
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT FINE-TUNING OF QUANTIZED LLMS VIA
THREE-STAGE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large language models (LLMs) is computationally expensive and
memory-intensive due to their vast number of parameters. To mitigate these chal-
lenges, Parameter-Efficient Fine-Tuning (PEFT) methods and model quantization
techniques have been developed. Recent works have combined PEFT with quan-
tization, proposing methods to adjust quantized model parameters before fine-
tuning to reduce quantization errors. However, we observe that such adjustments
can lead to suboptimal performance, as they may introduce discrepancies between
the quantized and original models. Additionally, the inherent fragility of quan-
tized models makes them sensitive to increased training complexity, potentially
degrading performance. To address these issues, we introduce QR-Adaptor,
a general fine-tuning framework that jointly optimizes quantization bit-widths
and LoRA ranks for each layer in a gradient-free manner. Our method directly
uses actual performance and memory usage as optimization objectives, bypassing
network errors introduced by quantization. Through a three-stage optimization
process—initialization based on task-specific layer importance, global exploration
using a Pareto ranking genetic algorithm, and local refinement with Bayesian
optimization—QR-Adaptor efficiently identifies optimal configurations. Exper-
imental results demonstrate that QR-Adaptor yields fine-tuned low-bit quantized
models that outperform their 16-bit counterparts while maintaining similar mem-
ory usage to 4-bit models. For instance, on the MMLU benchmark, our method
achieves a 3.3% accuracy improvement over methods like LoftQ and LQ-LoRA.

�

�…
…

Combined Configuration Space Initialization

�

�

�…
… (�2

����, �2
����)

(�1
����, �1

����)

Global Exploration

�

�

�…
…

(��
����, ��

����)
Pareto Front

Configuration Set

Local Refinement

�

�

�…
…

C∗

(��
�����, ��

�����)

(�2
�����, �2

�����)

(�1
�����, �1

�����)

Quantizing
Layer

Importance PRGA
Bayesian

Optimization

Figure 1: Overview of the QR-Adaptor framework: For each LLM layer, the optimal quantization bits (q) and
LoRA rank (r) are determined through three steps: (1) task-based initialization, (2) PRGA global search for
Pareto frontier solutions, and (3) Bayesian optimization for local refinement. The sub-graphs show: (a) the full
configuration space across layers l, (b) an initial solution, (c) PRGA-identified Pareto fronts per layer, and (d)
final Bayesian-optimized solutions meeting specific performance-memory trade-offs.

1 INTRODUCTION

Large Language Models (LLMs) have achieved unprecedented success across various natural lan-
guage processing tasks (Makridakis et al., 2023; Raiaan et al., 2024; Chang et al., 2024), demon-
strating exceptional capabilities in both language understanding and generation. However, adapting
these models to specific downstream tasks remains challenging due to significant computational and
memory constraints (Wan et al.). To address these issues, Parameter-Efficient Fine-Tuning (PEFT)
methods, such as Low-Rank Adaptation (LoRA) (Hu et al., 2022), have emerged, introducing low-
rank matrices to approximate updates to pre-trained weights, thereby enabling efficient fine-tuning.
Meanwhile, model quantization techniques (Gong et al., 2014; Gupta et al., 2015) reduce weight
precision to decrease computational costs, enhancing training and inference efficiency.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Recent advancements, such as QLoRA (Dettmers et al., 2023), integrate PEFT with quantiza-
tion techniques to improve fine-tuning efficiency and achieve higher-performing quantized models.
LoftQ (Li et al., 2023) and LQ-LoRA (Guo et al., 2024) propose minimizing the Frobenius norm
∥W − Q − AB∥F by adjusting the parameters of quantized weight matrix Q, low-rank matrices
A and B, using this initialization to reduce the error between quantized models and full-precision
models. However, this initialization only fits a small portion of the error, and the resulting model
Q′+A′B′ no longer equals the original pre-trained model weight matrix W or the quantized model
weight matrix Q (i.e., Q′ + A′B′ ̸= W and ̸= Q). Fine-tuning this model does not necessarily
lead to better performance, and in some cases, it may even perform worse than directly using the
quantized model. In addition, another way to save resources is to reduce the number of parame-
ters in the low-rank matrix. For example, AdaLoRA (Zhang et al., 2023b) dynamically prunes the
rank of the low-rank matrix during fine-tuning based on its importance score. This dynamic prun-
ing process introduces additional complexity and may lead to unexpected performance issues, as
continuously adjusting the rank forces the model to adapt to a constantly changing parameter space.
Such dynamic adjustments during fine-tuning are not well-suited for quantized models. In quantized
models, the errors introduced by quantization already degrade the model’s robustness (Gong et al.,
2024), significantly weakening its ability to capture meaningful features.

We validate these two hypotheses in Section 2: Q′ + A′B′ ̸= Q before fine-tuning may lead to
performance degradation, and changing the trainable parameters during fine-tuning may also cause
performance issues. Based on these observations, we propose two strict constraints for fine-tuning
quantized models: first, before fine-tuning, Q′ + A′B′ = Q, ensuring consistency at the starting
point of fine-tuning; second, keeping the number of trainable parameters unchanged during fine-
tuning to ensure that the quantized model effectively captures essential features.

Under these two constraints, and beyond approaches like QLoRA(Dettmers et al., 2024), achieving
efficient fine-tuning of quantized models necessitates a strategic allocation of limited computational
and memory resources to maximize performance. Specifically, we propose assigning different quan-
tization bit-widths and LoRA ranks to various layers of the model, not solely based on their impor-
tance to the downstream task but also considering each layer’s adaptability and expressiveness after
quantization. By allocating higher precision (i.e., larger bit-widths) and larger LoRA ranks to lay-
ers that require more capacity to adapt to the task—thereby granting them additional computational
resources—and assigning lower precision and smaller ranks to layers that maintain sufficient ex-
pressiveness even under quantization, we enhance the model’s performance where it is most needed
without excessively increasing memory usage.

Furthermore, to avoid introducing additional approximation errors, we employ actual task perfor-
mance and memory consumption as indicators to guide the allocation process. However, deter-
mining the optimal assignment of bit-widths and ranks across layers results in a vast combinatorial
solution space, and real-world evaluations are computationally intensive and time-consuming. Tra-
ditional methods, such as exhaustive enumeration or linear programming, become impractical in this
context due to their high computational cost.

To tackle these challenges, we reformulate the problem as a gradient-free optimization task and
introduce a three-stage optimization framework, QR-Adaptor, which efficiently navigates the solu-
tion space through initialization, interpolation, and extrapolation (see Figure 1). Our approach com-
prises: Task-Informed Initialization, where we derive initial layer configurations based on each
layer’s adaptability and contribution to the task; Global Exploration with Pareto Ranking Ge-
netic Algorithm (PRGA), inspired by NSGA-II (Deb et al., 2002), to effectively explore the broad
configuration space and identify optimal trade-offs between performance and memory usage; and
Local Refinement with Bayesian Optimization, where we employ customized weighted objective
functions to refine configurations, constructing surrogate models that approximate the performance
landscape and selecting optimal fine-tuned configurations. To accelerate the search process, we uti-
lize a subset of the dataset for fine-tuning during optimization. Experimental results demonstrate
that the low-precision models fine-tuned with QR-Adaptor outperform the 16-bit fine-tuned models,
while maintaining memory usage comparable to that of 4-bit quantized models during fine-tuning
and without requiring any structural adjustments, thereby showcasing its generalizability and effec-
tiveness.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 DISCUSSION ON FINE-TUNING QUANTIZED MODELS

1
(Q: 8.97)

5
(Q: 8.31)

10
(Q: 8.21)

50
(Q: 7.96)

Iterations (with Q Error x 1e5)

68

70

72

74

76

78
Ac

cu
ra

cy
 (

%
)

0

100

200

300

400

Ti
m

e
(m

in
) PIQA (%)

WinoG (%)
BoolQ (%)
HellaS (%)
Time (min)

w/o-
4b

it

w/o-
8b

it

w/o-
16

bit

QLo
RA(A

B=0)
Lo

ftQ

LQ
-Lo

RA

Ada
Lo

RA

Methods

0.48

0.49

0.50

0.51

0.52

0.53

M
M

LU

w/o-4bit
MMLU

Figure 2: Left: After 50 iterations, it takes around 450 minutes. Compared to iter=1, the error drops from
8.97×105 to 7.96×105, but LLaMA2-7B performance shows no significant improvement. Right: Performance
comparison between quantized models with/without fine-tuning (LLaMA2-13B).

