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Abstract

Recent embodied agents are primarily built based
on reinforcement learning (RL) or large language
models (LLMs). Among them, RL agents are
efficient for deployment but only perform very
few tasks. By contrast, giant LLM agents (of-
ten more than 1000B parameters) present strong
generalization while demanding enormous com-
puting resources. In this work, we combine their
advantages while avoiding the drawbacks by con-
ducting the proposed referee RL on our developed
large auto-regressive model (LARM). Specifi-
cally, LARM is built upon a lightweight LLM
(fewer than 5B parameters) and directly outputs
the next action to execute rather than text. We
mathematically reveal that classic RL feedbacks
vanish in long-horizon embodied exploration and
introduce a giant LLM based referee to handle
this reward vanishment during training LARM.
In this way, LARM learns to complete diverse
open-world tasks without human intervention. Es-
pecially, LARM successfully harvests enchanted
diamond equipment in Minecraft, which demands
significantly longer decision-making chains than
the highest achievements of prior best methods.

1. Introduction
In recent years, remarkable progress has been achieved
in various artificial intelligence (AI) topics (LeCun et al.,
2015) like computer vision (He et al., 2016) and natural
language processing (Kenton & Toutanova, 2019), but most
of them lack the capacity to physically interact with the real
world. To address this disconnect, the concept of embodied
AI is introduced (Chrisley, 2003). Early embodied agents
are predominantly developed on simulation platforms for
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specific tasks such as object grasping and indoor naviga-
tion (Savva et al., 2019). While notable advancements are
achieved, these agents tend to be specialist models confined
to isolated tasks (Huang et al., 2023). To overcome this limi-
tation, recent studies, including this work, employ Minecraft
(Baker et al., 2022; Fan et al., 2022; Guss et al., 2019; Wang
et al., 2024; Li et al., 2023) as a benchmark to explore em-
bodied agents with open-ended objectives and long-horizon
reasoning chains.

The early methods for developing such agents primarily rely
on reinforcement learning (RL) (Fan et al., 2022). Due to the
limited exploration efficiency of RL, these methods require
careful reward engineering for different tasks, and the de-
rived RL policies can mostly only complete a single simple
task (Yuan et al., 2023). The advantage of RL policies is that
they are usually lightweight for real-time deployment. Dif-
ferently, recent embodied works begin to investigate large
language models (LLMs) (Brown et al., 2020). Owing to
the extensive general knowledge and formidable reasoning
capabilities of LLMs, these methods demonstrate promis-
ing results with significantly reduced domain-specific engi-
neering efforts (Wang et al., 2023a). Nevertheless, LLMs
continue to exhibit several limitations. First of all, the out-
puts of LLMs are usually sentences or code (Zhao et al.,
2024) generated through iterative token prediction, necessi-
tating N inference operations for N tokens. Therefore, the
response speeds of LLMs are restricted. Secondly, recent
research suggests that a huge model size is important for
an LLM to generalize well (Achiam et al., 2023), while the
computing resource for embodied agents is usually very lim-
ited. Our analysis reveals that while giant LLMs with more
than 1000B parameters like GPT-4 (Achiam et al., 2023)
can answer questions about exploration and crafting issues
in Minecraft well, the performance of lightweight LLMs
such as LLaVA-7B (Liu et al., 2024a) is limited.

As illustrated in Fig. 1, we aim to combine the advantages
of both RL methods and LLM methods while avoiding
their drawbacks. To this end, we first propose Large Auto-
Regressive Model (LARM), the main body of which shares
the same structure as lightweight LLMs like TinyLLaVA
(Zhou et al., 2024). This choice enables us to first pre-train
it utilizing numerous webpage data to provide it with ba-
sic general knowledge. Taking environmental observation
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as input, LARM predicts the next action to perform in an
auto-regressive manner. Instead of generating a descriptive
sentence composed of multiple tokens, LARM directly pro-
duces a single token to select the next action, which makes
LARM respond more swiftly than common LLMs.

