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Abstract

Our research addresses scalability and coordination challenges inherent to dis-
tributed multi-agent systems (MAS) executing under operation constraints. We
introduce a novel Constrained Multi-Agent Reinforcement Learning (CMARL)
algorithm that integrates a consensus mechanism to ensure agent coordination. Our
decentralized approach allows each agent to independently optimize its local re-
wards while adhering to global constraints evaluated via secondary rewards. These
secondary rewards act as a coupling mechanism, penalizing non-cooperative behav-
iors. Agents operate within a communication network modeled as an undirected
graph, exchanging information solely with immediate neighbors to dynamically
update dual variables. Our algorithm is validated through its application to the
economic dispatch problem within smart grid management, demonstrating its scal-
ability and practical utility in optimizing energy distribution under operational
constraints. Experimental results show that our method effectively balances the
global and local objectives, proving its robustness in real-world, distributed set-
tings. Key contributions of this work include: (i) the development of a CMARL
algorithm that achieves long-term constraint satisfaction and agent consensus, (ii)
an enhanced scalability of policy training through problem factorization based on
observed state distributions, and (iii) the successful application of our algorithm
in a smart grid management use case, highlighting its practical applicability and
effectiveness in managing distributed energy resources.

1 Introduction

In recent years, reinforcement learning (RL) has achieved significant success in solving diverse and
complex decision-making tasks [Silver et al., 2017, Orr and Dutta, 2023, Brown and Sandholm, 2019].
Many of these successes involve multiple agents and can be characterized as multi-agent RL (MARL).
Generally, MARL addresses a sequential problem where a set of autonomous agents make decisions
and interact in a shared environment to maximize a reward. However, MARL problems can quickly
become intractable as the number of agents increase, since the number of possible interactions and
the space of possible states can grow exponentially in the number of agents. Moreover, as all agents
navigate and learn simultaneously, the environment may become non-stationary, invalidating many
of the single-agent RL assumptions. In realistic scenarios, conflicting objectives often need to be
balanced to achieve satisfactory solutions. This issue is exacerbated when increasing the number of
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autonomous agents, whose specific goals are not commonly aligned. Finding optimal strategies in
multi-agent systems (MAS) usually require at least some level of coordination and communication.

Our work addresses MAS with constrains and continuous operation by adopting a distributed approach.
Concretely, we consider a special case of MARL in which each agent operates based on its local
states and individual rewards, and selects actions independently. A key contribution of our approach
is that we only need to train one policy for all agents as long as they share the same Markov Decision
Process (MDP). For example, if all agents observe states from the same distribution, a single policy
suffices regardless of the number of agents. However, when agents have different MDPs, separate
policies must be trained for each unique MDP. This significantly reduces the complexity of policy
training compared to typical MARL approaches. The multi-agent component of the problem consists
in achieving a common constraint on a secondary reward function, through the communication of a
single variable during execution. This design allows the complexity of execution to increase only
linearly with the number of agents and actions, since each agent only needs to compute its own
actions and share a single value with its neighbors. Such decentralization is common in real-world
scenarios where global state information is unavailable or the size of the problem makes centralized
approaches unfeasible. To ensure coordination between these decentralized agents, we introduce a
consensus mechanism using a CMARL framework. Here, each agent independently optimizes its
part of the problem by maximizing a main reward while adhering to an average bound on a secondary
reward. The secondary reward is evaluated globally, acting as a coupling mechanism i.e., a way to
allow for the dynamics of the problem to be weakly affected by every agents’ actions, and penalizing
behaviours that prevent coordination.

We consider that agents are part of a communication network. Each agent only communicates
with its immediate neighbors, sharing the necessary information to update their policies and dual
variables dynamically. Communication is essential to ensure that agents, while operating indepen-
dently, coordinate to satisfy the global constraint. We develop a novel CMARL algorithm and
apply it to a tailored problem within smart grid management; which refers to the use of advanced
information and communication technologies to improve the efficiency, reliability, and sustainability
of electricity production, distribution, and consumption [Dileep, 2020]. Our goal is to optimize the
energy distribution on an energy district while satisfying operational constraints. Our experiments
validate that our methodology is scalable by demonstrating its performance across different network
configurations with varying levels of complexity and agent demand heterogeneity. Specifically,
we test the algorithm on multiple communication networks with increasing numbers of agents and
more intricate connectivity patterns. The results show that our algorithm maintains coordination,
even as the number of agents grow and the problem complexity increases. This indicates that our
decentralized approach, with its dynamic consensus mechanism, can effectively handle larger and
more complex systems and should be easily scalable to even larger systems in real-world, distributed
settings. Our methodology is practical and capable of handling real-world tasks through distributed
learning and dynamic coordination. We can summarize the key contributions of this work as follows:

1. Introduction of a CMARL distributed algorithm: We develop a novel CMARL algorithm
that ensures consensus among agents and achieves constraint satisfaction over extended
operational periods.

