bias for both
models. This demonstrates that including a tie option is not just a feature for capturing equivalence,
but might be a critical mechanism for debiasing the evaluation process itself.

Table 1: Allowing a ‘Tie’ Option Reduces Positional Bias. The table compares preferences in a
forced-choice setting against one where a ’tie’ is allowed. The bias is computed as (#First - #Second)
/ (#First + #Second)

Forced-Choice (No Tie) Tie Allowed
Model First Second Bias First Second Tie Bias
gemini-2.5-flash 385 287 14.5% 220 199 253 3.1%
qwen3-next-80b 309 363 -8.0% 322 318 32 0.6%

Tie decisions are not stable A core motivation for our work is that in a three-way preference setup,
the distribution of votes from an LLM-as-a-judge is highly sensitive to variations in the evaluation
setup.

In this section, we demonstrate empirically two major sources of variability in ratings - (1) the LLM
queried and (2) the prompt template used to get the ratings. We conduct an experiment where we
generated three slight variations of an evaluation prompt as shown in Appendix A. We then use each
of these prompts to judge the same dataset from the previous section. As shown in Table 2, the
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results reveal a significant variance in the rate of ties across prompts and LLMs. For instance, using
the gemini-2.5-flash model, the percentage of “Ties” votes fluctuates dramatically, ranging from a
high of 37.6% with prompt 3 to a low of 12.4% with prompt 1. We also observe that deepseek-
v3.1 produces an average tie rate of 30.4% across all prompts, which is significantly higher than
gpt-oss-120b’s average of 21.8%.

Table 2: Ties Rates for Different Models and Prompts (in %)
Model prompt 1 prompt 2 prompt 3 Model Avg
gpt-oss-120b 19.3% 24.4% 21.6% 21.8%
gemini-2.5-flash 12.4% 21.3% 37.6% 23.8%
deepseek-v3.1 28.9% 29.6% 32.6% 30.4%

Prompt Avg 20.2% 25.1% 30.6% 25.3%

This instability is a critical flaw for methods that do not calibrate for such variations since a simple
change in prompt wording can fundamentally alter the tie likelihood. This underscores the need for
a robust distribution-calibrated aggregation method, which can explicitly model and adapt to these
shifts, thereby producing more reliable evaluations.

4 DISTRIBUTION-CALIBRATED INFERENCE-TIME SAMPLE AGGREGATION

Setting and sampling protocol. Given a prompt x and a pair of responses (t1, t2), our autorater
queries a Thinking LLM n times to obtain independent reasoning–rating tuples {(zj , rj)}nj=1, where
zj is a thinking trace and rj ∈ {−1, 0,+1} is a discrete vote (+1: t1 ≻ t2, −1: t2 ≻ t1, 0: tie).
Empirically, once a thinking trace zj is produced, the conditional distribution p(rj | zj , ·) is sharply
peaked (Wang et al., 2025). In addition, we do not see a high variation in the normalized probability
of the thinking traces. We therefore find that log-likelihood reweighting adds little signal in practice.
Instead, we operate directly on the vote counts, which preserve the strength of evidence in the sample
distribution. Let

c+ =
∣∣{j : rj = +1}

∣∣, c− =
∣∣{j : rj = −1}∣∣, c0 =

∣∣{j : rj = 0}
∣∣, n = c+ + c− + c0,

and equivalently n = (c+, c0, c−). While majority vote (the mode of n) is common, it is statistically
suboptimal: it is highly sensitive to sampling noise and ignores evidential strength (e.g., it cannot
distinguish 5–to–4 from 9–to–0). We instead aggregate via a parametric model that consumes the
full count distribution and is aligned to our evaluation metric.

Evaluation Metric. Let y⋆ ∈ {−1, 0,+1} denote the ground truth and ŷ the aggregator’s decision.
We evaluate with mean absolute error (MAE):

MAE =
1

n

n∑
i=1

ℓ(ŷi, y
⋆
i ), ℓ(a, b) = |a− b|. (1)

This ordinally-aware metric is well-suited for our task, as the labels {−1, 0,+1} are not merely
categorical but lie on an ordered scale. A complete preference reversal (e.g., predicting −1 when
the truth is +1, an error of magnitude 2) is penalized more heavily than a minor disagreement (e.g.,
predicting 0 when the truth is +1, an error of magnitude 1). This contrasts with a standard accuracy
metric that would treat all misclassifications as equivalent.

