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ABSTRACT

Error correction codes (ECC) are crucial for ensuring reliable information trans-
mission in communication systems. Choukroun & Wolf (2022b) recently in-
troduced the Error Correction Code Transformer (ECCT), which has demon-
strated promising performance across various transmission channels and families
of codes. However, its high computational and memory demands limit its prac-
tical applications compared to traditional decoding algorithms. Achieving effec-
tive quantization of the ECCT presents significant challenges due to its inherently
small architecture, since existing, very low-precision quantization techniques of-
ten lead to performance degradation in compact neural networks. In this paper,
we introduce a novel acceleration method for transformer-based decoders. We
first propose a ternary weight quantization method specifically designed for the
ECCT, inducing a decoder with multiplication-free linear layers. We present an
optimized self-attention mechanism to reduce computational complexity via code-
aware multi-heads processing. Finally, we provide positional encoding via the
Tanner graph eigendecomposition, enabling a richer representation of the graph
connectivity. The approach not only matches or surpasses ECCT’s performance
but also significantly reduces energy consumption, memory footprint, and compu-
tational complexity. Our method brings transformer-based error correction closer
to practical implementation in resource-constrained environments, achieving a
90% compression ratio and reducing arithmetic operation energy consumption by
at least 224 times on modern hardware.

1 INTRODUCTION

Reliable digital communication systems rely heavily on ECC to ensure accurate decoding in the
presence of noise. Developing efficient decoding techniques for these codes remains a complex
challenge in communications research. In recent years, the application of machine learning to com-
munications has driven the development of advanced decoding methods, leveraging deep learning
architectures (Nachmani et al., 2016; 2017; Gruber et al., 2017; Kim et al., 2018; Nachmani & Wolf,
2019; Buchberger et al., 2020; Choukroun & Wolf, 2024a;c). Notably, the work of Choukroun &
Wolf (2022b) introduced a Transformer-based decoder (Vaswani et al., 2017) adapted to the ECC
setting, demonstrating significant improvements over traditional methods across multiple code fam-
ilies.

Despite these advancements, the ECCT and similar neural decoders face significant challenges due
to their high memory requirements, energy consumption, and computational complexity. These
resource-intensive solutions pose substantial barriers to deployment in many physical communica-
tion systems, where efficiency and practicality are paramount, thus constraining the broader adoption
and further refinement of these advanced decoding techniques.

Neural network (NN) quantization offers a promising approach to addressing these challenges. Re-
cent research has shown that constraining NN weights to 1-bit and ternary representations can be
effective (Ma et al., 2024; Wang et al., 2023), particularly when combined with 8-bit activations.
This approach replaces multiplication operations with integer addition, significantly reducing en-
ergy consumption and memory footprint. However, applying extreme quantization techniques to
smaller models presents considerable challenges. Wang et al. (2023) demonstrated that while the
performance gap between BitNet and FP16 Transformers narrows as model size increases, this gap
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is particularly pronounced in smaller models. For instance, a BitNet model with 100M parame-
ters (considered small) showed a 10% higher loss than its full-precision counterpart. This disparity
would be even more severe for ECCT, whose largest version contains only 2 million parameters.
While Ma et al. (2024) improved upon this method, significant performance gaps remain in smaller
models, partly due to the use of absolute mean quantization, which lacks flexibility in dynamically
adjusting weight sparsity during training.

Recent research on self-attention mechanisms has focused on reducing complexity and memory us-
age, particularly in large language models. Two main approaches have emerged: sparse attention
methods (Beltagy et al., 2020; Zaheer et al., 2020; Child et al., 2019) and attention approximations
(Choromanski et al., 2020). However, these techniques were not designed to optimize smaller mod-
els, such as ECCT, which are also more sensitive to the information loss that occurs when applying
sparse attention or self-attention approximations than larger ones, due to the limited number of lay-
ers. In addition to the capacity-related challenges, ECCT’s unique architecture poses additional ones.
ECCT’s inherently sparse code-aware mask is incompatible with sparse attention methods, since it
cannot be reduced further without modifying the information brought by the code. Similarly, atten-
tion approximation methods are incompatible because they bypass the step where attention masks
are applied, making them mask incompatible.

To address these challenges, we propose a novel approach aimed at significantly reducing the mem-
ory footprint, computational complexity, and energy consumption of ECCT, thereby enhancing its
viability for real-world applications. Our method introduces three key innovations: (i) Weight quan-
tization to the ternary domain through Adaptive Absolute Percentile (AAP) quantization. (ii) Head
Partitioning Self Attention (HPSA), an efficient multi-head self-attention mechanism tailored for bi-
partite graph message passing (MP), designed to reduce computational complexity and runtime. (iii)
Spectral positional encoding (SPE) of the Tanner graph by processing its Laplacian eigenspace. The
Tanner graph Laplacian eigenspace forms a meaningful local coordinate system, providing structural
information that is lost with ECCT’s binary masking, without affecting inference runtime.

Our experimental results, conducted across a diverse range of codes, demonstrate that this approach
not only matches, and in some cases exceeds, the performance of ECCT, but also offers computa-
tional complexity comparable to that of Belief Propagation (BP) Pearl (1988). These findings repre-
sent a significant step towards making transformer-based error correction practical for communica-
tion systems with limited computational resources, potentially bridging the gap between advanced
neural decoding techniques and traditional efficient algorithms, such as BP.

2 RELATED WORK

Neural decoders for ECC have evolved from model-based methods, which implement parameter-
ized versions of classical BP (Nachmani et al., 2016; 2018; Nachmani & Wolf, 2019; Caciularu
et al., 2021), to model-free approaches utilizing general NN architectures (Kim et al., 2018; Gruber
et al., 2017; Bennatan et al., 2018; Cammerer et al., 2017; Choukroun & Wolf, 2024a). A signif-
icant advancement in this field is the ECCT (Choukroun & Wolf, 2022b; 2024a;b), which, along
with its extension using a denoising diffusion process (Choukroun & Wolf, 2022a), has achieved
SOTA performance across various codes. These neural decoders primarily target short to moderate-
length codes, addressing scenarios where classical decoders may not achieve optimal performance.
Subsequently, Park et al. (2023; 2024) demonstrated improved performance, but at the expense of
increased computational cost.

