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Abstract

Exploiting symmetry inherent in data can significantly improve the sample effi-
ciency of a learning procedure and the generalization of learned models. When
data clearly reveals underlying symmetry, leveraging this symmetry can naturally
inform the design of model architectures or learning strategies. Yet, in numerous
real-world scenarios, identifying the specific symmetry within a given data distribu-
tion often proves ambiguous. To tackle this, some existing works learn symmetry
in a data-driven manner, parameterizing and learning expected symmetry through
data. However, these methods often rely on explicit knowledge, such as pre-defined
Lie groups, which are typically restricted to linear or affine transformations. In this
paper, we propose a novel symmetry learning algorithm based on transformations
defined with one-parameter groups, continuously parameterized transformations
flowing along the directions of vector fields called infinitesimal generators. Our
method is built upon minimal inductive biases, encompassing not only commonly
utilized symmetries rooted in Lie groups but also extending to symmetries derived
from nonlinear generators. To learn these symmetries, we introduce a notion of a
validity score that examine whether the transformed data is still valid for the given
task. The validity score is designed to be fully differentiable and easily computable,
enabling effective searches for transformations that achieve symmetries innate to
the data. We apply our method mainly in two domains: image data and partial differ-
ential equations, and demonstrate its advantages. Our codes are available at https:
//github.com/kogyeonghoon/learning-symmetry-from-scratch.git.

1 Introduction

Symmetry is fundamental in many scientific disciplines, crucial for understanding the structure
and dynamics of physical systems, datasets, and mathematical models. The ability to uncover and
leverage symmetries has become increasingly important in machine learning and scientific research
due to its potential to improve model efficiency, generalization, and interpretability. By capturing
inherent symmetrical properties, models can learn more compact and informative representations,
leading to improved performance in tasks like supervised learning [31, 29, 4, 7, 33], self-supervised
learning [8, 15, 23], and generative models [19, 11, 18].

Previous methods for learning symmetry have often relied on the explicit parameterization of group
representations based on predefined generators, which can be limited in capturing various symmetries,
including transformations that do not align along the generators. For example, when searching for Lie
group symmetries in images or physics data, existing methods [3, 34] parameterize a group action g
as the matrix exponential of a linear combination of linear or affine Lie algebra generators Li with
their learnable coefficients wi as g = exp (

∑
i wiLi). In the affine transformations of images in
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(x1, x2)-coordinates, there are six generators, each corresponding to translation, scaling, and shearing
operations with respect to the x1-axis and x2-axis. Although there exist some methods that directly
learn the generators, they are either bound to the general linear group GL(n), which cannot account
for non-affine or non-linear transformations [24], or are not guaranteed to find the correct symmetry
in real-world image datasets [9, 13].

When searching for symmetries in high-dimensional real-world datasets, we can take advantage of
the fact that the data can be interpreted as a function f : X → Y , such as images, which are functions
from the 2D Euclidean space to the color space. Another notable example of such data is partial
differential equations (PDEs), where the data take the form u : X → U and the Lie symmetries
are defined as transformations on the space X × U . There have been significant advances in Lie
symmetry analysis in recent years, for both academic and industrial purposes, mostly involving
extensive symbolic calculations and relying on computer algebra systems [26]. Discovering Lie
symmetries of PDEs from data without prior knowledge is an unexplored topic, except for the work
of Gabel et al. [14], which learns the symmetry generators of various PDEs in a supervised learning
setup.

In this work, we propose a novel method for learning continuous symmetries, including non-affine
transformations, from data without prior knowledge. By modeling one-parameter groups using Neural
Ordinary Differential Equation (Neural ODE) [6], we establish a learnable infinitesimal generator
capable of producing a sequence of transformed data through ODE integration. We design an
appropriate validity score function that measures how much the transformation violates the invariance
to certain criteria defined depending on the target task, and learn the generators by optimizing towards
the validity score of the data transformed through ODE integration. For example, in an image
classification dataset, we use a pre-trained feature extractor and define the validity score to be the
cosine similarity between the features extracted from the original image and the transformed image.
For PDEs, the validity score is defined by the numerical errors of the original equations after the
transform. The validity scores are chosen based on the characteristics of the target tasks, and designed
to be fully differentiable, so that the symmetry can be learned via gradient descent in an end-to-end
fashion. We also incorporate two regularizations, orthonormality and Lipschitz loss, which prevent
the learned generators from converging to a trivial solution.

Subsequently, we demonstrate that our method indeed discovers the correct symmetries in both image
and PDE datasets. To the best of our knowledge, our research is the first to retrieve affine symmetry
in the entire space of continuous transformations using the CIFAR-10 classification dataset, as shown
in Figure 1. Moreover, our method excels in identifying non-affine symmetries and approximate
symmetries in PDE tasks. We further demonstrate that the learned generators can be leveraged to
develop automatic augmentation generators, which can be used to produce augmented training data
for both image classification tasks and neural operator learning tasks of PDEs [21]. We provide
empirical evidence that the models trained with data augmented by our learned generators perform
competitively with those trained with traditional closed-form transforms such as Lie point symmetry
(LPS) [4]. Moreover, we show that the approximate symmetries discovered by our method, which
cannot be found by classical methods, can also boost the performance of the models, especially when
the size of the training data is small.

(a) (b) (c)

Figure 1: (a) Examples of the vector fields. V3 is a learned symmetry which is approximately a
rotation, while V7 is not a symmetry, thus having a high validity score. (b) Transformed CIFAR-10
images using the learned generators. All the vector fields and transformations learned from CIFAR-10
are presented in Figure 8 of Appendix C. (c) Transformation of PDEs (KS equation) with learned
symmetries: time translation (t-tsl) and Galilean boost (gal).
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Figure 2: An example of a flow.

Table 1: Infinitesimal generators of the Affine group
Aff(2). The set of six generators {L1, · · · , L6} forms
a basis of the corresponding Lie algebra.

Generator Expression One-Parameter Group Description

L1 (1, 0) x 7→ x + s(1, 0) translation in x1-axis
L2 (0, 1) x 7→ x + s(0, 1) translation in x2-axis
L3 (x1, 0) x 7→

(
es 0
0 1

)
x scaling of x1-axis

L4 (0, x2) x 7→
(

1 0
0 es

)
x scaling of x2-axis

L5 (x2, 0) x 7→
(

1 s
0 1

)
x shear parallel to x1-axis

L6 (0, x1) x 7→
(

1 0
s 1

)
x shear parallel to x2-axis

L3 + L4 (x1, x2) x 7→ esx uniform scaling
L6 − L5 (−x2, x1) x 7→

(
cos s − sin s
sin s cos s

)
x rotation

2 Preliminaries: One-parameter Group

In this section, we present the basic definitions of a one-parameter group, which we use to parameter-
ize the symmetric transformations learned from the data.

Consider an unknown Euclidean domain Z ⊆ Rn and a smooth vector field V : Z → Rn. A path
γ : I = (a, b) ⊆ R → Z satisfying d

dsγ(s) = V (γ(s)) for all s ∈ I is a curve that travels around the
domain Z with a velocity given by the vector field V . Along the curve γ, a point x0 = γ(a0) can be
transported to γ(a0 + s) by flowing along the vector field V by time s. We define the flow ϑV

s by
ϑV
s (x0) = γ(a0 + s) of V as in Figure 2. This flow is computed by solving an ODE

d

ds
ϑV
s (x) = V (x) (1)

with initial condition ϑV
0 (x) = x for all x ∈ Z [20].