LoftQ and LQ-LoRA integrate low-rank adaptation with quantization, aiming for low-precision fine-
tuning of large language models. They initialize the model weights by solving the following opti-
mization problem:

min
Q,A,B

|W −Q−AB|F , (1)

where | · |F denotes the Frobenius norm. By alternately optimizing Q and AB, they aim to reduce
the error introduced by quantization. However, we find that this optimization can only capture a por-
tion of the quantization error, and even after investing considerable time in iterations, the reduction
in error is minimal and does not contribute to performance improvement (see Figure 2). More im-
portantly, fine-tuning 4-bit quantized models using LoftQ or LQ-LoRA sometimes results in worse
performance than the quantized model without fine-tuning (see Figure 2). In contrast, initializing
with AB = 0 can enhance the performance of the quantized model. This suggests that the ini-
tial optimization of Q and AB may introduce noise, adversely affecting learning and causing the
fine-tuned performance to be even worse than the original Q, because Q′ +A′B′ ̸= W and ̸= Q.

bo
olq piq

a

he
lla

sw
ag

wino
gr

an
de

ar
c_e

as
y

ar
c_c

ha
lle

ng
e

op
en

bo
ok

qa
mmlu

Tasks

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rf

or
m

an
ce

AdaLoRA
fixed

Figure 3: Performance comparison of two fine-
tuning methods using AdaLoRA and random as-
signment of different rank values for each layer
but fixed trainable parameters during fine-tuning.

On the other hand, adaptive methods like AdaLoRA
dynamically adjust the rank values of low-rank ma-
trices based on importance scores derived from gra-
dient norms. While effective for full-precision mod-
els, this approach faces challenges in quantized mod-
els. First, model quantization reduces robustness,
making it less sensitive in capturing features. The
training process of dynamically changing trainable
parameters requires the model to continuously adapt
to these changes, which is relatively difficult for
quantized models. Second, assuming that the op-
timization directions of the quantized model and
the full-precision model are consistent (since high-
precision models always have greater representa-
tional capacity than low-precision ones), the error
introduced by quantization can distort the gradient
norms, leading to unreliable importance scores. Due to error accumulation, this distortion is exac-
erbated in deeper layers. Dynamic rank adaptation based on flawed importance scores may result
in improper resource allocation, thus hindering learning. Our experimental results also validate this
point (see Figure 2). Fine-tuning quantized models using AdaLoRA does not yield satisfactory per-
formance. In contrast, configurations with randomly assigned average ranks equal to the target rank
of AdaLoRA achieve better performance after fine-tuning (see Figure 3). The key difference lies in
whether the number of trainable parameters remains fixed during fine-tuning.

According to the above discussion, we propose two key constraints for effectively fine-tuning quan-
tized models: Preserve quantized model parameters before fine-tuning. Before fine-tuning, en-
sure that the sum of quantized weights and low-rank updates equals the quantized model itself,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

This constraint implies that the initial low-rank updates do not alter the parameters of the quantized
model, providing a stable starting point for fine-tuning. Unlike previous methods that adjust Q,
A, and B to approximate W, we keep Q unchanged to avoid introducing additional discrepancies.
Keep the number of trainable parameters fixed to reduce training difficulty. To reduce training
complexity and ensure that quantized models can capture meaningful features for downstream tasks,
we keep the number of trainable parameters fixed during fine-tuning, eliminating the need for the
quantized model to adapt to a constantly changing parameter space. This constraint is in contrast to
the traditional approach for high-precision models, where increasing training complexity is neces-
sary. Since quantized models have lower representational capacity, increasing training difficulty is
not a wise choice.

3 METHODOLOGY

We begin this section by framing the problem as a gradient-free optimization challenge. Once
the necessary background has been introduced, we then propose a novel three-stage optimization
algorithm specifically designed to tackle this complex task.

3.1 PROBLEM FORMULATION

Given a pre-trained LLM with L layers, our objective is to fine-tune the model on a training dataset
Dtrain while both maximizing its performance on downstream evaluation datasets Dtest and minimiz-
ing the model’s memory footprint.

Layer-wise LoRA In LoRA fine-tuning, the forward pass of a layer incorporates a low-rank adap-
tation so that:

y = Wlx+∆Wlx, (2)

where x ∈ Rk is the input vector, Wl ∈ Rd×k is the weight matrix for layer l ∈ {1, · · · , L}, and
∆Wl = AlBl represents the low-rank adaptation. The matrices Al ∈ Rd×rl and Bl ∈ Rrl×k are
low-rank matrices with rank rl, where rl ∈ R, and R represents the set of all possible rank values.

Layer-wise Quantization On the other hand, the quantized weight matrix Ŵl is obtained by
applying a quantization function to the weight matrix Wl:

Ŵl = Quantize(Wl, ql), (3)

where ql denotes the bit-width used for quantization in layer l, with ql ∈ Q, and Q represents the
set of all possible bit-width values.

Integrating Layer-wise LoRA and Quantization When quantization is combined with LoRA,
we first quantize the weight matrix and then implement LoRA fine-tuning:

y = Ŵql
l x+∆Wrl

l x, (4)

where Ŵql
l represents the weight matrix quantized with ql bits, and ∆Wrl

l can be decomposed into
two rl-rank matrices.

Weighted Objective Function Finding the optimal ql and rl for each layer can be formulated as
a gradient-free optimization problem. Let C = {(q1, r1), (q2, r2), . . . , (qL, rL), ql ∈ Q, rl ∈ R} ∈
C represent the fine-tuning configuration of an L-layer LLM, where C is the configuration space
consisting of all combinations of bit-width and rank values. Our objective is to find an optimal
configuration set C∗ for efficient fine-tuning that achieves the best performance on downstream
tasks while minimizing memory usage. To balance these competing goals, we introduce a weighted
objective function. Put formally, this process can be formulated as:

max
C

α · P (C)− µP

σP
− (1− α) · M (C)− µM

σM
,

subject to C = {(ql, rl)Ll=1} ∈ C, ql ∈ Q, rl ∈ R.

(5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In the above, P (·) denotes the model’s performance, and M(·) calculates the total memory consump-
tion based on the configurations. The terms µP and σP represent the mean and standard deviation
of the performance metric across configurations, while µM and σM represent the same for mem-
ory consumption. As usual, the respective µ and σ terms normalize the performance and memory
metrics to a comparable scale. The weight parameter α ∈ [0, 1] allows us to balance the relative im-
portance of performance versus memory efficiency: a higher α value prioritizes performance, while
a lower value emphasizes memory efficiency.

3.2 QR-ADAPTOR FRAMEWORK

Our approach differs from previous methods relying on fixed or hierarchical dynamic single config-
urations. We jointly explore the configuration space of quantization bits and LoRA ranks, creating
a comprehensive search space that encompasses all potential optimal configurations. The main
challenges in implementing this gradient-free optimization process are (a) The high-dimensional,
discrete nature of the configuration space. (b) The computational cost of evaluating performance.
To address these challenges, we propose QR-Adaptor, a method that effectively finds the relative
optimal solution in three stages.

Task Information Based Initialization Our optimization process begins with a task-oriented as-
sessment of the relative importance of each layer in the model. This approach is based on the tacit
understanding that different layers contribute unequally to the model’s overall performance for spe-
cific tasks. Unlike previous methods that relied on gradient norms to quantify layer importance—an
approach that fails to accurately represent a layer’s contribution during inference—we employ a
task-specific method based on information entropy during the inference process. We define the
importance of a layer l for a given task as:

I(l) = H(Y)−H(Y |Xl) (6)

In the above, H(Y) is the entropy of the model’s output for the task, and H(Y |Xl) is the conditional
entropy of the output given the intermediate representation at layer l. This measure quantifies how
much information each layer contributes to the final output, providing a more accurate representation
of layer importance in the context of the specific task. This task-oriented approach allows us to
strategically allocate higher bit widths and ranks to layers that are critical for the given task, rather
than relying on generic importance metrics that may not reflect true inference contributions.