Transformers, while being powerful architectures, are resource-intensive. In response to the need
to optimize large language models (LLMs), numerous quantization methods have been developed
(Gholami et al., 2021; Wan et al., 2024; Zhu et al., 2024). These techniques fall into two cate-
gories: post-training quantization (PTQ) (Choukroun et al., 2019; Frantar et al., 2023; Chee et al.,
2024) and quantization-aware training (QAT). Due to the resource-intensive nature of LLMs, recent
studies have focused mainly on PTQ because of its low computational requirement and training over-
head. However, PTQ often utilizes high-precision parameters, making it difficult to fully exploit the
efficiency of quantization. In contrast, QAT has higher potential for accuracy but generally requires
more resources and time, leaving research on QAT of LLMs in its preliminary stages (Jeon et al.,
2024). Despite these challenges, notable work has emerged in QAT for LLMs. Wang et al. (2023)
demonstrated effective quantization of weights to {-1, 1} values and activations to 8-bit integers.
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An enhanced approach by Ma et al. (2024) introduced an additional zero weight value and utilized
Abs-mean quantization, highlighting a correlation between model size and performance degradation
post-quantization.

Recent efforts to address the computational limitations of self-attention mechanisms in transformers
have focused on acceleration techniques. One approach approximates the self-attention function,
reducing its computational cost from quadratic to linear time complexity (Choromanski et al., 2020).
Other methods, such as those proposed by Child et al. (2019) and Beltagy et al. (2020), combine
local and global attention to improve efficiency. Zaheer et al. (2020) further refines these methods
by incorporating random global connections. The Reformer (Kitaev et al., 2020) explores Locality-
Sensitive Hashing attention, while Shazeer (2019) introduces multi-query attention with shared keys
and values across attention heads. Building on this, Ainslie et al. (2023) presents grouped-query
attention, which uses fewer key-value heads to achieve results comparable to multi-head attention,
but with faster computation. Additionally, Pope et al. (2023) introduces an optimized key-value
cache mechanism to accelerate inference time.

Transformers have also been applied to graph-structured data, introducing graph structure as a soft
inductive bias to address limitations of Graph neural networks (GNNs), such as over-squashing
(Alon & Yahav, 2021; Topping et al., 2022). Dwivedi & Bresson (2020) proposed using Laplacian
eigenvectors as PEs, while Kreuzer et al. (2021) incorporated Laplacian eigenvalues and used a ded-
icated Transformer for structural encoding. Building on these approaches, Rampášek et al. (2022)
further improved performance by integrating innovations such as Signet (Lim et al., 2022), which
addresses the sign ambiguity of eigenvectors, random-walk PE (Dwivedi et al., 2022), and PE based
on the gradients of eigenvectors (Beaini et al., 2021).

3 SETTING AND BACKGROUND

Problem Settings We assume a standard transmission protocol that uses a linear code C ⊂
{0, 1}n. The code is defined by a binary generator matrix G ∈ {0, 1}k×n and a binary parity
check matrix H ∈ {0, 1}(n−k)×n, satisfying GHT = 0 over GF (2). The parity check matrix bipar-
tite graph representation is referred to as the Tanner graph, which consists of (n − k) check nodes
and n variable nodes. Linear codes encode information into structured codewords, enabling error
detection and correction. The generator matrix G maps messages to codewords, and the parity check
matrix H imposes constraints that define valid codewords. The transmission process begins with
a k-bit input message m ∈ {0, 1}k, transformed into an n-bit codeword x ∈ C via G, satisfying
Hx = 0. This codeword is transmitted via a Binary-Input Symmetric-Output channel, resulting in
a channel output y = xs + ϵ, where xs represents the Binary Phase Shift Keying modulation of x,
and ϵ denotes random noise. The protocol ensures resilience against noise, allowing the decoder
to recover the codeword from y. The decoding function f : Rn → Rn aims to provide a soft
approximation x̂ = f(y) of the original codeword. Following Bennatan et al. (2018); Choukroun &
Wolf (2022b), a preprocessing step is applied to ensure codeword invariance and prevent overfitting
present in model-free solutions. This yields a (2n − k)-dimensional vector ỹ = h(y) = [|y|, s(y)],
where |y| denotes y’s magnitude, and s(y) ∈ {0, 1}(n−k) is the binary syndrome, computed as
s(y) = Hyb := Hbin(y) := H(0.5(1 − sign(y))). Preprocessing extracts the magnitude |y| and
syndrome s(y), which summarize signal strength and error patterns. The codeword soft prediction
takes the form x̂ = y ⊙ ˆ̃ϵ, where ˆ̃ϵ denotes the prediction of multiplicative noise ϵ̃ defined such
that y = xs ⊙ ϵ̃ = 1 + ϵ ⊙ xs. In our framework, the parameterized model is explicitly defined as
x̃s = y ⊙ fθ(h(y)), where fθ represents our parameterized decoder.