The flow ϑV is governed by an autonomous ODE, i.e., an ODE independent of the temporal variable
s. Due to properties of autonomous ODEs, the flow ϑV exists uniquely and it is smooth in both
variables s and x. Assuming a mild condition on V , such as V extends to a compactly supported
vector field Ṽ on Rn, the ODE does not terminate in Rn in finite time and hence ϑV

s is defined for all
s ∈ R. In that case, the flow satisfies a group equation

ϑV
s1+s2(x) = ϑV

s1 ◦ ϑ
V
s2(x) (2)

for all s1, s2 ∈ R. It means that the flow can be regarded as a group action of R on Rn, transforming
elements of Z ⊆ Rn. For this reason, ϑV

s is also called a one-parameter group, and the vector field
V is called an infinitesimal generator of the one-parameter group.

On Z = Rn, a constant vector field V (x) = v ∈ Rn gives rise to a translation x 7→ x+ sv. For a
matrix A ∈ Rn×n, a vector field V (x) = Ax gives rise to an affine transformation x 7→ exp(sA)x,
where exp is the matrix exponentiation. Multiple infinitesimal generators may span a vector space g,
and if g satisfies some algebraic condition (closure under the Lie bracket), then g forms a Lie algebra.
Composing the elements of one-parameter groups of elements in g gives rise to a Lie group G. The
correspondence between G and g is called Lie group-Lie algebra correspondence.

Continuous symmetries are commonly defined by a Lie group G, acting on some domain and keeping
the transformed objects invariant with respect to some criterion. We model symmetries by specifying
their infinitesimal generators whose composition of one-parameter groups comprises the symmetries
of that domain.

Below, we describe two representative examples that will be discussed extensively in the remainder
of the paper: images (interpreted as functions on 2D planes) and PDEs.

2.1 Images and Their Symmetries

Consider a rescaled image of the form f : X = [−1, 1]2 ⊆ R2 → Y = [0, 1]3 ∈ R3. The affine
transformations on R2 have the form x = (x1, x2) 7→ Ax + b for a matrix A ∈ R2×2 and a
vector b ∈ R2. The Affine transformations form the 6-dimensional Affine group Aff(2), and it
has a corresponding 6-dimensional Lie algebra having a basis {L1, . . . , L6} given as in Table 1.
The symmetries of images are often exploited as a data augmentation strategy for learning image
classifiers, under an assumption that the transforms do not alter the identity or semantics of the images
to be classified.
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2.2 PDEs and Their Symmetries

Given an n-dimensional independent variable x = (x1, · · · , xn) ∈ X ⊆ Rn and an m-dimensional
dependent variable u = u(x) = (u1(x), · · · , um(x)) ∈ U ⊆ Rm, we denote by u(i) the collection
of all i-th partial derivatives of u with respect to x. A partial differential equation ∆ on u(x) of
order k is defined by a set of algebraic equations ∆(x,u,u(1), · · · ,u(k)) = 0 involving all the
variables and their partial derivatives. For example, two scalar independent variables x, t ∈ R and
one scalar dependent variable u(x, t) ∈ R governed by equation ∆ = ut + uux + uxxx = 0 gives
the 1-dimensional Korteweg-de Vries (KdV) equation, where we denote partials using subscripts, e.g.
ut =

∂u
∂t and uxxx = ∂3u

∂x3 . The KdV equation is commonly used to model the dynamics of solitons,
e.g. shallow water waves [36]. The KdV equation described above is an example of 1-dimensional
scalar-valued evolution equation. Such an equation takes the form u = u(x, t) ∈ R with its governing
equation of the form

ut = F (x, t, u, ux, uxx, uxxx, · · · ) (3)

for some function F . In this paper, we only deal with 1D scalar-valued evolution equation on a fixed
periodic domain x ∈ [0, L].

Continuous symmetries of PDEs are commonly parametrized by a one-parameter group on X × U .
Denote (ξ,µ) = (ξ[x,u],µ[x,u]) an infinitesimal generator defined on X × U . Then the PDE
∆ possesses the infinitesimal generator of symmetry (ξ,µ) if the equation is still satisfied after
transforming both the independent variable x and the dependent variable u [27, 5, 26]. Symmetries
of PDEs are categorized by how the generators (ξ,µ) depend on (x,u). The symmetry is a Lie
point symmetry (LPS) if the value of (ξ,µ) at each point (x,u(x)) depends only on the point value
(x,u(x)) itself. If (ξ,µ) also depends on the derivatives u(1), · · · ,u(k) at that point, it is called
a Lie-Bäcklund symmetry or generalized symmetry. If (ξ,µ) depends on integrals of u, then it is
called a nonlocal symmetry. Finding an LPS of a PDE ∆ can be done algorithmically under some
mild assumptions on ∆. However, there is no general recipe of finding Lie-Bäcklund symmetries or
nonlocal symmetries, and discovering such symmetries remains an active area of research.

3 Related Work

Symmetry discovery. Approaches to learning symmetries can be categorized by addressing two
questions: (a) where do they search for symmetries, and (b) what are they aiming to learn. One line
of research aims to learn ranges, focusing on determining the ranges of transformation scales that
enhance learning when employed as augmentation techniques. For example, Benton et al. [3] learns
transformation ranges of predefined transformations by treating them as learnable parameters and
backpropagating through differentiable transformations.

Another line of research aim to learn subgroups of bigger candidate groups, typically a linear group
GL(n) or an affine group Aff(n). For example, Desai et al. [10] use the Generative Adversarial
Network (GAN) to search for symmetries, with the generator transforming data by group elements
sampled from the candidate group and the discriminator verifying whether the transformed data sill
lies in the data distribution. Similarly, Yang et al. [34] employ the GAN approach, but generator of
GAN models infinitesimal generators instead of the subgroup itself, and learns affine symmetries such
as rotation of images and Lorentz symmetry of high-energy particles. As an alternative, Moskalev
et al. [24] proposed an idea of extracting symmetries from learned neural network by differentiating
through it, and retrieved 2D rotation in the linear group using the rotation MNIST dataset.

Finally, learning symmetries with minimal assumption, i.e. without assuming the infinitesimal
generators are linear or affine, is an area of large interest. An early attempt of Rao & Ruderman [28]
models infinitesimal generator by a learnable matrix from the pixel space to the pixel space, and learn
2D rotation by solving a task that compares original images and rotated ones, where the images are
5×5 random pixels. Sohl-Dickstein et al. [32] takes the similar approach with eigen-decomposing the
learnable matrix. Dehmamy et al. [9] builds a convolution operation whose kernel encodes learnable
infinitesimal generators, and retrieved 2D rotation from random 7× 7 images by comparing original
and transformed ones, and Yang et al. [35] uses an autoencoder to simplify nonlinear symmetries into
linear ones. Our work closely aligns with Liu & Tegmark [22] and Forestano et al. [13], which model
one-parameter groups by an MLP and learn the symmetries from an invariant scalar quantity. To the
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best of our knowledge, learning correct symmetries with minimal assumption was only achieved with
toy datasets, far from real-world datasets such as CIFAR-10.

Utilizing symmetries in deep learning. An effective method for leveraging symmetries in deep
learning is data augmentation [31]. In the image domain, there are numerous augmentation tech-
niques available [29], most of which are based on geometric properties of images. Although data
augmentation techniques have been primarily explored in the context of images, recent studies by
[4, 23] have demonstrated that symmetries can also be used for augmenting data in the training of
neural PDE solvers. In addition to data augmentation, some approaches involve designing new neural
network architectures that inherently reflect the group symmetries of the input data [7]. Wang et al.
[33] applied a similar strategy within the PDE domain.

