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ABSTRACT

Fine-tuning large language models (LLMs) is computationally expensive and
memory-intensive due to their vast number of parameters. To mitigate these chal-
lenges, Parameter-Efficient Fine-Tuning (PEFT) methods and model quantization
techniques have been developed. Recent works have combined PEFT with quan-
tization, proposing methods to adjust quantized model parameters before fine-
tuning to reduce quantization errors. However, we observe that such adjustments
can lead to suboptimal performance, as they may introduce discrepancies between
the quantized and original models. Additionally, the inherent fragility of quan-
tized models makes them sensitive to increased training complexity, potentially
degrading performance. To address these issues, we introduce QR-Adaptor,
a general fine-tuning framework that jointly optimizes quantization bit-widths
and LoRA ranks for each layer in a gradient-free manner. Our method directly
uses actual performance and memory usage as optimization objectives, bypassing
network errors introduced by quantization. Through a three-stage optimization
process—initialization based on task-specific layer importance, global exploration
using a Pareto ranking genetic algorithm, and local refinement with Bayesian
optimization—QR-Adaptor efficiently identifies optimal configurations. Exper-
imental results demonstrate that QR-Adaptor yields fine-tuned low-bit quantized
models that outperform their 16-bit counterparts while maintaining similar mem-
ory usage to 4-bit models. For instance, on the MMLU benchmark, our method
achieves a 3.3% accuracy improvement over methods like LoftQ and LQ-LoRA.
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Figure 1: Overview of the QR-Adaptor framework: For each LLM layer, the optimal quantization bits (q) and
LoRA rank (r) are determined through three steps: (1) task-based initialization, (2) PRGA global search for
Pareto frontier solutions, and (3) Bayesian optimization for local refinement. The sub-graphs show: (a) the full
configuration space across layers l, (b) an initial solution, (c) PRGA-identified Pareto fronts per layer, and (d)
final Bayesian-optimized solutions meeting specific performance-memory trade-offs.

1 INTRODUCTION

Large Language Models (LLMs) have achieved unprecedented success across various natural lan-
guage processing tasks (Makridakis et al., 2023; Raiaan et al., 2024; Chang et al., 2024), demon-
strating exceptional capabilities in both language understanding and generation. However, adapting
these models to specific downstream tasks remains challenging due to significant computational and
memory constraints (Wan et al.). To address these issues, Parameter-Efficient Fine-Tuning (PEFT)
methods, such as Low-Rank Adaptation (LoRA) (Hu et al., 2022), have emerged, introducing low-
rank matrices to approximate updates to pre-trained weights, thereby enabling efficient fine-tuning.
Meanwhile, model quantization techniques (Gong et al., 2014; Gupta et al., 2015) reduce weight
precision to decrease computational costs, enhancing training and inference efficiency.
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Recent advancements, such as QLoRA (Dettmers et al., 2023), integrate PEFT with quantiza-
tion techniques to improve fine-tuning efficiency and achieve higher-performing quantized models.
LoftQ (Li et al., 2023) and LQ-LoRA (Guo et al., 2024) propose minimizing the Frobenius norm
∥W − Q − AB∥F by adjusting the parameters of quantized weight matrix Q, low-rank matrices
A and B, using this initialization to reduce the error between quantized models and full-precision
models. However, this initialization only fits a small portion of the error, and the resulting model
Q′+A′B′ no longer equals the original pre-trained model weight matrix W or the quantized model
weight matrix Q (i.e., Q′ + A′B′ ̸= W and ̸= Q). Fine-tuning this model does not necessarily
lead to better performance, and in some cases, it may even perform worse than directly using the
quantized model. In addition, another way to save resources is to reduce the number of parame-
ters in the low-rank matrix. For example, AdaLoRA (Zhang et al., 2023b) dynamically prunes the
rank of the low-rank matrix during fine-tuning based on its importance score. This dynamic prun-
ing process introduces additional complexity and may lead to unexpected performance issues, as
continuously adjusting the rank forces the model to adapt to a constantly changing parameter space.
Such dynamic adjustments during fine-tuning are not well-suited for quantized models. In quantized
models, the errors introduced by quantization already degrade the model’s robustness (Gong et al.,
2024), significantly weakening its ability to capture meaningful features.

We validate these two hypotheses in Section 2: Q′ + A′B′ ̸= Q before fine-tuning may lead to
performance degradation, and changing the trainable parameters during fine-tuning may also cause
performance issues. Based on these observations, we propose two strict constraints for fine-tuning
quantized models: first, before fine-tuning, Q′ + A′B′ = Q, ensuring consistency at the starting
point of fine-tuning; second, keeping the number of trainable parameters unchanged during fine-
tuning to ensure that the quantized model effectively captures essential features.

Under these two constraints, and beyond approaches like QLoRA(Dettmers et al., 2024), achieving
efficient fine-tuning of quantized models necessitates a strategic allocation of limited computational
and memory resources to maximize performance. Specifically, we propose assigning different quan-
tization bit-widths and LoRA ranks to various layers of the model, not solely based on their impor-
tance to the downstream task but also considering each layer’s adaptability and expressiveness after
quantization. By allocating higher precision (i.e., larger bit-widths) and larger LoRA ranks to lay-
ers that require more capacity to adapt to the task—thereby granting them additional computational
resources—and assigning lower precision and smaller ranks to layers that maintain sufficient ex-
pressiveness even under quantization, we enhance the model’s performance where it is most needed
without excessively increasing memory usage.

Furthermore, to avoid introducing additional approximation errors, we employ actual task perfor-
mance and memory consumption as indicators to guide the allocation process. However, deter-
mining the optimal assignment of bit-widths and ranks across layers results in a vast combinatorial
solution space, and real-world evaluations are computationally intensive and time-consuming. Tra-
ditional methods, such as exhaustive enumeration or linear programming, become impractical in this
context due to their high computational cost.

To tackle these challenges, we reformulate the problem as a gradient-free optimization task and
introduce a three-stage optimization framework, QR-Adaptor, which efficiently navigates the solu-
tion space through initialization, interpolation, and extrapolation (see Figure 1). Our approach com-
prises: Task-Informed Initialization, where we derive initial layer configurations based on each
layer’s adaptability and contribution to the task; Global Exploration with Pareto Ranking Ge-
netic Algorithm (PRGA), inspired by NSGA-II (Deb et al., 2002), to effectively explore the broad
configuration space and identify optimal trade-offs between performance and memory usage; and
Local Refinement with Bayesian Optimization, where we employ customized weighted objective
functions to refine configurations, constructing surrogate models that approximate the performance
landscape and selecting optimal fine-tuned configurations. To accelerate the search process, we uti-
lize a subset of the dataset for fine-tuning during optimization. Experimental results demonstrate
that the low-precision models fine-tuned with QR-Adaptor outperform the 16-bit fine-tuned models,
while maintaining memory usage comparable to that of 4-bit quantized models during fine-tuning
and without requiring any structural adjustments, thereby showcasing its generalizability and effec-
tiveness.
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2 DISCUSSION ON FINE-TUNING QUANTIZED MODELS
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Figure 2: Left: After 50 iterations, it takes around 450 minutes. Compared to iter=1, the error drops from
8.97×105 to 7.96×105, but LLaMA2-7B performance shows no significant improvement. Right: Performance
comparison between quantized models with/without fine-tuning (LLaMA2-13B).