Count-derived features from votes. We extract two smoothed features from n:

s = 1
2 log

c+ + α

c− + α
, (2)

with small α > 0 (we use α=1), capturing the decisive margin; and a tie-evidence feature

t = log
c0 + κ

n+ κ
≤ 0, (3)

with κ > 0 (we use κ=1), which increases (toward 0) as ties appear more frequently.
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A Davidson-style model with ties (global vs. local). We adopt a multinomial logit model inspired
by the Bradley–Terry–Davidson framework for ternary outcomes. For an item with a latent margin
u ∈ R and tie logit η ∈ R,

p(+1) =
eu

Z
, p(−1) = e−u

Z
, p(0) =

eη

Z
, Z = eu + e−u + eη. (4)

We link features to scores linearly: u = β s and either (i) global tie, η = η0 (constant across items),
or (ii) local tie, η = γ t. The global model has parameters (β, η0); the local model uses (β, γ). In
our experiments the two variants perform comparably; for simplicity, we henceforth focus on the
global-tie model and use it in all subsequent analyses.

MAE-aligned decision rule. Given (β, η0) and an input s, we compute probabilities via Equa-
tion 4 with u = βs and η = η0. The Bayes-optimal action under MAE is the label y ∈ {−1, 0,+1}
that minimizes the expected risk

R(−1) = p(0) + 2 p(+1),

R(0) = p(+1) + p(−1), (5)
R(+1) = 2 p(−1) + p(0).

The optimal decision is therefore

ŷ = arg min
y∈{−1,0,+1}

R(y). (6)

Parameter fitting and optimization. A direct approach is to minimize empirical MAE on a held-
out calibration set C:

(β̂, η̂0) ∈ argmin
β,η0

1

|C|
∑
i∈C

ℓ
(
ŷi(β, η0), y

⋆
i

)
, (7)

where ŷi is obtained by computing scores si, the Davidson probabilities (equation 4), and then the
MAE Bayes action (Equation 6). However, Equation 7 is piecewise constant in (β, η0)—predictions
only change when a decision boundary is crossed—so gradients vanish almost everywhere. We
therefore decouple fit and decision: we fit the probabilistic model by maximum likelihood on C and
then apply the MAE Bayes action at inference.

Concretely, with logits (βsi, −βsi, η0) for classes (+1,−1, 0), we minimize the average negative
log-likelihood (NLL)

(β̂, η̂0) ∈ argmin
β,η0

1

|C|
∑
i∈C

[
− log p

(
y⋆i | ui = βsi, η0

)]
= argmin

β,η0

1

|C|
∑
i∈C

[
−
〈
ey⋆

i
, (βsi, −βsi, η0)

〉
+ log

(
eβsi + e−βsi + eη0

)]
.

(8)

where ey ∈ {0, 1}3 denotes the one-hot basis vector for class y. This objective is a log-sum-exp
of affine functions and is therefore globally convex in (β, η0). We use L-BFGS-B with simple box
constraints and multi-start initializations. A summary of the approach is given in Algorithm 1.

5 EXPERIMENTS

Baselines: In our experiments, we consider the following baselines:

1. Greedy decoding (GD): draws n = 2 samples with reversed order and a temperature of zero.
2. Few Shot (FS): draws n = 2 samples with reversed order with the labeled calibration set pro-

vided in the prompt as in-context examples. We use a temperature of zero.
3. Self-Consistency (SC) (Wang et al., 2023b): aggregates multiple outputs using majority voting.
4. Soft Self-Consistency (Soft-SC) (Wang et al., 2024): picks the minimum, mean, or product of

confidence scores within each category.
5. Confidence-Informed Self-Consistency (CI-SC) (Taubenfeld et al., 2025): computes a weighted

majority vote based on confidence scores; here we use the length-normalized probability of the
sequence (∈ [0, 1]). Alternatively, one could prompt an LLM for the confidence score (Kadavath
et al., 2022), but in our experiments the LLM was almost always highly confident.
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Algorithm 1 Inference-time aggregation with a calibrated Davidson model
Require: Calibration set C, source query x, response pair (t1, t2), sampling budget n, smoothing

factor α.
1: Calibrate parameters (offline, once). For each i ∈ C, tally (c+i , c

−
i , c

0
i ) and compute si =

1
2 log

c+i +α

c−i +α
(Equation 2). Fit (β̂, η̂0) by minimizing NLL with L-BFGS-B (few random

restarts) using Equation 4.
2: Aggregate a new pair. Query the LLM n times to obtain votes {rj}nj=1 ⊂ {−1, 0,+1}; tally

(c+, c−, c0); compute s = 1
2 log

c++α
c−+α .