4 Learning Continuous Symmetries with One-Parameter Groups

4.1 Training Process

Given a learning task with a dataset D ⊂ A in an underlying space A = {f |f : X → Y}, we aim
to model symmetry by a one-parameter group ϑs acting on A, as explained in § 4.3. We define a
continuous symmetry by stating that ϑ is a symmetry of this task if there exists some σ > 0 such
that for any data point f ∈ D and transformation scale s ∈ [−σ, σ], the transformed data point ϑs(f)
remains valid for this task. We assume the existence of a differentiable validity score S(ϑs, f) ∈ R,
such that ϑs(f) ∈ A is valid if S(ϑs, f) < C for a certain threshold C ∈ R. Then, a one-parameter
group ϑ is a symmetry of the task if S(ϑs, f) < C for all f ∈ D.

Figure 3: Process of learning symmetry.

The validity score depends on the nature of the target
task, though no strict criterion exists. As long as it
is differentiable and the valid data aids learning, it is
considered acceptable. For instance, we can define
the validity based on a negative log-likelihood of a
probabilistic model. In § 4.2, we discuss the validity
scores to be used for image and PDE data.

Once a validity score is defined, we learn a symmetry
ϑ∗ by minimizing the validity scores of transformed
data,

ϑ∗ = argmin
ϑ

Ef∼D,s∼Unif([−σ,σ]) [S(ϑs, f)] , (4)

where the argmin is taken over the entire class of smooth one-parameter groups. Since the learning
is performed in function space, we appropriately constrain the function space using a regularizer, as
described in § 4.4. Once symmetries are learned, they reveal the symmetrical properties of the target
task, which can then be exploited to augment the training data.

4.2 Task-specific Definition of Validity Score S

Images. In image-related tasks, we define a validity score using a pre-trained neural network. Let
D be an image classification dataset consisting of data of the form (f, y) ∈ A × R, where f is an
image and y is a label. Also let Hcls ◦Hfext : A → R be a learned neural network, where we denote
by Hfext : A → Rk the feature extractor and Hcls : Rk → R the classifier. We define the validity
score S(ϑs, f) as the cosine similarity between the features before and after the transformation:

S(ϑs, f) = sim (Hfext(ϑs(f)), Hfext(f)) , (5)

where sim is the cosine similarity defined as sim(v1,v2) =
|v1·v2|

∥v1∥∥v2∥ for all v1,v2 ∈ Rk \ {0}.

PDEs. Let u(x) be a solution of a given PDE ∆, discretized on a rectangular grid Xgrid = {xi}
Ngrid
i=1 .

For a transformed data ϑs(u), we measure the violation of the equality ∆ = 0 to assess whether the
transformed data is still a valid solution. Using an appropriate numerical differentiation method, we
directly compute the value of the PDE, denoted as ∆(ϑs(u)), which represents the error of ϑs(u)
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as a solution of ∆, taking a value ∆(ϑs(u))i at grid point xi. The validity score is defined by the
summation of all PDE errors across the grid points:

S(ϑs,u) =
∑
i

|∆(ϑs(u))i| . (6)

For example, for a solution u(x) of the 1D KdV equation, we examine whether the transformed
solution ũ = ϑs(u) satisfies ũt + ũũx + ũxxx = 0 where the partials are computed using a numerical
differentiation method.

4.3 Parametrization of One-Parameter Groups using Neural ODE

On a Euclidean domain Z ⊆ Rn, we model an infinitesimal generator with an MLP hθ : Z ⊆
Rn → Rn. The infinitesimal generator hθ gives rise to a one-parameter group ϑhθ

s . We sample a
transformation scale α ∼ Unif([−σ, σ]) for a predefined hyperparameter σ ∈ R>0. To transform a
point x ∈ Z along this one-parameter group by an amount α ≥ 0, we use a numerical ODE solver to
solve the ODE for γ : [0, α] → Z satisfying

γ′(s) = hθ(γ(s)), ∀s ∈ [0, α], γ(0) = x (7)

and obtain a transformed data point x̃ = ϑhθ
α (x) = γ(α). If α < 0, we compute ϑhθ

α (x) = ϑ−hθ
−α (x)

by integrating −hθ instead of hθ using the ODE solver. We can backpropagate through the numerical
ODE solver using the adjoint method [6] to learn θ.

Let f : X → Y be a data point on a domain A. As A is a space of functions, naïvely modeling
symmetry on A may ignore the geometry implied in the input space X . Instead, we define two
transformations: ϑX on X and ϑY on Y , and induce a transformation of f by

(ϑX (f))(x) = f(ϑ−1
X (x)), (ϑY(f))(x) = ϑY(f(x)), (8)

where we abuse notation and write the transformed function as ϑX (f) and ϑY(f). For an image
represented as a discretized function f : X → Y from X = [−1, 1]2 and Y = [0, 1]3, ϑX corre-
sponds to spatial transformations such as translation or rotation, and ϑY corresponds to color space
transformations. For a PDE, a 1D scalar-valued evolution equation on a fixed periodic domain
takes the form u(x, t) ∈ U = R with (x, t) ∈ [0, L] × [0, T ] = X ⊆ R2, and we parameterize
an infinitesimal generator on a product space X × U ⊆ R3 by an MLP. Then, a transformation on
(x, t, u) ∈ X × U induces a transformation on the solution of the PDE u(x, t).

4.4 Objective Functions

Symmetry loss. Let Nsym be the number of symmetries to be learned. Let (h(a)
θ )

Nsym

a=1 be the
infinitesimal generators computed from a single MLP. For each a ∈ {1, . . . , Nsym}, we sample a
transformation scale sa ∼ Unif([−σ, σ]) to transform f via numerical integration. The parameter θ
is optimized by minimizing the average validity score over the training data,

Lsym(θ) =

Nsym∑
a=1

Ef∼D,sa∼Unif([−σ,σ])

[
S
(
ϑ
h

(a)
θ

sa , f
)]

. (9)

Orthonormality loss. Learning only with the symmetry loss may result in trivial solutions such
as the zero vector field or the same vector field repeated in multiple slots. To prevent this, we
introduce the orthonormality loss to regularize the model towards learning orthonomral vector fields.
Specifically, given two vector fields V1, V2 : Z → Rn, we define an inner product as,

⟨V1, V2⟩ =
1

vol(Z)

∫
Z
ω(x)(V1(x) · V2(x))dx ≈ 1

|Zgrid|
∑

xi∈Zgrid

ω(xi)(V1(xi) · V2(xi)), (10)

with a suitable weight function ω(x) : Z → R and a discretized grid Zgrid of Z of size |Zgrid|.
Given this definition, we first normalize each generator by its norm to ensure ∥h(a)

θ ∥2 = 1. Then we
compute the orthonormality loss as,

Lortho(θ) =
∑

1≤a<b≤Nsym

〈
sg(h

(a)
θ ),h

(b)
θ

〉
, (11)
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where sg(·) denotes the stop-gradient operation to ensure that the constraint ⟨h(a)
θ ,h

(b)
θ ⟩ = 0 only

affects the latter slot (b). By doing this, if the true number of symmetries N∗
sym is less than or equal to

the assumed number of symmetries Nsym, the learned symmetries will be aligned in the first N∗
sym

slots.