Error Correction Code Transformer (ECCT) The ECCT (Choukroun & Wolf, 2022b) is a
neural decoder based on the Transformer encoder architecture (Vaswani et al., 2017). Its in-
put, h(y) = [|y|, 1 − 2s(y)] ∈ R2n−k, is embedded into a high-dimensional space, forming
Φ ∈ R(2n−k)×d. The embedding matrix is processed by N Transformer encoder blocks using
Code-Aware Self-Attention (CASA):

AH(Q,K, V ) = Softmax
(
d−

1
2 (QKT + g(H))

)
V,

where g(H) : {0, 1}(n−k)×n → {−∞, 0}(2n−k)×(2n−k) is a binary mask derived from H , remov-
ing connections between bits separated by more than two steps in the Tanner graph. The binary
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(a) (b)

Figure 1: AAP Linear Layer: (a) QAT: Training with quantization noise; (b) Inference: Matrix
multiplication using only integer additions with fixed ternary weights and fixed weight scale.

mask g(H) ensures that self-attention focuses only on closely related bits, reflecting the structure
of the code’s Tanner graph. This improves the model’s ability to capture local dependencies in the
code. As the bit embeddings pass through each Transformer encoder block, they are iteratively
refined by the self-attention mechanism, which dynamically emphasizes relationships between bits
according to the structure imposed by g(H). This allows the model to propagate and integrate local
and global information about the code across multiple layers. The final block’s output undergoes
two projections to produce the noise prediction ˆ̃ϵ:

ˆ̃ϵ = WT
o (Wd→1Φ),

where Wd→1 ∈ Rd×1 reduces the embedding dimension and Wo ∈ R(2n−k)×n maps the result to
the output space.

4 METHOD

Our proposed method enhances ECCT through several key modifications designed to improve both
performance and efficiency. The primary enhancements are as follows:

1. We replace all linear layers within the Transformer blocks with our novel Adaptive Absolute
Percentile (AAP) Linear layers. This modification introduces an adaptive quantization approach,
achieving ternary weight representation and thereby improving the model’s efficiency.

2. We introduce a novel self-attention mechanism, HPSA, which supersedes the CASA used in
ECCT (Choukroun & Wolf, 2022b). HPSA significantly reduces memory footprint, computa-
tional complexity, and runtime, thus enhancing the overall efficiency of the model. To the best of
our knowledge, our approach is the first to map the structure of the graph into patterns, with each
group of heads within the multihead self-attention mechanism applying a specific pattern.

3. We incorporate the SPE derived from the Tanner graph’s Laplacian eigenspace. This approach
is inspired by Kreuzer et al. (2021)’s method of injecting a soft inductive bias of the graph’s
structure into the model, enabling the integration of a fine-grained connectivity absent in ECCT’s
binary mask.

4. To further optimize the model’s efficiency, we replace (Mirzadeh et al., 2023) Gaussian Error
Linear Units (GeLUs) (Hendrycks & Gimpel, 2016) with Rectified Linear Units (ReLUs).

5. We introduce a two-phased training process to enhance the model’s performance.

This change simplifies the activation function to a thresholding operator which further contributes
to complexity reduction.

4.1 ADAPTIVE ABSOLUTE PERCENTILE QUANTIZATION

Ternary quantization of a single precision tensor involves the element-wise assignment to one of
three bins: {-1, 0, +1}. This results in 3n possible arrangements for each weight tensor, where n
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(a) (b)

Figure 2: Head Partitioning Self-Attention: (a) First-ring and (b) second-ring head attention mech-
anisms. Q, K, V denote query, key, and value tensors for variable (v) or check (c) nodes. v = and
c = indicate new representations for variable and check nodes, respectively. Mcv , Mvc, Mcc, Mvv

are HPSA masks (see Fig. 3). σ denotes the Softmax function.

is the tensor’s number of elements. In NNs with numerous weights, finding the optimal arrange-
ment becomes infeasible due to this highly exponential number of options. Existing approaches,
such as abs-mean quantization (Ma et al., 2024) often struggle to achieve the right sparsity for pre-
cise management of feature retention and elimination, making certain desirable weight distributions
extremely difficult to attain during training.

To address this challenge, we propose a novel method that provides maximum flexibility to the
model. Our Adaptive Absolute Percentile (AAP) quantization method aims to identify the appro-
priate percentile of absolute values to use as a scaling factor. This percentile is optimized during
training, thereby defining the desired sparsity and structure at the finest granularity. For each weight
tensor (excluding biases) during each training forward pass, we calculate the p-th percentile, for a
predefined p, of the absolute values of the weights, denoting this value as γ. The value of γ depends
solely on the current weight distribution and changes with each training iteration. The scale is then
computed as γδ, where δ is a learnable parameter initialized to one. This approach allows δ to adjust
the percentile dynamically throughout training, helping the model effectively balance sparsity and
information retention for each weight matrix.

In contrast to existing methods, which either rely on a weight distribution-based scale (e.g., Ma et al.
(2024)) or use a learnable scale that may be initialized with a calibration set (e.g., Jeon et al. (2024)),
we combine both approaches. The computed scale γδ is then used to scale the entire weight matrix.
Finally, each scaled weight is rounded to the nearest integer among {-1, 0, +1}.

Ternary(W ) = RoundClip
(

W

γ · δ + ε
,−1, 1

)
RoundClip(x, a, b) = max(a,min(b, round(x)))

γ = Percentile(Abs(W ), 0.5)

(1)

where Percentile(x, p) returns the p-th percentile value of x, and Abs(x) computes the element-wise
absolute values of x. The activations undergo Absmax quantization to INT8 as follows:

Quant(x) = RoundClip
(
x× Qb

α
,−Qb, Qb

)
(2)

where α = ∥x∥∞ and Qb is the maximum value for the INT8 quantization range. Similarly to Wang
et al. (2023); Ma et al. (2024), α is not fixed during inference. The complete quantization scheme,
incorporating both weight and input quantization, operates as follows:

AAPLinear(x,W, b) = Quant(x) · Ternary(W ) · γδα
Qb

+ b (3)

Here, x ∈ Rm×n is the FP32 layer’s input, W ∈ Rn×p is the FP32 weight, and b ∈ Rp is the FP32
bias. The product of the quantized weights and input is dequantized before bias addition. All scaling
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Figure 3: Code-aware masks of Hamming(4,7). AECCT masks utilize two distinct patterns, with
each head applying only one: either first-ring or second-ring MP. First-ring MP uses c-to-v and v-
to-c masks, while second-ring MP employs v-to-v and c-to-c masks. In contrast, the ECCT mask
(on the left) applies both first and second rings for all heads. AECCT masks exhibit greater sparsity
compared to ECCT, leading to reduced computational complexity.

factors, δ, γ, and α, are scalars, which enhances computational efficiency. Figure 1 illustrates the
AAP mechanism during both the training and inference phases. The method avoids floating-point
matrix multiplication, relying primarily on integer addition and subtraction operations, significantly
reducing computational complexity.