……

…

Layer 1

Layer 2

Layer L

Importance
Low

High

Figure 4: Different Layers
have heterogeneous importance

We initialize the per-layer quantization configurations using the im-
portance scores derived from the original model. Specifically, lever-
aging our guiding metric, we assign higher quantization bit numbers
to layers with higher importance scores, while allocating lower val-
ues to less critical layers; once assigned, we quantize the model ac-
cording to these assigned bit widths. Following quantization, we re-
calculate the importance scores and use them to determine the LoRA
rank values. Layers with higher post-quantization importance scores
are assigned larger rank values, while those with lower scores receive
smaller ones. This informed initialization reduces the search space
and guides the optimization towards promising regions.

Global Exploration with PRGA In LLM fine-tuning, quantization bit and LoRA rank can be
conceptualized as genes, with the resulting performance and memory usage analogous to pheno-
typic expressions in a population. Inspired by NSGA-II’s (Deb et al., 2002) proven success in
multi-objective optimization, we adapted its mechanisms to develop PRGA (Pareto Ranking Genetic
Algorithm), incorporating domain-specific modifications to better handle the discrete-continuous
hybrid search space of LLM fine-tuning hyperparameters. PRGA explores the combined solution
space of bits and ranks to identify the optimal Pareto frontier, simultaneously balancing perfor-
mance and memory usage in LLM fine-tuning. This efficient multi-objective optimization algo-
rithm uses an elitist selection approach to evolve a population of configurations, each represented
as C = {(ql, rl)Ll=1}, where ql and rl denote the quantization bits and LoRA rank for layer l,
respectively. PRGA iteratively applies selection, crossover, and mutation operations to the popu-
lation, aiming to simultaneously maximize performance and minimize memory usage. The algo-
rithm progresses until it reaches a predefined stopping criterion or a maximum number of iterations,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

whichever comes first. Once finished, the algorithm ultimately produces a Pareto frontier that rep-
resents the optimal trade-offs between our competing objectives.
Algorithm 1 Pareto Rank Calculation

1: Calculate the number of dominated individ-
uals np and the set of solutions dominated
Sp for each individual p

2: Place individual with np = 0 into set F1

3: for each individual in F1 do
4: for each individual j ∈ Si do
5: nj = nj − 1
6: if nj = 0 then
7: Add individual j to set F2

8: end if
9: end for

10: end for
11: Repeat step 3 for set F2 to obtain F3, and

continue until all individuals are ranked
12: return All individuals with Pareto rank

Algorithm 2 Crowding Distance Calculation
(Ranking individuals with the same Paret Rank)

1: for each individual n ∈ 1 . . . N do
2: Initialize dn = 0
3: end for
4: for each objective function fm do
5: Sort individuals based on fm
6: Set fmax

m and fmin
m

7: Set d1 = dN = ∞
8: for n = 2 to N − 1 do
9: dn = dn + fm(n+1)−fm(n−1)

fmax
m −fmin

m

10: end for
11: end for
12: return crowding distances dn for each in-

dividual n ∈ 1 . . . N

Before introducing the PRGA flow, we first introduce some key foundational concepts. In a multi-
objective minimization problem with n objective components fi(x), i = 1, . . . , n, the Pareto Domi-
nance Relationship is defined between any two decision variables Xa and Xb. We say that Xa domi-
nates Xb if for all i ∈ {1, 2, . . . , n}, fi(Xa) ≤ fi(Xb), and there exists at least one i ∈ {1, 2, . . . , n}
such that fi(Xa) < fi(Xb). A Non-dominated Solution is a decision variable that is not dominated
by any other decision variable in the set. The concept of Pareto Rank is used to categorize solu-
tions within a set. Non-dominated solutions are assigned a Pareto rank of 1. After removing these
rank 1 solutions from the set, the remaining non-dominated solutions are assigned a Pareto rank of 2.
This process continues iteratively, assigning increasing ranks to subsequent layers of non-dominated
solutions until all solutions in the set have been ranked.

Initialization
From Previous Stage

Initial
Population

Offspring
Combined
Population

New
Population

Output
Final Population

Selection
Crossover
Mutation

Merge
Parent-offspring

Generation
Elite

Retention
Strategy

Selection Crossover Mutation

Termination Condition

×N

Figure 5: Detailed PRGA flow chart. The
input is a set of solutions from the initializa-
tion, and the output is a set of Pareto front
solutions containing multiple solutions.

As illustrated in Algorithm 1, we employ the Pareto Rank-
ing to sort all individuals within the population. To ad-
dress solutions with identical Pareto ranks, we use the
crowding distance d for further differentiation within each
Pareto rank. The detailed calculation of the crowding dis-
tance is presented in Algorithm 2.

Elite retention, a method simulating natural elimination, is
performed after calculating the Pareto rank and crowding
distance of all individuals in a generation. This process
begins by combining the parent and offspring populations
into a merged population. To generate the next genera-
tion, we start with the lowest Pareto rank and transfer en-
tire layers of individuals from the merged population to
the new population, moving progressively to higher ranks.
This continues until we reach a layer that cannot be fully
accommodated in the new population. For this partially
accommodated layer, we sort its individuals based on their crowding distance in descending order
and add them sequentially to the new population until it reaches its full capacity.

For the crossover and mutation operations, we employ methods analogous to Simulated Binary
Crossover (SBX) and Polynomial Mutation, respectively. These methods are adapted to operate on
L pairs of positive integers (ql, rl). The detailed procedures for these operations are presented in
Algorithm 3 for the crossover and Algorithm 4 for the mutation. By applying these adapted SBX and
polynomial mutation operations, we can effectively evolve the population of solutions represented
by integer pairs, balancing exploration and exploitation.

The PRGA process, shown in Figure 5, begins by generating an initial population of size N through
controlled random variations based on the previous stage’s configuration. It then creates offspring
using selection, crossover, and mutation operations. The parent and offspring populations are com-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 3 Simulated Binary Crossover

Require: Two parent individuals P1 and P2,
each containing L pairs of real numbers

1: for l = 1 to L do
2: Generate a random number u ∈ [0, 1]
3: if u ≤ 0.5 then
4: β = (2u)1/(n+1)

5: else
6: β = (1/(2(1− u)))1/(n+1)

7: end if
8: y1l = 0.5 · ((1+β) · p1l +(1−β) · p2l)
9: y2l = 0.5 · ((1−β) · p1l +(1+β) · p2l)

10: Add (y1l, y2l) to O1 and O2

11: end for
12: return Two offspring O1 and O2

Algorithm 4 Polynomial Mutation

Require: Individual P containing L pairs of
real numbers, mutation probability pm

1: for l = 1 to L do
2: for each value x in the l-th pair do
3: Generate a number u ∈ [0, 1]
4: if u < pm then
5: Generate a number y ∈ [−1, 1]
6: x′ = x + (xmax − xmin) · (y ·

(1− |y|)n−1)
7: Replace x with x′ in P ′

8: end if
9: end for

10: end for
11: return Mutated individual P ′

bined and subsequently fastly fine-tuned and validated on a subset of the training dataset. The
resulting performance and memory metrics are used to calculate Pareto ranks for each individual.
Next, the algorithm applies an elite retention strategy combined with crowding distance calculation
to select individuals for the new population. This cycle repeats, generating consecutive genera-
tions until the termination condition is met, effectively exploring the solution space to optimize both
performance and memory usage simultaneously.

Pareto Front
Solutions

From Previous Stage

OutputTermination Condition

Solutions with
obj value (y)

Weighted
Objective
Function

Solutions with
largest obj value

(y*)

Gaussian Process

Acquisition Function
(EI)

Solution with largest
EI value

New solution with
largest obj value (ynew)

y* > ynew

Select Kernal Function (RBF)

Yes

No

Random search around
solution with y*Update

Use to
retrain

×N

Figure 6: Detailed Bayesian optimization
flow chart. The input is the Pareto front so-
lution set from the global search, and the
output is a set of optimal solutions obtained
according to the requirements.

