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Abstract

The rapid growth of video platforms has trans-001
formed information dissemination and led to002
an explosion of multimedia content. However,003
this widespread reach also introduces risks, as004
some users exploit these platforms to spread005
hate speech, which is often concealed through006
complex rhetoric, making hateful video detec-007
tion a critical challenge. Existing detection008
methods rely heavily on unimodal analysis or009
simple feature fusion, struggling to capture010
cross-modal interactions and reason through011
implicit hate in sarcasm and metaphor. To ad-012
dress these limitations, we propose HVGuard,013
the first reasoning-based hateful video detec-014
tion framework with multimodal large language015
models (MLLMs). Our approach integrates016
Chain-of-Thought (CoT) reasoning to enhance017
multimodal interaction modeling and implicit018
hate interpretation. Additionally, we design019
a Mixture-of-Experts (MoE) network for ef-020
ficient multimodal fusion and final decision-021
making. The framework is modular and exten-022
sible, allowing flexible integration of different023
MLLMs and encoders. Experimental results024
demonstrate that HVGuard outperforms all ex-025
isting advanced detection tools, achieving an026
improvement of 6.88% to 13.13% in accuracy027
and 9.21% to 34.37% in M-F1 on two public028
datasets covering both English and Chinese.029

Disclaimer: This paper contains harmful con-030
tent, which has the potential to be offensive and031
may disturb readers.032

1 Introduction033

In recent years, video platforms like YouTube034

(Google, 2005), Bilibili (Kuanyu, 2009), and Tik-035

Tok (ByteDance, 2016) have transformed informa-036

tion dissemination and fueled multimedia growth.037

However, this also brings risks, as some users ex-038

ploit these platforms to spread false information,039

extremist content, and hate speech (Ottoni et al.,040

2018). Hate speech, which demeans, attacks, or041

Figure 1: A typical example of hateful video

marginalizes individuals or groups based on char- 042

acteristics like race, religion, or gender (Hee et al., 043

2024b; Fortuna and Nunes, 2018). It may not only 044

incite social conflicts but also cause real-world 045

harm to individuals and groups. Thus, effectively 046

detecting hate speech on video platforms (Alcân- 047

tara et al., 2020; Das et al., 2023; Wu and Bhandary, 048

2020) has become an urgent challenge. 049

Compared with traditional text-based forms, the 050

spread of hate speech in videos is more concealed 051

and has a broader impact. Since video content typ- 052

ically includes multimodal information including 053

text, audio, and visual elements, hate message is 054

often embedded in a more subtle manner, making 055

it difficult for single-modality detection methods 056

to identify effectively. Figure 1 shows an offender 057

joking with a bald victim: "Do you know why the 058

man put a rabbit on his head?" "Because he wanted 059

a hare on his head!" This uses the phonetic sim- 060

ilarity between "hair" and "hare" to offend bald 061

individuals. It highlights a challenge in detecting 062

subtle hate speech and the need for inference. Fur- 063
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thermore, content that appears harmless in a sin-064