4.2 HEAD PARTITIONING SELF ATTENTION

While the CASA mechanism of ECCT has demonstrated effective performance in decoding, we
aim to further optimize its computational efficiency since we seek to develop neural decoders with
complexity comparable to their classical counterparts such as BP. To this end, we introduce Head
Partitioning Self Attention (HPSA), which maintains the effectiveness of CASA while significantly
reducing computational complexity. HPSA strategically divides ECCT’s masking via the attention
heads into two groups: first-ring and second-ring MP heads. This division not only enhances effi-
ciency but also introduces a graph-structure inductive bias by distinguishing between neighbors and
second-ring connections, in contrast to the Code-Aware mask in ECCT. An illustration of HPSA is
provided in Figure 2.

First Group: First-Ring Message Passing This group of heads performs attention between near-
est neighbors in the Tanner graph. This process, which we term first-ring MP, facilitates communi-
cation between variable nodes and check nodes. The corresponding attention masks are the c → v
and v → c in Figure 3, demonstrating the increased sparsity of HPSA compared to the Code-Aware
mask from ECCT.

Second Group: Second-Ring Message Passing The second group focuses on what we call
second-ring connections. These heads apply attention only between nodes at a distance of two
in the Tanner graph. This allows for MP between variable nodes and other variable nodes, as well
as between check nodes and other check nodes. The corresponding attention masks are the c → c
and v → v in Figure 3, further illustrating the sparsity enhancement of HPSA.

By structuring the attention mechanism, HPSA achieves results comparable to CASA while drasti-
cally reducing complexity. This approach brings the computational efficiency of our method closer
to that of the BP algorithm, moving us significantly closer to practical implementation in resource-
constrained environments.

4.3 POSITIONAL ENCODING OF THE TANNER GRAPH

Although the two-rings connectivity code-aware mask has proven effective in ECCT, it provides
the model with limited information about the Tanner graph’s structure. By design, it does not dis-
tinguish between first-ring and second-ring connections (Choukroun & Wolf, 2024a). To enhance
the decoder’s performance beyond this limitation, we propose incorporating a soft inductive bias
through SPE induced by the Tanner graph. This approach, inspired by Kreuzer et al. (2021), in-
jects information from the Laplacian eigenspace, which serves as a meaningful local coordinate
system, thereby enriching the model’s understanding of the graph’s topology. Intuitively, the Lapla-
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(a) (b)

Figure 4: Tanner PE. (a) The SPE matrix is concatenated to the initial nodes’ embedding matrix.
(b) Creation of the SPE vector for individual node j, which is then concatenated with the node’s
embedding. λi denotes the i-th smallest eigenvalue of the Tanner graph. ϕi denotes the eigenvector
corresponding to the i-th smallest eigenvalue and ϕi,j is its j-th element.

cian eigenspace provides a way to encode the relationships between nodes in the graph, allowing the
model to ”see” the graph’s structure beyond simple connectivity. This enables the decoder to better
understand the role of each node in the overall topology. The following procedure is applied for
each node j in the Tanner graph, as illustrated in Figure 4:

SPEj = W(2n−k)→1MHSA(Qj ,Kj , Vj) (4)

Qj = Kj = Vj = W2→dPEΦj (5)

where Φj ∈ R(2n−k)×2 is constructed by concatenating the graph’s eigenvalues with the j-th node’s
corresponding values in the eigenvectors, dSPE is a hyperparameter, W2→dSPE is a learnable tensor,
W(2n−k)→1 is a reduction operator (e.g., linear projection, max/average pooling), and MHSA de-
notes Multi-Head Self-Attention. The resulting vector SPEj serves as the PE for node j and is
concatenated with the node’s embedding. This process is repeated for all nodes in the graph. At
inference, the learned SPE vectors remain fixed, removing the extra runtime computation present
during training.

5 ANALYSIS

Compression Rate The linear layers in the ECCT model constitute over 95% of the total weight
count, including the channel’s output embedding. By employing ternary values, which theoretically
require only 1.58 bits for representation, we achieve significant compression. Replacing FP32 values
with ternary values results in a 95% reduction in the memory footprint of these layers. Consequently,
the AECCT’s overall memory footprint is reduced to approximately 10% of the original ECCT,
achieving a compression rate of around 90%.

Energy Consumption Energy consumption is a critical factor, especially when deploying the
AECCT on edge devices or in data centers, as it directly impacts battery life and operational costs.
We base our analysis on energy consumption models for addition and multiplication operations on
7nm and 45nm chips for FP32 and INT8, as outlined by Horowitz (2014); Zhang et al. (2022);
Wang et al. (2023). Our findings indicate that the AECCT achieves substantial energy savings.
Specifically, it reduces the energy consumption of arithmetic operations in linear layers by at least
224 times on 7nm chips and 139 times on 45nm chips, compared to the original ECCT.