Lipschitz loss. We further introduce inductive biases to the infinitesimal generators we aim to learn.
For instance, an infinitesimal generator moving only a single pixel near the boundary by a large scale
would be undesirable. This idea can be implemented using Lipschitz continuity. For a grid point
xi ∈ Zgrid and its neighboring point xj ∈ nbhd(xi) ⊂ Zgrid, we expect the vector field V to satisfy
the Lipschitz condition,

Lips(V ;xi,xj) < τ where Lips(V ;xi,xj) =
∥V (xi)− V (xj)∥

∥xi − xj∥
. (12)

To regularize the model toward the Lipschitz condition, we introduce the Lipshictz loss,

LLips(θ) =

Nsym∑
a=1

∑
xi∈Zgrid,xj∈nbhd(xi)

max(Lips(h
(a)
θ ;xi,xj)− τ, 0). (13)

Total loss and loss-scale-independent learning. We jointly minimize the three loss functions with
suitable weights wsym, wortho, wLips > 0 and learn the weights θ of MLP using a stochastic gradient
descent:

θ∗ = argmin
θ

wsymLsym(θ) + worthoLortho(θ) + wLipsLLips(θ). (14)

To minimize the computational burden of hyperparameter tuning, we ensure that all the loss terms
have a natural scale, i.e. a dimensionless scale independent of the context. For example, when
penalizing the inner product in Equation 11, we apply arccos to the normalized inner product to
ensure the loss term lies in [0, π/2). Similarly, the scale of the PDE validity score S(ϑs,u) in
Equation 9 depends on the scale of the data u. When penalizing it, we apply the log function so that
the gradients are scaled automatically as ∇θ log(S(ϑs,u)) = ∇θS(ϑs,u)/S(ϑs,u).

Here we describe the generic training process, but the actual implementation requires non-trivial
task-specific designs, such as the choice of the weighting function w(x) or the method for locating the
transformed data on the target grid. We defer these details for image and PDE tasks to Appendix A.

4.5 Comparison With Other Methods

Here, we compare our method with other recent symmetry discovery methods. The differences
mainly arise from (a) what they aim to learn (e.g., transformation scales or subgroups from a larger
group) and (b) their assumptions about prior knowledge (e.g., complete, partial, or no knowledge of
symmetry generators). Another important distinction is the viewpoint on symmetry: some methods
learn symmetries that raw datasets inherently possess (implicit), while others learn symmetries from
datasets explicitly designed to carry such symmetries (explicit).

Some recent symmetry discovery works are listed in Table 2. We emphasize that our method excels in
two key aspects: (a) our learning method reduces infinitely many degrees of freedom, (b) our method
works with high-dimensional real-world datasets. For example, while LieGAN [33] and LieGG [24]
reduce a 6-dim space (affine) to a 3-dim space (translation and rotation) in an image dataset, ours
reduces an ∞-dim space to a finite one. L-conv [9] also does not assume any prior knowledge, but
it is limited in finding rotation in a toy task, where it learns rotation angles of rotated images by
comparing them with the original ones, which are 7x7 random pixel images.

5 Experiments

5.1 Images

We use images of size 32 × 32 from the CIFAR-10 classification task. Since our method does
not model discrete symmetry, we use horizontal flip with 50% probability by default. We train a
ResNet-18 model, which will be used as the feature extractor Hfext in Equation 5. The weight function
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Table 2: Comparison with other symmetry discovery methods.
Augerino LieGAN LieGG L-conv Forestano et al. Ours

Symmetry
generators

completely
known

partially
known (affine)

partially
known (affine)

completely
unknown

completely
unknown

completely
unknown

Learn what? transformation
scales

symmetry
generator
(rotation /
Lorentz)

symmetry
generator
(rotation)

symmetry
generator
(rotation)

symmetry
generator

(in low-dim task)

symmetry
generator
(affine)

Verified
with what?

raw
CIFAR-10

rotation
MNIST /

Top tagging

rotation
MNIST

random
7 × 7 pixel

image

toy data
(dim ≤ 10)

raw
CIFAR-10
& PDEs

Implicit or
explicit? implicit explicit explicit explicit explicit implicit

How?

optimize
while training
downstream

task

compare
fake/true data

in GAN
framework

extracts from
learned NN
using Lie
derivative

compare
rotated and

original
images

extracts from
invariant oracle

using Lie
derivative

extracts from
validity score
using ODE
integration

(a) (b) (c)

Figure 4: (a) Self inner-products of the learned generators. (b) Inner product comparison of the
learned generators with the affine generators. (c) Affine-ness of learned generators.

on the pixels is computed as explained in Appendix A.1. We expect to find 6 affine generators and we
use an MLP modeling 10 vector fields in the pixel space [−1, 1]2 ⊆ R2, expecting the first six learned
vector fields to be the affine generators. We learn the Equation 14 using stochastic gradient descent
with wsym = 1 and wortho, wLips = 10. The parameter σ, which controls the scale of transformation,
is set to σ = 0.4, and the Lipschitz threshold τ is set to τ = 0.5. Other details are described in
Appendix B.1. We conducted three trials with random initializations and report the full results in
Appendix C.1. Furthermore, we also learn symmetries in the color space, and their results are shown
in Appendix G.

Learned symmetries. Since we expect to learn affine symmetries, we compare the results with the
affine basis {L1, · · · , L6} defined in Table 1. We compute the inner products ⟨V,Li⟩ of the learned
vector field V with Li for i = 1, · · · , 6 to measure how much the learned vector fields contain the
affine basis and measure the affine-ness of vector field by Affine-ness(V )2 =

∑6
i=1⟨V,Li⟩2.

In all experiments, we successfully retrieve six linearly independent affine generators in the first six
slots. Figure 4a shows that the learned generators are orthogonal to each other, as desired. Figure 4b
shows the inner product between the learned generators and the affine generators. Since the affine-
ness measure of the first 6 learned generators in Figure 4c is almost close to 1, we can read out the
affine components in Figure 4b and say that e.g., V1 ≈ (0,−0.98+ 0.12x2). Notably, two translation
generators are found in the first two slots, indicating that the two translations are the most invariant
one-parameter group among the entire class of one-parameter groups on the pixel space. After the
two translation generators, four affine generators are learned, indicating that affine transformations
are the next most invariant transformations. In particular, the third and fourth generators are close
to the rotation generator and the scaling generator, respectively. The remaining four generators fix
pixels close to the center and transform boundary pixels by a large magnitude.
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Figure 5: Inner products between the learned non-affine symmetry generators and the ground truth.
The results including the affine symmetry generators are shown in Figure 10a.

Table 4: Definition of PDEs.
Name Equation

KdV ut + uux + uxxx = 0
KS ut + uxx + uxxxx + uux = 0
Burgers ut + uux − νuxx = 0

nKdV e−
t̂
t0 ut̂ + uux + uxxx = 0

cKdV ut + uux + uxxx + u
2(t+1) = 0

Table 5: LPS of PDEs.
Name Lie Point Symmetries

KdV [4], KS [4], Burgers [17] (1, 0, 0) (0, 1, 0) (t, 0, 1)

nKdV (Appendix D.3) (1, 0, 0) (0, e−
t̂
t0 , 0) (t0(e

t̂
t0 − 1), 0, 1)

cKdV [30] (1, 0, 0) (
√
t+ 1, 1

2
√
t+1

, 0)

Analysis. Unlike other symmetry discovery researches [24, 9] that use datasets which are explicitly
designed to be symmetric such as rotation MNIST, we discovered affine transformations from CIFAR-
10 with no augmentation except horizontal flip. Moreover, we extract the symmetries from the
ResNet trained with CIFAR-10 without augmentation. This implies that although CIFAR-10 is not
explicitly composed to be symmetric under affine transformations, the dataset possesses intrinsic affine
symmetry. This also implies that even the ResNet trained without augmentation possesses invariance
under affine transformation. It is widely believed that the strong generalization power of neural
networks is linked to the augmentation insensitivity of the neural networks [25]. Our results show that
ResNet is insensitive to affine transformation even when not explicitly designed to be so, supporting
this hypothesis. This result implies that augmentation explicitly amplifies the insensitivity by using
transformed data for training. Our analysis is tangential to that of Gruver et al. [16], which measures
the extent of invariance using derivatives along the infinitesimal generators instead of ODE integration.