gle modality may reveal its offensive nature when065

visual, auditory, and contextual cues are consid-066

ered together. Effective hateful video detection067

thus requires an integrated understanding of multi-068

modal interactions and rhetorical devices such as069

metaphor and wordplay.070

Current hateful video detection methods mainly071

use modality encoders to extract features and then072

classify them (Yu et al., 2022; Wu and Bhandary,073

2020; Wang et al., 2024; Das et al., 2023). How-074

ever, these methods either use single modality or075

simply concatenate features from multiple modali-076

ties which is limited because it does not take into077

account the interaction between different modali-078

ties. At the same time, hateful videos often involves079

rhetorical devices such as metaphors, irony, and080

sarcasm (Xu et al., 2024; Ge et al., 2023), which081

cannot be addressed by simple modality feature ex-082

traction methods without some form of reasoning083

(Prystawski et al., 2022). Moreover, online hateful084

videos are increasing rapidly and are often related085

to specific cultural contexts (Ottoni et al., 2018).086

This requires the integration of rich world knowl-087

edge to enhance reasoning capabilities to address088

this issue. Therefore, research on hateful video de-089

tection has important practical significance and can090

provide more precise technical support for the con-091

tent moderation mechanisms of social platforms.092

Recent advancements in multimodal large lan-093

guage models (MLLMs) (Bai et al., 2023; Team094

et al., 2024; Liu et al., 2024; Wang et al., 2023)095

have demonstrated strong video understanding ca-096

pabilities by leveraging extensive world knowledge097

and deep semantic comprehension (Tang et al.,098

2023). This makes them promising for tackling099

the challenges of hateful video detection. To en-100

hance their effectiveness in this domain, we incor-101

porate Chain-of-Thought (CoT) reasoning, which102

enables MLLMs to break down complex reason-103

ing tasks into intermediate steps. This structured104

approach allows for a more systematic analysis of105

multimodal information—spanning audio, visual,106

and textual components—while capturing their in-107

teractions to form a coherent understanding of the108

video’s overall semantics.109

In this work, we first explore the effectiveness110

of MLLMs and CoT reasoning in understanding111

hateful videos, particularly their role in handling112

multimodal interactions and rhetorical devices such113

as metaphors. Building on these insights, we pro-114

pose the first reasoning-based hateful video detec-115

tion framework, HVGUARD1. Our approach lever- 116

ages MLLMs to generate multimodal rationales 117

and incorporates a CoT strategy that explicitly 118

models cross-modal interactions and rhetorical el- 119

ements, addressing the challenges of implicit hate 120

detection. Additionally, we design a Mixture-of- 121

Experts (MoE) network (Jacobs et al., 1991) to 122

effectively integrate diverse multimodal informa- 123

tion. The MoE model fuses multimodal represen- 124

tations with MLLM-derived rationales, optimizing 125

the decision-making process. This integration en- 126

ables our framework to combine low-level feature 127

extraction with high-level semantic reasoning, ul- 128

timately improving the accuracy and robustness 129

of hateful video detection. Experimental results 130

demonstrate that HVGUARD achieves a detection ac- 131

curacy of up to 0.86, outperforming existing state- 132

of-the-art methods. 133

The key contributions of this paper are as fol- 134

lows: 135

• First Exploration of MLLMs and CoT in 136

Hateful Video Understanding. This is the 137

first work to explore the potential of MLLMs 138

and CoT reasoning for hateful video under- 139

standing, demonstrating their effectiveness in 140

managing multimodal interactions and com- 141

plex rhetorical devices, such as metaphors. 142

• Novel Reasoning-Based Hateful Video De- 143

tection Framework. We propose the 144

first reasoning-based hateful video detection 145

framework, integrating MLLMs with CoT 146

reasoning to enhance multimodal interaction 147

modeling and implicit hate interpretation. Ad- 148

ditionally, we introduce a MoE network to ef- 149

ficiently fuse multimodal representations and 150

MLLM-generated rationales, optimizing the 151

decision-making process. 152

• Extensive Evaluation of HVGUARD. Experi- 153

mental results show that HVGuard achieves 154

up to 0.86 accuracy, outperforming all existing 155

detection tools with accuracy gains of 6.88% 156

to 13.13% and M-F1 improvements of 9.21% 157

to 34.37%. Extensive experiments on two pub- 158

lic datasets, covering both English and Chi- 159

nese, further validate its effectiveness in bi- 160

nary and ternary classification settings against 161

five state-of-the-art baselines, including ad- 162

vanced MLLMs and existing detection tools. 163

1We will open-source our framework for future research.
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(a) Embeddings from BERT. (b) Embedding from GPT-4o. (c) Embedding from GPT-4o with CoT.

Figure 2: Visualization of features used by different methods. (a) Embedding of video titles, transcripts. (b)
Embedding of MLLM rationale. (c) Embedding after incorporating the CoT prompts.