Complexity Dedicated hardware optimized for this approach avoids attention calculations that
are subsequently masked out by the code-aware mask. Assuming such hardware, for a Tan-
ner graph T = (V,E), the ECCT CASA’s complexity in a single Transformer encoder block is
O(d(

∑
xi∈V dxi

+ βxi
)), where d is the embedding vector size, dxi

is the degree of vertex xi, and
βxi

denotes the number of vertices with a distance of two from xi, derived from applying both
first- and second-ring MP in each head. In contrast, our HPSA approach reduces this complexity
to O(dhhf (

∑
xi∈V dxi

) + dhhs(
∑

xi∈V βxi
)), where hf and hs correspond to the number of first-

ring and second-ring heads, respectively, and dh is the head dimension. This reduction stems from
the partitioning of attention heads, where each head is dedicated exclusively to either first-ring or
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Figure 5: Comparison of attention sparsity
levels for HPSA with hf = hs = 4. Sparsity
level represents the proportion of query-key
dot products avoided relative to a full pair-
wise attention mechanism.

Figure 6: AAP weight sparsity levels for
models trained on BCH(63,51) codes. Each
bar represents the average sparsity across all
instances of a specific linear layer type in the
Transformer encoder blocks.

second-ring MP. Figure 5 illustrates this complexity reduction by comparing the number of query-
key dot products avoided in CASA and HPSA for various codes. The sparsity level is defined as
the percentage of dot products avoided relative to quadratic pairwise attention. As shown, HPSA
achieves sparsity levels of at least 78% across most codes, while the CASA’s sparsity ranges from
30% to 78%. This visual representation corroborates our theoretical analysis, demonstrating the sig-
nificant computational efficiency gained through HPSA. By strategically partitioning attention heads
and dedicating them to specific ring levels, HPSA dramatically reduces the number of necessary dot
product calculations, resulting in a more efficient and optimized attention mechanism.

The AECCT model’s complexity is governed by parameters N , d, hf , and hs, offering exceptional
flexibility in balancing accuracy and computational efficiency. As demonstrated by Choukroun &
Wolf (2022b), even the most modest ECCT architectures (e.g., N = 2, d = 32) consistently out-
perform BP across several codes. This performance advantage extends to AECCT, which not only
maintains this superior decoding capability but does so with complexity comparable to BP. As illus-
trated in Figure 7, the shallowest AECCT architecture, with complexity comparable to BP, outper-
forms BP with 50 iterations (L=50). This showcases AECCT’s ability to offer superior performance
even at its most basic configuration, achieving a balance between computational efficiency and de-
coding capability that ECCT could not attain. The performance gap widens as we increase N and d
in AECCT, since increasing the number of BP iterations beyond 50 yields only marginal improve-
ments. Further analysis of AECCT’s complexity is provided in Appendix A.

AAP Sparsity We analyzed the sparsity level of the Adaptive Absolute Percentile (AAP) linear
layers in the AECCT for a model trained on BCH(63,51) code. Figure 6 illustrates our findings,
revealing that the percentage of zero-valued weights ranges from approximately 40% to 50%. Im-
portantly, this sparsity effectively reduces the dimension of the embedding vectors to around 0.45d,
further amplifying the efficiency gains discussed in our complexity analysis.

6 EXPERIMENTS1

Training & Inference We utilize a Post-Layer Normalization (Post-LN) Transformer architecture,
consistent with the original Transformer design in Vaswani et al. (2017), distinguishing it from the
ECCT approach, as we empirically found it to be more effective. The training process is divided
into two phases.

In the first phase, we train the ECCT from scratch, incorporating several modifications: ReLU acti-
vations replace GeLUs, HPSA is used instead of CASA, and learnable Tanner graph PE is integrated.

1Code is available at https://github.com/aecct-paper/AECCT
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(a) (b)

Figure 7: Accuracy vs. Complexity analysis for (a) BCH(63,51), (b) LDPC(49,24), at Eb/N0 =
5. We compare AECCT with BP and ECCT in terms of decoding quality versus complexity.
AECCT(N , d) denotes an architecture with N Transformer encoder blocks with embedding size
d, with a similar notation used for ECCT. BP(L) denotes BP with L iterations.

The model undergoes training for 1000 epochs (1500 for N = 10), with each epoch consisting of
1000 batches. We employ the Adam optimizer with a batch size of 128.

In the second phase, the linear layers within the encoder blocks are replaced with AAP-linear layers,
initialized using the weights obtained from the first phase. QAT is then applied using the same
configuration as in the first phase. Upon completion, the weights of the AAP-linear layers are fixed
as ternary values, and their corresponding scales are also fixed.

Throughout both phases, following the approach of Choukroun & Wolf (2022b), we use a zero
codeword with a Gaussian channel sampled from a normalized SNR (Eb/N0) range of 3 to 7. The
learning rate is initialized at 10−4 and decays to 5 × 10−7 following a cosine schedule. The cross-
entropy loss is used to guide the model in learning the multiplicative noise (Bennatan et al., 2018).

Results We evaluate our proposed method on three types of linear block codes: Low-
Density Parity Check (LDPC) codes (Gallager, 1962), Polar codes (Arikan, 2009), and
Bose–Chaudhuri–Hocquenghem (BCH) codes (Bose & Ray-Chaudhuri, 1960), using parity check
matrices from Helmling et al. (2019). The architecture is defined by two key parameters: the num-
ber of encoder layers (N ) and the embedding dimension (d). Performance is assessed by measuring
bit error rates (BER) across a range of Eb/N0 values, followed by Choukroun & Wolf (2022b).
Table 1 presents our results, showing the negative natural logarithm of the BER. We compare the
performance of our AECCT to the ECCT (with Pre-LN architecture) and BP (Pearl, 1988) across
two different architectures: N = 6 and N = 10, both with an embedding dimension of d = 128.
The ECCT architecture employed in our experiments is based on the implementation described in
Choukroun & Wolf (2022b) and detailed in Section 3.. The results indicate that the AECCT per-
forms on par with the ECCT, and in some cases, even exceeds it for certain codes, while remaining
much more efficient.