Local Refinement with Bayesian Optimization While
PRGA effectively explores the global configuration space,
it may not precisely capture local optima near the Pareto
front. To further refine these solutions, we employ
Bayesian optimization, a technique renowned for its abil-
ity to optimize expensive black-box functions with uncer-
tainty quantification. We initiate this process by utilizing
the solutions from the PRGA-generated Pareto front as our
initial sampling points. For each point, we use these con-
figurations to quickly fine-tune the model and test to ob-
tain actual performance and memory usage. We then com-
pute its corresponding weighted objective function value
y using the predefined objective function (Equation 5) and
specified weight preferences. These y values serve a dual
purpose: firstly, they are combined with the covariance
matrix K, which is constructed using the radial basis func-
tion (RBF) kernel to quantify similarities between sample
points, to build a Gaussian process model; secondly, they
enable us to identify the best-performing point, which be-
comes the focal point for subsequent searches.

The next phase involves employing a random search strategy to select new sampling points in the
vicinity of this top-performing configuration. For each newly selected sampling point x∗, we lever-
age the Gaussian process to estimate its predicted value and associated uncertainty using the follow-
ing equations:

µ(x∗) = m(x∗) +K(x∗, X)K(X,X)−1(y −m(X))

σ2(x∗) = k(x∗, x∗)−K(x∗, X)K(X,X)−1K(X,x∗) ,
(7)

where m(x∗) is the prior mean function, K(x∗, X) is the covariance between the new point and the
existing points, and K(X,X) is the covariance matrix of the existing points.

We then employ the Expected Improvement (EI) as the acquisition function, calculating it using the
following formula:

EI(x∗) = σ(x∗) (Z · Φ(Z) + ϕ(Z)) and Z =
µ(x∗)− ybest

σ(x∗)
(8)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where Φ(Z) is the cumulative distribution function of the standard normal distribution, while ϕ(Z)
is its probability density function and ybest is the best objective value among all points.

We select the point with the largest EI value as the next evaluation point and quickly fine-tune the
LLM using this configuration. We then test to obtain the performance and memory usage, which
are used to calculate the objective function value, and this new point is compared with the previous
best point. If it proves to be a better choice, it can be updated as the optimal point and the search
for the next iteration proceeds near it; otherwise, we continue searching near the original optimal
point. Regardless of whether the best point is updated, the new point and its objective function value
are incorporated into the training dataset to update the Gaussian process model before beginning the
next iteration. This process repeats until a predefined termination condition is met, such as reaching
maximum iterations, meeting a convergence criterion, or hitting a time limit. The detailed flowchart
is shown in Figure 6.

The solution set obtained through this Bayesian optimization process offers a refined representation
of high-quality configurations, effectively capturing the trade-offs between performance and mem-
ory usage. This iterative refinement process culminates in a final set of configurations that represent
the best balance of our objectives based on the specified preferences. By presenting these optimized
configurations as the final output, our approach enables practitioners to directly choose suitable
configuration that aligns with their specific performance requirements and memory constraints.

4 EVALUATION

Table 1: Superscripts on LoftQ bits indicate the number of initialization iterations. QR-Adaptor searches for
optimal bit-width and rank value for each layer based on different tasks; its bit number and peak memory usage
are averaged across 7 tasks. Bold figures represent the best performance for a given model and task, while
underlined indicate the second-best. Accuracy is reported as %, and memory is measured in GB.

Method Bit BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Average Memory

L
la

m
a

2-
13

B

w/o tuning
16 80.61 80.52 79.37 72.06 79.46 49.15 45.20 69.48 -
8 79.94 80.20 79.14 72.61 78.91 48.89 45.40 69.30 -
4 80.52 79.98 78.38 71.59 77.65 48.29 44.80 68.74 -

LoRA 16 81.50 81.23 80.07 71.98 79.84 52.13 46.20 70.42 41.13

QLoRA
8 81.13 81.18 79.86 72.22 80.01 51.54 46.20 70.31 38.28
4 81.04 80.47 79.48 71.82 79.04 51.45 45.60 69.84 27.30

AdaLoRA
16 80.46 80.47 79.28 72.30 79.34 49.40 45.40 69.52 41.08
8 80.40 80.52 79.27 72.38 79.29 49.49 45.40 69.54 38.24
4 80.43 80.09 78.10 71.67 77.69 48.29 44.20 68.64 27.30

LoftQ
41 80.86 80.30 79.18 71.90 78.87 50.68 45.80 69.66 41.02
45 80.92 80.41 79.15 71.59 78.96 50.60 45.40 69.58 41.03

LQ-LoRA 4 80.43 80.14 79.06 71.67 78.79 50.09 45.40 69.37 39.65

QR-Adaptor 6.125 81.84 81.45 80.08 72.69 80.64 52.82 45.80 70.76 27.41

L
la

m
a

2-
7B

w/o tuning
16 77.68 79.11 76.01 68.98 76.30 46.16 44.20 66.92 -
8 77.58 79.27 76.04 68.98 75.97 46.50 44.00 66.91 -
4 76.21 78.18 75.57 69.06 75.25 45.99 44.40 66.38 -

LoRA 16 78.41 79.38 76.81 69.06 77.57 46.93 45.00 67.59 23.61

QLoRA
8 78.41 79.05 76.93 69.06 77.44 47.61 45.40 67.70 23.51
4 77.25 78.84 76.40 70.01 76.35 46.67 45.00 67.22 17.53

AdaLoRA
16 77.58 79.11 75.92 69.38 76.68 46.16 44.20 67.00 23.56
8 77.40 79.11 75.91 69.06 76.68 46.16 44.40 66.96 23.49
4 76.45 77.91 75.44 69.46 75.29 46.33 44.20 66.44 17.26

LoftQ
41 77.89 79.43 76.61 69.69 77.19 47.10 44.80 67.53 23.75
45 76.79 78.51 76.25 69.61 76.47 47.95 45.60 67.31 23.82

LQ-LoRA 4 77.22 78.78 76.33 70.09 76.39 47.10 46.40 67.47 22.84

QR-Adaptor 5.875 78.96 79.86 76.84 69.97 77.44 48.04 46.00 68.15 17.92

We conduct experiments to evaluate our proposed method against various baselines. All hyperpa-
rameters aside from rank value and bit-width are kept consistent with the baselines. Additionally,
we performed an ablation study to assess the impact of each stage on performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Datasets and LLMs. We utilize the Alpaca52k and hc3 (Taori et al., 2023) 1 for fine-tuning and
evaluate the zero-shot performance of these LLMs on benchmarks including BoolQ (Clark et al.,
2019), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al.,
2021), ARC-easy (Clark et al., 2018), ARC-challenge (Clark et al., 2018), OpenbookQA (Mihaylov
et al., 2018), and MMLU (Hendrycks et al., 2021). The models used in our experiments are LLaMA2
(Touvron et al., 2023) and LLaMA3.1 (Grattafiori et al., 2024).

Baselines. We compare our method against several baselines: without tuning, LoRA (Hu et al.,
2022), QLoRA (Dettmers et al., 2023), Adalora (Zhang et al., 2023b), LoftQ (Li et al., 2023),
and LQ-LoRA (Guo et al., 2024). We evaluated the performance of LoftQ with different iteration
numbers. For Adalora, which dynamically allocates ranks based on the average rank budget, we set
the budget to 8 and 64. Finally, for LQ-LoRA, which allocates quantization bit-width based on the
average weight bit-width budget and quantization error, we set the bit-width budget to 4.

Implementation Details. We utilize the following configurations: PyTorch version 2.1.2, Bitsand-
Bytes library version 0.43.1, Transformers library version 4.41.0, PEFT (Parameter-Efficient Fine-
Tuning) library version 0.11.1, Optuna library version 3.6.1, CUDA version 12.4, GPU: NVIDIA
L20 GPU. Operating System: Ubuntu. Concise implementation details are provided in the ap-
pendix D. In our framework, we define the population size as 5 and generate 1 new offspring in each
iteration. The second stage runs for 5 iterations, and similarly, the third stage also iterates 5 times.