LoftQ and LQ-LoRA integrate low-rank adaptation with quantization, aiming for low-precision fine-
tuning of large language models. They initialize the model weights by solving the following opti-
mization problem:

min
Q,A,B

|W −Q−AB|F , (1)

where | · |F denotes the Frobenius norm. By alternately optimizing Q and AB, they aim to reduce
the error introduced by quantization. However, we find that this optimization can only capture a por-
tion of the quantization error, and even after investing considerable time in iterations, the reduction
in error is minimal and does not contribute to performance improvement (see Figure 2). More im-
portantly, fine-tuning 4-bit quantized models using LoftQ or LQ-LoRA sometimes results in worse
performance than the quantized model without fine-tuning (see Figure 2). In contrast, initializing
with AB = 0 can enhance the performance of the quantized model. This suggests that the ini-
tial optimization of Q and AB may introduce noise, adversely affecting learning and causing the
fine-tuned performance to be even worse than the original Q, because Q′ +A′B′ ̸= W and ̸= Q.
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Figure 3: Performance comparison of two fine-
tuning methods using AdaLoRA and random as-
signment of different rank values for each layer
but fixed trainable parameters during fine-tuning.

On the other hand, adaptive methods like AdaLoRA
dynamically adjust the rank values of low-rank ma-
trices based on importance scores derived from gra-
dient norms. While effective for full-precision mod-
els, this approach faces challenges in quantized mod-
els. First, model quantization reduces robustness,
making it less sensitive in capturing features. The
training process of dynamically changing trainable
parameters requires the model to continuously adapt
to these changes, which is relatively difficult for
quantized models. Second, assuming that the op-
timization directions of the quantized model and
the full-precision model are consistent (since high-
precision models always have greater representa-
tional capacity than low-precision ones), the error
introduced by quantization can distort the gradient
norms, leading to unreliable importance scores. Due to error accumulation, this distortion is exac-
erbated in deeper layers. Dynamic rank adaptation based on flawed importance scores may result
in improper resource allocation, thus hindering learning. Our experimental results also validate this
point (see Figure 2). Fine-tuning quantized models using AdaLoRA does not yield satisfactory per-
formance. In contrast, configurations with randomly assigned average ranks equal to the target rank
of AdaLoRA achieve better performance after fine-tuning (see Figure 3). The key difference lies in
whether the number of trainable parameters remains fixed during fine-tuning.

According to the above discussion, we propose two key constraints for effectively fine-tuning quan-
tized models: Preserve quantized model parameters before fine-tuning. Before fine-tuning, en-
sure that the sum of quantized weights and low-rank updates equals the quantized model itself,
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This constraint implies that the initial low-rank updates do not alter the parameters of the quantized
model, providing a stable starting point for fine-tuning. Unlike previous methods that adjust Q,
A, and B to approximate W, we keep Q unchanged to avoid introducing additional discrepancies.
Keep the number of trainable parameters fixed to reduce training difficulty. To reduce training
complexity and ensure that quantized models can capture meaningful features for downstream tasks,
we keep the number of trainable parameters fixed during fine-tuning, eliminating the need for the
quantized model to adapt to a constantly changing parameter space. This constraint is in contrast to
the traditional approach for high-precision models, where increasing training complexity is neces-
sary. Since quantized models have lower representational capacity, increasing training difficulty is
not a wise choice.

3 METHODOLOGY

We begin this section by framing the problem as a gradient-free optimization challenge. Once
the necessary background has been introduced, we then propose a novel three-stage optimization
algorithm specifically designed to tackle this complex task.

3.1 PROBLEM FORMULATION

Given a pre-trained LLM with L layers, our objective is to fine-tune the model on a training dataset
Dtrain while both maximizing its performance on downstream evaluation datasets Dtest and minimiz-
ing the model’s memory footprint.

Layer-wise LoRA In LoRA fine-tuning, the forward pass of a layer incorporates a low-rank adap-
tation so that:

y = Wlx+∆Wlx, (2)

where x ∈ Rk is the input vector, Wl ∈ Rd×k is the weight matrix for layer l ∈ {1, · · · , L}, and
∆Wl = AlBl represents the low-rank adaptation. The matrices Al ∈ Rd×rl and Bl ∈ Rrl×k are
low-rank matrices with rank rl, where rl ∈ R, and R represents the set of all possible rank values.

Layer-wise Quantization On the other hand, the quantized weight matrix Ŵl is obtained by
applying a quantization function to the weight matrix Wl:

Ŵl = Quantize(Wl, ql), (3)

where ql denotes the bit-width used for quantization in layer l, with ql ∈ Q, and Q represents the
set of all possible bit-width values.

Integrating Layer-wise LoRA and Quantization When quantization is combined with LoRA,
we first quantize the weight matrix and then implement LoRA fine-tuning:

y = Ŵql
l x+∆Wrl

l x, (4)

where Ŵql
l represents the weight matrix quantized with ql bits, and ∆Wrl

l can be decomposed into
two rl-rank matrices.

Weighted Objective Function Finding the optimal ql and rl for each layer can be formulated as
a gradient-free optimization problem. Let C = {(q1, r1), (q2, r2), . . . , (qL, rL), ql ∈ Q, rl ∈ R} ∈
C represent the fine-tuning configuration of an L-layer LLM, where C is the configuration space
consisting of all combinations of bit-width and rank values. Our objective is to find an optimal
configuration set C∗ for efficient fine-tuning that achieves the best performance on downstream
tasks while minimizing memory usage. To balance these competing goals, we introduce a weighted
objective function. Put formally, this process can be formulated as:

max
C

α · P (C)− µP

σP
− (1− α) · M (C)− µM

σM
,

subject to C = {(ql, rl)Ll=1} ∈ C, ql ∈ Q, rl ∈ R.

(5)
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In the above, P (·) denotes the model’s performance, and M(·) calculates the total memory consump-
tion based on the configurations. The terms µP and σP represent the mean and standard deviation
of the performance metric across configurations, while µM and σM represent the same for mem-
ory consumption. As usual, the respective µ and σ terms normalize the performance and memory
metrics to a comparable scale. The weight parameter α ∈ [0, 1] allows us to balance the relative im-
portance of performance versus memory efficiency: a higher α value prioritizes performance, while
a lower value emphasizes memory efficiency.

3.2 QR-ADAPTOR FRAMEWORK

Our approach differs from previous methods relying on fixed or hierarchical dynamic single config-
urations. We jointly explore the configuration space of quantization bits and LoRA ranks, creating
a comprehensive search space that encompasses all potential optimal configurations. The main
challenges in implementing this gradient-free optimization process are (a) The high-dimensional,
discrete nature of the configuration space. (b) The computational cost of evaluating performance.
To address these challenges, we propose QR-Adaptor, a method that effectively finds the relative
optimal solution in three stages.