Figure 8 shows BER and BLER comparisons for the POLAR(64,48) code between AECCT, ECCT,
and SCL (Tal & Vardy, 2012), with SCL results presented for a list length of L = 1. The SCL
experiments are conducted by us, using the code framework of (Cassagne et al., 2019). Additional
BER and BLER curves can be found in Appendix E.

Ablation Study Our comprehensive ablation study evaluates the key components of our proposed
model, with results detailed in Table 2. We use an ECCT model with Post-Ln architecture as our
baseline, then separately incorporate each AECCT component to assess its individual impact. First,
we examine the impact of HPSA. The results demonstrate that HPSA maintains or improves per-
formance relative to the CASA-based baseline, while simultaneously reducing computational com-
plexity. This dual benefit of preserved or enhanced effectiveness coupled with increased efficiency
underscores HPSA’s value as a key component of our model. Next, we investigate the influence
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Table 1: We present the performance of our proposed method against established baselines, mea-
sured using -log(BER) across three normalized SNR levels. The negative logarithm transformation
of BER is employed for clearer visualization, with larger values representing superior error correc-
tion capabilities. We compare our AECCT to the ECCT as our baseline. Additionally, we compare
it to BP Pearl (1988) with L = 5 (first row) iterations and L = 50 (second row) iterations. We
separate the comparison between ECCT and AECCT according to the number of encoder blocks,
N . For each N ∈ {6, 10}, bold text indicates the best results between ECCT and AECCT for that
specific N value. Notably, for BCH codes, N = 10 for AECCT was unnecessary, as AECCT with
N = 6 outperforms ECCT with N = 10.

Method BP ECCT N = 6 AECCT N = 6 ECCT N = 10 AECCT N = 10

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

Polar(64,48) 3.52
4.26

4.04
5.38

4.48
6.50 6.36 8.46 11.09 6.43 8.54 11.12 6.43 8.40 11.00 6.54 8.51 11.12

Polar(128,86) 3.80
4.49

4.19
5.65

4.62
6.97 6.31 9.01 12.45 6.04 8.56 11.81 7.26 10.60 14.80 7.28 10.60 14.59

Polar(128,96) 3.99
4.61

4.41
5.79

4.78
7.08 6.31 9.12 12.47 6.11 8.81 12.15 6.85 9.78 12.90 6.79 9.68 12.93

LDPC(49,24) 5.30
6.23

7.28
8.19

9.88
11.72 5.79 8.13 11.40 6.10 8.65 12.34 6.35 9.01 12.43 6.67 9.35 13.56

LDPC(121,60) 4.82
-

7.21
-

10.87
- 5.01 7.99 12.78 5.17 8.32 13.40 5.51 8.89 14.51 5.71 9.31 14.90

LDPC(121,70) 5.88
-

8.76
-

13.04
- 6.19 9.89 15.58 6.38 10.1 16.01 6.86 11.02 16.85 7.05 11.40 17.30

LDPC(121,80) 6.66
-

9.82
-

13.98
- 7.07 10.96 16.25 7.27 11.50 16.90 7.76 12.30 17.82 7.98 12.60 18.10

BCH(31,16) 4.63
-

5.88
-

7.60
- 6.39 8.29 10.66 7.01 9.33 12.27 6.41 8.30 10.77 7.21 9.47 12.45

BCH(63,36) 3.72
4.03

4.65
5.42

5.66
7.26 4.68 6.65 9.10 5.19 6.95 9.33 5.09 6.96 9.43 4.90 6.64 9.19

BCH(63,45) 4.08
4.36

4.96
5.55

6.07
7.26 5.60 7.79 10.93 5.90 8.24 11.46 5.72 7.99 11.21 5.83 8.15 11.52

BCH(63,51) 4.34
4.50

5.29
5.82

6.35
7.42 5.66 7.89 11.01 5.72 8.01 11.24 5.38 7.40 10.50 5.68 7.88 11.04

Table 2: Evaluation of AECCT components against (Post-Ln) ECCT. For added generality, we used
(N = 6, d = 64) for LDPC(49,24) while maintaining (6, 128) for other codes as in Tab. 1.

Model POLAR(64,48) BCH(31,16) LDPC(49,24)
ECCT 6.40 8.50 11.10 6.95 9.21 12.04 5.97 8.44 12.01
ECCT + HPSA 6.40 8.52 11.17 7.00 9.24 12.12 5.98 8.48 12.12
ECCT + SPE 6.43 8.53 11.10 7.01 9.21 12.31 5.97 8.46 12.09
ECCT + HPSA + SPE 6.50 8.61 11.15 7.00 9.25 12.07 6.01 8.48 12.01

ECCT + AP 6.39 8.49 11.14 7.05 9.27 12.33 5.90 8.34 11.70
ECCT + Abs-Mean 6.40 8.49 11.07 7.02 9.22 12.25 5.86 8.29 11.50
ECCT + AAP 6.41 8.51 11.13 7.06 9.37 12.37 5.91 8.35 11.74

AECCT: HPSA + SPE + AAP 6.43 8.54 11.12 7.01 9.33 12.27 5.89 8.33 11.67

of the SPE. We find that integrating positional and structural information from the Tanner graph’s
Laplacian through SPE significantly boosts overall model performance. To ensure a fair compar-
ison, we maintain consistent total embedding dimensions by reducing the size of the channel’s
output embedding vectors before concatenating the SPE vectors. Finally, we assess the impact
of AAP quantization. Our analysis shows that AAP quantization outperforms absolute percentile
(AP) quantization. The adaptive approach introduces a learnable parameter δ, enabling dynamic
adjustment of weight sparsity and effectively controlling feature filtration. Additionally, we com-
pared AAP quantization to ECCT with abs-mean quantization (Ma et al., 2024), achieving superior
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(a) (b)

Figure 8: (a) BER; (b) BLER comparisons of AECCT, ECCT, and SCL for the POLAR(64,48)
code. The architectures for AECCT and ECCT are configured with N = 10 encoder blocks and an
embedding dimension of d = 128.

results on every code tested. This demonstrates that AAP quantization surpasses the current SOTA
in ternary quantization.