2 Preliminary Study164

With the advancement of artificial intelligence,165

MLLMs have become the focal point of the latest166

developments. The complementarity of LLMs and167

VLMs has given rise to MLLMs, such as Gemini168

1.5(Team et al., 2024) and GPT-4 series (Achiam169

et al., 2023). They can receive, reason, and out-170

put multi-modal information, showing impressive171

capabilities in various multi-modal tasks, includ-172

ing image reasoning and video understanding (Wu173

et al., 2023; Fu et al., 2024), thus opening up new174

ways to solve complex and novel challenges in the175

multi-modal field.176

To more clearly demonstrate how the reason-177

ing capability of MLLMs aids in understanding of178

hateful content in videos, we conducted a visual179

analysis of embedding representations on the hate-180

ful video dataset Multihateclip (Wang et al., 2024).181

Figure 2a visualizes the embeddings of pure textual182

information (video title and transcript) extracted183

using the pre-trained text encoder BERT (Devlin,184

2018), which exhibit significant overlap with no185

discernible class separability. This indicates the186

insufficiency of traditional approaches with single187

modality. However, when analyzing videos with188

MLLMs (Figure 2b), a certain degree of class sepa-189

rability becomes observable. By further incorporat-190

ing the CoT prompting strategy (detailed in Section191

3.4), we guide the MLLM to clarify rhetorical de-192

vices such as metaphors and puns in the videos,193

ultimately achieving sharper classification bound-194

aries (Figure 2c). Thus, MLLMs provide effective195

rationale for hateful video understanding, and the196

CoT prompting strategy further amplifies this capa-197

bility.198

3 Method 199

3.1 Task Definition 200

The goal of hateful video detection is to extract 201

features from videos and classify them based on 202

these features. The video dataset is represented 203

as V = {v1, . . . , vi, . . . , v|V|}, where |V| is the 204

number of videos. The task can be expressed as: 205

arg max
c∈{1,2,...,|C|}

P (c|vi) (1) 206

where c ∈ {1, 2, . . . , |C|} represents the classifi- 207

cation categories. Our work focuses on utilizing 208

rationale generated by MLLM and multimodal in- 209

formation from the video itself for hateful video 210

detection. Therefore, this task can be re-expressed 211

as: 212

arg max
c∈{1,2,...,|C|}

P (c|vTi , vAi , vFi , vMi ) (2) 213

where vTi represents the text information in the 214

video (such as title, subtitles, or transcript), vAi 215

represents the audio information of the video, vFi 216

represents the frame information of the video, and 217

vMi represents MLLM-derived rationales. 218

3.2 Overview 219

The overview of our framework, HVGUARD, is 220

shown in Figure 3. Based on preliminary study, 221

we design this novel framework for hateful video 222

detection, leveraging MLLM-derived rationales to 223

address challenges in multimodal interaction and 224

the interpretation of metaphors and rhetorical de- 225

vices. This framework extracts text, audio, and 226

video frames from the input video, providing a com- 227

prehensive semantic representation of the video. A 228
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Figure 3: Overview of the proposed framework.

CoT-based reasoning approach is then applied, pro-229

gressively reasoning through the individual modal-230

ities and their interactions, to generate rationale231

from MLLM. In the final stage, these embeddings232

are ultimately integrated using a MoE network to233

yield the final classification results.234

3.3 Multimodal Extraction Module235

Considering that hateful videos encompass multi-236

ple modalities, we first extract feature information237

from the three main modalities of the video: text,238

audio, and video frames. We process audio sig-239

nal vAi as a combination of semantic information240

and emotional information. We use FunASR (Gao241

et al., 2023), an open-source audio processing tool,242

to transcribe the audio into transcript vtransi and ex-243

tract the emotion of the spoken content vemo
i . Sub-244

sequently, following the approach of Vivit (Arnab245

et al., 2021), the video is uniformly sampled into 32246

frames, with a fixed interval between consecutive247

frames to ensure equal temporal spacing through-248

out the video.249

vAi , v
F
i = extract(vi),

vtransi , vemo
i = trans(vAi )

(3)250

where vAi represents the original audio signal, vFi251

represents the video frames, and vtitlei represents252

the video title.253

Next, we construct the textual content vTi using254

the video title and transcript:255

vTi = {vtitlei , vtransi } (4)256

3.4 MLLM Reasoning Module257

To address the challenges in hateful video detec-258

tion, such as metaphors, cultural contexts, and the259

complexity of multimodal interactions, it is neces- 260

sary to leverage MLLMs to extract deep semantic 261

information from the video. Based on preliminary 262

study (Chapter 2), we find that hateful video detec- 263

tion is a complex process, requiring the extraction 264

of key cues from multiple modalities, including 265

text, visuals, and audio. Inspired by the works of 266

(Xu et al., 2024; Vishwamitra et al., 2024), we em- 267

ploy carefully designed CoT prompts to decompose 268

this complex task, thereby enabling the understand- 269

ing of multimodal hateful content within the video. 270

Specifically, our CoT prompt is as follows: 271

Adaption Prompt. In the field of hateful con- 272

tent detection, domain alignment, role description 273

and task-specific adaptation is critical, as it equips 274

MLLMs with essential cultural context and con- 275

textual comprehension. This focuses the model’s 276

capabilities on addressing the specific challenges 277

of understanding both nuanced and overt hateful 278

content, thereby improves its performance and reli- 279

ability (Csurka, 2017; Qi et al., 2024). We employ 280

the prompt: 281

This is a video that may contain harmful
content, such as hate speech, explicit vi-
olence, discrimination, or other forms of
harmful behavior. You are a content moder-
ation specialist. Your task is to identify any
instances of hate speech, violent imagery,
discriminatory actions, or any other content
that could be considered harmful, abusive,
or offensive. Ensure the answer’s accuracy
while keeping it concise and avoiding over-
explanation.

282

Visual Meaning Understanding. To guide the 283

model to analyze the video progressively, starting 284
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with the visual information while ignoring the sub-285

titles in the video frames. The focus is placed on286

analyzing the characters and scenes in the frames.287

To achieve this, we employ the following prompt:288

Describe the video content based on {video
frames}, ignoring subtitles in the frames.
Pay attention to any special characters or
scenes.