3: Form u = β̂ s and set η ← η̂0; compute p(−1), p(0), p(+1) via Equation 4.
4: Compute risksR(−1),R(0),R(+1) via Equation 5.
5: Output ŷ via the Bayes action Equation 6.

6. Generative Self-Aggregation (GSA) (Li et al., 2025): asks the LLM to synthesize a new response
based on the context of multiple samples.

7. Universal Self-Consistency (USC) (Chen et al., 2023): leverages the LLM to select the most
consistent answer among multiple candidates.

In both GD and FS, we aggregate the two responses using a rounded median, where a pair of (0, 1)
is mapped to 1. Empirically, this choice leads to better results in both cases. In other baselines, to
overcome the positional bias, we draw n

2 samples in an A-then-B response order and the remaining
n
2 samples via a B-then-A order. We then aggregate the entire n samples. In all of our experiments
(except for the GD and FS baselines), we use temperature sampling with a temperature of 0.5 to
generate the candidates. For LLM aggregation methods, we use greedy decoding in the aggregation
stage. All the LLM calls in this paper are done through Thinking LLMs with thinking enabled.

Thinking Models We consider the following Thinking LLMs: gemini-2.5-flash (Comanici & et al.,
2025), qwen3-next-80b (Qwen Team, 2025), gpt-oss-120b (OpenAI, 2025).

Benchmarks We consider two machine translation tasks (Song et al., 2025) and six tasks from the
Reward Bench 2 benchmark (Malik et al., 2025).

We use the WMT23 (Song et al., 2025) dataset and focus on two tasks for two different language
pairs EN→ DE and ZH→ EN. For each source sentence and its two possible translations, the dataset
contains 6 multiple ratings. Three ratings were collected using a simplified side-by-side task in
which raters compare two translations and assign labels {−1, 0,+1}. The other three other ratings
were collected using direct assessment with MQM (Lommel et al., 2013) which we converted to
a {−1, 0,+1} by looking at the difference in absolute score. The WMT EN→ DE set comprises
∼500 document-level segments rated by 10 human raters, whereas the WMT ZH→ EN set comprises
∼ 1,800 sentence-level segments rated by 8 humans. We aggregate the six ratings by majority vote
to obtain a consensus label, which serves as the gold standard. We selected this benchmark because
it provides multiple independent human ratings per segment which allows us to benchmark our
approach against individual human raters by performing leave-one-out comparisons.

The Reward Bench 2 benchmark (Malik et al., 2025) is designed for evaluating reward models across
six distinct domains: Factuality, Precise Instruction Following (IF), Math, Safety, Focus, and Ties.
For our evaluation, we constructed preference pairs by generating all possible pairs from each task’s
source dataset, which contains both accepted and rejected responses. These pairs are categorized
into ‘non-tie’ pairs (pairing one accepted and one rejected response) and ‘tie’ pairs (pairing two
accepted or two rejected responses). From this comprehensive set, we then sample 1000 examples
for each of the six tasks to form the final benchmark. We provide a detailed breakdown of the ground
truth vote distributions for each task in Appendix B.

Meta Evaluation Metrics: We report mean absolute error (MAE) on ordinal labels yi ∈
{−1, 0,+1} using Equation 1. We use MAE for model selection and ablations. We also report
pairwise accuracy, PA = 1

n

∑n
i=1 1[ŷi = yi].

Experimental Setup: We randomly sample α|D| test samples as the calibration set (for our method,
and also for the FS baseline) and use the rest of the samples for evaluation (for all the methods in-
cluding ours), and report the average results over 100 random calibration-evaluation splits. We use

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: MAE (lower score is better) over different tasks with different methods for n ∈ {4, 12} via
gemini-2.5-flash.