Appendices B and C present additional ablation studies. The former evaluates AECCT with varying
numbers of first and second ring heads, revealing their similar importance with optimal performance
when hf = hs. The latter compares a binary weighted version of AECCT to (our) ternary weighted
AECCT, both using AAP quantization. Results demonstrate the superiority of ternary representa-
tion, achieving substantial performance gains with minimal bit usage increase (1.58 vs 1), justifying
our choice of ternary quantization. We analyze in Appendix D the necessity of δ in the AAP method,
demonstrating its importance for dynamic thresholding across different AAP layers.

7 CONCLUSIONS

We introduced the AECCT, an enhanced version of the ECCT initially proposed by Choukroun &
Wolf (2022b). The AECCT integrates several novel techniques: Adaptive Absolute Percentile Quan-
tization, which compresses the linear layer weights in the Transformer encoder blocks to ternary
values; Head Partitioning Self-Attention, which replaces the code-aware self-attention module, sig-
nificantly reducing complexity; and Tanner Graph Positional Encoding, which improves the model’s
overall effectiveness. The AECCT achieves a complexity level comparable to BP while reducing
memory usage, energy consumption, and computational complexity, all while delivering perfor-
mance on par with the ECCT. Altogether, these enhancements bring transformer-based error correc-
tion decoders closer to practical deployment in real-world communication systems, offering notable
improvements in the reliability of physical layer communications. As future work, we wish to ex-
plore learned Tanner-graph-based positioning techniques and apply pattern-based head partitioning
to other structured learning problems. In addition, we wish to explore implementing dedicated
hardware that can leverage the ternary-weight linear layer, which requires only integer additions and
subtractions, and efficiently support sparse self-attention mechanism to maximize the computational
benefits of the proposed method.

In a broader context, our work addresses a gap in the literature regarding the acceleration of small
Transformers, particularly those where attention patterns are dictated by the problem domain. The
novel quantization method we propose enables exact localized adaptations, and the head partitioning
method we propose addresses any hierarchical or structured data.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

points. arXiv preprint arXiv:2305.13245, 2023.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications,
2021. URL https://arxiv.org/abs/2006.05205.

Erdal Arikan. Channel polarization: A method for constructing capacity-achieving codes for
symmetric binary-input memoryless channels. IEEE Transactions on Information Theory, 55
(7):3051–3073, July 2009. ISSN 1557-9654. doi: 10.1109/tit.2009.2021379. URL http:
//dx.doi.org/10.1109/TIT.2009.2021379.

Dominique Beaini, Saro Passaro, Vincent Létourneau, William L. Hamilton, Gabriele Corso, and
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Figure 9: The expected values of βxi
, representing the number of vertices two edges away from xi,

are compared to the expected values of dxi
, the degree of xi, for d = 32 and dh = 4. The size of

βxi significantly affects the complexity of second-ring heads in the HPSA.

A COMPLEXITY ANALYSIS

In this section, we provide a detailed breakdown of the complexity for various components of our
AECCT model, focusing on the AAP linear layer, the Head Partitioning Self-Attention (HPSA)
mechanism, and the second-ring degree β.

AAP Linear Complexity We analyze the complexity of the AAP linear layer by separating it into
multiplication and addition components. The complexity for FP32 multiplications, which arises
from the quantization of the input activation matrix and the dequantization of the output activation
matrix, is given by

2(2n− k)d = 2|V |d = O(|V |d), (6)
where T = (V,E) is the Tanner graph, d is the embedding vector size, k denotes the input message
size, and n is the output vector size of the channel. Matrix multiplication, which involves only
additions and subtractions, results in an INT8 addition complexity of

(2n− k)d2 = O(|V |d2). (7)
The bias addition, performed in FP32, is O(|V |d).

HPSA Complexity Similarly, we decompose the complexity of HPSA into multiplications and
additions. Assuming an equal number of first- and second-ring heads, the total number of FP32
multiplications for all first-ring heads in a single Transformer encoder block is(

n∑
i=1

di +

n−k∑
i=1

d̃i

)
d

2
= 2|E|d

2
= O(|E|d), (8)

where di denotes the degree of the i-th variable node and d̃i denotes the degree of the i-th parity
check node. The number of FP32 additions is similar.

The total number of FP32 multiplications required for all second-ring heads in a single Transformer
encoder block is

d

2

∑
xi∈V

βxi
, (9)

where βxi
represents the number of vertices at a distance of two edges from xi. Again, the number

of FP32 additions is similar.
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Table 3: Complexity comparison between AECCT and (sum-product) BP, assuming for simplicity
that the number of first-ring heads equals the number of second-ring heads in the HPSA. We analyze
the magnitude of β for several codes in A.1. The AECCT involves FP32 multiplications, FP32
additions, and INT8 additions. Therefore, we analyze each of these operations separately.

Operation AECCT BP

FP32 MUL O(Nd(|V |+ |E|+
∑

xi∈V
βxi

2 )) O(L|E|)
FP32 ADD O(Nd(|E|+

∑
xi∈V

βxi

2 )) O(L|E|)
INT8 ADD O(Nd2|V |) -

Figure 10: The impact of hf and hs on HPSA’s complexity is analyzed for three codes: BCH(63,45),
LDPC(49,24), and POLAR(128,86). We calculate the number of multiplications required for the
CASA and compare it to HPSA with all possible combinations of hf and hs, where hf represents
the number of first-ring heads and hs the number of second-ring heads.

AECCT Complexity Having examined the complexities of individual components, we now com-
bine these to determine the total complexity of AECCT. The results of this combined analysis are
presented in Table 3.