The following problem is how to train LARM. We find that
classic RL algorithms cannot train LARM effectively and
mathematically reveal this is because the reward feedback
gradually vanishes in long-horizon embodied exploration.
This phenomenon can be empirically understood as even
though a policy selects the correct action, it obtains positive
feedback only after the target task is completed, meaning
many iterations of delay. In addition, any wrong decision-
making in future iterations will cause the policy to get no
positive reward, which hides the value of the current correct
action. To handle this problem, we introduce referee RL.
Its core idea is that we employ a referee (like a giant LLM)
to provide immediate feedback about whether the just per-
formed action brings positive contribution to realizing the
final target. In this way, we efficiently distill the concerned
generalizable knowledge of giant LLMs into our lightweight
end-to-end LARM policy during online exploration with-
out human supervision. This marks the first attempt that
optimizes an LLM-style embodied policy through making
it directly interact with the environment online.

We validate our method in both MineDojo (Fan et al., 2022)
and Mineflayer (PrismarineJS., 2013) environments. The
experimental results suggest that our method completes di-
verse challenging tasks with a single model, indicating its
promising generalization. LARM achieves higher success
rates than previous counterparts, although these counter-
parts may employ a special network for each task. Notably,
LARM is the first method that harvests enchanted diamond
equipment in Minecraft. In addition, evaluated with an
RTX4090 GPU, LARM runs with a speed of 0.58 second
per inference, which meets the speed requirement of online
high-level action scheduling.

2. Related Work
Minecraft agents. Compared with other embodied bench-
marks, Minecraft is an open-ended platform suitable for
exploring building agents with long-horizon planning ca-
pabilities (Fan et al., 2022). It simulates diverse weather,
biomes, and mobs in an unlimited 3D virtual world. Early
methods in Minecraft are mostly based on reinforcement
learning (Frazier & Riedl, 2019) or imitation learning (Baker
et al., 2022). Their model outputs are atom actions, e.g., a
short movement, mouse click, or keyboard press. However,
due to the huge decision space, such atom-based agents are
quite challenging for optimization. Thus, these works pay
their main attention to devising strategies for alleviating the
optimization complexity (Scheller et al., 2020). An effective

practice is devising the policy into a hierarchical architec-
ture, where a complex task is first decomposed into many
simple sub-tasks. Different models are trained for various
sub-tasks and a leader model is built to decide the order of
performing these sub-tasks (Liu et al., 2024b).

Due to its open-world characteristic, Minecraft is suitable
for exploring how to develop open-ended embodied intelli-
gence (Feng et al., 2024). To concentrate on studying this
problem, there are plentiful works that take a skill (e.g.,
chopping down a tree or crafting a table) as the basic model
output (Wang et al., 2023a). The skill could be modeled as
a well-trained policy based on reinforcement learning (Yuan
et al., 2023), an action generation model based on language
prompt (Lifshitz et al., 2023), or provided APIs. Among
these works, LLM-based methods achieve the most impres-
sive results thanks to their rich general LLM knowledge
(Achiam et al., 2023; Wang et al., 2023b), especially for
giant LLMs with more than 1000B parameters like GPT-4.
However, due to the huge model sizes, these LLMs can only
be deployed in remote computing clusters. There are also
works that try tuning a lightweight LLM like LLaMA using
Minecraft relevant text and then prompting the tuned LLM
to say what skill should be performed in inference (Feng
et al., 2024). However, the text used for tuning contains
much irrelevant information and is not specialized for task
execution. As the embodied text tuning data volume is also
limited, the tuned LLMs often fail to describe what skill
should be performed correctly.

Large language models. LLMs draw broad attention from
the research and industrial communities due to their rich
general knowledge and the ability to generate the answers
to diverse kinds of questions (Chang et al., 2024). GPT-
3 emerges as a milestone in the evolution of LLMs, as it
takes the next token prediction problem as the pre-training
task and showcases remarkable open-world generalization
capabilities (Brown et al., 2020). Subsequently, the fine-
tuning of GPT-3 using reinforcement learning with human
feedback leads to the creation of ChatGPT (OpenAI, 2023)
and GPT-4 (Achiam et al., 2023). However, a significant
limitation of LLMs is their inability to interpret information
in images, which are vital for humans to perceive the world.
To overcome this problem, researchers devise strategies that
inject vision information into LLMs and enable LLMs to
perceive images. A common method is fine-tuning a small
number of network parameters using numerous language-
image data pairs to bridge the representation gap between
text and images (Ding et al., 2023). In this way, some large
vision-language models like LLaVA (Liu et al., 2024a) and
Flamingo (Alayrac et al., 2022) are derived.