289

Given the video frames vFi and this prompt290

XF
prompt , the output computation is as follows:291

res1 = MLLM(vFi , X
F
prompt) (5)292

Textual Meaning Understanding. We guide293

the model to focus on textual information by ana-294

lyzing the video titles and transcripts, paying spe-295

cial attention to the presence of rhetorical devices296

such as puns and homophonic wordplay used as297

promotional strategies. Based on this, we employ298

the following prompt:299

The video title is {video title}. The text in
the video is {video transcript}. Please an-
alyze the meaning of this text. Note that
there may be homophonic memes and puns;
distinguish and explain them.

300

Given the textual input vTi and the prompt301

XT
prompt , the output computation is as follows:302

res2 = MLLM(vTi , X
T
prompt) (6)303

Fusion Meaning Understanding. Given the304

complex relationships between semantics across305

different modalities, it is essential to comprehen-306

sively consider the meaning conveyed by the video307

after multimodal fusion. As illustrated by figure308

1, some videos may contain no obvious offensive309

content in their text or visuals individually, yet their310

combination can give rise to new meanings. There-311

fore, we aim for the model to synthesize the results312

from the first two steps and further integrate the313

video’s raw information, including video frames,314

text, and extracted emotions of spoken content.315

This approach seeks to uncover deeper cross-modal316

interactions and analyze potential new metaphors.317

We employ the following prompt:318

Please combine the {video title}, {video
transcript}, {video frames}, {voice emo-
tion}, {response1}, {response2} and analyze
both the visual, textual and audio elements
of the video to detect and flag any hateful
content. No need to describe the content of
the video, only answer implicit meanings
and whether this video expresses hateful
content further.

319

The MLLM rationale is as follows: 320

vMi = MLLM(vTi , v
F
i , v

emo
i , res1, res2) (7) 321

3.5 Multimodal Fusion Module 322

After obtaining rationale generated by MLLM rea- 323

soning module, we designed a multimodal fusion 324

module to fuse information from the aforemen- 325

tioned modalities. We employ modality-specific 326

encoders for each type of modality to obtain their 327

respective embedding representations: 328

ET
i = fT (v

T
i ),

EA
i = fA(v

A
i ),

EF
i = fF (v

F
i )

(8) 329

where fT , fA, and fF represent the text, audio, and 330

vision modality encoders, while ET
i , EA

i , and EF
i 331

represent corresponding embeddings. To reduce 332

the inference burden, we designed an embedding 333

cache, allowing the above process to be executed 334

only once on the dataset. 335

The rationale vMi generated by the MLLM is 336

presented in textual form. We treat it as additional 337

textual input and feed it into the text modality en- 338

coder to obtain embeddings: 339

EM
i = fT (v

M
i ) (9) 340

To fuse the embeddings from different modal- 341

ities, we designed a mixture of experts network. 342

First, all embeddings are concatenated into a single 343

long vector as the representation embedding Ei for 344

the entire video: 345

Ei = concat(ET
i , E

A
i , E

F
i , E

M
i ) (10) 346

Next, we constructed n identical expert networks 347

and one gating network, where n is the number of 348

experts. These experts and the gating network share 349

the same input Ei. Each expert network extracts 350

high-level information specific to certain feature. 351
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The output of the k-th expert is denoted as Ok and352

is computed as follows:353

Ok = fk(Ei; θk), k ∈ {1, 2, . . . , n} (11)354

where fk represents the mapping function of the355

k-th expert network, and θk denotes its parameters.356

Simultaneously, the gating network g(Ei;ϕ) dy-357

namically generates weights wk to adjust the con-358

tribution of each expert’s output. To prevent weight359

polarization, dropout is applied to the gating net-360

work’s output weights. The gating network com-361

putes these weights as:362

wk = Dropout

(
exp(gk(Ei;ϕ))∑n
j=1 exp(gj(Ei;ϕ))