A.1 IMPACT OF β

We analyze the expected value of βxi
to evaluate its influence on computational complexity, as

illustrated in Figure 9. Our analysis indicates that E[βxi ] is approximately E[dxi
]2

2 . Given that
second-ring heads exhibit higher complexity, it is feasible to employ more first-ring heads. Figure
10 demonstrates the complexity of the HPSA for various combinations of hf and hs, compared
to the CASA mechanism. The results clearly show that HPSA significantly reduces complexity
compared to CASA.

A.2 COMPLEXITY VS BER

We analyze the trade-off between complexity and performance for AECCT, ECCT, and BP in Figure
11. The results are presented for Eb/N0 of 4 and 6. Our findings indicate that AECCT is compa-
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(a) (b)

(c) (d)

Figure 11: -ln(BER) vs. Complexity for LDPC(49,24) at Eb/N0 values of (a) 4 and (b) 6, and
BCH(63,51) at Eb/N0 values of (c) 4 dB and (d) 6 dB. We compare AECCT, BP, and ECCT in
terms of performance and complexity. AECCT(N , d) denotes an architecture with N Transformer
encoder blocks and an embedding size of d, with a similar notation used for ECCT. BP(L) refers to
BP with L iterations.

Table 4: Ablation of hf and hs

Code N , d 1st ring, 2nd ring Neg ln(BER)
BCH(31,16) 6, 128 2, 6 6.91 9.24 12.1
BCH(31,16) 6, 128 4, 4 7.00 9.25 12.1
BCH(31,16) 6, 128 6, 2 6.95 9.25 12.1

rable to BP in both complexity and performance, while demonstrating better scalability. Moreover,
AECCT architectures consistently outperform ECCT architectures with significantly lower com-
plexity. For example, AECCT with N = 6 and d = 64 consistently surpasses ECCT with N = 6
and d = 32, while also being more computationally efficient.

B FIRST & SECOND RING HEADS BALANCE

We analyze the optimal configuration of first-ring and second-ring heads in the HPSA mechanism.
We evaluate AECCT without the AAP contribution, varying the number of first-ring heads hf ∈
{2, 4, 6} and setting hs = 8 − hf , where hs represents the number of second-ring heads. Table 4
presents these findings, indicating that both types of heads contribute similarly, with hf = hs = 4
yielding the best results.
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Table 5: AECCT binary vs AECCT ternary

Code N , d AECCT ternary AECCT binary
LDPC(49,24) 6, 128 6.10 8.65 12.3 5.96 8.42 11.9
BCH(31,16) 6, 128 7.01 9.33 12.1 6.52 8.55 11.0
POLAR(64,48) 6, 128 6.37 8.52 11.1 6.12 8.20 10.6

(a) (b)

Figure 12: Analysis of δ. The average δ value of each type of linear layer across the AECCT trained
on (a) BCH(63,51); (b) LDPC(121,70).

C TERNARY VS BINARY PRECISION CHOICE

We evaluate our AECCT method using binary precision with AAP quantization as an alternative
to the ternary precision AAP quantization. The results are listed in Table 5. Evidently, the ternary
quantization significantly outperforms the binary one in terms of precision. This substantial per-
formance improvement, achieved with only a minimal increase in bit usage (1.58 vs 1), strongly
supports our decision to use ternary over binary quantization.

D AAP DYNAMIC FEATURE CONTROL

We present the post-training values of δ for two AECCT models in Figure 12. Notably, the δ values
are higher for the self-attention projections, leading to a greater elimination of features, whereas in
the feed-forward layers, δ retains more information. This behavior may be explained by the fact that
self-attention (through the query, key, and value projections) focuses on a specific subset of features
for each attention head, while the feed-forward layers primarily reduce redundancy between blocks
without drastically limiting the feature set.

E ADDITIONAL RESULTS

We present BER and BLER curves for three codes: POLAR(128,86), BCH(63,45), and BCH(63,51).
For the POLAR(128,86) code, comparisons include AECCT, ECCT, and SCL decoding, with SCL
results shown for a list length of L = 1. For the BCH codes, BCH(63,45) and BCH(63,51), the
curves compare the performance of AECCT and ECCT, demonstrating the effectiveness of AECCT.
These results further validate the improvements introduced by AECCT in terms of decoding accu-
racy (see Figure 13).

F GENERALIZATION OF AAP QUANTIZATION TO OTHER DOMAINS
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(a) (b)

(c) (d)

(e) (f)

Figure 13: BER and BLER curves for additional codes. Subfigures (a) and (b) present BER and
BLER results for BCH(63,45), respectively, while subfigures (c) and (d) show BER and BLER
results for BCH(63,51). Subfigures (e) and (f) present BER and BLER results for POLAR(128,86),
including comparisons between AECCT, ECCT, and SCL decoding (Tal & Vardy, 2012), with SCL
results shown for a list length of L = 1. These results demonstrate the performance of AECCT
across different codes and validate its effectiveness.

To evaluate the generalization of AAP quantization beyond error correction, we conducted an ex-
periment using TinyBERT (Jiao et al., 2020) on the SST-2 sentiment classification dataset (Socher
et al., 2013). Starting with a pretrained TinyBERT model, we fine-tuned it for one epoch and sub-
sequently applied Quantization-Aware Training for one additional epoch using two quantization
methods: AAP and abs-mean quantization. As shown in Table 6, AAP quantization outperformed
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abs-mean, a method considered state-of-the-art for ternary quantization, by achieving higher accu-
racy. This result highlights AAP’s effectiveness in generalizing to other domains, showcasing its
potential to perform well on diverse tasks.

Table 6: Accuracy on SST-2 dataset using TinyBERT.

Method Accuracy (%)

FP32 (Full Precision) 88.7
AAP Quantization 83.0
Abs-mean Quantization 82.6
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