Table 3: Test accuracy in
CIFAR-10.

Method Acc. (%)

No-aug 92.4± 0.3
Default 95.1± 0.1
Affine 95.1± 0.2
Learned 94.9± 0.1

Augmentation results. We train a ResNet-18 model using CIFAR-
10 classification data, applying the learned symmetries as data augmen-
tation. We compare the results of no-augmentation, default augmenta-
tion (horizontal flip and random crop), and affine transformation, with
transformation scale searched in {0.1, 0.2, 0.3, 0.4, 0.5}. We conduct
five experiments with random initialization for all the settings and
report the results in Table 3.

5.2 PDEs

We follow the experimental setting of Brandstetter et al. [4], which use the Korteweg-de Vries (KdV)
equation, the Kuramoto-Shivashinsky (KS) equation, and the Burgers’ equation on a 1D periodic
domain as experiments. They all have time translation, space translation, and the Galilean boost
as LPSs. To consider PDEs with non-trivial and non-affine symmetries, we add two variants of
the KdV, namely the nKdV equation and the cKdV equation. The nKdV is yielded by a nonlinear
time translation of the original KdV, and the cKdV is the cylindrical KdV equation, having an extra
time-dependent term. The equations are listed in Table 4, and their symmetries are listed in Table 5.
Note that some symmetries are ruled out since we work within a fixed periodic domain, e.g., the
scaling symmetry of the KdV. Since there are at most three symmetries, we open four slots in an
MLP and learn symmetries using weights wsym, wLips = 1 and wortho = 3.

Learned symmetries. We compare the learned symmetries with the ground-truth symmetries using
inner products. We found the ground truth symmetries in all the experiments as in Figure 5 and
Figure 10.
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Figure 6: Comparison of augmentation performances using the ground truth symmetries and the
learned symmetries with various numbers of data. The symbol ∅ stands for no-augmentation.

Table 6: Test NMSE comparison of augmentation using LPS and AS in FNO learning for cKdV.

# Data None LPS AS LPS+AS

27 (3.70± 0.09)× 10−6 (3.49± 1.06)× 10−6 (3.20± 0.94)× 10−6 (2.66± 0.36)× 10−6

25 (7.90± 1.21)× 10−4 (5.90± 0.17)× 10−4 (4.45± 0.15)× 10−4 (3.70± 0.15)× 10−4

Interestingly, for the Burgers’ equation and the cKdV equation, we additionally found the u-axis
rescaling operation (0, 0, u) and the time translation (0, 1, 0) respectively. Applying the u-axis
rescaling u 7→ cu for c ≈ 1 to the Burgers’ equation ut + uux − νuxx = 0 gives cut + c2uux −
νcuxx = c(c− 1)uux, leaving only the uux term. The uux term in Burgers’ is called the convection
term, and it is approximately zero in most region and spikes in some small region. Similarly, the time
translation t 7→ t+ c for c ≈ 0 fixes the first three terms in the cKdV equation ut + uux + uxxx +
u/(2(t+ 1)) = 0 and only changes the last term u/(2(t+ 1)) by a negligible amount. These are not
LPSs of the given equations, but the error of the PDE after transformation is smaller than the error of
the numerical differentiation method. These are approximate symmetries (AS), and the theory of AS
is also of great interest in the symmetry analysis of PDEs [2, 1].

Augmentation results. We use the learned symmetries as data augmentation and train Fourier
Neural Operators (FNOs). The detailed experiment setting is described in Appendix B.2. Since FNOs
are extremely sensitive to numerical error, we employ Whittaker-Shannon interpolation, explained in
Appendix D.2, to resample the transformed results. The results are depicted in Figure 6. In all cases,
data augmentation using the learned symmetries improve the performance, almost close to the results
using the ground truth symmetries. The detailed results are in Appendix C.2. Additionally, we verify
that the approximate symmetry of cKdV is also beneficial to training, as shown in Table 6, especially
when the numbers of data points is low, proving the effectiveness of symmetries extracted from data.

Ablations. Additional ablation studies on numerical methods, such as numerical differentiation
and interpolation, and hyperparameter sensitivity are conducted, and their results are presented in
Appendices E and F.

6 Conclusion

We have introduced a novel method for learning continuous symmetries, including non-affine trans-
formations, from data without prior knowledge. By leveraging Neural ODE, our approach models
one-parameter groups to generate a sequence of transformations, guided by a task-specific validity
score function. This approach captures both affine and non-affine symmetries in image and PDE
datasets, enhancing automatic data augmentation in image classification and neural operator learning
for PDEs. The learned generators produce augmented training data that improve model performance,
particularly with limited training data.

Limitation. However, despite its flexibility, our method requires careful selection of numerical
methods, such as numerical differentiation and interpolation, to ensure stable training and the ODE
integration can be computationally large for augmentation generation compared to other augmentation
methods. While we focus on image symmetries and LPSs of PDEs, the method could potentially
model other symmetries and domains with proper validity scores, suggesting future applications in
learning complex symmetries, including conditional and non-local symmetries, in various data types.
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A Implementation Details

A.1 Image Dataset

Notation. Images are functions of the form f : X → Y , where X = [−1, 1]2 is the spatial domain
and Y = [0, 1]3 is the normalized RGB domain. Pixels Xgrid = {xi}

Ngrid
i=1 are discretized through a

rectangular grid of X , and images f are discretized on the pixel space by fi = f(xi) for all i.

Figure 7: The weight function
ω(x).

ω(x) in orthonormality loss. We first learn a symmetry on the
spatial domain X using a feature extractor Hhidden taken from a pre-
trained neural network. One obstacle is that in most image datasets,
the main subjects of images are mostly located around the centers,
and the regions close to the boundary are filled with backgrounds.
In other words, each pixel has a different level of importance, and
we may end up learning infinitesimal generators that only move
boundary pixels and fix the center.

We take into account the importance of pixels using the weight
function ω(x) : X → R≥0. For a discretized image f = {fi} and
for each pixel xi, we measure a pixel sensitivity of the image f at
the i-th pixel up to the feature extractor Hfext as

Sensitivity(f,xi) =

∥∥∥∥∂Hfext(f)

∂xi

∥∥∥∥ =

∥∥∥∥ ∂fi
∂xi

∂Hfext(f)

∂fi

∥∥∥∥ , (15)

which can be computed by querying a Jacobian-vector product of Hfext with respect to the image
gradient at each pixel ∂fi

∂xi
. We define the weight ω(x) as the average of pixel sensitivity across the

dataset:

ω(xi) = Ef∼D[Sensitivity(f,xi)] = Ef∼D

[∥∥∥∥∂Hfext(f)

∂xi

∥∥∥∥] . (16)

However, computing this weight function ω needs Ngrid · Ndata times of computation of Jacobian-

vector products. Instead, we use a Gaussian kernel κ(x; x̂, σ) = 1√
2πσ

exp(− ||x−x̂||2
2σ2 ), with a fixed

σ = 0.1 and the center x̂ sampled uniformly on X , and approximate the weight function by

ω(xi) ≈ Ef∼D,x̂∼Unif(X )

κ(xi; x̂, σ)

∥∥∥∥∑
j

∂Hfext(f)

∂xj
κ(xj ; x̂, σ)

∥∥∥∥
 (17)

so that we compute the weight in a stochastic manner. Intuitively, it computes Jacobian-vector product
for each larger pseudo-pixel represented by the Gaussian kernels instead of each individual pixel. We
iterate over the dataset 20 times, and the computed weight function is shown in Figure 7.