RL with LLMs in embodied AI. RL can search promis-
ing decision-making policies without human intervention,
and LLMs are able to provide suitable search start points
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Figure 1. Comparison among agents based on RL, LLM, and LARM. As shown, RL agents are usually task specialized, and LLM agents
are computationally expensive to deploy. By contrast, the LARM agent is efficient and generalizable. Besides, LARM presents better
performance. As shown, LARM is the first method that achieves enchanted diamond equipment in Minecraft.

based on their rich general knowledge (Laleh & Ahmad-
abadi, 2024). Therefore, it is natural to design ways to
combine them to build advanced embodied intelligence. In
previous works, a popular choice is training a network for
each basic skill based on RL, and then prompting the LLM
to say what skill should be used according to the task target
and environment observation (Wang et al., 2023b). Never-
theless, this paradigm is not only slow, it requires the LLM
to have sufficient knowledge about Minecraft. According to
our analysis, giant LLMs own such an ability but the capa-
bilities of lightweight LLMs are limited. Another possible
choice is utilizing LLM to generate the code for calculating
RL reward (Xie et al., 2024). Nevertheless, it is not always
feasible to define a reward function by writing code. For ex-
ample, in Minecraft, the information is represented as image
and agent status information, which cannot be mapped as
reward based on rules. To handle this problem, we propose
to directly employ GPT-4 to read the agent status before
and after executing a skill and judge whether the outcome
brought by this skill contributes to realizing the given target.
In addition, to the best of our knowledge, this is the first
work that directly optimizes an LLM-style policy based on
online exploration and reinforcement learning. Our results
suggest that the rich general knowledge in LLM favors this
exploration and self-learning process.

3. Preliminary
3.1. Problem Formulation

What we study in this work can be conceptualized as an auto-
regressive prediction problem involving long sequences,

and is effectively framed as a Markov Decision Process
symbolized by a tuple E = (S,A,P, T ,R, γ, τ). Specif-
ically, S is the set of all potential states. A is the action
set, and every action is also called as a skill in this work.
P : S×A×S → [0, 1] represents a probability distribution
that governs the state transitions given states and actions.
T is the set of all task targets. R : S → R, γ, and τ de-
note the reward function, discount factor, and initial state
distribution, respectively. At any discrete time step t, the
environment resides in a state st ∈ S, and the correspond-
ing observation ot by a policy π is a function of this state,
expressed as ot = f(st). This observation ot is then utilized
to select the subsequent action according to at ∼ π(ot, ι),
where at ∈ A and ι ∈ T denotes the given target task.

In tackling the studied long-horizon embodied task, the ob-
jective is to navigate through a sequence of intermediate
states τ, s1, s2, . . . , sT−1 to ultimately reach the target state
sT at the final time step T . This requires the policy to gener-
ate a series of actions a0, a1, . . . , aT−1 such that each action
at transitions the environment from state st to the next state
st+1 correctly, adhering to the dynamics prescribed by the
transition probability distribution P . It is crucial that each
intermediate state st is accurately achieved in sequence to
ensure the policy attains the target state sT .

3.2. PPO

Proximal Policy Optimization (PPO) (Schulman et al., 2017)
is a model-free reinforcement learning algorithm widely
adopted for training policies in complex environments, and
our referee RL is developed based on this algorithm. A PPO
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policy π mainly consists of two components, the actor πa

and critic πc. πc is to estimate the value function Vθc(st),
the expected cumulative discounted reward starting from
state st and following π. The optimization objective of πc

is as follows:

Lc
θc = Et[(Vθc(st)− (rt + γVθc(st+1)))

2], (1)

where rt ∈ R is the reward received after taking action
at in state st. To further reduce the variance of the value
estimate and improve stability, PPO employs the generalized
advantage estimation (GAE), which is defined as:

At =

T−1∑
k=t

(γλ)k−tδk, (2)

where λ is a factor balancing between temporal differ-
ence (TD) learning and Monte Carlo estimation, and δk
denotes the TD-error, which is formulated as δk = rk +
γVθc(sk+1)− Vθc(sk). With At, the objective function for
the critic πa can be given as:

La
θa = Et[

πa(at|st)
πold
a (at|st)

At], (3)

where and πold
a is the old actor policy before weight update

and πa(at|st) is the current actor. To improve the training
stability, PPO further develops a clipped surrogate objective
based on Eq. (3), which can be formulated as:

L̃a
θa = Et[min(ktAt, (kt, 1− ϵ, 1 + ϵ)At)], (4)

where kt =
πa(at|st)
πold
a (at|st) and ϵ is a small positive parameter.