)
,

k ∈ {1, 2, . . . , n}
(12)363

where gk(Ei;ϕ) is the unnormalized weight pro-364

duced by the gating network, and ϕ represents the365

parameters of the gating network.366

The final fused output Ofusion is obtained by367

combining the weighted outputs of all experts:368

Ofusion =
n∑

k=1

wk ·Ok (13)369

3.6 Final Decision370

During training, we optimize the parameters of the371

expert and gating networks by minimizing a loss372

function. Assuming the ground truth labels are373

y and the final decision outputs are ŷ, we use a374

cross-entropy loss function:375

L = − 1

m

m∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

(14)376

where m denotes the number of samples.377

4 Experiments378

Dataset Language Total H O N
HateMM English 1,066 427 0 639

Multihateclip
English 891 72 218 601
Chinese 897 112 180 605

Table 1: Overview of datasets. H:hateful, O:offensive,
N:normal

In this chapter, we first introduce the two datasets379

used to validate our method, the experimental setup,380

and the selection of baselines. Then, we present the381

experimental results and provide a detailed analy-382

sis.383

4.1 Dataset 384

In our study, we employ two high-quality, up-to- 385

date public datasets for hateful video detection: the 386

HateMM dataset and the MultiHateClip dataset. 387

HateMM(Das et al., 2023). The HateMM 388

dataset consists of 1,083 videos sourced from 389

BitChute, a platform with lenient content moder- 390

ation, resulting in a higher prevalence of hateful 391

content. Videos are labeled as either Hate or Non- 392

Hate. 393

MultiHateClip(Wang et al., 2024). The Mul- 394

tiHateClip dataset is a multilingual benchmark 395

dataset for hateful video detection, including 2,000 396

videos from YouTube and Bilibili, with 1,000 397

videos in English and 1,000 in Chinese. Each video 398

is classified as Hateful, Offensive, or Normal. 399

To enhance data reliability, we filtered out cor- 400

rupted and blurry videos. Additionally, to ensure 401

high-quality textual information, we re-annotated 402

the video transcripts using the speech transcription 403

tool FunASR (Gao et al., 2023), improving the ac- 404

curacy of multimodal analysis. The dataset we use 405

is summarized in Table 1. 406

4.2 Experiment Settings 407

We randomly split all datasets into training, test- 408

ing, and validation sets with a 7:2:1 ratio. For the 409

ternary classification task on the MultiHateClip 410

dataset, the labels used are Hateful, Offensive, and 411

Normal. For binary classification on both the Multi- 412

HateClip and HateMM datasets, we combine Hate- 413

ful and Offensive into a single category, keeping 414

the Normal label unchanged. 415

All models are trained with a learning rate of 416

1e-4, a batch size of 32, and early stopping af- 417

ter 100 epochs. Experiments are conducted on 418

three Tesla V100-32G GPUs. Model performance 419

is primarily evaluated using macro-averaged F1 420

score (M-F1) and accuracy (acc). We employ GPT- 421

4o(Achiam et al., 2023), XLM(Conneau, 2019), 422

Vit(Dosovitskiy, 2020), and Wav2Vec(Baevski 423

et al., 2020) as the fundamental MLLM and modal- 424

ity encoders. 425

4.3 Baseline Models 426

We evaluate HVGUARD with five baselines, includ- 427

ing three advanced MLLMs and two state-of-the- 428

art methods in hateful video detection: (1) GPT-4o 429

(Achiam et al., 2023): An advanced MLLM by 430

OpenAI, with high-level reasoning capabilities. (2) 431

Gemini-1.5-pro (Team et al., 2024): A sophis- 432
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Dataset Number of categories Model Acc M-F1 F1(H) R(H) P(H) F1(O) R(O) P(O)

Multihateclip(English)

3

GPT-4o 0.7326 0.3280 0.2957 0.2361 0.3953 0.4923 0.4486 0.5455
Gemini-1.5-pro 0.6319 0.4458 0.2143 0.2000 0.2308 0.3409 0.3488 0.3333

Qwen-VL 0.5618 0.4060 0.2051 0.6154 0.1231 0.2258 0.1556 0.4118
HateMM 0.6966 0.4894 0.1333 0.1667 0.1111 0.5217 0.5516 0.5345

Multihateclip 0.7079 0.4946 0.1667 0.1667 0.1667 0.4928 0.5780 0.4750
HVGuard 0.8090 0.6646 0.4556 0.4722 0.5000 0.6488 0.6270 0.6994

2

GPT-4o 0.7989 0.5019 / / / 0.6455 0.5699 0.7443
Gemini-1.5-pro 0.7198 0.6020 / / / 0.3855 0.2759 0.6400

Qwen-VL 0.6573 0.6549 / / / 0.6258 0.9273 0.4722
HateMM 0.7191 0.6646 / / / 0.5421 0.4722 0.6548

Multihateclip 0.7416 0.6806 / / / 0.5544 0.4861 0.7269
HVGuard 0.8539 0.7714 / / / 0.6308 0.5819 0.7619

Multihateclip(Chinese)

3

GPT-4o 0.6444 0.4460 0.2326 0.1852 0.3125 0.2941 0.3448 0.2564
Gemini-1.5-pro 0.6648 0.4393 0.2069 0.1500 0.3333 0.2985 0.2703 0.3333

Qwen-VL 0.5719 0.4472 0.3333 0.6875 0.2200 0.2491 0.1889 0.3656
HateMM 0.6889 0.4163 0.0741 0.0476 0.1667 0.3667 0.3889 0.4722

Multihateclip 0.7111 0.4573 0.1667 0.1111 0.3333 0.3778 0.3889 0.4167
HVGuard 0.8045 0.5643 0.3563 0.2917 0.5278 0.4417 0.4190 0.6139