Training details. The infinitesimal generator h
(a)
θ transforms each pixel xi into x̃i via ODE

integration. In this process, the transformed pixels {x̃i} may no longer be located on the rectangular
grid Xgrid, so we use the bilinear interpolation method to resample the transformed image ϑs(f) on
Xgrid. Note that the bilinear interpolation operation is differentiable, thereby we can train the MLP by
minimizing the validity score S(ϑs, f), which is the cosine similarity between the features of f and
ϑs(f):

S (ϑs, f) = sim (Hfext(ϑs(f)), Hfext(f)) . (18)

A.2 PDE Dataset

Notation. Solutions of a 1D scalar-valued evolution equation on a periodic domain take the form
u(x, t) : X → U for X = [0, L] × [0, T ] and U = R, where [0, L] is the spatial domain and [0, T ]
is the temporal domain. Similar to the image task, the domain X is discretized by the rectangular
grid Xgrid = {xi}

Ngrid
i=1 = {(xi, ti)}

Ngrid
i=1 . A discretized solution is a set of tuples (xi, ti, ui) where

ui = u(xi, ti).
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ω(x) in orthonormality loss. Unlike in images, we assume that all discretized grid points hold
equal importance, so we set ω(x) = 1 for all x ∈ X .

Training details. The infinitesimal generators on the product space X × U transform a point
u = {(xi, ti, ui)} into ũ = {(x̃i, t̃i, ũi)}. Therefore, the transformed solutions are no longer on
the rectangular grid. To compute the PDE value ∆(ũ) for ũ = ϑs(u) in Equation 6, we need to
compute partial derivatives numerically such as ux(x̃i, t̃i), ut(x̃i, t̃i) or uxx(x̃i, t̃i). We use the finite
difference method, in which the numerical derivative is approximated by finite differences, e.g.,

ux(xi, ti) =
u(xi +∆x, ti)− u(xi −∆x, ti)

2∆x
. (19)

for some small ∆x.

In particular, we use the weighted essentially non-oscillating (WENO) scheme as a numerical
differentiation method [37], with a careful choice of parameters as in Dumbser & Käser [12]. In
the WENO method, multiple estimates for derivatives are made using multiple sets of neighboring
gridpoints (called stencils). The multiple estimates are then averaged with weights (called smoothness
indicator) that approximate how stable the derivative estimates are . We implement the WENO
method working on a nonuniform grid, and the model learns symmetries by backpropagating through
it. A detailed description on the WENO scheme is in Appendix D.1.

B Experiment Details

In this section, we present the detailed experimental settings of the experiments in § 5.

B.1 Images

Training ResNet-18. When training the ResNet-18 with CIFAR-10, both the feature extractor Hfext
and models after augmentation, we train the model in 200 epochs with a batch size 128. The learning
rate is set to 10−1 and decreases by a factor of 0.2 at the 60th, 120th, and 160th epoch. The model is
trained by SGD optimizer with Nesterov momentum 0.9 and weight decay 0.4.

Learning symmetries. To learn the symmetry generators, we train the MLP using two shared
hidden layers, each with a width of 256, followed by a hidden layer of width 32 for each output
vector field. We use the swish activation function to ensure the learned vector fields are smooth. The
MLP is trained for 50 epochs with a batch size 128 and fixed learning rate of 10−4 using the Adam
optimizer. The learning process takes less than 10 hours on a GeForce RTX 2080 Ti GPU.

B.2 PDEs

Data generation. We follow the data generation method of Brandstetter et al. [4]. Given an 1D
evolution equation ut = F (x, t, u, ux, uxxx, · · · ) for u = u(x, t) on periodic domain [0, L], we start
with an initial condition u(x, 0) by random Fourier series as

u(x, 0) =

P∑
p=1

Ap sin(2πlpx/L+ ϕp) (20)

where P is the number of Fourier modes and (Ap, lp, ϕp) are random coefficients. For time-stepping,
we compute x-derivatives ux, uxx, · · · using pseudospectral method, which computes derivatives in
Fourier domain and converts them back to the original domain. We use an ODE solver to compute
the time evolution of u(x, t) from t = 0 to t = T . The solution is discretized on regular grid of size
Nx ×Nt on [0, L]× [0, T ], where Nx = 256 and Nt = 140 by default.

When simulating Burgers’ equation, we instead solve the PDE for the heat equation ϕt = ϕxx

for ϕ = νϕ(x, t). The Burgers’ equation u(x, t) and the heat equation ϕ(x, t) is related via the
Cole-Hopf transformation:

u = 2ν
∂

∂x
log(x). (21)

After data generation, we transform the heat equation back to the Burgers’ equation.
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Learning symmetries. We use an MLP with the same architecture as described in Appendix B.1.
Since all the tuples (x, t, u) must pass through the MLP, totaling Nx ×Nt for each data instance, we
set a small batch size 4. Symmetries are learned using 1024 data instances over 50 epochs. We use
the Adam optimizer and train the network with a learning rate of 10−4 in the first 25 epochs and
10−5 for the remaining 25 epochs. The learning process also takes less than 10 hours on a GeForce
RTX 2080 Ti GPU.

Sobolev regularization. To ensure smoothness in the vector fields, we apply additional regulariza-
tion using the Sobolev norm of order 2 in the x-domain. For a vector field V (x, t), the Sobolev norm
can be efficiently computed in Fourier domain:

∥V (·, t)∥22,2 =

2∑
i=0

∥∥∥∥∂iV (·, t)
∂xi

∥∥∥∥2
2

=

Nx−1∑
n=0

(
1 + |

nfreq

L
|
)2

V̂ (n, t) (22)

where nfreq = min(n,Nx − n) and V̂ (·, t) is the discrete Fourier transformation of V (·, t). Since we
already enforce ||V || = 1, we penalize towards the Sobolev norm excluding the zeroth order term:

∥V (·, t)∥22,2 − ∥V (·, t)∥22 =

2∑
i=1

∥∥∥∥∂iV (·, t)
∂xi

∥∥∥∥2
2

=

Nx−1∑
n=0

((
1 + |

nfreq

L
|
)2

− 1

)
V̂ (n, t). (23)

We apply the Sobolev regularization during the final 10 epochs.

Training FNOs. For the KdV and KS equations, we train an autoregressive FNO solver, which
takes 20 timesteps as input and predicts the subsequent 20 timesteps, following the experimental
setup of Brandstetter et al. [4]. For the nKdV and cKdV equations, which are time-dependent and
contain explicit t terms, we train FNOs as single-time neural operators. These models utilizes the
initial conditions of the equations to predict the states after 70 timesteps. We train the FNO over 40
epochs, with each epoch comprising 280 iterations across the dataset for the KdV and KS equation
and 100 iterations for the nKdV and cKdV equations. The learning rate begins at 10−4 and decreases
by a factor of 0.4 every 10 epochs.

C Experiment Results

In this section, we provide detailed results of the experiments outlined in § 5. For symmetry learning
tasks, we conducted each experiment three times and randomly selected one for reporting in § 5.
The complete set of results is provided here. Also, we report the detailed evaluation metrics in
augmentation tasks.

C.1 Images

Figure 8 is a visualizations of the learned symmetries discussed in § 5.1. Figure 9 displays results
from experiments conducted under the same settings but with different model initializations compared
to Figure 4 in § 5.1. It is notable that affine symmetries consistently occupy the first six slots across
all experiments.

C.2 PDEs

We report experiments results for learning symmetries, conducting three trials for each equation in
figure Figure 10. The ground truth symmetries and the approximate symmetries are consistently
found in the former slots in all the experiments. The remaining fourth slots occasinally converge to
learned symmetries despite the orthonormality loss or converge to some unknown vector fields with
high validity scores. The results from the first trials are used in the augmentation experiments.