Dataset Ours SC Soft-SC CI-SC USC GSC

4 12 4 12 4 12 4 12 4 12 4 12

WMT EN → DE 0.668 0.653 0.671 0.648 0.664 0.673 0.667 0.652 0.728 0.765 0.723 0.755
WMT ZH → EN 0.506 0.497 0.549 0.527 0.557 0.560 0.544 0.524 0.527 0.505 0.581 0.546

RB2-Factuality 0.487 0.454 0.615 0.647 0.681 0.711 0.675 0.670 0.575 0.573 0.599 0.591
RB2-Focus 0.332 0.303 0.394 0.403 0.397 0.370 0.415 0.415 0.424 0.423 0.439 0.441
RB2-Math 0.306 0.287 0.360 0.384 0.400 0.372 0.391 0.385 0.410 0.415 0.427 0.450
RB2-Precise IF 0.451 0.431 0.498 0.552 0.581 0.603 0.551 0.570 0.574 0.530 0.597 0.524
RB2-Safety 0.319 0.285 0.373 0.402 0.406 0.409 0.412 0.405 0.407 0.405 0.406 0.414
RB2-Ties 0.094 0.081 0.155 0.158 0.177 0.177 0.178 0.165 0.226 0.221 0.208 0.197

Table 4: Pairwise accuracy (higher score is better) over different tasks with different methods for
n ∈ {4, 12} via gemini-2.5-flash

Dataset Ours SC Soft-SC CI-SC USC GSC

4 12 4 12 4 12 4 12 4 12 4 12

WMT EN → DE 0.498 0.505 0.442 0.467 0.496 0.477 0.473 0.465 0.436 0.447 0.452 0.463
WMT ZH → EN 0.583 0.607 0.515 0.539 0.528 0.529 0.530 0.545 0.561 0.590 0.512 0.550

RB2-Factuality 0.536 0.564 0.450 0.424 0.410 0.399 0.409 0.411 0.472 0.475 0.445 0.461
RB2-Focus 0.685 0.709 0.629 0.626 0.636 0.663 0.616 0.616 0.604 0.612 0.601 0.602
RB2-Math 0.709 0.723 0.658 0.635 0.626 0.654 0.632 0.634 0.616 0.619 0.609 0.605
RB2-Precise IF 0.572 0.586 0.556 0.530 0.507 0.490 0.528 0.515 0.495 0.522 0.474 0.527
RB2-Safety 0.691 0.723 0.650 0.630 0.635 0.633 0.626 0.629 0.619 0.623 0.625 0.618
RB2-Ties 0.905 0.918 0.844 0.842 0.823 0.822 0.822 0.834 0.773 0.779 0.792 0.804

α = 5% as the ratio of test samples for calibration for all the tasks except for WMT EN→ DE where
we use α = 10% due to the smaller size of the dataset. Note that stratification of the splits empiri-
cally did not change the results, hence we did not utilize stratification for the results. Increasing the
size of the calibration set seems to slightly improve the results in some tasks, but typically this small
calibration set size is sufficient for our calibration method.

Results: Tables 3 and 4 report MAE and pairwise accuracy for all aggregation methods using
gemini-2.5-flash at n ∈ {4, 12} across tasks. After scoring on 100 calibration-evaluation splits,
we identify the top cluster using the procedure of Freitag et al. (2023): sort aggregation methods
by average score and assign rank 1 to consecutive methods until we encounter the first that is sig-
nificantly different from any already included method; all rank 1 methods are bolded in the tables.
Significance is determined via a paired permutation test: for each pair of aggregation methods, we
compare per-item outcomes on each evaluation set and obtain a p-value using random resampling
(100 resamples per split), with τ = 0.05.

Our method attains the best scores on the vast majority of datasets and sample counts; the notable
exception is WMT EN→ DE (MAE), where Soft-SC at n=4 and SC at n=12 are marginally lower.
We attribute this to the dataset’s small size and the higher ambiguity inherent to document level MT
evaluation which makes calibration more challenging. Across RB2 tasks, increasing n from 4 to 12
consistently improves our method, whereas SC tends to degrade or remain flat. Other aggregation
baselines vary non-monotonically with n in a task-dependent manner. In the majority of tasks, we
find that the evaluation performance plateaus at around n = 12 samples with RB2-Ties, RB2-Focus,
and RB2-Precise IF showing marginal gains at n = 20 compared to n = 12.