4.1 MAIN RESULTS

We present the performance comparison on commonsense understanding tasks in Table 1, with
more results in the appendix B. The results for the MMLU task in LLaMA2 are shown in Figure
7. QR-Adaptor demonstrates outstanding performance across various benchmarks. Due to the rank
value selection ranging from 2 to 16, in some cases, QR-Adaptor consumes less memory than the
fine-tuned 4-bit quantized models. Moreover, the low-precision models fine-tuned by QR-Adaptor
outperform the fine-tuned 16-bit models. Another advantage of the QR-Adaptor is that it can be im-
plemented without any additional technical measures to optimize performance, apart from spending
some time (about 15 minutes to get one data point). This simple but effective method is very useful
in practical applications.

w/o
tu

nin
g-

16
bit

w/o
tu

nin
g-

8b
it

w/o
tu

nin
g-

4b
it

Lo
RA_1

6b
it

QLo
RA_8

bit

QLo
RA_4

bit

Ada
lor

a_
16

bit

Ada
lor

a_
8b

it

Ada
lor

a_
4b

it

Lo
ftQ

-4b
it

LQ
-Lo

RA-4i
t

QR-A
da

pt
or

Methods

0.35

0.40

0.45

0.50

0.55

M
M

LU
 A

cc
ur

ac
y

QR-Adaptor (13B)
QR-Adaptor (7B)

LLaMA2-13B
LLaMA2-7B

Figure 7: Performance comparison on MMLU bench-
mark. QR-Adaptor outperforms other methods.

Due to hardware constraints, we did not test
models larger than 70B, but compared to other
methods, QR-Adaptor can iteratively optimize
larger models on the same hardware. Existing
research shows that modifying only a subset
of parameters can significantly change perfor-
mance, which implies that applying our method
to larger-scale models would not greatly in-
crease time consumption, as iteration optimiza-
tion can be achieved by reducing fine-tuning
data and conducting rapid evaluations.

Additionally, the experimental results indicate
that the two problems we discussed earlier re-
garding fine-tuning quantized models persist, especially with the 13B model. Despite our efforts to
select appropriate configurations for the baseline methods, their performance is still inferior to the
simplest QLoRA. For the MMLU task, baseline methods may perform even worse than quantized
models without tuning.

4.2 ABLATION STUDY

We use the WinoGrande benchmark as an example for the ablation study to evaluate the role of
each stage in QR-Adapto. As shown in Figure 8, it is evident that excluding PRGA and Bayesian
optimization leads to uneven exploration of the search space—one is too broad and the other too
concentrated—since they represent the extrapolation and interpolation capabilities, respectively. Ex-
cluding stage 1 results in overly scattered exploration because PRGA starts from a random search

1https://huggingface.co/datasets/yahma/alpaca-cleaned

9

https://huggingface.co/datasets/yahma/alpaca-cleaned

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

16.0 16.5 17.0 17.5 18.0
0.680

0.685

0.690

0.695

0.700

Do
wn

st
re

am
 T

as
k

Pe
rfo

rm
an

ce

16.0 16.5 17.0 17.5 18.0 16.0 16.5 17.0 17.5 18.0 16.0 16.5 17.0 17.5 18.0

Stage 1
Stage 2
Stage 3

Memory (GB)

Figure 8: From left to right, the actual measured performance and memory usage of the configurations gener-
ated by QR-Adaptor, QR-Adaptor without stage1, QR-Adaptor without stage2, and QR-Adaptor without stage3
are shown. Different colors represent the configurations generated at different stages.

without an initialization point. However, it still manages to explore the theoretically optimal region
in the upper-left corner, demonstrating the strong capabilities of PRGA and Bayesian optimization.
In contrast, the complete three-stage QR-Adaptor clearly shows the advantage of first conducting a
broad exploration around the initialization point, followed by interpolation near promising solutions
to further optimize and identify the best configuration. Other ablation in the appendix E.

5 RELATED WORK

LLM Quantization. The field of LLM quantization has witnessed substantial progress, driven by
the need for efficient model deployment. Recent research has introduced several innovative ap-
proaches. Frantar et al. (2023) have developed GPTQ, which achieves 4-bit precision with layer-
wise quantization. Lin et al. (2023) have proposed AWQ, which improves accuracy for heavily
quantized models. Yao et al. (2022) have introduced ZeroQuant, which preserves zero-shot capa-
bilities at lower bit widths. Dettmers et al. (2022) have presented LLM.int8(), which enables 8-bit
quantization for consumer hardware. Kim et al. (2023) have combined quantization with pruning
and knowledge distillation in SqueezeLLM. Guan et al. (2024) have optimized the balance between
compression and performance through mixed-precision quantization with APTQ. These develop-
ments significantly enhance the efficiency and accessibility of large language models.

Parameter Efficient Fine-Tuning. PEFT techniques have become crucial for enhancing LLMs
without increasing inference overhead. Recent innovations have expanded the field. Dettmers et al.
(2023) have introduced QLoRA, which combines 4-bit quantization with low-rank adapters. Li
et al. (2023) have presented LoftQ, which alternates between quantization and low-rank approxima-
tion steps. Berman & Peherstorfer (2024) have introduced CoLoRA for accelerating the prediction
of solution fields under new parameters. AdaLoRA (Zhang et al., 2023a) proposes adaptive budget
allocation for low-rank updates, while LQ-LoRA (Guo et al., 2023) combines low-rank decomposi-
tion with quantization for efficient fine-tuning under memory constraints. Additionally, Zhou et al.
(2024) have introduced RankAdaptor, which is a hierarchical dynamic low-rank adaptation method
for structural pruned LLMs. These advancements demonstrate the evolving landscape of PEFT
techniques, offering innovative solutions for efficient LLM fine-tuning across diverse applications.

6 CONCLUSION

We have identified the issues arising in the current fine-tuning of quantized models and have estab-
lished two constraints accordingly. Under these constraints, the performance of fine-tuning quan-
tized models will at least not be worse than before fine-tuning. To achieve higher performance in
low-bit models while saving memory during fine-tuning, we propose QR-Adaptor, a general and ef-
ficient fine-tuning framework. It enables low-bit models to outperform fine-tuned models at the orig-
inal precision. Based on our experimental results, we found that altering the bit-width of each layer
and adjusting the allocation of trainable parameters can lead to significant shifts in performance,
and this trend is largely predictable by the algorithm. In theory, our framework is also applicable to
high-precision models, but this paper primarily focuses on fine-tuning under quantization.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide comprehensive documentation on the steps
required to replicate our experiments. Our code is available in scripts such as optuna main-v3.py,
post training mixed quant.py, and run optuna.py, which handle hyperparameter optimiza-
tion, mixed-precision quantization, and evaluation. For data preparation, we utilize the Alpaca
Cleaned Dataset from yahma/alpaca-cleaned, which is automatically downloaded and processed
using the datasets library. Our environment setup requires an NVIDIA GPU with CUDA sup-
port, preferably with at least 20 GB of memory for the LLaMA 2 model, as well as Python 3.8+
and dependencies like PyTorch, Transformers, Optuna, BitsAndBytes, PEFT, and other libraries,
which can be installed via the requirements.txt file. The model we fine-tune is the LLaMA 2
architecture (NousResearch/Llama-2-7b-hf), using a mixed-precision quantization approach via
bitsandbytes and Low-Rank Adaptation (LoRA) with the peft library. The training is conducted
using a mixed-precision setup where the model’s dtype is set to torch.bfloat16 to optimize mem-
ory usage and computation efficiency. Our hyperparameter optimization framework leverages Op-
tuna to maximize model accuracy while minimizing memory usage, tuning parameters like quan-
tization bits (4 or 8 bits) and LoRA ranks (2 to 16). To replicate our training process, researchers
can execute the provided scripts using the specified command-line arguments, which configure the
model, output directories, number of trials, and evaluation tasks. Model checkpoints and Optuna re-
sults are saved at regular intervals. The training is conducted using the Hugging Face Trainer, con-
figured with parameters including a batch size of 4, gradient accumulation steps of 16, warmup steps
of 100, and a learning rate of 1e-4, with evaluation and model saving steps set to every 200 steps.
Evaluation is conducted using the lm eval library, where metrics such as accuracy are recorded
and saved in JSON format. All hyperparameter settings and model configurations are logged in the
output directory, along with training progress and memory usage. Random seeds are set to ensure
deterministic behavior. By following these steps, including hardware and software specifications,
and running the scripts with the provided configurations, researchers can reproduce our experiments
and validate the findings related to mixed-precision quantization and parameter-efficient fine-tuning.