In Table 7 and Table 8, we provide the augmentation results of FNOs using the learned symmetries,
which are illustrated in Figure 6.
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(a) (b)

Figure 8: (a) The learned vector fields. (b) Transformed images using the learned generators. The
images with transformation scale 0 are the original images.

Table 7: Comparison of augmentation methods with different numbers of data for KdV and KS
KdV KS

# Data None Ground-truth Ours None Ground-truth Ours

29 0.398± 0.013 0.0640± 0.0050 0.0824± 0.0052 0.00693± 0.00039 0.00229± 0.00014 0.00614± 0.00051
27 1.42± 0.05 0.246± 0.012 0.283± 0.018 0.324± 0.031 0.0241± 0.0001 0.0422± 0.0002
25 4.47± 0.26 0.980± 0.039 1.12± 0.10 5.78± 0.13 1.14± 0.10 1.37± 0.04

D Technical Details

D.1 Weighted Essentially Non-Oscillating (WENO) Scheme

This section is largely based on Zhang & Shu [37], Dumbser & Käser [12].

WENO scheme in 1D. Consider a smooth function f : X ⊆ R → R, where we only have access
to the function on the grid Xgrid = {x1, · · · , xNgrid}, x1 < · · · < xNgrid . To estimate the derivatives

f (k)(x) = dkf
dxk (x) for some x ∈ X , we use k + 1 neighboring points in I = {xi, · · · , xi+k} and

compute the unique k-th order polynomial pI(x) that interpolates the function f on the points in
I . In other words, we ensure pI(xi) = f(xi), · · · , pI(xi+k) = f(xi+k). Then we can pick up the
estimates of the derivatives using the polynomial as f (k)(x) ≈ p

(k)
I (x). We call the set of neighboring

points I a stencil, and the polynomial pI the reconstruction polynomial. Usage of reconstruction
polynomials is a fundamental concept in the numerical differentiation method known as the finite
difference method.

In the weighted essentially non-oscillating (WENO) scheme, we compute multiple estimates
p
(k)
I1

(x), · · · , p(k)INs
(x) for the derivatives f (k)(x) using multiple stencils I1, · · · , INs

. The estimates
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(a) Second experiment.

(b) Third experiment.

Figure 9: The same results (learned symmetries of images) under different initializations compared
to Figure 4.

Table 8: Comparison of augmentation methods with different numbers of data for nKdV and cKdV
nKdV cKdV

# Data None Ours None Ours

29 (3.52± 0.11)× 10−3 (2.58± 0.17)× 10−3 (3.72± 0.33)× 10−6 (3.44± 0.37)× 10−6

27 (3.16± 0.06)× 10−2 (2.96± 0.50)× 10−2 (3.71± 0.09)× 10−5 (1.86± 0.10)× 10−5

25 (4.79± 0.09)× 10−1 (2.44± 0.11)× 10−1 (7.90± 1.21)× 10−4 (2.99± 0.37)× 10−4

are then averaged with weights ω1, · · · , ωNs
which take account of the quality of each estimation. In

the WENO scheme, we assume the grid points are sufficiently dense, hence the estimates are more
accurate when the reconstruction polynomials pIm are smooth. The smoothness of pIm is measured
by the smoothness indicator, defined as:

ISIm =

k∑
α=1

∫
∆

|∆|α−1(p
(α)
Im

(x))2dx (24)

where ∆ = (xj , xj+1) ⊂ R is an interval between two grid points containing x, and |∆| is the length
of ∆. The weights ω1, · · · , ωNs

are defined as:

ωm =
αm∑
m′ αm′

, αm =
γm

(ϵ+ ISIm)b
(25)

where γm is called the linear weight, usually chosen heuristically, b is a positive integer usually set
to 2 or 4, and ϵ > 0 is a small positive number preventing the denominator from being zero. The
final estimate for the derivative f (k)(x) is computed by averaging the estimates p(k)I1

(x), · · · , p(k)INs
(x)

with the weights ω1, · · · , ωNs :

f̂ (k)(x) =

Ns∑
m=1

ωm · p(k)Im
(x). (26)

WENO scheme for multivariate function. The WENO scheme extends smoothly to multidimen-
sional function f : Rn → R. For k = (k1, · · · , kn) ∈ Zn

≥0, we denote f (k)(x) = ∂kf

∂x
k1
1 ···∂xkn

n

(x).

On a stencil I with an appropriate number of grid points, we compute the reconstruction polynomial
pI(x) with a nonzero k-degree term, and the smoothness indicator is defined similarly as:

ISI =
∑

1≤|α|≤k

∫
∆

|∆||α|−1(p
(α)
Im

(x))2dx (27)
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(a) First Experiment

(b) Second Experiment

(c) Third Experiment

Figure 10: Inner product comparison of the learned symmetry generators with the ground truth
symmetries. (a), (b), and (c) are conducted with different random initializations.

where α = (α1, · · · , αn) ∈ Zn
≥0, |α| =

∑n
i=1 αi and the interval ∆ is now a n-dimensional cell

containing the point x with volume |∆|. Like the 1D case, the weights are defined using the linear
weights and smoothness indicator.

Choice of parameters. We follow the choice of parameters of Dumbser & Käser [12]. The linear
weight γm is chosen to be 100 if x is inside the center cell of Im and 1 otherwise, reflecting the fact
that the estimates are accurate as much as the point x is close to the center of Im. The parameters b
and ϵ are chosen as b = 4 and ϵ = 10−6.

D.2 Whittaker-Shannon Interpolation on a Periodic Domain

Let · · · , f [−1], f [0], f [1], · · · be a discretization of a continuous signal on a real line. The Whittaker-
Shannon interpolation recovers the original signal f as:

f(t) =

∞∑
n=−∞

f [n]sinc(t− n) (28)

where sinc is the normalized sinc function sinc(t) = sin(πx)
πx . The Nyquist-Shannon sampling theorem

states that states that f(t) is the perfect reconstruction of f , in a sense that if the original function
does not contain any frequencies higher than a certain threshold, called the Nyquist frequency, then f
is perfectly reconstructs the original signal.
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Similarly, if f [0], f [1], · · · , f [N − 1] is a discretization of a continuous signal on a periodic domain
[0, N ] for some even positive integer N , the Whittaker-Shannon interpolation is given as:

f(t) =

∞∑
n=−∞

f [n mod N ]sinc(t− n) =

N−1∑
n=0

f [n]

∞∑
n=−∞

sinc(t−mN) =

N−1∑
n=0

f [n]DN (t) (29)

where DN (t) =
∑∞

n=−∞ sinc(t−mN) is the Dirichlet kernel with period N . The Dirichlet kernel
DN (t) has a closed-form expression

DN (t) =
sin(πt)

N tan(πt/N)
. (30)

D.3 Nonlinear Time Transformation of the KdV Equation

We apply a nonlinear time transformation t defined as t = t0(e
t̂
t0 − 1), where t0 is a constant scaling

factor, to the KdV equation ut + uux + uxxx. The derivative with respect to t is transformed to

∂

∂t
=

∂t̂

∂t

∂

∂t̂
= e

t̂
t0

∂

∂t̂
(31)

hence the KdV equation with nonlinear time transformation (nKdV) becomes

e
t̂
t0 ut̂ut + uux + uxxx = 0. (32)

The three symmetries of the KdV changes accordingly. The space translation is left untouched, and
the other two infinitesimal generators are tranformed as:

∂

∂t
= e

t̂
t0

∂

∂t̂
(33)

t
∂

∂x
+

∂

∂u
= t0(e

t̂
t0 − 1)

∂

∂x
+

∂

∂u
(34)

where we used the derivative notation (1, 0, 0) = ∂
∂x , (0, 1, 0) = ∂

∂t and (0, 0, 1) = ∂
∂u .