By optimizing πc and πa with respect to Eq. (1) and Eq. (4),
the policy gradually learns to perform the target task.

4. Method
4.1. Referee Reinforcement Learning

In long-horizon embodied task exploration, the policy can
usually only get positive feedback after the target task is
completed successfully (Fan et al., 2022). Following the
notations in Section 3.1, we can assume that there is an
exploration trajectory {(sk, ak, rk)}Tk=t, where T is a large
integer, and sk, ak, and rk denote the state, action, and
environment reward at the k step, respectively. The agent
completes the target task at the final step T . Therefore, we
can get that:

rk =

{
−ε, if k = t, t+ 1, · · · , T − 1

R− ε, if k = T
(5)

where −ε denotes a small negative constant due to time
penalty and R is the positive reward of completing the target

Algorithm 1 Referee RL
Require: Target task ι

1: Initialize the actor πa, critic πc, referee πr

2: Initialize policy exploration step T , policy update steps
Nπ

3: for each iteration iter do
4: Initialize data buffer B ← ∅
5: for t = 1 to T do
6: Get the actor observation ot ← f(st)
7: Get state st+1 and environment reward rt by tak-

ing at ∼ πθ(ot, ι)
8: Get auxiliary reward r̂t ← πr(ι, st, at, at+1)
9: Add transition B ← B∪{(st, ot, at, st+1, rt, r̂t)}

10: end for
11: for n = 1 to Nπ do
12: Sample a random training data batch

{(st, ot, at, st+1, rt, r̂t}Bj=1 ∼ B
13: Optimize πa and with respect to Eq. (1)∼(4)
14: end for
15: end for

task. As we train the critic πc using the very imbalanced
reward set {rk}Tk=t described in Eq. (5) with respect to the
optimization objective in Eq. (1), we can infer that the output
of πc gradually converges to Vθc(sk)− γVθc(sk+1) ≈ −ε.
In this way, the corresponding TD error set {δt}T−1

t=1 is:

δk ≈

{
0, if k = t, t+ 1, · · · , T − 2

R, if k = T − 1
(6)

According to the definition of GAE in Eq. (2), we can
observe that the first T − 1 − t items are close to zero
as the elements in {σk}T−2

k=t are nearly zero. For the last
item (γλ)T−1−tδT−1, we have limT→∞(γλ)T−1−t → 0
because γ ∈ (0, 1) and λ ∈ (0, 1). Hence, when the task
needs long-horizon action chain execution, the obtained
GAE value At is close to zero, which suggests that the opti-
mization objective for training πa in Eq. (4) becomes zero.
In this way, even though the policy makes the right action
decision, it cannot get any positive feedback.

To handle this problem, we introduce referee RL. Specif-
ically, we introduce a referee πp to provide an auxiliary
reward feedback to the trained policy π, and this reward at
the step k is represented as r̂k = πp(ι, sk, ak, sk+1). This
means πp takes the target task information ι, initial state sk,
selected action ak, and new state sk+1 as input and provides
feedback based on whether the selected action is correct
and outcome caused by this action. In this work, we split
the feedback into four categories: (a) The selected action
is correct and brings a positive outcome to realizing the
target. (b) The selected action is correct but does not bring
a positive outcome. (c) The selected action is incorrect but



LARM: Large Auto-Regressive Model for Long-Horizon Embodied Intelligence

Vision Observation

Text Observation

🚩
Task Description

Skill Token

Environment ExplorationLoRA

LLM Decoders

Actor Head

Critic Head

Action

Value

LARM Policy

Agent Environment

Environment Reward

Referee

Auxiliary 
Reward👍👍👍

Total Reward
Reward Generation

Agent State

RL based Policy Optimization

Update

Agent Status: …

Figure 2. The overall pipeline of our method. As illustrated, we parametrize the actor πa and critic πc using a single LARM model with
two separate prediction heads, i.e., the action head and critic head. We train LARM based on our proposed referee RL algorithm, which
utilizes both environment feedback and referee generated auxiliary reward to guide the optimization of LARM.

does not lead to a negative outcome. (d) The selected action
is incorrect and results in a negative outcome. For the four
categories, πp correspondingly returns the reward value ra,
rb, rc, and rd, where ra > rb > 0 > rc > rd. By adding
this auxiliary reward r̂k to the original reward described in
Eq. (5), the feedback to π before T does not remain as the
constant −ε. In this way, the TD error δk and correspond-
ing GAE value At do not converge to zeros, being able to
provide effective optimization guidance to πa.