ETHICS STATEMENT

This work builds upon pre-trained large language models LLaMA-2 and utilizes publicly available
datasets for instruction fine-tuning Alpaca-clean. We do not introduce any new datasets or data col-
lection processes, and therefore do not involve human annotation in this research. Additionally, our
study focuses on improving model efficiency through pruning and quantization techniques, without
engaging with sensitive content or user-specific data. As such, this paper does not present any eth-
ical concerns beyond those already associated with the broader body of research on large language
models and their datasets. All datasets and models used comply with their respective licenses and
terms of use.

REFERENCES

Jules Berman and Benjamin Peherstorfer. Colora: Continuous low-rank adaptation for reduced
implicit neural modeling of parameterized partial differential equations, 2024. URL https://
arxiv.org/abs/2402.14646.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

11

https://arxiv.org/abs/2402.14646
https://arxiv.org/abs/2402.14646

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):
182–197, 2002.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. CoRR, abs/2208.07339, 2022. URL http://arxiv.
org/abs/2208.07339.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Elias Frantar, Sahar Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. In The Eleventh International Conference
on Learning Representations (ICLR), 2023.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional net-
works using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Zhuocheng Gong, Jiahao Liu, Jingang Wang, Xunliang Cai, Dongyan Zhao, and Rui Yan. What
makes quantization for large language models hard? an empirical study from the lens of pertur-
bation, 2024. URL https://arxiv.org/abs/2403.06408.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer

12

http://arxiv.org/abs/2208.07339
http://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2403.06408

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Zhaoyi Guan, Hongyi Huang, Yihan Su, Haoxiang Huang, Ngai Wong, and Huazhong Yu. Aptq:
Attention-aware post-training mixed-precision quantization for large language models. arXiv
preprint arXiv:2402.14866, 2024.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. ICLR 2024, 2023.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. LQ-loRA: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=xw29VvOMmU.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In International conference on machine learning, pp. 1737–1746.
PMLR, 2015.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In Proceedings of ICLR,
2022.

Sehoon Kim, Connor R. C. Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, and Kurt
Keutzer. Squeezellm: Dense-and-sparse quantization. In Proceedings of the Forty-first Interna-
tional Conference on Machine Learning (ICML), 2023.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models, 2023. URL https:
//arxiv.org/abs/2310.08659.

Ji Lin, Jie Tang, Haotao Tang, Shuxin Yang, Xiaoxia Dang, and Song Han. Awq: Activation-aware
weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Spyros Makridakis, Fotios Petropoulos, and Yanfei Kang. Large language models: Their success
and impact. Forecasting, 5(3):536–549, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Mohaimenul Azam Khan Raiaan, Md Saddam Hossain Mukta, Kaniz Fatema, Nur Mohammad
Fahad, Sadman Sakib, Most Marufatul Jannat Mim, Jubaer Ahmad, Mohammed Eunus Ali, and
Sami Azam. A review on large language models: Architectures, applications, taxonomies, open
issues and challenges. IEEE Access, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
2023. URL https://github.com/tatsu-lab/stanford alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, and et al. Bhosale, Shruti. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

14

https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=xw29VvOMmU
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2310.08659
https://arxiv.org/abs/2310.08659
https://github.com/tatsu-lab/stanford_alpaca

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen
Yan, Yi Zhu, Quanlu Zhang, et al. Efficient large language models: A survey. Transactions on
Machine Learning Research.

Zhewei Yao, Reza Yazdani Aminabadi, Ming Zhang, Xiang Wu, Cong Li, and Yuxiong He. Ze-
roquant: Efficient and affordable post-training quantization for large-scale transformers. In Ad-
vances in Neural Information Processing Systems, volume 35, pp. 27168–27183, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In International Con-
ference on Learning Representations. Openreview, 2023a.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023b.

Changhai Zhou, Shijie Han, Shiyang Zhang, Shichao Weng, Zekai Liu, and Cheng Jin. Rankadap-
tor: Hierarchical dynamic low-rank adaptation for structural pruned llms. arXiv preprint
arXiv:2406.15734, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A QUANTIZATION

We first apply NF-quantization with bit size b0 and bucket size B0 to obtain the quantized matrix
Âi and the absmax values for each block s = [s1, . . . , s sizeof(Ai)

B0

]. These absmax values are further

quantized to b1 bits via uniform integer quantization with bucket size B1 to obtain the quantized
vector ŝ, along with the absmax values for s, i.e., v = [v1, . . . v sizeof(Ai)

B0B1

]. Finally, we cast v to b2

bits to obtain v̂.

This quantization scheme requires storing Âi, ŝ, v̂ to represent Ai. We can thus quantify the memory
cost (number of bits) for storing Ai given a configuration ci = (b0, b1, b2, B0, B1) as:

memory cost(Ai, ci) = sizeof(Ai) ·
(
b0 +

b1
B0

+
b2

B0 ·B1

)
(9)

The original NF-4 double quantization is a special case with qNF4 = (4, 8, fp32, 64, 256) and
memory cost(Ai, qNF4) = 4.127 · sizeof(Ai), i.e., NF-4 requires on average 4.127 bits per pa-
rameter.

B MORE RESULTS

Due to page limitations, we present all the results of rank=8 and the comparison with QR-Adaptor
here.

Table 2: Performance comparison of different methods (rank=8) across various bit-width configurations. Su-
perscripts on LoftQ bits indicate the number of initialization iterations. QR-Adaptor searches for optimal bit
number and rank value for each layer based on different tasks; its bit number and peak memory usage are aver-
aged across 7 tasks. Bold figures represent the best performance for a given model and task, while underlined
figures indicate the second-best. Accuracy is reported as %, and memory is measured in GB.

Method Bit BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Average Memory

L
la

m
a2

-1
3B

w/o tuning
16 80.61 80.52 79.37 72.06 79.46 49.15 45.20 69.48 -
8 79.94 80.20 79.14 72.61 78.91 48.89 45.40 69.30 -
4 80.52 79.98 78.38 71.59 77.65 48.29 44.80 68.74 -

LoRA 16 81.44 81.12 79.98 71.98 80.18 52.56 46.40 70.52 41.04

QLoRA
8 81.22 80.47 79.92 73.09 80.18 52.39 45.00 70.32 37.82
4 81.41 80.30 79.46 71.82 78.91 51.54 45.40 69.83 26.84

AdaLoRA
16 80.37 80.47 79.25 72.30 79.46 49.15 45.40 69.49 41.07
8 80.43 80.47 79.29 72.22 79.34 49.32 45.60 69.52 38.36
4 80.40 80.14 78.12 71.74 77.78 48.29 44.20 68.67 27.30

LoftQ
41 81.16 80.41 79.12 71.35 78.79 50.68 45.80 69.62 40.56
45 80.24 80.25 78.81 70.80 78.87 50.34 45.20 69.22 39.81

LQ-LoRA 4 80.67 80.14 78.91 71.11 78.79 50.60 45.00 69.32 39.81

QR-Adaptor 6.125 81.84 81.45 80.08 72.69 80.64 52.82 45.80 70.76 27.41

L
la

m
a2

-7
B

w/o tuning
16 77.68 79.11 76.01 68.98 76.30 46.16 44.20 66.92 -
8 77.58 79.27 76.04 68.98 75.97 46.50 44.00 66.91 -
4 76.21 78.18 75.57 69.06 75.25 45.99 44.40 66.38 -

LoRA 16 78.47 79.38 76.93 69.38 77.36 46.93 44.80 67.61 23.89

QLoRA
8 77.92 79.82 76.88 68.75 77.36 48.21 44.80 67.68 23.04
4 77.43 78.67 76.42 69.85 76.26 46.25 46.20 67.30 17.31

AdaLoRA
16 77.46 79.16 75.89 69.22 76.77 46.08 44.20 66.97 23.56
8 77.49 79.00 75.93 69.06 76.73 46.08 44.20 66.93 23.49
4 76.39 77.91 75.45 69.14 75.25 46.33 44.40 66.41 17.54

LoftQ
41 77.43 79.33 76.68 69.30 77.10 46.16 44.80 67.26 23.29
45 76.33 79.05 76.36 69.06 76.64 47.35 45.60 67.20 23.53

LQ-LoRA 4 76.57 78.84 76.24 68.90 76.60 47.18 45.00 67.05 23.49

QR-Adaptor 5.875 78.96 79.86 76.84 69.97 77.44 48.04 46.00 68.15 17.92

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.1 EXPERIMENT SCOPE EXPANSION: LLAMA 3.1

In the original experiments, the focus was primarily on models from the Llama 2 series. However,
Llama 3 models, including Llama 3.1, present new challenges for quantization due to their updated
architecture and training improvements. These models are significantly harder to quantize, espe-
cially under low-bit configurations, as they incorporate more sophisticated architectural features. To
address this, we conducted additional experiments with Llama 3.1 to evaluate the performance of
QR-Adaptor on more complex and harder-to-quantize models.