We compare the behavior of different aggregation methods versus n over the RB2-Precises IF task in
Figure 2. In this Figure, Error bars show 95% confidence intervals of the mean over the 100 random
calibration–evaluation splits, computed as x̄ ± 1.96 SE for each n and method. Note that Ours is
the only method that fits parameters on the calibration set every time, which injects an extra source
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Table 5: Per-rater LOO comparison on WMT ZH→ EN in Pairwise Accuracy. For each rater Ri,
exclude Ri and aggregate the remaining k−1 humans to get ŷ−i. Report the human’s PA vs. OURS
with n ∈ {2, 4, 8, 12} samples. Win? is ✓ if OURS > Human, ✗ if OURS < Human.

n=2 n=4 n=8 n=12

Rater Human OURS Win? Human OURS Win? Human OURS Win? Human OURS Win?

R1 0.546 0.457 ✗ 0.546 0.489 ✗ 0.546 0.501 ✗ 0.546 0.511 ✗
R2 0.567 0.536 ✗ 0.567 0.549 ✗ 0.567 0.547 ✗ 0.567 0.573 ✓
R3 0.606 0.585 ✗ 0.606 0.598 ✗ 0.606 0.608 ✓ 0.606 0.609 ✓
R4 0.530 0.499 ✗ 0.530 0.536 ✓ 0.530 0.546 ✓ 0.530 0.549 ✓
R5 0.504 0.516 ✓ 0.504 0.548 ✓ 0.504 0.554 ✓ 0.504 0.554 ✓
R6 0.497 0.518 ✓ 0.497 0.553 ✓ 0.497 0.574 ✓ 0.497 0.570 ✓
R7 0.511 0.563 ✓ 0.511 0.579 ✓ 0.511 0.582 ✓ 0.511 0.589 ✓
R8 0.503 0.562 ✓ 0.503 0.589 ✓ 0.503 0.621 ✓ 0.503 0.624 ✓

wins 4/8 5/8 6/8 7/8

of variability to its curve. For FS, due to its high cost (since we need to regenerate the samples
for every calibration-evaluation split), we averaged the results over 10 random splits. Our method
outperforms all the baselines by a large margin.
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Figure 2: MAE and Pairwise Accuracy versus n on RB2-Precise IF task for different methods.

For WMT ZH→ EN, we conduct an additional meta evaluation comparing the ITC LLM judge to in-
dividual human raters via a leave-one-out (LOO) protocol. Given ratings from k raters R1, . . . , Rk,
we iteratively drop Ri, majority-vote the remaining humans to obtain a ground truth, and compute
pairwise accuracy for both Ri and the LLM judge against that ground truth on the same items. This
yields an unbiased comparison against the remaining crowd baseline. Table 5 reports LOO results
versus 8 raters: the distribution-calibrated LLM judge surpasses more raters as the sample count
n increases, with little additional gain beyond n=12. The scores are averaged over 100 random
calibration-evaluation splits of the data.

Results for different Thinking LLMs, gemini-2.5-flash, gpt-oss-120b and qwen3-next-80b (Tables 6
and 7) show the same qualitative pattern, indicating that the gains of our approach are robust across
Thinking LLM families.

6 CONCLUSIONS AND FUTURE WORK

We showed that careful aggregation of multiple reasoning–rating samples for thinking LLMs-as-
judges substantially improves evaluation performance. Our main contribution is a distribution-
calibrated aggregation scheme based on the three-outcome Davidson model: by fitting (β, η) to
the sufficient statistics of vote counts (positive/negative margins and indecision mass) using an MLE
objective and a Bayes action rule, we obtain sample-efficient estimates that consistently outperform
majority vote and other self-consistency baselines across different benchmarks.

Some immediate directions aim to further reduce supervision and improve data efficiency. First, a
thorough study of the transferability of the proposed calibration under different tasks and different
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Table 6: MAE for different LLMs with n ∈ {4, 12}; Ours versus Self-Consistency (SC).