In this work, we model the referee πp based on GPT-4
(Achiam et al., 2023), which is a giant LLM and owns
extensive generalizable knowledge. As mentioned before,
the information provided to GPT-4 includes ι (target task
description), ak (the executed skill), sk and sk+1 (the inven-
tory list and environment resource surrounding the agent
before and after executing ak), and then we prompt it to
judge the situation and response a reward among ra, rb,
rc, and rd. The full detailed procedure of the referee RL
algorithm is elaborated in Algorithm 1.

4.2. Large Auto-Regressive Model

In this part, we explain how to parametrize πa and πc using
our designed LARM policy. As shown in Fig. 2, the main
body of LARM is the decoders of a lightweight decoder-
only LLM, TinyLLaVA-3.1B in this work. The parameters
of these decoders are frozen during training and a trainable
LoRA (Hu et al., 2021) module is applied to help the model
learn new knowledge in the applied task domain. This

design has two key benefits: (i) The model is initialized with
the general knowledge and reasoning ability of LLMs while
maintaining an acceptable parameter volume. In this way,
LARM can be deployed based on the restricted computing
resources in embodied applications and achieve real-time
response. (ii) As LARM adopts a similar model architecture
as LLMs, we can first pre-train it using numerous question-
answer data related to the concerned embodied AI topics.
This kind of data is much easier to collect and scale up
than embodied data with action execution. We have tried
pre-training LARM using a 34G webpage dataset crawled
from Wiki (Fan et al., 2022), and the results indicate that
the training convergence is improved.

The input to the LARM model consists of four parts, i.e.,
task description, text observation, vision observation, and
a skill token. The task description specifies the target task
to conduct. The text information primarily includes the in-
ventory list, historical action, and blocks surrounding the
agent. The vision information is the real-time image per-
ceived by the agent. We encode text and image information
as tokens based on CLIP (Radford et al., 2021), and these
tokens with an additional learnable skill token are input to
the LARM decoders to conduct feature interaction. After
the decoders, the skill token is input to the action head and
critic head depicted in Fig. 2 to output the action and state
value. Therefore, LARM parametrizes the actor πa and
critic πc in Section 4.1 based on a single model with two
different trainable prediction heads.
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Similar to previous literature (Wang et al., 2023a; Liu et al.,
2024b), the action predicted by LARM is a skill, such as
chopping down a tree or searching for a cobblestone. LARM
selects a skill to perform by conducting feature matching
between the action head output and skill description like
STEVE (Zhao et al., 2024). In this work, we test LARM
with two kinds of skills, the RL-based skills in MineDojo
and API-based skills based on Mineflayer. The former cat-
egory is easier to be extended to real-world applications
and the latter class presents higher execution success rates.
According to the given task requirements, new skills can
be dynamically added based on the strategies developed in
previous works (Wang et al., 2023a) and how to generate
these skills is not the research focus of this work.

Combining the aforementioned techniques, LARM is op-
timized by iterating between environment exploration and
policy update described in Algorithm 1. The training de-
tails like the optimizer choice follow PPO (Schulman et al.,
2017). For learning to complete the most challenging task
in this work (craft an enchanted diamond tool), about 42
hours of exploration is taken using a single RTX4090 GPU.

5. Experiments
5.1. Environment

In this work, we validate our method using the MineDojo
and Mineflayer environments. Both these two environments
are developed based on Minecraft, but there exist differences
in their testing protocols. In addition, the commonly used
strategies of generating skills in these two environments are
also different. For fair comparison, we compare our method
with the counterparts in these two environments separately
using the same testing protocol and skill generation strategy.