2

GPT-4o 0.7389 0.6900 / / / 0.5766 0.5714 0.5818
Gemini-1.5-pro 0.7443 0.6188 / / / 0.4000 0.2632 0.8333

Qwen-VL 0.6704 0.6684 / / / 0.6424 0.9298 0.4907
HateMM 0.7444 0.6908 / / / 0.5694 0.5694 0.5826

Multihateclip 0.7778 0.6904 / / / 0.5299 0.4028 0.7833
HVGuard 0.8603 0.8219 / / / 0.7408 0.6905 0.8274

HateMM 2

GPT-4o 0.7308 0.7306 0.7238 0.8806 0.6144 / / /
Gemini-1.5-pro 0.7874 0.7872 0.7933 0.8554 0.7396 / / /

Qwen-VL 0.7089 0.7089 0.7075 0.8824 0.5906 / / /
HateMM 0.7500 0.7454 0.7430 0.7259 0.7614 / / /

Multihateclip 0.7614 0.7594 0.7611 0.7537 0.7690 / / /
HVGuard 0.8563 0.8597 0.8479 0.8228 0.8809 / / /

Table 2: Results of different methods on the task of hateful video detection. H:hateful, O:offensive, Acc:accuracy,
M-F1:macroF1, R:recall, P:precision.

ticated multimodal model by Google DeepMind,433

capable of handling diverse reasoning tasks and434

understanding multiple modalities, including au-435

dio, images, videos, and text. (3) Qwen-VL-7B436

(Bai et al., 2023): An open-source vision-language437

model by Alibaba Cloud, excelling in tasks like438

image captioning, question answering, and visual439

localization. (4) HateMM (Das et al., 2023): A440

multimodal hateful video detection model that com-441

bines text, audio, and visual pretrained models442

through a trainable fusion layer to make final pre-443

dictions. (5) MultiHateClip (Wang et al., 2024):444

A model that processes each modality’s features445

through independent fully connected layers, con-446

catenates them, and performs final classification to447

determine whether the video contains hate speech.448

For the MLLMs used, we employ a generalized449

prompt to detect hateful videos: "Analyze whether450

the video contains hateful content." To ensure test451

consistency, we reproduced all the baselines and452

conducted a unified evaluation.453

4.4 Evaluation Results454

To verify the effectiveness of HVGUARD, experi-455

ments were conducted on the dataset shown in456

Table 2. The Multihateclip dataset includes both457

English and Chinese videos, which are used to 458

evaluate the generalization ability of the detection 459

tools in cross-lingual environments. The binary 460

and ternary classification tasks aim to assess the 461

performance of the detection tools in tasks with 462

varying levels of granularity. In real-world scenar- 463

ios, the binary classification task aids platforms 464

in quickly identifying and blocking hateful videos, 465

while the ternary classification task enables more 466

precise content moderation. The additional "Offen- 467

sive" category in the ternary task allows for further 468

differentiation, thereby reducing false positives. 469

Overall, HVGUARD outperformed all other base- 470

lines, with an improvement of 6.88% to 13.13% in 471

accuracy and 9.21% to 34.37% in M-F1 compared 472

to existing SOTA detection tools. We then explored 473

further conclusions through the following analysis. 474

HVGUARD achieved SOTA performance on both 475

English and Chinese hateful video datasets, demon- 476

strating its multilingual adaptability. Additionally, 477

it outperformed other baselines in both ternary and 478

binary classification tasks. 479

We also achieved superior performance on most 480

metrics for the crucial labels of "Hateful" and 481

"Offensive," demonstrating the HVGUARD ability 482

for hateful video detection. Notably, Qwen-VL 483
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Model Ternary Binary
Acc M-F1 Acc M-F1

w/o Vision encoder 0.7865 0.4760 0.8202 0.7397
w/o Text encoder 0.7753 0.5633 0.8258 0.7090
w/o Audio encoder 0.7697 0.5807 0.8258 0.7413
w/o Modal features 0.7584 0.4816 0.8146 0.7126
w/o CoT 0.7416 0.4715 0.7921 0.5512
w/o MoE 0.7809 0.5936 0.8371 0.7466
HVGuard 0.8090 0.6646 0.8539 0.7714

Table 3: Ablation study for the components in HV-
Guard.