Task Information Based Initialization Our optimization process begins with a task-oriented as-
sessment of the relative importance of each layer in the model. This approach is based on the tacit
understanding that different layers contribute unequally to the model’s overall performance for spe-
cific tasks. Unlike previous methods that relied on gradient norms to quantify layer importance—an
approach that fails to accurately represent a layer’s contribution during inference—we employ a
task-specific method based on information entropy during the inference process. We define the
importance of a layer l for a given task as:

I(l) = H(Y )−H(Y |Xl) (6)

In the above, H(Y ) is the entropy of the model’s output for the task, and H(Y |Xl) is the conditional
entropy of the output given the intermediate representation at layer l. This measure quantifies how
much information each layer contributes to the final output, providing a more accurate representation
of layer importance in the context of the specific task. This task-oriented approach allows us to
strategically allocate higher bit widths and ranks to layers that are critical for the given task, rather
than relying on generic importance metrics that may not reflect true inference contributions.

……

…

Layer 1

Layer 2

Layer L

Importance
Low

High

Figure 4: Different Layers
have heterogeneous importance

We initialize the per-layer quantization configurations using the im-
portance scores derived from the original model. Specifically, lever-
aging our guiding metric, we assign higher quantization bit numbers
to layers with higher importance scores, while allocating lower val-
ues to less critical layers; once assigned, we quantize the model ac-
cording to these assigned bit widths. Following quantization, we re-
calculate the importance scores and use them to determine the LoRA
rank values. Layers with higher post-quantization importance scores
are assigned larger rank values, while those with lower scores receive
smaller ones. This informed initialization reduces the search space
and guides the optimization towards promising regions.

Global Exploration with PRGA In LLM fine-tuning, quantization bit and LoRA rank can be
conceptualized as genes, with the resulting performance and memory usage analogous to pheno-
typic expressions in a population. Inspired by NSGA-II’s (Deb et al., 2002) proven success in
multi-objective optimization, we adapted its mechanisms to develop PRGA (Pareto Ranking Genetic
Algorithm), incorporating domain-specific modifications to better handle the discrete-continuous
hybrid search space of LLM fine-tuning hyperparameters. PRGA explores the combined solution
space of bits and ranks to identify the optimal Pareto frontier, simultaneously balancing perfor-
mance and memory usage in LLM fine-tuning. This efficient multi-objective optimization algo-
rithm uses an elitist selection approach to evolve a population of configurations, each represented
as C = {(ql, rl)Ll=1}, where ql and rl denote the quantization bits and LoRA rank for layer l,
respectively. PRGA iteratively applies selection, crossover, and mutation operations to the popu-
lation, aiming to simultaneously maximize performance and minimize memory usage. The algo-
rithm progresses until it reaches a predefined stopping criterion or a maximum number of iterations,
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whichever comes first. Once finished, the algorithm ultimately produces a Pareto frontier that rep-
resents the optimal trade-offs between our competing objectives.
Algorithm 1 Pareto Rank Calculation

1: Calculate the number of dominated individ-
uals np and the set of solutions dominated
Sp for each individual p

2: Place individual with np = 0 into set F1

3: for each individual in F1 do
4: for each individual j ∈ Si do
5: nj = nj − 1
6: if nj = 0 then
7: Add individual j to set F2

8: end if
9: end for

10: end for
11: Repeat step 3 for set F2 to obtain F3, and

continue until all individuals are ranked
12: return All individuals with Pareto rank

Algorithm 2 Crowding Distance Calculation
(Ranking individuals with the same Paret Rank)

1: for each individual n ∈ 1 . . . N do
2: Initialize dn = 0
3: end for
4: for each objective function fm do
5: Sort individuals based on fm
6: Set fmax

m and fmin
m

7: Set d1 = dN = ∞
8: for n = 2 to N − 1 do
9: dn = dn + fm(n+1)−fm(n−1)

fmax
m −fmin

m

10: end for
11: end for
12: return crowding distances dn for each in-

dividual n ∈ 1 . . . N

Before introducing the PRGA flow, we first introduce some key foundational concepts. In a multi-
objective minimization problem with n objective components fi(x), i = 1, . . . , n, the Pareto Domi-
nance Relationship is defined between any two decision variables Xa and Xb. We say that Xa domi-
nates Xb if for all i ∈ {1, 2, . . . , n}, fi(Xa) ≤ fi(Xb), and there exists at least one i ∈ {1, 2, . . . , n}
such that fi(Xa) < fi(Xb). A Non-dominated Solution is a decision variable that is not dominated
by any other decision variable in the set. The concept of Pareto Rank is used to categorize solu-
tions within a set. Non-dominated solutions are assigned a Pareto rank of 1. After removing these
rank 1 solutions from the set, the remaining non-dominated solutions are assigned a Pareto rank of 2.
This process continues iteratively, assigning increasing ranks to subsequent layers of non-dominated
solutions until all solutions in the set have been ranked.

Initialization
From Previous Stage

Initial
Population

Offspring
Combined
Population

New
Population

Output
Final Population

Selection
Crossover
Mutation

Merge
Parent-offspring

Generation 
Elite 

Retention 
Strategy 

Selection Crossover Mutation

Termination Condition

×N

Figure 5: Detailed PRGA flow chart. The
input is a set of solutions from the initializa-
tion, and the output is a set of Pareto front
solutions containing multiple solutions.

As illustrated in Algorithm 1, we employ the Pareto Rank-
ing to sort all individuals within the population. To ad-
dress solutions with identical Pareto ranks, we use the
crowding distance d for further differentiation within each
Pareto rank. The detailed calculation of the crowding dis-
tance is presented in Algorithm 2.

Elite retention, a method simulating natural elimination, is
performed after calculating the Pareto rank and crowding
distance of all individuals in a generation. This process
begins by combining the parent and offspring populations
into a merged population. To generate the next genera-
tion, we start with the lowest Pareto rank and transfer en-
tire layers of individuals from the merged population to
the new population, moving progressively to higher ranks.
This continues until we reach a layer that cannot be fully
accommodated in the new population. For this partially
accommodated layer, we sort its individuals based on their crowding distance in descending order
and add them sequentially to the new population until it reaches its full capacity.

For the crossover and mutation operations, we employ methods analogous to Simulated Binary
Crossover (SBX) and Polynomial Mutation, respectively. These methods are adapted to operate on
L pairs of positive integers (ql, rl). The detailed procedures for these operations are presented in
Algorithm 3 for the crossover and Algorithm 4 for the mutation. By applying these adapted SBX and
polynomial mutation operations, we can effectively evolve the population of solutions represented
by integer pairs, balancing exploration and exploitation.

The PRGA process, shown in Figure 5, begins by generating an initial population of size N through
controlled random variations based on the previous stage’s configuration. It then creates offspring
using selection, crossover, and mutation operations. The parent and offspring populations are com-
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Algorithm 3 Simulated Binary Crossover

Require: Two parent individuals P1 and P2,
each containing L pairs of real numbers

1: for l = 1 to L do
2: Generate a random number u ∈ [0, 1]
3: if u ≤ 0.5 then
4: β = (2u)1/(n+1)

5: else
6: β = (1/(2(1− u)))1/(n+1)

7: end if
8: y1l = 0.5 · ((1+β) · p1l +(1−β) · p2l)
9: y2l = 0.5 · ((1−β) · p1l +(1+β) · p2l)

10: Add (y1l, y2l) to O1 and O2

11: end for
12: return Two offspring O1 and O2

Algorithm 4 Polynomial Mutation

Require: Individual P containing L pairs of
real numbers, mutation probability pm

1: for l = 1 to L do
2: for each value x in the l-th pair do
3: Generate a number u ∈ [0, 1]
4: if u < pm then
5: Generate a number y ∈ [−1, 1]
6: x′ = x + (xmax − xmin) · (y ·

(1− |y|)n−1)
7: Replace x with x′ in P ′

8: end if
9: end for

10: end for
11: return Mutated individual P ′

bined and subsequently fastly fine-tuned and validated on a subset of the training dataset. The
resulting performance and memory metrics are used to calculate Pareto ranks for each individual.
Next, the algorithm applies an elite retention strategy combined with crowding distance calculation
to select individuals for the new population. This cycle repeats, generating consecutive genera-
tions until the termination condition is met, effectively exploring the solution space to optimize both
performance and memory usage simultaneously.
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solution with y*Update

Use to 
retrain

×N

Figure 6: Detailed Bayesian optimization
flow chart. The input is the Pareto front so-
lution set from the global search, and the
output is a set of optimal solutions obtained
according to the requirements.