Our results show that QR-Adaptor outperforms existing methods, such as AdaLoRA and LoftQ,
on Llama 3.1, particularly on challenging datasets like GSM8K. The comparative results for vari-
ous models and bit-width configurations are presented in Table 3, where QR-Adaptor consistently
demonstrates superior performance across all tasks. The robustness of QR-Adaptor is evident, espe-
cially on tasks that typically cause performance degradation for other methods.

Table 3: Performance comparison of different methods across various bit-width configurations. Superscripts
on LoftQ bits indicate the number of initialization iterations. QR-Adaptor searches for optimal bit number and
rank value for each layer based on different tasks; its bit number and peak memory usage are averaged across 8
tasks. Accuracy is reported as %.

Method Bit ARC (C) ARC (E) BoolQ GSM8K HellaSwag OpenBookQA PIQA WinoGrande

R
an

k
=

8

LoRA 16 0.5614 0.8388 0.8318 0.5436 0.7944 0.452 0.8210 0.7530
QLoRA 8 0.5708 0.8346 0.8248 0.5375 0.7963 0.460 0.8210 0.7459
QLoRA 4 0.5435 0.8241 0.8208 0.4435 0.7882 0.442 0.8150 0.7364
AdaLoRA 16 0.5290 0.8199 0.8187 0.5057 0.7865 0.450 0.8134 0.7395
AdaLoRA 8 0.5290 0.8186 0.8205 0.4996 0.7865 0.448 0.8134 0.7443
AdaLoRA 4 0.5128 0.8098 0.8061 0.3783 0.7736 0.428 0.8074 0.7253
LoftQ 41 0.5486 0.8274 0.8226 0.5140 0.7865 0.460 0.8145 0.7324
LoftQ 45 0.5265 0.8182 0.8153 0.3965 0.7850 0.434 0.8139 0.7269
LoftQ 410 0.5188 0.8131 0.7966 0.3844 0.7801 0.432 0.8112 0.7198
QR-Adaptor 5.45 0.5683 0.8412 0.8338 0.5629 0.8093 0.458 0.8292 0.7510

R
an

k
=

16

LoRA 16 0.5674 0.8363 0.8300 0.5413 0.7951 0.444 0.8183 0.7443
QLoRA 8 0.5623 0.8291 0.8266 0.5368 0.7946 0.460 0.8166 0.7474
QLoRA 4 0.5384 0.8199 0.8211 0.4466 0.7876 0.444 0.8172 0.7309
AdaLoRA 16 0.5307 0.8203 0.8199 0.5011 0.7861 0.454 0.8128 0.7411
AdaLoRA 8 0.5333 0.8203 0.8211 0.4913 0.7857 0.452 0.8134 0.7379
AdaLoRA 4 0.5085 0.8072 0.8073 0.3798 0.7734 0.428 0.8052 0.7316
LoftQ 41 0.5512 0.8258 0.8269 0.4981 0.7882 0.458 0.8128 0.7427
LoftQ 45 0.5392 0.8232 0.8156 0.4200 0.7854 0.438 0.8156 0.7277
LoftQ 410 0.5290 0.8169 0.8156 0.3988 0.7864 0.438 0.8107 0.7198
QR-Adaptor 5.45 0.5683 0.8412 0.8338 0.5629 0.8093 0.458 0.8292 0.7510

B.2 EFFECTIVENESS ON LARGER DATASETS WITH HIGHER RANKS

To address the concern regarding the effectiveness of small LoRA ranks on larger datasets, we con-
ducted additional experiments on the LLaMA 3.1-8B model using a larger dataset consisting of
177k samples. We tested our method with higher LoRA ranks (32 and 64) to evaluate its perfor-
mance in handling large-scale data.

Our results are summarized in Table 4. The table compares the performance of QR-Adaptor with
other baseline methods, including LoRA, QLoRA, AdaLoRA, and LoftQ, across various tasks. The
performance metrics include accuracy scores on datasets such as ARC (Challenge), ARC (Easy),
BoolQ, HellaSwag, OpenBookQA, PIQA, WinoGrande, and MMLU.

KEY OBSERVATIONS

• Effectiveness of LoRA Initialization: Despite using higher ranks (32 and 64) and larger
datasets, methods like LoftQ and LQ-LoRA do not consistently outperform the standard
QLoRA baseline or the quantized models without fine-tuning. Increasing iterations in
LoftQ (from LoftQ-1 to LoftQ-10) to better fit quantization errors leads to performance
degradation, especially on challenging tasks like MMLU and GSM8K. These results sug-
gest that fitting quantization errors using LoRA initialization is not universally effective
and may introduce noise that hinders model performance.

• Effectiveness on Larger Datasets: Our method, QR-Adaptor, consistently achieves supe-
rior performance across all tasks and outperforms other methods, confirming its robustness

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 4: Results on LLaMA 3.1-8B with 177k Dataset using Higher Ranks. The best performance for each
task is highlighted in bold.

Method Rank Bit-width ARC (C) ARC (E) BoolQ HellaSwag OpenBookQA PIQA WinoGrande MMLU
LoRA 32 16 0.5486 0.8274 0.8275 0.7921 0.444 0.8199 0.7411 0.6366
QLoRA 32 8 0.5520 0.8312 0.8193 0.7907 0.462 0.8188 0.7332 0.6328
QLoRA 32 4 0.5341 0.8089 0.8205 0.7842 0.436 0.8090 0.7301 0.6097
LoRA 64 16 0.5546 0.8295 0.8294 0.7913 0.450 0.8188 0.7451 0.6434
QLoRA 64 8 0.5546 0.8304 0.8196 0.7917 0.458 0.8194 0.7301 0.6334
QLoRA 64 4 0.5341 0.8119 0.8174 0.7835 0.446 0.8069 0.7206 0.6079
AdaLoRA 32 8 0.5392 0.8182 0.8220 0.7857 0.462 0.8150 0.7340 0.6382
AdaLoRA 32 4 0.5145 0.8102 0.8086 0.7730 0.424 0.8096 0.7253 0.5815
AdaLoRA 64 8 0.5392 0.8211 0.8193 0.7874 0.462 0.8139 0.7395 0.6388
AdaLoRA 64 4 0.5213 0.8098 0.8104 0.7720 0.422 0.8085 0.7277 0.5807
LoftQ (1) 32 4 0.5384 0.8136 0.8141 0.7812 0.430 0.8150 0.7356 0.5940
LoftQ (5) 32 4 0.5256 0.8136 0.8196 0.7805 0.428 0.8145 0.7309 0.5941
LoftQ (10) 32 4 0.5162 0.8131 0.8251 0.7816 0.436 0.8134 0.7230 0.5912
LoftQ (1) 64 4 0.5282 0.8140 0.8159 0.7823 0.432 0.8134 0.7388 0.5978
LoftQ (5) 64 4 0.5239 0.8110 0.8113 0.7833 0.434 0.8134 0.7324 0.5869
LoftQ (10) 64 4 0.5171 0.8123 0.8162 0.7837 0.432 0.8101 0.7277 0.5925
QR-Adaptor 32 5.875 0.5612 0.8345 0.8321 0.7978 0.462 0.8210 0.7459 0.6440

and scalability. The results validate that QR-Adaptor is effective even when small LoRA
ranks might not suffice for larger datasets.