Dataset
gpt-oss-120b qwen3-next-80b gemini-2.5-flash

Ours SC Ours SC Ours SC

4 12 4 12 4 12 4 12 4 12 4 12

RB2-Factuality 0.465 0.442 0.577 0.593 0.491 0.453 0.599 0.608 0.487 0.454 0.615 0.647
RB2-Focus 0.342 0.306 0.397 0.419 0.347 0.302 0.411 0.426 0.332 0.303 0.394 0.403
RB2-Math 0.362 0.329 0.415 0.437 0.389 0.345 0.442 0.472 0.306 0.287 0.360 0.384
RB2-Precise IF 0.412 0.381 0.506 0.526 0.455 0.432 0.544 0.576 0.451 0.431 0.498 0.552
RB2-Safety 0.262 0.245 0.316 0.322 0.274 0.243 0.316 0.335 0.319 0.285 0.373 0.402
RB2-Ties 0.170 0.118 0.277 0.308 0.200 0.133 0.300 0.339 0.094 0.081 0.155 0.158

Table 7: Pairwise accuracy for different LLMs with n ∈ {4, 12}; Ours vs. Self-Consistency (SC).

Dataset
gpt-oss-120b qwen3-next-80b gemini-2.5-flash

Ours SC Ours SC Ours SC

4 12 4 12 4 12 4 12 4 12 4 12

RB2-Factuality 0.557 0.575 0.473 0.461 0.525 0.557 0.449 0.442 0.536 0.564 0.450 0.424
RB2-Focus 0.664 0.696 0.621 0.603 0.665 0.706 0.616 0.602 0.685 0.709 0.629 0.626
RB2-Math 0.646 0.677 0.597 0.575 0.624 0.667 0.575 0.549 0.709 0.723 0.658 0.635
RB2-Precise IF 0.610 0.634 0.550 0.541 0.578 0.583 0.526 0.501 0.572 0.586 0.556 0.530
RB2-Safety 0.754 0.763 0.718 0.710 0.728 0.758 0.688 0.669 0.691 0.723 0.650 0.630
RB2-Ties 0.830 0.882 0.723 0.692 0.800 0.867 0.700 0.661 0.905 0.918 0.844 0.842

distribution of ties would determine if calibration on one task would transfer to another. Unsuper-
vised distribution calibration would be another future direction: we currently rely on a small cali-
bration set to learn the calibration parameters; developing pooled or empirical-Bayes style calibra-
tion that operates directly on unlabeled vote distributions would eliminate this dependence. Beyond
pairwise preference judgments with a tie option, generalizing the aggregation model to more general
ordinal scales and to multi-class categorical outcomes would widen applicability of this work. This
is because the consequences of lack of calibration is likely even more pronounced as we increase
the number of ordinal or categorical levels.
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A PROMPT TEMPLATES

We list the prompt templates for LLM judges.

Figure 3: The default prompt for pairwise comparison used for Reward Bench2 datasets
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Figure 4: Variation one of prompt used for evaluation MT datasets.

Figure 5: Variation two of prompt used for evaluation MT datasets.
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Figure 6: Variation three of prompt used for evaluation MT datasets.
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B DATASET DISTRIBUTION

Figure 7: The ground truth vote distribution of different datasets

Table 8: The ground truth vote distribution of different datasets

Subset Total Samples Absolute Counts Percentage (%)

A Tie B A Tie B

RB2-Factuality 1000 234 533 233 23.4 53.30 23.3
RB2-Focus 1000 244 495 261 24.4 49.5 26.1
RB2-Math 1000 255 498 247 25.5 49.8 24.7
RB2-Precise IF 960 212 480 268 22.0 50.0 27.9
RB2-Safety 1000 233 498 269 23.3 49.8 26.9
RB2-Ties 1000 135 716 149 13.5 71.6 14.9

WMT23 ZH → EN 1835 760 336 739 41.4 18.3 40.2
WMT23 EN → DE 510 175 121 214 34.3 23.7 41.9

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

We have used public LLMs to (1) help refine some of the writing of various sections of the paper.
All the content has been carefully reviewed by the authors. (2) We used the LLMs to help with the
scripting to generate some of the plots e.g. Figure 1 and Figure 2.
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