Local Refinement with Bayesian Optimization While
PRGA effectively explores the global configuration space,
it may not precisely capture local optima near the Pareto
front. To further refine these solutions, we employ
Bayesian optimization, a technique renowned for its abil-
ity to optimize expensive black-box functions with uncer-
tainty quantification. We initiate this process by utilizing
the solutions from the PRGA-generated Pareto front as our
initial sampling points. For each point, we use these con-
figurations to quickly fine-tune the model and test to ob-
tain actual performance and memory usage. We then com-
pute its corresponding weighted objective function value
y using the predefined objective function (Equation 5) and
specified weight preferences. These y values serve a dual
purpose: firstly, they are combined with the covariance
matrix K, which is constructed using the radial basis func-
tion (RBF) kernel to quantify similarities between sample
points, to build a Gaussian process model; secondly, they
enable us to identify the best-performing point, which be-
comes the focal point for subsequent searches.

The next phase involves employing a random search strategy to select new sampling points in the
vicinity of this top-performing configuration. For each newly selected sampling point x∗, we lever-
age the Gaussian process to estimate its predicted value and associated uncertainty using the follow-
ing equations:

µ(x∗) = m(x∗) +K(x∗, X)K(X,X)−1(y −m(X))

σ2(x∗) = k(x∗, x∗)−K(x∗, X)K(X,X)−1K(X,x∗) ,
(7)

where m(x∗) is the prior mean function, K(x∗, X) is the covariance between the new point and the
existing points, and K(X,X) is the covariance matrix of the existing points.

We then employ the Expected Improvement (EI) as the acquisition function, calculating it using the
following formula:

EI(x∗) = σ(x∗) (Z · Φ(Z) + ϕ(Z)) and Z =
µ(x∗)− ybest

σ(x∗)
(8)
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where Φ(Z) is the cumulative distribution function of the standard normal distribution, while ϕ(Z)
is its probability density function and ybest is the best objective value among all points.

We select the point with the largest EI value as the next evaluation point and quickly fine-tune the
LLM using this configuration. We then test to obtain the performance and memory usage, which
are used to calculate the objective function value, and this new point is compared with the previous
best point. If it proves to be a better choice, it can be updated as the optimal point and the search
for the next iteration proceeds near it; otherwise, we continue searching near the original optimal
point. Regardless of whether the best point is updated, the new point and its objective function value
are incorporated into the training dataset to update the Gaussian process model before beginning the
next iteration. This process repeats until a predefined termination condition is met, such as reaching
maximum iterations, meeting a convergence criterion, or hitting a time limit. The detailed flowchart
is shown in Figure 6.

The solution set obtained through this Bayesian optimization process offers a refined representation
of high-quality configurations, effectively capturing the trade-offs between performance and mem-
ory usage. This iterative refinement process culminates in a final set of configurations that represent
the best balance of our objectives based on the specified preferences. By presenting these optimized
configurations as the final output, our approach enables practitioners to directly choose suitable
configuration that aligns with their specific performance requirements and memory constraints.

4 EVALUATION

Table 1: Superscripts on LoftQ bits indicate the number of initialization iterations. QR-Adaptor searches for
optimal bit-width and rank value for each layer based on different tasks; its bit number and peak memory usage
are averaged across 7 tasks. Bold figures represent the best performance for a given model and task, while
underlined indicate the second-best. Accuracy is reported as %, and memory is measured in GB.

Method Bit BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Average Memory

L
la

m
a

2-
13

B

w/o tuning
16 80.61 80.52 79.37 72.06 79.46 49.15 45.20 69.48 -
8 79.94 80.20 79.14 72.61 78.91 48.89 45.40 69.30 -
4 80.52 79.98 78.38 71.59 77.65 48.29 44.80 68.74 -

LoRA 16 81.50 81.23 80.07 71.98 79.84 52.13 46.20 70.42 41.13

QLoRA
8 81.13 81.18 79.86 72.22 80.01 51.54 46.20 70.31 38.28
4 81.04 80.47 79.48 71.82 79.04 51.45 45.60 69.84 27.30

AdaLoRA
16 80.46 80.47 79.28 72.30 79.34 49.40 45.40 69.52 41.08
8 80.40 80.52 79.27 72.38 79.29 49.49 45.40 69.54 38.24
4 80.43 80.09 78.10 71.67 77.69 48.29 44.20 68.64 27.30

LoftQ
41 80.86 80.30 79.18 71.90 78.87 50.68 45.80 69.66 41.02
45 80.92 80.41 79.15 71.59 78.96 50.60 45.40 69.58 41.03

LQ-LoRA 4 80.43 80.14 79.06 71.67 78.79 50.09 45.40 69.37 39.65

QR-Adaptor 6.125 81.84 81.45 80.08 72.69 80.64 52.82 45.80 70.76 27.41

L
la

m
a

2-
7B

w/o tuning
16 77.68 79.11 76.01 68.98 76.30 46.16 44.20 66.92 -
8 77.58 79.27 76.04 68.98 75.97 46.50 44.00 66.91 -
4 76.21 78.18 75.57 69.06 75.25 45.99 44.40 66.38 -

LoRA 16 78.41 79.38 76.81 69.06 77.57 46.93 45.00 67.59 23.61

QLoRA
8 78.41 79.05 76.93 69.06 77.44 47.61 45.40 67.70 23.51
4 77.25 78.84 76.40 70.01 76.35 46.67 45.00 67.22 17.53

AdaLoRA
16 77.58 79.11 75.92 69.38 76.68 46.16 44.20 67.00 23.56
8 77.40 79.11 75.91 69.06 76.68 46.16 44.40 66.96 23.49
4 76.45 77.91 75.44 69.46 75.29 46.33 44.20 66.44 17.26

LoftQ
41 77.89 79.43 76.61 69.69 77.19 47.10 44.80 67.53 23.75
45 76.79 78.51 76.25 69.61 76.47 47.95 45.60 67.31 23.82

LQ-LoRA 4 77.22 78.78 76.33 70.09 76.39 47.10 46.40 67.47 22.84

QR-Adaptor 5.875 78.96 79.86 76.84 69.97 77.44 48.04 46.00 68.15 17.92

We conduct experiments to evaluate our proposed method against various baselines. All hyperpa-
rameters aside from rank value and bit-width are kept consistent with the baselines. Additionally,
we performed an ablation study to assess the impact of each stage on performance.
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Datasets and LLMs. We utilize the Alpaca52k and hc3 (Taori et al., 2023) 1 for fine-tuning and
evaluate the zero-shot performance of these LLMs on benchmarks including BoolQ (Clark et al.,
2019), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al.,
2021), ARC-easy (Clark et al., 2018), ARC-challenge (Clark et al., 2018), OpenbookQA (Mihaylov
et al., 2018), and MMLU (Hendrycks et al., 2021). The models used in our experiments are LLaMA2
(Touvron et al., 2023) and LLaMA3.1 (Grattafiori et al., 2024).