achieved the highest recall rate for the "Hate" cat-484

egory, but performed poorly in accuracy and M-485

F1. This suggests that Qwen-VL tends to classify486

videos as "Hate", leading to the misclassification of487

some normal videos. In practical applications, an488

excessively high false positive rate may negatively489

impact the normal information flow within online490

communities.491

To more clearly demonstrate the effectiveness of492

the proposed framework, we present a case study493

in Appendix A.494

4.5 Effectiveness of Components in HVGuard495

Table 3 summarizes the results of the ablation study496

on the MultiHateClip(English) dataset using HV-497

Guard. Removing the visual, text, or audio compo-498

nents individually resulted in performance declines,499

indicating that each modality plays a crucial role in500

hate detection. Furthermore, ablation of all modal501

features, relying solely on MLLM rationale—led502

to a noticeable decrease in performance. These503

findings underscore the importance of integrating504

comprehensive multimodal information for accu-505

rate detection.506

Moreover, removing the CoT guidance for the507

MLLM and relying solely on generalized prompt508

templates resulted in a significant performance509

drop. This demonstrates that the CoT approach510

generates more informative supplementary features,511

enabling the multimodal fusion module to make512

more accurate predictions.513

Furthermore, replacing the MoE in the model514

with a standard MLP also led to a performance515

decline. This indicates that MoE is crucial for the516

multimodal tasks in this context. MoE leverages517

information from different modalities, along with518

the rationale provided by the MLLM, to enhance519

hateful video detection.520

In addition, we conducted comprehensive exper-521

iments on different combinations of MLLMs, Text522

encoders, Vision encoders, and Audio encoders,523

demonstrating the deployment flexibility of HV- 524

GUARD. Details are shown in Appendix B. 525

4.6 Hyper-parameter Study 526

To investigate the effects of the hyper-parameters in 527

HVGUARD, we show the impact of hyper-parameters 528

on the performance trend. Details can be found in 529

Appendix C. 530

5 Related Work 531

Hate speech detection includes unimodal (text, im- 532

age, audio) and multimodal methods. Most current 533

methods focus only on a single modality. However, 534

multimodal detection, especially in hateful video 535

detection, integrates these modalities to achieve 536

more comprehensive understanding. Our research 537

not only explores the integration of modalities but 538

also analyzes their interactions to enable a deeper 539

analysis. For more detailed information, please 540

refer to the Appendix D. 541

6 Conclusion 542

In this work, we propose a hateful video detec- 543

tion framework named HVGUARD, which is the first 544

reasoning-based hateful video detection framework 545

with MLLMs. This framework carefully designs 546

a CoT reasoning strategy to fully leverage the rea- 547

soning ability of MLLMs and introduces a MoE 548

network for the efficient utilization of rationale 549

and multimodal features. Experiments demonstrate 550

that the proposed framework achieves SOTA per- 551

formance on two public datasets, containing both 552

English and Chinese videos. In the future, we aim 553

to improve the framework by incorporating larger, 554

more diverse, and multilingual datasets to enhance 555

its performance and adaptability across different 556

contexts and languages. This expansion will help 557

address the complexities of detecting hateful con- 558

tent in a broader range of scenarios. 559

Limitations 560

We only evaluated HVGUARD on the Chinese and 561

English datasets and did not evaluate other lan- 562

guages. This limits our further exploration of the 563

language generalizability of the framework. 564

Moreover, we believe that fine-grained detection 565

of hateful videos is of great importance. Although 566

we have considered both binary and ternary clas- 567

sification scenarios, more refined categorization 568

may be more beneficial for the application of such 569

research in real-world contexts. 570
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A Case Study 778

To provide a more comprehensive demonstration 779

of HVGuard’s effectiveness, we present a detailed 780

case study in Figure 4. In this example, a video 781

titled "When Find Out a Gay Friend Nearby.mp4" 782

is processed, where understanding the reactions of 783

different gender groups to homosexuality requires 784

analyzing both visual and textual modalities. In 785

HVGUARD, MLLM leverages CoT prompts to guide 786
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Figure 4: Example of case study.