• Impact of Adaptive LoRA Rank Reduction: AdaLoRA exhibits performance drops, par-
ticularly with lower bit-widths and on more challenging tasks. This supports our observa-
tion that dynamically adjusting the rank during fine-tuning can lead to convergence issues
in quantized models, which are less robust due to quantization errors.

These results reinforce our initial observations and highlight the limitations of methods that at-
tempt to fit quantization errors through LoRA initialization. The inability of LoftQ and AdaLoRA
to improve performance significantly, even with higher ranks and larger datasets, underscores the
challenges associated with such approaches. In contrast, QR-Adaptor, guided by our proposed
constraints, demonstrates consistent performance improvements.

B.3 TRAINING TIME COMPARISON

An important consideration in the evaluation of QR-Adaptor is the training time, particularly due
to its reliance on Bayesian optimization. While QR-Adaptor provides significant performance im-
provements, it may require additional time per iteration compared to other methods. Table 5 sum-
marizes the training time per iteration for QR-Adaptor and baseline methods on Llama 2 7B.

Table 5: Training time per iteration for different methods on Llama 2 7B.

Model Method Time per Iteration (min)
LLaMA2-7B LoftQ 9
LLaMA2-7B QR-Adaptor 15

Although QR-Adaptor takes longer to train due to its optimization process, this trade-off results
in superior performance, particularly in terms of task-specific optimizations. The Bayesian opti-
mization employed by QR-Adaptor ensures more precise adjustments to the model, which leads to
better results on downstream tasks without additional resource consumption during the optimization
process.

B.4 FAIRER COMPARISON: MATCHING BIT-WIDTH CONFIGURATIONS

Another important consideration for a fair comparison of quantization methods is the bit-width
configuration used. To ensure that prior methods are evaluated under the same conditions as QR-
Adaptor, we have re-evaluated AdaLoRA and LoftQ using the same mixed-precision configurations
that were optimized through QR-Adaptor’s framework. The updated results for Llama 2 13B are
shown in Table 6.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 6: Performance comparison with fair bit-width configurations for Llama 2 13B.

Model Method BoolQ (%) PIQA (%) HellaSwag (%) WinoG (%) ARC-e (%) ARC-c (%) OBQA (%) Average (%)
Llama 2 13B QR-Adaptor 81.84 81.45 80.08 72.69 80.64 52.82 45.80 70.76
Llama 2 13B AdaLoRA 81.08 80.13 79.21 71.74 79.51 50.12 45.60 69.77
Llama 2 13B LoftQ 80.93 79.47 79.02 71.34 79.26 51.20 45.60 69.98

The results indicate that the initialization constraints applied by QR-Adaptor provide substantial im-
provements over the original configurations of AdaLoRA and LoftQ. Despite these improvements,
QR-Adaptor still outperforms these methods in terms of overall task performance. The constraints,
specifically ensuring stable initialization and fixing trainable parameters, contribute significantly to
the enhanced performance of QR-Adaptor.

C VERSION OF LLMS

We provide the Hugging Face link of LLMs used in the experiment: LLaMA2-7B: https:
//huggingface.co/NousResearch/Llama-2-7b-hf; LLaMA2-13B: https://huggingface.
co/NousResearch/Llama-2-13b-hf; LLaMA3.1-8B: https://huggingface.co/meta-llama/
Llama-3.1-8B.

D MORE IMPLEMENTATION DETAILS

In optimizing the pruned LLaMA-7B model, a carefully designed hyperparameter configuration has
been implemented to strike a balance between model performance and computational efficiency.
The model is fine-tuned using a learning rate of 3 × 10−4, with a batch size of 128, divided into
micro-batches of 4 to effectively manage memory limitations. Input sequences are capped at 256
tokens, and a dropout rate of 0.05 is applied to the LoRA layers, specifically targeting the query,
key, value, and output projections, as well as the gate, down, and up projections. Layer-specific
quantization is applied at both 4-bit and 8-bit levels, optimizing memory usage while maintaining
computational accuracy. The training is performed using the paged AdamW optimizer with 32-bit
precision, ensuring both stability and efficiency. These settings have been rigorously tested and
refined through the Optuna framework to achieve an optimal balance between model performance
and resource efficiency.

E MORE ABLATION

We conducted comprehensive ablation studies to evaluate the impact of initialization metrics and
the sensitivity of the proposed Pareto Ranking Genetic Algorithm (PRGA) to key hyperparameters,
including iteration counts and population size. These experiments aim to further substantiate the
effectiveness of our proposed approach.

E.1 GRADIENT NORMS VS. RELATIVE ENTROPY

To assess the efficacy of initialization metrics, we compared the use of gradient norms and relative
entropy in quantifying layer importance for fine-tuning quantized LLMs. The experimental results
are summarized in Table 7.
Table 7: Comparison of gradient norms and relative entropy as initialization metrics. Bold values indicate the
best performance for each task.

Initialization Metric BoolQ (%) PIQA (%) HellaSwag (%) WinoG (%) ARC-E (%) ARC-C (%) OBQA (%) Average (%)
Gradient Norms 80.79 80.13 79.16 71.69 78.72 50.97 45.40 69.51
Relative Entropy 81.08 80.83 79.80 71.98 79.13 51.65 45.60 70.07

Insights:

19

https://huggingface.co/NousResearch/Llama-2-7b-hf
https://huggingface.co/NousResearch/Llama-2-7b-hf
https://huggingface.co/NousResearch/Llama-2-13b-hf
https://huggingface.co/NousResearch/Llama-2-13b-hf
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.1-8B

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• Limitations of Gradient Norms: Gradient norms exhibit limited variability and are prone
to biases induced by quantization, which undermines their reliability as an initialization
metric for quantized models.

• Advantages of Relative Entropy: Relative entropy captures task-specific layer importance
more effectively, resulting in robust initialization and improved performance in downstream
optimization.

E.2 SENSITIVITY TO ITERATION COUNTS AND POPULATION SIZE

To analyze the sensitivity of PRGA to hyperparameters, we systematically varied the number of
iterations and population sizes. Table 8 presents the results of these experiments.

Table 8: Sensitivity analysis of PRGA under different iteration counts and population sizes. Bold values
indicate the best configuration.

Iterations Population Size Average Improvement (%) Total Time (min)
5 3 +0.8 120
5 5 +1.2 150
10 5 +1.5 225
5 20 +1.6 375
10 20 +2.3 450

Insights:

• Trade-offs in Population Size: Smaller population sizes (e.g., 3) reduce computational
cost but may fail to adequately explore the search space. Larger population sizes (e.g., 20)
improve exploration and convergence but increase computational overhead.

• Impact of Iteration Count: Increasing the number of iterations improves optimization
quality, as reflected in better Pareto fronts. However, the marginal benefits diminish beyond
10 iterations, indicating limited practical gains for further increases.

• Balanced Configuration: A population size of 5 and 5 iterations strikes a balance be-
tween performance improvement and computational efficiency. This configuration can be
adjusted based on specific resource availability or performance requirements.

F LIMITATION

A constraint of our framework is the relatively long search time required to determine optimal task-
specific configurations. This extended duration is necessary to ensure the best fine-tuning setup
for each task. We recognize this as a current limitation and are actively working on improving the
efficiency of our search algorithm.

20

	Introduction
	Discussion on Fine-tuning Quantized Models
	Methodology
	Problem Formulation
	QR-Adaptor Framework

	Evaluation
	Main Results
	Ablation Study

	Related Work
	Conclusion
	quantization
	More Results
	Experiment Scope Expansion: Llama 3.1
	Effectiveness on Larger Datasets with Higher Ranks
	Training Time Comparison
	Fairer Comparison: Matching Bit-width Configurations

	Version of LLMs
	More Implementation Details
	More Ablation
	Gradient Norms vs. Relative Entropy
	Sensitivity to Iteration Counts and Population Size

	Limitation