Baselines. We compare our method against several baselines: without tuning, LoRA (Hu et al.,
2022), QLoRA (Dettmers et al., 2023), Adalora (Zhang et al., 2023b), LoftQ (Li et al., 2023),
and LQ-LoRA (Guo et al., 2024). We evaluated the performance of LoftQ with different iteration
numbers. For Adalora, which dynamically allocates ranks based on the average rank budget, we set
the budget to 8 and 64. Finally, for LQ-LoRA, which allocates quantization bit-width based on the
average weight bit-width budget and quantization error, we set the bit-width budget to 4.

Implementation Details. We utilize the following configurations: PyTorch version 2.1.2, Bitsand-
Bytes library version 0.43.1, Transformers library version 4.41.0, PEFT (Parameter-Efficient Fine-
Tuning) library version 0.11.1, Optuna library version 3.6.1, CUDA version 12.4, GPU: NVIDIA
L20 GPU. Operating System: Ubuntu. Concise implementation details are provided in the ap-
pendix D. In our framework, we define the population size as 5 and generate 1 new offspring in each
iteration. The second stage runs for 5 iterations, and similarly, the third stage also iterates 5 times.

4.1 MAIN RESULTS

We present the performance comparison on commonsense understanding tasks in Table 1, with
more results in the appendix B. The results for the MMLU task in LLaMA2 are shown in Figure
7. QR-Adaptor demonstrates outstanding performance across various benchmarks. Due to the rank
value selection ranging from 2 to 16, in some cases, QR-Adaptor consumes less memory than the
fine-tuned 4-bit quantized models. Moreover, the low-precision models fine-tuned by QR-Adaptor
outperform the fine-tuned 16-bit models. Another advantage of the QR-Adaptor is that it can be im-
plemented without any additional technical measures to optimize performance, apart from spending
some time (about 15 minutes to get one data point). This simple but effective method is very useful
in practical applications.
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Figure 7: Performance comparison on MMLU bench-
mark. QR-Adaptor outperforms other methods.

Due to hardware constraints, we did not test
models larger than 70B, but compared to other
methods, QR-Adaptor can iteratively optimize
larger models on the same hardware. Existing
research shows that modifying only a subset
of parameters can significantly change perfor-
mance, which implies that applying our method
to larger-scale models would not greatly in-
crease time consumption, as iteration optimiza-
tion can be achieved by reducing fine-tuning
data and conducting rapid evaluations.

Additionally, the experimental results indicate
that the two problems we discussed earlier re-
garding fine-tuning quantized models persist, especially with the 13B model. Despite our efforts to
select appropriate configurations for the baseline methods, their performance is still inferior to the
simplest QLoRA. For the MMLU task, baseline methods may perform even worse than quantized
models without tuning.

4.2 ABLATION STUDY

We use the WinoGrande benchmark as an example for the ablation study to evaluate the role of
each stage in QR-Adapto. As shown in Figure 8, it is evident that excluding PRGA and Bayesian
optimization leads to uneven exploration of the search space—one is too broad and the other too
concentrated—since they represent the extrapolation and interpolation capabilities, respectively. Ex-
cluding stage 1 results in overly scattered exploration because PRGA starts from a random search

1https://huggingface.co/datasets/yahma/alpaca-cleaned
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Figure 8: From left to right, the actual measured performance and memory usage of the configurations gener-
ated by QR-Adaptor, QR-Adaptor without stage1, QR-Adaptor without stage2, and QR-Adaptor without stage3
are shown. Different colors represent the configurations generated at different stages.

without an initialization point. However, it still manages to explore the theoretically optimal region
in the upper-left corner, demonstrating the strong capabilities of PRGA and Bayesian optimization.
In contrast, the complete three-stage QR-Adaptor clearly shows the advantage of first conducting a
broad exploration around the initialization point, followed by interpolation near promising solutions
to further optimize and identify the best configuration. Other ablation in the appendix E.

5 RELATED WORK

LLM Quantization. The field of LLM quantization has witnessed substantial progress, driven by
the need for efficient model deployment. Recent research has introduced several innovative ap-
proaches. Frantar et al. (2023) have developed GPTQ, which achieves 4-bit precision with layer-
wise quantization. Lin et al. (2023) have proposed AWQ, which improves accuracy for heavily
quantized models. Yao et al. (2022) have introduced ZeroQuant, which preserves zero-shot capa-
bilities at lower bit widths. Dettmers et al. (2022) have presented LLM.int8(), which enables 8-bit
quantization for consumer hardware. Kim et al. (2023) have combined quantization with pruning
and knowledge distillation in SqueezeLLM. Guan et al. (2024) have optimized the balance between
compression and performance through mixed-precision quantization with APTQ. These develop-
ments significantly enhance the efficiency and accessibility of large language models.

Parameter Efficient Fine-Tuning. PEFT techniques have become crucial for enhancing LLMs
without increasing inference overhead. Recent innovations have expanded the field. Dettmers et al.
(2023) have introduced QLoRA, which combines 4-bit quantization with low-rank adapters. Li
et al. (2023) have presented LoftQ, which alternates between quantization and low-rank approxima-
tion steps. Berman & Peherstorfer (2024) have introduced CoLoRA for accelerating the prediction
of solution fields under new parameters. AdaLoRA (Zhang et al., 2023a) proposes adaptive budget
allocation for low-rank updates, while LQ-LoRA (Guo et al., 2023) combines low-rank decomposi-
tion with quantization for efficient fine-tuning under memory constraints. Additionally, Zhou et al.
(2024) have introduced RankAdaptor, which is a hierarchical dynamic low-rank adaptation method
for structural pruned LLMs. These advancements demonstrate the evolving landscape of PEFT
techniques, offering innovative solutions for efficient LLM fine-tuning across diverse applications.