MineDojo. MineDojo (Fan et al., 2022) is a pioneering
benchmark suitable for studying how to develop open-ended
and generally capable embodied agents. It features a simula-
tion suite with thousands of tasks specified through natural
language prompts. The behaviors that can be conducted in
MineDojo primarily include navigation, harvest, combat,
and craft. When testing a policy, an agent is randomly ini-
tialized in a biome with some initial tools. The policy needs
to control the agent to explore and harvest resources in the
environment and gradually realize the given target. The ac-
tion space in MineDojo is a compound multi-discrete space
that allows the agent to select a movement action or an op-
tional functional action at each step, encompassing a diverse
range of arguments to facilitate complex interactions.

Mineflayer. Compared with MineDojo, the basic actions in
Mineflayer (PrismarineJS., 2013) are provided APIs, such
as harvesting a log or finding the nearest stone. Compared
with MineDojo, these APIs help researchers concentrate
more on high-level decision making rather than repetitive

action details. In this way, several significantly more ad-
vanced achievements are obtained by previous works based
on Mineflayer, like harvesting diamonds with high success
rates (Wang et al., 2023a). In addition, the agents are usually
spawned without initial tools in Mineflayer.

5.2. Main Results

We compare LARM with previous methods in this part. As
the basic actions in MineDojo and Mineflayer are different,
we conduct the comparison separately.

Comparison on MineDojo. The methods compared on
MineDojo include MineAgent (Fan et al., 2022), Plan4MC
(Yuan et al., 2023), LLaMA-Rider (Feng et al., 2024), and
RL-GPT (Liu et al., 2024b). Among them, MineAgent is the
baseline method provided by Minddojo. It first fine-tunes
CLIP (Radford et al., 2021) based on numerous web data
and uses the fine-tuned CLIP to guide the training of rein-
forcement learning algorithms. Plan4MC is a reinforcement
learning based method. It splits a task into basic skills and
trains an agent to learn them one by one in a hierarchical
way. LLaMA-Rider is an LLM obtained by fine-tuning
LLaMA. It first makes the agent explore the environment to
collect data. Then, the collected data is adopted to fine-tune
LLaMA in a supervised manner. RL-GPT builds two LLM
based agents (a slow agent and a fast agent) to schedule the
agent actions. For an action step, this method first queries
the agents whether this action step can be completed via
code generation. If the code generation is infeasible, an RL
based action is performed.

We compare LARM with these methods on diverse tasks,
and the detailed settings of these tasks follow previous works
(Feng et al., 2024). Notably, we train a single LARM model
to complete all the tasks, which is different from many pre-
vious works that employ separate models for various tasks.
This characteristic suggests the promising generalization
ability of LARM. To compute success rates, we test LARM
for 30 times on every task. The experimental results are re-
ported in Table 1. As shown, LARM presents higher success
rates than the compared counterparts in all the test tasks, and
the promising performance of LARM is mainly attributed
to our designed referee RL algorithm, which addresses the
reward vanishment problem in long-horizon embodied ex-
ploration. In addition, we can observe that LARM achieves
higher success rates on tasks with shorter action chains,
indicating the great challenge in developing long-horizon
embodied intelligence. For example, the Harvest bucket
task requires three iron ingots, and the Harvest iron sword
demands two iron ingots and one stick. Therefore, Harvest
iron sword needs one more step (Harvest stick) than Harvest
bucket, which causes that LARM obtains a higher success
rate in the task of crafting a bucket.

Comparison on Mineflayer. To fully reveal the superiority
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Table 1. Performance comparison with previous methods based on MineDojo.
Task MineAgent Plan4MC LLaMA-Rider Base LLaMA-Rider RL-GPT LARM (Ours)

Harvest stick 0.00 0.30 0.23 0.43 0.65 0.93
Harvest crafting table 0.03 0.30 0.37 0.67 0.65 0.87

Harvest bowl 0.00 0.47 0.73 0.97 - 0.97
Harvest chest 0.00 0.23 0.67 0.77 - 0.83

Harvest wooden pickaxe 0.00 0.03 0.00 0.37 0.67 0.70
Harvest wooden sword 0.00 0.47 0.63 0.10 - 0.70

Harvest furnace 0.00 0.37 0.00 0.17 0.67 0.73
Harvest stone stairs 0.00 0.47 0.00 0.57 - 0.67
Harvest stone sword 0.00 0.10 0.00 0.00 - 0.40
Harvest iron ingot 0.00 0.47 0.03 0.13 - 0.60