E Ablation Studies

E.1 Numerical differentiation.

When searching for symmetries of PDEs, we use the WENO scheme as a numerical differentiation
method. We have found that the choice of numerical differentiator is critical, as gradients must flow
through numerical differntiation during the backpropagation step. To compare different methods, we
experimented with using the WENO scheme and another method: bilinear interpolation followed by
discrete numerical differentiation on a regular rectangular grid.. When using bilinear interpolation
followed by discrete differentiation, the loss failed to converge well, even with very small learning
rate 10−6. The learned vector fields were not orthogonal, and they only spanned the time translation
and the space translation at best, as in Figure 11. These experiments were conducted using the KS
equation.

We hypothesize that the bilinear interpolation distributes each transformed point into two adjacent
grid points, but discrete differentiation is done by repeatedly subtracting values of two adjacent grid
points, so the gradient may not flow well during the backpropagation.

E.2 Whittaker-Shannon interpolation.

In the PDE augmentation task, when the transformed PDEs are resampled into the regular rectangular
grid, we use Whittaker-Shannon instead of more commonly used bilinear interpolation. This step is
also crucial for training FNOs with transformed data, since FNOs are extremely sensitive to numerical
error and hence any aliasing effects must be avoided. We compared the augmentation results using
Whittaker-Shannon interpolation with those using bilinear interpolation, using the KS equation with
512 training data and report the result in Table 9. The results clearly demonstrate that bilinear
interpolation adversely affects the training FNO models.
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(a) (b)

Figure 11: Experiment using using bilinear interpolation and discrete differentiation. (a) Learning
curve. (b) Learned symmetries.

Table 9: Test NMSE comparison of augmentation using Whittaker-Shannon interpolation and bilinear
interpolation.

No-aug Whittaker-Shannon Bilinear
Test NMSE 0.00693± 0.00039 0.006143± 0.00051 0.542± 0.051

F Hyperparameter analysis

In this section, we analyze the roles of various hyperparameters in our learning scheme. We use
experiment setting of the KS equation in § 5.2. We selected the KS equation for analysis as it proved
to be the most challenging in learning symmetries, possibly due to its fourth-order derivative term
uxxxx. In particular, among the three symmetries (space translation, time translation, Galilean boost)
the algorithm easily learns the space and time translation in a few epochs, but learning the Galilean
boost takes more epochs as in Figure 12. We evaluate the results by examining whether the three
symmetries are correctly found in the first three slots.

Figure 12: Learning curves of four symmetry generators.

F.1 Lipschitz Threshold

The Lipschitz threshold τ in Equation 13 is the only parameter that constrains the function space in
which we search for the symmetries. The threshold τ is set to τ = 3 in the main experiments. We
conduct additional experiments with τ = 1, 2, 4, 8, 16, 32. Surprisingly, in all experiments, regardless
of the value of τ , we found the three ground truth symmetries.

F.2 Transformation Scale

The transformation scale σ controls how much we transform the data when searching for symmetries.
The tuple (x, t, u) in X ×U is scaled so that x and t form a uniform grid on [0, 1]2, and u is scaled so
that the standard deviation of u closely matches that of x and t, which is approximately 0.29. Hence,
the default transformation scale σ = 0.4 transforms data with slightly more than its standard deviation
at most. We conduct experiments with various transformation scales σ = 0.1, 0.2, 0.4, 0.6, 0.8. The
ground truth symmetries were found when σ = 0.1, 0.2, 0.4. When σ = 0.6, the Galilean boost was
found but allocated in the fourth slot, meaning that the learning was unstable. When σ = 0.8, the
model only found space and time translation correctly.
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Figure 13: Experiments with various values of hyperparameter τ .

Figure 14: Experiments with various values of hyperparameter σ.

F.3 Weights of Three Losses

Although the three loss terms Equation 14 are designed to have dimensionless scales, tuning the
three loss terms in appropriate ranges is inevitable.We perform a grid search over the three weights
wsym, wortho, wLipschitz of the total loss in a fixed grid [1, 3, 10]3. We report the number of correctly
learned symmetries across different values of wsym, wLips, and wortho in Table 10. The number 3 is the
maximum number of symmetries to be discovered. We found that the ratio between wsym and wortho
significantly affects the results. In this case, the weight wortho should be larger than wsym to prevent
the learning of redundant infinitesimal generators.

G Color-space Results

Recall that in our formulation, images take the form X → Y where X = [−1, 1]2 is the pixel space
and Y ∈ R3 is the RGB color space. Our formulation is not limited to searching for the symmetries
on the 2D plane X , but is capable of learning symmetries in the color space Y . In this section, we
elaborate how we modeled learning scheme for color-space symmetries and present the results.
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Table 10: The number of correctly learned symmetries across values of wsym, wLips, and wortho.

(a) wsym = 1

wortho wLips

1 3 10

1 2 3 3
3 2 3 3
10 3 3 3

(b) wsym = 3

wortho wLips

1 3 10

1 2 2 2
3 3 3 3
10 3 3 3

(c) wsym = 10

wortho wLips

1 3 10

1 1 2 2
3 2 2 2
10 3 3 3

Figure 15: Learned color-space transformations.

G.1 Learning Scheme

Similar to other cases, we model one-parameter groups on Y by a neural ODE, integrating over 3D
vector fields Y → R3 parametrized by a neural network. Colors are non-uniform – for example,
black, brown and gray appear much more frequently than pink or yellow in CIFAR-10 dataset. To
address this, we first form a grid Ygrid on the color space Y by randomly sampling 1024 colors from
the CIFAR-10 dataset. Then we define the weight function w : Y → R, like the weight function
in Equation 17, by the color sensitivity of the neural network Hfext. For a grid point yi ∈ Ygrid, the
weight ω(yi) is defined as:

ω(yi) = Ef∼D

[∥∥∥∥∂Hfext(f)

∂yi

∥∥∥∥] . (35)

To estimate the magnitude of the gradient with respect to the change of yi, we use neighboring points
yj ∈ nbhd(yi) ⊂ Ygrid. For a discretized image {xi, f(xi)}xi∈Xgrid , we use the nearest neighbor
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algorithm to collect f(xi) ∈ Nearest(yi) close to yi, and measure how much Hfext changes when
the color f(xi) shifts towards the direction yj − yi:∣∣∣∣∣∣∣∣∂Hfext(f)

∂yi

∣∣∣∣∣∣∣∣ = 1

|nbhd(yi)|
∑

yj∈nbhd(yi)

∥∥∥(yj − yi) · ∇1Nearest(yi)
Hfext(f)

∥∥∥ (36)

where 1Nearest(yi)
is a vector whose i-th entry is 1 if f(xi) ∈ Nearest(yi) and 0 otherwise, and

∇1Nearest(yi)
Hfext(f) is computed by Jacobian-vector product.

Once the weight function is computed, we learn symmetries by optimizing through the validity
score S, defined by cosine similarity of features of the learned neural network. Since there are
(batch size) · (number of pixels) number of colors in a single batch of images, it’s impractical to feed
all of them directly into the MLP. Instead, we use the grid Ygrid, and compute the vector field values
on the grid and interpolate them using the nearest neighbor algorithm.

G.2 Results

We open three slots for color-space symmetries and train the model with wsym, wLips = 1 and
wortho = 3. We found the brightness control, color contrast and blue-yellow shift respectively as in
Figure 15.
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