6 CONCLUSION

We have identified the issues arising in the current fine-tuning of quantized models and have estab-
lished two constraints accordingly. Under these constraints, the performance of fine-tuning quan-
tized models will at least not be worse than before fine-tuning. To achieve higher performance in
low-bit models while saving memory during fine-tuning, we propose QR-Adaptor, a general and ef-
ficient fine-tuning framework. It enables low-bit models to outperform fine-tuned models at the orig-
inal precision. Based on our experimental results, we found that altering the bit-width of each layer
and adjusting the allocation of trainable parameters can lead to significant shifts in performance,
and this trend is largely predictable by the algorithm. In theory, our framework is also applicable to
high-precision models, but this paper primarily focuses on fine-tuning under quantization.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide comprehensive documentation on the steps
required to replicate our experiments. Our code is available in scripts such as optuna main-v3.py,
post training mixed quant.py, and run optuna.py, which handle hyperparameter optimiza-
tion, mixed-precision quantization, and evaluation. For data preparation, we utilize the Alpaca
Cleaned Dataset from yahma/alpaca-cleaned, which is automatically downloaded and processed
using the datasets library. Our environment setup requires an NVIDIA GPU with CUDA sup-
port, preferably with at least 20 GB of memory for the LLaMA 2 model, as well as Python 3.8+
and dependencies like PyTorch, Transformers, Optuna, BitsAndBytes, PEFT, and other libraries,
which can be installed via the requirements.txt file. The model we fine-tune is the LLaMA 2
architecture (NousResearch/Llama-2-7b-hf), using a mixed-precision quantization approach via
bitsandbytes and Low-Rank Adaptation (LoRA) with the peft library. The training is conducted
using a mixed-precision setup where the model’s dtype is set to torch.bfloat16 to optimize mem-
ory usage and computation efficiency. Our hyperparameter optimization framework leverages Op-
tuna to maximize model accuracy while minimizing memory usage, tuning parameters like quan-
tization bits (4 or 8 bits) and LoRA ranks (2 to 16). To replicate our training process, researchers
can execute the provided scripts using the specified command-line arguments, which configure the
model, output directories, number of trials, and evaluation tasks. Model checkpoints and Optuna re-
sults are saved at regular intervals. The training is conducted using the Hugging Face Trainer, con-
figured with parameters including a batch size of 4, gradient accumulation steps of 16, warmup steps
of 100, and a learning rate of 1e-4, with evaluation and model saving steps set to every 200 steps.
Evaluation is conducted using the lm eval library, where metrics such as accuracy are recorded
and saved in JSON format. All hyperparameter settings and model configurations are logged in the
output directory, along with training progress and memory usage. Random seeds are set to ensure
deterministic behavior. By following these steps, including hardware and software specifications,
and running the scripts with the provided configurations, researchers can reproduce our experiments
and validate the findings related to mixed-precision quantization and parameter-efficient fine-tuning.

ETHICS STATEMENT

This work builds upon pre-trained large language models LLaMA-2 and utilizes publicly available
datasets for instruction fine-tuning Alpaca-clean. We do not introduce any new datasets or data col-
lection processes, and therefore do not involve human annotation in this research. Additionally, our
study focuses on improving model efficiency through pruning and quantization techniques, without
engaging with sensitive content or user-specific data. As such, this paper does not present any eth-
ical concerns beyond those already associated with the broader body of research on large language
models and their datasets. All datasets and models used comply with their respective licenses and
terms of use.
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A QUANTIZATION

We first apply NF-quantization with bit size b0 and bucket size B0 to obtain the quantized matrix
Âi and the absmax values for each block s = [s1, . . . , s sizeof(Ai)

B0

]. These absmax values are further

quantized to b1 bits via uniform integer quantization with bucket size B1 to obtain the quantized
vector ŝ, along with the absmax values for s, i.e., v = [v1, . . . v sizeof(Ai)

B0B1

]. Finally, we cast v to b2

bits to obtain v̂.

This quantization scheme requires storing Âi, ŝ, v̂ to represent Ai. We can thus quantify the memory
cost (number of bits) for storing Ai given a configuration ci = (b0, b1, b2, B0, B1) as:

memory cost(Ai, ci) = sizeof(Ai) ·
(
b0 +

b1
B0

+
b2

B0 ·B1

)
(9)

The original NF-4 double quantization is a special case with qNF4 = (4, 8, fp32, 64, 256) and
memory cost(Ai, qNF4) = 4.127 · sizeof(Ai), i.e., NF-4 requires on average 4.127 bits per pa-
rameter.

B MORE RESULTS

Due to page limitations, we present all the results of rank=8 and the comparison with QR-Adaptor
here.

Table 2: Performance comparison of different methods (rank=8) across various bit-width configurations. Su-
perscripts on LoftQ bits indicate the number of initialization iterations. QR-Adaptor searches for optimal bit
number and rank value for each layer based on different tasks; its bit number and peak memory usage are aver-
aged across 7 tasks. Bold figures represent the best performance for a given model and task, while underlined
figures indicate the second-best. Accuracy is reported as %, and memory is measured in GB.

Method Bit BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Average Memory

L
la

m
a2

-1
3B

w/o tuning
16 80.61 80.52 79.37 72.06 79.46 49.15 45.20 69.48 -
8 79.94 80.20 79.14 72.61 78.91 48.89 45.40 69.30 -
4 80.52 79.98 78.38 71.59 77.65 48.29 44.80 68.74 -

LoRA 16 81.44 81.12 79.98 71.98 80.18 52.56 46.40 70.52 41.04

QLoRA
8 81.22 80.47 79.92 73.09 80.18 52.39 45.00 70.32 37.82
4 81.41 80.30 79.46 71.82 78.91 51.54 45.40 69.83 26.84

AdaLoRA
16 80.37 80.47 79.25 72.30 79.46 49.15 45.40 69.49 41.07
8 80.43 80.47 79.29 72.22 79.34 49.32 45.60 69.52 38.36
4 80.40 80.14 78.12 71.74 77.78 48.29 44.20 68.67 27.30

LoftQ
41 81.16 80.41 79.12 71.35 78.79 50.68 45.80 69.62 40.56
45 80.24 80.25 78.81 70.80 78.87 50.34 45.20 69.22 39.81

LQ-LoRA 4 80.67 80.14 78.91 71.11 78.79 50.60 45.00 69.32 39.81

QR-Adaptor 6.125 81.84 81.45 80.08 72.69 80.64 52.82 45.80 70.76 27.41

L
la

m
a2

-7
B

w/o tuning
16 77.68 79.11 76.01 68.98 76.30 46.16 44.20 66.92 -
8 77.58 79.27 76.04 68.98 75.97 46.50 44.00 66.91 -
4 76.21 78.18 75.57 69.06 75.25 45.99 44.40 66.38 -

LoRA 16 78.47 79.38 76.93 69.38 77.36 46.93 44.80 67.61 23.89

QLoRA
8 77.92 79.82 76.88 68.75 77.36 48.21 44.80 67.68 23.04
4 77.43 78.67 76.42 69.85 76.26 46.25 46.20 67.30 17.31

AdaLoRA
16 77.46 79.16 75.89 69.22 76.77 46.08 44.20 66.97 23.56
8 77.49 79.00 75.93 69.06 76.73 46.08 44.20 66.93 23.49
4 76.39 77.91 75.45 69.14 75.25 46.33 44.40 66.41 17.54

LoftQ
41 77.43 79.33 76.68 69.30 77.10 46.16 44.80 67.26 23.29
45 76.33 79.05 76.36 69.06 76.64 47.35 45.60 67.20 23.53

LQ-LoRA 4 76.57 78.84 76.24 68.90 76.60 47.18 45.00 67.05 23.49

QR-Adaptor 5.875 78.96 79.86 76.84 69.97 77.44 48.04 46.00 68.15 17.92
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B.1 EXPERIMENT SCOPE EXPANSION: LLAMA 3.1

In the original experiments, the focus was primarily on models from the Llama 2 series. However,
Llama 3 models, including Llama 3.1, present new challenges for quantization due to their updated
architecture and training improvements. These models are significantly harder to quantize, espe-
cially under low-bit configurations, as they incorporate more sophisticated architectural features. To
address this, we conducted additional experiments with Llama 3.1 to evaluate the performance of
QR-Adaptor on more complex and harder-to-quantize models.