Harvest bucket 0.00 0.20 0.00 0.00 0.37
Harvest iron sword 0.00 0.20 0.00 0.00 - 0.27

Harvest beef 0.33 0.43 0.03 0.03 0.46 0.60
Harvest mutton 0.35 0.33 0.00 0.03 0.38 0.63

Table 2. Performance comparison based on Mineflayer.
Achievement AutoGPT Voyager STEVE LARM (Ours)

Wooden sword 3/3 3/3 3/3 30/30
Stone sword 3/3 3/3 3/3 30/30
Iron sword 3/3 3/3 3/3 30/30

Diamond sword 0/3 1/3 3/3 28/30
Enchanted sword 0/3 0/3 0/3 16/30

Table 3. Ablation Study on Reward Design.
Reward Stick Wooden Stone Iron

ER 0.20 0.13 0.10 0.00
ER+LAR 0.30 0.23 0.13 0.00
ER+AR2 0.80 0.53 0.20 0.07
ER+AR4 0.93 0.70 0.40 0.27

of LARM, we further evaluate LARM using the Mineflayer
based environment. The compared methods include Auto-
GPT (autogpt), Voyager (Wang et al., 2023a), and STEVE
(Zhao et al., 2024). In this work, Voyager is a training-free
method implemented based on GPT-4. Its main contribution
is designing a multi-step prompt generation pipeline. When
a target task is given, Voyager prompts GPT-4 to know
which skill should be executed and gradually realize the
target. AutoGPT is an LLM being able to reason which skill
should be performed through multi-step question answering.
STEVE is a large vision-language model. In STEVE, a
dataset including both videos and text-image pairs is gath-
ered and utilized to fine-tune LLaMA (Touvron et al., 2023),
and then the fine-tuned model can invoke pre-defined skills.

In this experiment, the agent is spawned in a random biome
without initial inventory. The test tasks include Harvest
wooden sword, Harvest stone sword, Harvest iron sword,
Harvest diamond sword, and Harvest enchanted diamond
sword. As shown in Fig. 1, Harvest enchanted diamond
sword is significantly more complex than the other achieve-
ments. The previous methods usually test their models
three times in Mineflayer. To reduce randomness, we run
LARM for 30 times. The experimental results are reported

Table 4. Ablation Study on LLM base selection.
LLM Base Stick Wooden Stone Iron

TinyLLaVA-0.5B 0.80 0.50 0.27 0.13
TinyLLaVA-3.1B 0.83 0.57 0.33 0.13
TinyLLaVA-3.1B* 0.93 0.70 0.40 0.27

Table 5. Analysis on noisy reward.
Noise Ratio Stick Wooden Stone Iron

0% 0.93 0.70 0.40 0.27
10% 0.93 0.67 0.30 0.17
30% 0.77 0.33 0.17 0.07
50% 0.50 0.13 0.00 0.00

in Table 2. We can observe that LARM outperforms the
compared methods in obtaining different levels of achieve-
ments. Notably, LARM is the first method that harvests an
enchanted diamond sword in Minecraft successfully.

5.3. Ablation Study

Analysis on reward design. The key difference of Ref-
eree RL from the classic PPO implementation is the reward
design. Therefore, we ablate different reward settings in
this part. We compare four reward choices in MineDojo
with four tasks, i.e., Harvest stick, Harvest wooden sword,
Harvest stone sword, and Harvest iron sword. The four re-
ward choices are ER (environment reward only), ER+LAR
(environment reward plus auxiliary reward produced by
LLaVA-7B, a lightweight LLM), ER+AR2 (environment
reward plus auxiliary reward produced by GPT-4o, but the
auxiliary reward is determined based on only whether the ac-
tion outcome is positive), and ER+AR2 (the standard setting
of our method described in this paper). The experimental
results are presented in Table 3.