reasoning from both video frames and transcripts,787

with the analysis from these modalities integrated788

to accurately interpret the video content. In con-789

trast, baseline methods lacking MLLM reasoning790

fail to capture the complementary information be-791

tween the visuals and the text, leading to incom-792

plete analysis and misclassification.793

B Flexibility of framework component794

Table 4 shows the impact of different combina-795

tions of MLLMs and Encoders. We conducted796

tests on the ternary classification scenario of Mul-797

tihateclip(English). The combination of GPT-798

4o(Achiam et al., 2023), XLM(Conneau, 2019),799

Vit(Dosovitskiy, 2020), and Wav2Vec(Baevski800

et al., 2020) achieved the highest M-f1 value, while801

the combination of Qwen-VL(Bai et al., 2023),802

Bert(Devlin, 2018), ViViT(Arnab et al., 2021), and803

Wav2Vec achieved the highest accuracy. MFCC804

as an Audio Encoder significantly lowered the re-805

sults, indicating that excellent modality encoders806

are necessary.807

We found that different combinations have vary-808

ing impacts on performance, with the capabilities809

of the MLLM being the most significant factor.810

However, even the least effective combination sig-811

nificantly outperformed the baseline, demonstrat-812

ing the flexibility and generalizability of our pro-813

posed HVGuard framework.814

C Hyper-parameter Analysis815

Figure 5 illustrates the impact of varying num-816

bers of experts, learning rate and batch size on817

the performance through a line chart, showing that818

the model achieves optimal performance when the819

MLLM
Text
Encoder

Vision
Encoder

Audio
Encoder

Acc M-F1

GPT-4o

XLM
Vit

Wav2Vec 0.8090 0.6646
MFCC 0.7809 0.4762

ViViT
Wav2Vec 0.7921 0.5881

MFCC 0.7865 0.5604

Bert
Vit

Wav2Vec 0.8202 0.5562
MFCC 0.7978 0.5590

ViViT
Wav2Vec 0.8034 0.6175

MFCC 0.8146 0.5384

Qwen-VL

XLM
Vit

Wav2Vec 0.7865 0.6276
MFCC 0.7640 0.4759

ViViT
Wav2Vec 0.7809 0.5744

MFCC 0.7697 0.5637

Bert
Vit

Wav2Vec 0.7921 0.5652
MFCC 0.7753 0.5022

ViViT
Wav2Vec 0.7978 0.5282

MFCC 0.7809 0.4835

Table 4: Results of different model combinations on
Multihateclip(English)

number of experts is eight, and the learning rate 820

and batch size have little to no impact on the per- 821

formance. Despite experimenting with different 822

values for these hyperparameters, the model’s per- 823

formance remained relatively stable across the vari- 824

ations, indicating that the performance is primarily 825

influenced by the number of experts rather than the 826

learning rate or batch size. 827

D Related Work 828

D.1 Hate Speech Detection 829

Hate speech detection can be divided into unimodal 830

hate speech detection and multimodal hate speech 831

detection, based on the type of data used. Uni- 832

modal hate speech detection is further categorized 833

into text-based, image-based, and audio-based ap- 834

proaches. 835

Text hate speech detection: This primarily ad- 836
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(a) number of experts (b) learning rate (c) batch size

Figure 5: (a) Number of experts hyper-parameter study. (b) Learning rate hyper-parameter study. (c) Batch size
hyper-parameter study.

dresses binary classification tasks, with some stud-837

ies expanding to three categories: hate speech, of-838

fensive speech, and normal speech. Notable stud-839

ies, such as those by (Davidson et al., 2017) and840

(Founta et al., 2018), have made significant contri-841

butions in classifying hate speech from text. More842

recently, researchers have explored the subtleties843

of black humor (Hee et al., 2024a) and discourse844

context (Yu et al., 2022) to better understand the845

complexities of text-based hate speech.846

Image-based hate speech detection: This area847

focuses on visual content, such as memes, with848

studies investigating methods to detect hate speech849

in images and build appropriate datasets (Gasparini850

et al., 2022; Bhandari et al., 2023). Approaches851

like Pro-Cap (Cao et al., 2023) and MR.HARM852

(Lin et al., 2023) attempt to address challenges in853

implicit hate speech detection.854

Audio-based hate speech detection: Tech-855

niques in this domain often involve the use of856

CNNs to process audio features, such as spec-857

trograms. Works like (Medina et al., 2022) and858

(Yousefi and Emmanouilidou, 2021) explore meth-859

ods to enhance audio feature extraction for better860

detection.861

Multimodal hate speech detection: This ap-862

proach integrates text, image, and audio modalities863

to enhance hate speech detection, particularly in864

video content. Studies such as (Das et al., 2023)865

and (Wang et al., 2024) demonstrate the potential866

of multimodal techniques in capturing complex867

context, thereby improving detection performance.868

In our study, we focus on multimodal hate869

speech detection, particularly in videos. While870

existing research typically concatenates modality871

information, our approach delves deeper into the872

interactions between different modalities, improv-873

ing the understanding of hate speech videos and874

their intricate patterns.875

D.2 Multimodal Large Language Models 876

(MLLMs) 877

The emergence of large language models (LLMs) 878

has led to significant advances in natural language 879

processing, enabling models like Gemini (Team 880

et al., 2024) to handle multimodal inputs, such 881

as images and text. While LLMs excel at reason- 882

ing and world knowledge, they lack the ability to 883

"see" images, making them less effective at un- 884

derstanding multimodal data. Conversely, large 885

visual models (VLMs) excel in image recognition 886

but are limited in reasoning and world knowledge 887

(Kirillov et al., 2023; Shen et al., 2024). The com- 888

bination of LLMs and VLMs in MLLMs allows 889

for more robust multimodal understanding, making 890

them highly effective in tasks like image reasoning 891

and video understanding (Wu et al., 2023). In our 892

research, we leverage MLLMs to analyze and un- 893

derstand the complex interaction patterns in hate 894

speech videos, providing valuable insights for rea- 895

soning models. 896
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