Our results show that QR-Adaptor outperforms existing methods, such as AdaLoRA and LoftQ,
on Llama 3.1, particularly on challenging datasets like GSM8K. The comparative results for vari-
ous models and bit-width configurations are presented in Table 3, where QR-Adaptor consistently
demonstrates superior performance across all tasks. The robustness of QR-Adaptor is evident, espe-
cially on tasks that typically cause performance degradation for other methods.

Table 3: Performance comparison of different methods across various bit-width configurations. Superscripts
on LoftQ bits indicate the number of initialization iterations. QR-Adaptor searches for optimal bit number and
rank value for each layer based on different tasks; its bit number and peak memory usage are averaged across 8
tasks. Accuracy is reported as %.

Method Bit ARC (C) ARC (E) BoolQ GSM8K HellaSwag OpenBookQA PIQA WinoGrande

R
an

k
=

8

LoRA 16 0.5614 0.8388 0.8318 0.5436 0.7944 0.452 0.8210 0.7530
QLoRA 8 0.5708 0.8346 0.8248 0.5375 0.7963 0.460 0.8210 0.7459
QLoRA 4 0.5435 0.8241 0.8208 0.4435 0.7882 0.442 0.8150 0.7364
AdaLoRA 16 0.5290 0.8199 0.8187 0.5057 0.7865 0.450 0.8134 0.7395
AdaLoRA 8 0.5290 0.8186 0.8205 0.4996 0.7865 0.448 0.8134 0.7443
AdaLoRA 4 0.5128 0.8098 0.8061 0.3783 0.7736 0.428 0.8074 0.7253
LoftQ 41 0.5486 0.8274 0.8226 0.5140 0.7865 0.460 0.8145 0.7324
LoftQ 45 0.5265 0.8182 0.8153 0.3965 0.7850 0.434 0.8139 0.7269
LoftQ 410 0.5188 0.8131 0.7966 0.3844 0.7801 0.432 0.8112 0.7198
QR-Adaptor 5.45 0.5683 0.8412 0.8338 0.5629 0.8093 0.458 0.8292 0.7510

R
an

k
=

16

LoRA 16 0.5674 0.8363 0.8300 0.5413 0.7951 0.444 0.8183 0.7443
QLoRA 8 0.5623 0.8291 0.8266 0.5368 0.7946 0.460 0.8166 0.7474
QLoRA 4 0.5384 0.8199 0.8211 0.4466 0.7876 0.444 0.8172 0.7309
AdaLoRA 16 0.5307 0.8203 0.8199 0.5011 0.7861 0.454 0.8128 0.7411
AdaLoRA 8 0.5333 0.8203 0.8211 0.4913 0.7857 0.452 0.8134 0.7379
AdaLoRA 4 0.5085 0.8072 0.8073 0.3798 0.7734 0.428 0.8052 0.7316
LoftQ 41 0.5512 0.8258 0.8269 0.4981 0.7882 0.458 0.8128 0.7427
LoftQ 45 0.5392 0.8232 0.8156 0.4200 0.7854 0.438 0.8156 0.7277
LoftQ 410 0.5290 0.8169 0.8156 0.3988 0.7864 0.438 0.8107 0.7198
QR-Adaptor 5.45 0.5683 0.8412 0.8338 0.5629 0.8093 0.458 0.8292 0.7510

B.2 EFFECTIVENESS ON LARGER DATASETS WITH HIGHER RANKS

To address the concern regarding the effectiveness of small LoRA ranks on larger datasets, we con-
ducted additional experiments on the LLaMA 3.1-8B model using a larger dataset consisting of
177k samples. We tested our method with higher LoRA ranks (32 and 64) to evaluate its perfor-
mance in handling large-scale data.

Our results are summarized in Table 4. The table compares the performance of QR-Adaptor with
other baseline methods, including LoRA, QLoRA, AdaLoRA, and LoftQ, across various tasks. The
performance metrics include accuracy scores on datasets such as ARC (Challenge), ARC (Easy),
BoolQ, HellaSwag, OpenBookQA, PIQA, WinoGrande, and MMLU.

KEY OBSERVATIONS

• Effectiveness of LoRA Initialization: Despite using higher ranks (32 and 64) and larger
datasets, methods like LoftQ and LQ-LoRA do not consistently outperform the standard
QLoRA baseline or the quantized models without fine-tuning. Increasing iterations in
LoftQ (from LoftQ-1 to LoftQ-10) to better fit quantization errors leads to performance
degradation, especially on challenging tasks like MMLU and GSM8K. These results sug-
gest that fitting quantization errors using LoRA initialization is not universally effective
and may introduce noise that hinders model performance.

• Effectiveness on Larger Datasets: Our method, QR-Adaptor, consistently achieves supe-
rior performance across all tasks and outperforms other methods, confirming its robustness
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Table 4: Results on LLaMA 3.1-8B with 177k Dataset using Higher Ranks. The best performance for each
task is highlighted in bold.

Method Rank Bit-width ARC (C) ARC (E) BoolQ HellaSwag OpenBookQA PIQA WinoGrande MMLU
LoRA 32 16 0.5486 0.8274 0.8275 0.7921 0.444 0.8199 0.7411 0.6366
QLoRA 32 8 0.5520 0.8312 0.8193 0.7907 0.462 0.8188 0.7332 0.6328
QLoRA 32 4 0.5341 0.8089 0.8205 0.7842 0.436 0.8090 0.7301 0.6097
LoRA 64 16 0.5546 0.8295 0.8294 0.7913 0.450 0.8188 0.7451 0.6434
QLoRA 64 8 0.5546 0.8304 0.8196 0.7917 0.458 0.8194 0.7301 0.6334
QLoRA 64 4 0.5341 0.8119 0.8174 0.7835 0.446 0.8069 0.7206 0.6079
AdaLoRA 32 8 0.5392 0.8182 0.8220 0.7857 0.462 0.8150 0.7340 0.6382
AdaLoRA 32 4 0.5145 0.8102 0.8086 0.7730 0.424 0.8096 0.7253 0.5815
AdaLoRA 64 8 0.5392 0.8211 0.8193 0.7874 0.462 0.8139 0.7395 0.6388
AdaLoRA 64 4 0.5213 0.8098 0.8104 0.7720 0.422 0.8085 0.7277 0.5807
LoftQ (1) 32 4 0.5384 0.8136 0.8141 0.7812 0.430 0.8150 0.7356 0.5940
LoftQ (5) 32 4 0.5256 0.8136 0.8196 0.7805 0.428 0.8145 0.7309 0.5941
LoftQ (10) 32 4 0.5162 0.8131 0.8251 0.7816 0.436 0.8134 0.7230 0.5912
LoftQ (1) 64 4 0.5282 0.8140 0.8159 0.7823 0.432 0.8134 0.7388 0.5978
LoftQ (5) 64 4 0.5239 0.8110 0.8113 0.7833 0.434 0.8134 0.7324 0.5869
LoftQ (10) 64 4 0.5171 0.8123 0.8162 0.7837 0.432 0.8101 0.7277 0.5925
QR-Adaptor 32 5.875 0.5612 0.8345 0.8321 0.7978 0.462 0.8210 0.7459 0.6440

and scalability. The results validate that QR-Adaptor is effective even when small LoRA
ranks might not suffice for larger datasets.