As shown, when only the environment reward is provided,
the agent presents a significantly better success rate on Har-
vest stick than Harvest stone sword, where the latter task
demands a longer action chain. This phenomenon is because
that the environment reward gradually vanishes with the in-
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Figure 3. More behavior example illustrations of LARM, which include traveling a long distance to find a village, building a nether portal
and then entering the nether, multiple agents collaborate with each other to combat zombies.

crease of the action chain length. When the auxiliary reward
is generated by LLaVA-7B, the result is also poor, which is
because that LLaVA-7B does not understand the Minecraft
world well and the provided reward is often incorrect. This
result confirms our aforementioned claim that only giant
LLMs serve as referees well. In addition, the performance
of ER+AR2 is worse than ER+AR4, which is because se-
lecting the correct action does not always bring a positive
outcome. For example, the agent decides to search a tree
but does not find it successfully. In this situation, ER+AR2
returns a negative reward, which punishes the searching a
tree decision even though this choice may be correct. By
contrast, ER+AR4 will give a small positive reward.

Analysis on LLM base selection. As mentioned before,
we utilize the weight of a lightweight LLM to initialize
the parameters in LARM to provide initial general knowl-
edge. Then, we fine-tune LARM using Minecraft related
webpage data to enhance its understanding. In this experi-
ment, we analyze how the lightweight LLM choice affects
the results and whether the webpage data pre-training de-
scribed in Section 4.2 is beneficial. To this end, we first
compare the performances of LARM using TinyLLaVA-
0.5B and TinyLLaVA-3.1B as the LLM base, where the
experiment results are presented in the 1st and 2nd row of
Table 4. As shown, adopting an LLM with more parameters
as the LARM model base favors the embodied performance,
which is mainly attributed to that a larger LLM has stronger

general knowledge. Then, we compare the performances of
models without and with the webpage data pre-training, and
the results are reported in the 2nd and 3rd rows of Table 4. It
can be observed that webpage data pre-training improves the
success rates on embodied task execution. This result sug-
gests that the numerous text and image data on the Internet
has the potential to benefit embodied agents.

Analysis on LLM capability. We have mentioned that
giant LLMs answer questions about the Minecraft world
well while the understanding of lightweight LLMs is poor.
In this part, we demonstrate this by providing a question-
answer example and highlighting the key content in bold:

Prompt: In Minecraft, you need to craft a stone pickaxe.
What additional resources do you need to gather if you have
only got cobblestones in your inventory?

GPT-4o: If you already have cobblestone in your inventory,
you need to gather wooden planks to craft sticks. You need
two sticks and three cobblestones to craft a stone pickaxe.

Llama3-8B: You need a stick.

TinyLLaVA-3.1B: To craft a stone pickaxe in Minecraft, you
will need the following additional resources: cobblestone,
stone, wood, leaves, dirt, grass, pillar, shovel, and sword.

TinyLLaVA-3.1B after Webpage data pre-training: You ad-
ditionally need two sticks.

Comparing the answers, we can observe that webpage data
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pre-training significantly improves the concerned domain
of knowledge in TinyLLaVA-3.1B.

Analysis on noisy reward. In the previous experiments, we
show that incorporating a referee into the RL framework
improves the exploration efficiency very significantly. How-
ever, this is partly because GPT-4 can provide high-quality
feedback about whether the executed skill is beneficial to
realizing the final target in Minecraft. The effectiveness
of referee RL under circumstances that the referee feed-
back is noisy (many false referee rewards) is not studied.
In this experiment, we randomly replace different ratios
of referee rewards generated by GPT-4 as other incorrect
referee rewards to test the performances of LARM under
noisy rewards. The results are presented in Table 5. We
can find that when the noise ratio exceeds 10%, the LARM
performance drops significantly.

5.4. Case Study

The previous experiments mainly show the performances
of LARM on harvesting various categories of materials
and crafting tools. In Fig. 3, we visualize more examples
of other behaviors in the Mineflayer based environment,
such as exploring the open world, constructing a building
with a specific structure, and multiple agents cooperate to
combat dangerous creatures. These behaviors suggest that
our proposed techniques in this work have the potential to
be further generalized to other diverse domains.

6. Conclusion
In this work, we have proposed LARM, which is effi-
cient and possesses general knowledge. To train it, we
have revealed the feedback vanishment problem in apply-
ing classic RLs to long-horizon embodied exploration. To
address this feedback vanishment, we have developed the
referee RL technique. By optimizing LARM with referee
RL, our method can learn to complete diverse embodied
tasks without human supervision. Especially, LARM is the
first method that obtains the enchanted diamond equipment
achievement in the Minecraft benchmark successfully.
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