• Impact of Adaptive LoRA Rank Reduction: AdaLoRA exhibits performance drops, par-
ticularly with lower bit-widths and on more challenging tasks. This supports our observa-
tion that dynamically adjusting the rank during fine-tuning can lead to convergence issues
in quantized models, which are less robust due to quantization errors.

These results reinforce our initial observations and highlight the limitations of methods that at-
tempt to fit quantization errors through LoRA initialization. The inability of LoftQ and AdaLoRA
to improve performance significantly, even with higher ranks and larger datasets, underscores the
challenges associated with such approaches. In contrast, QR-Adaptor, guided by our proposed
constraints, demonstrates consistent performance improvements.

B.3 TRAINING TIME COMPARISON

An important consideration in the evaluation of QR-Adaptor is the training time, particularly due
to its reliance on Bayesian optimization. While QR-Adaptor provides significant performance im-
provements, it may require additional time per iteration compared to other methods. Table 5 sum-
marizes the training time per iteration for QR-Adaptor and baseline methods on Llama 2 7B.

Table 5: Training time per iteration for different methods on Llama 2 7B.

Model Method Time per Iteration (min)
LLaMA2-7B LoftQ 9
LLaMA2-7B QR-Adaptor 15

Although QR-Adaptor takes longer to train due to its optimization process, this trade-off results
in superior performance, particularly in terms of task-specific optimizations. The Bayesian opti-
mization employed by QR-Adaptor ensures more precise adjustments to the model, which leads to
better results on downstream tasks without additional resource consumption during the optimization
process.

B.4 FAIRER COMPARISON: MATCHING BIT-WIDTH CONFIGURATIONS

Another important consideration for a fair comparison of quantization methods is the bit-width
configuration used. To ensure that prior methods are evaluated under the same conditions as QR-
Adaptor, we have re-evaluated AdaLoRA and LoftQ using the same mixed-precision configurations
that were optimized through QR-Adaptor’s framework. The updated results for Llama 2 13B are
shown in Table 6.
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Table 6: Performance comparison with fair bit-width configurations for Llama 2 13B.

Model Method BoolQ (%) PIQA (%) HellaSwag (%) WinoG (%) ARC-e (%) ARC-c (%) OBQA (%) Average (%)
Llama 2 13B QR-Adaptor 81.84 81.45 80.08 72.69 80.64 52.82 45.80 70.76
Llama 2 13B AdaLoRA 81.08 80.13 79.21 71.74 79.51 50.12 45.60 69.77
Llama 2 13B LoftQ 80.93 79.47 79.02 71.34 79.26 51.20 45.60 69.98

The results indicate that the initialization constraints applied by QR-Adaptor provide substantial im-
provements over the original configurations of AdaLoRA and LoftQ. Despite these improvements,
QR-Adaptor still outperforms these methods in terms of overall task performance. The constraints,
specifically ensuring stable initialization and fixing trainable parameters, contribute significantly to
the enhanced performance of QR-Adaptor.

C VERSION OF LLMS

We provide the Hugging Face link of LLMs used in the experiment: LLaMA2-7B: https:
//huggingface.co/NousResearch/Llama-2-7b-hf; LLaMA2-13B: https://huggingface.
co/NousResearch/Llama-2-13b-hf; LLaMA3.1-8B: https://huggingface.co/meta-llama/
Llama-3.1-8B.

D MORE IMPLEMENTATION DETAILS

In optimizing the pruned LLaMA-7B model, a carefully designed hyperparameter configuration has
been implemented to strike a balance between model performance and computational efficiency.
The model is fine-tuned using a learning rate of 3 × 10−4, with a batch size of 128, divided into
micro-batches of 4 to effectively manage memory limitations. Input sequences are capped at 256
tokens, and a dropout rate of 0.05 is applied to the LoRA layers, specifically targeting the query,
key, value, and output projections, as well as the gate, down, and up projections. Layer-specific
quantization is applied at both 4-bit and 8-bit levels, optimizing memory usage while maintaining
computational accuracy. The training is performed using the paged AdamW optimizer with 32-bit
precision, ensuring both stability and efficiency. These settings have been rigorously tested and
refined through the Optuna framework to achieve an optimal balance between model performance
and resource efficiency.

E MORE ABLATION

We conducted comprehensive ablation studies to evaluate the impact of initialization metrics and
the sensitivity of the proposed Pareto Ranking Genetic Algorithm (PRGA) to key hyperparameters,
including iteration counts and population size. These experiments aim to further substantiate the
effectiveness of our proposed approach.

E.1 GRADIENT NORMS VS. RELATIVE ENTROPY

To assess the efficacy of initialization metrics, we compared the use of gradient norms and relative
entropy in quantifying layer importance for fine-tuning quantized LLMs. The experimental results
are summarized in Table 7.
Table 7: Comparison of gradient norms and relative entropy as initialization metrics. Bold values indicate the
best performance for each task.

Initialization Metric BoolQ (%) PIQA (%) HellaSwag (%) WinoG (%) ARC-E (%) ARC-C (%) OBQA (%) Average (%)
Gradient Norms 80.79 80.13 79.16 71.69 78.72 50.97 45.40 69.51
Relative Entropy 81.08 80.83 79.80 71.98 79.13 51.65 45.60 70.07

Insights:
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• Limitations of Gradient Norms: Gradient norms exhibit limited variability and are prone
to biases induced by quantization, which undermines their reliability as an initialization
metric for quantized models.

• Advantages of Relative Entropy: Relative entropy captures task-specific layer importance
more effectively, resulting in robust initialization and improved performance in downstream
optimization.

E.2 SENSITIVITY TO ITERATION COUNTS AND POPULATION SIZE

To analyze the sensitivity of PRGA to hyperparameters, we systematically varied the number of
iterations and population sizes. Table 8 presents the results of these experiments.

Table 8: Sensitivity analysis of PRGA under different iteration counts and population sizes. Bold values
indicate the best configuration.

Iterations Population Size Average Improvement (%) Total Time (min)
5 3 +0.8 120
5 5 +1.2 150
10 5 +1.5 225
5 20 +1.6 375
10 20 +2.3 450

Insights:

• Trade-offs in Population Size: Smaller population sizes (e.g., 3) reduce computational
cost but may fail to adequately explore the search space. Larger population sizes (e.g., 20)
improve exploration and convergence but increase computational overhead.

• Impact of Iteration Count: Increasing the number of iterations improves optimization
quality, as reflected in better Pareto fronts. However, the marginal benefits diminish beyond
10 iterations, indicating limited practical gains for further increases.

• Balanced Configuration: A population size of 5 and 5 iterations strikes a balance be-
tween performance improvement and computational efficiency. This configuration can be
adjusted based on specific resource availability or performance requirements.

F LIMITATION

A constraint of our framework is the relatively long search time required to determine optimal task-
specific configurations. This extended duration is necessary to ensure the best fine-tuning setup
for each task. We recognize this as a current limitation and are actively working on improving the
efficiency of our search algorithm.
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