2. Problem factorization and policy management: Our method significantly enhances the
scalability of policy training by factorizing the problem based on observed state distributions
across agents. This approach allows for efficient training of a limited number of agent-
specific policies, which can be then applied to manage the collective task effectively.

3. Experimental validation in smart grid management: We applied our CMARL algorithm to
the economic dispatch problem within smart grid management, demonstrating its practical
utility in optimizing energy distribution with adherence to operational constraints.

2 Related Work

Constrained Reinforcement Learning. Our work builds upon the field of CRL, which focuses on
solving single-agent sequential decision-making problems subject to constraints on some expected
rewards or costs. Traditional CRL approaches include Lagrangian methods [Altman, 2021, Borkar,
2005], where constraints are incorporated into the objective function via Lagrange multipliers. More
recently, Calvo-Fullana et al. [2023] proposed a state-augmented CRL framework that augments
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the state space with Lagrange multipliers, enabling the agent to learn optimal policies that adapt
to changes in the multipliers, overcoming limitations of fixed multiplier approaches. Some works
guarantee safe exploration through training with near-constraint satisfaction at each iteration [Achiam
and Amodei, 2019, Chow et al., 2019, Achiam et al., 2017], while others, like ours, focus on the
satisfaction of the constraints on average in the long-term [Liang et al., 2018, Paternain et al., 2022].

Multi-Agent Reinforcement Learning. Multi-Agent Reinforcement Learning (MARL) problems
can be categorized as cooperative, competitive, or mixed. We focus on cooperative MARL, utilizing
joint rewards (sum of individual rewards). Centralized control can simplify MARL to single-agent
RL, allowing for centralized training with decentralized execution [Kraemer and Banerjee, 2016,
Rashid et al., 2018, Sunehag et al., 2017, Lowe et al., 2017]. Our distributed algorithm, however,
supports decentralized training and execution, similar to Zhang et al. [2018]. We enhance this with
a dynamic consensus mechanism to update dual variables, ensuring coordination and adherence to
global constraints over time.

Constrained Multi-Agent Reinforcement Learning. Ensuring safety, risk management, and
constraint satisfaction in autonomous multi-agent systems is critical. Centralized approaches with
generalized Lagrangian optimization have shown efficiency in online safe RL [Ding et al., 2023].
However, the field of MARL is still in its early stages, and many results that apply to single-agent
CRL have not yet been formally extended to the CMARL setting [Chen et al., 2024]. Specifically,
for primal-dual methods, while strong duality holds for CRL [Paternain et al., 2019], this is not
necessarily the case for all CMARL. Some scenarios, such as constrained Markov potential games,
do not satisfy strong duality [Alatur et al., 2023].

Distributed Optimization and Consensus Mechanisms. In large-scale multi-agent systems, cen-
tralized approaches quickly become intractable due to the exponential growth of the state and
action spaces. To address this, our work draws upon techniques from distributed optimization and
consensus mechanisms [Nedić and Ozdaglar, 2009, Olfati-Saber et al., 2007]. These approaches
enable decentralized computation and coordination among agents by leveraging local information
exchanges and iterative updates to reach consensus on global objectives or constraints. Our proposed
methodology integrates elements from these different areas, combining constrained reinforcement
learning with multi-agent systems and distributed optimization techniques. Similar to the use of a
gossiping algorithm for the multi-agent assignment problem in Agorio et al. [2024], we build upon
the state-augmented CRL framework of Calvo-Fullana et al. [2023] and incorporate a consensus
mechanism to enable scalable and coordinated learning in distributed multi-agent systems operating
under constraints.

3 Preliminaries

Typically, CMARL is studied using the Markov Games framework [Littman, 1994]; an extension
of game theory to environments where the dynamics can be modelled using a Markov Decision
Process (MDP). Markov games model interactions among multiple agents whose decisions influence
a shared environment. In our distributed constrained setting, the Markov game is defined by the tuple
⟨N, {Si}Ni=1, {Ai}Ni=1, {P i}Ni=1, {ri0}Ni=1, {ri1}Ni=1⟩, where N is the number of agents, Si ⊂ Rm

and Ai ⊂ Rd are compact sets denoting the states and actions of agent i, P i : Si ×Ai → ∆(Si) is
the state transition probability function for agent i, where ∆(Si) is the probability simplex on Si,
ri0 : Si × Ai → R is the reward function for the main objective of agent i, and ri1 : Si × Ai → R
is the reward function for the secondary objective of agent i, which is subject to a constraint. In
these games, each agent i observes the current state of its local environment and selects an action
ai ∈ Ai according to its policy πi : Si → ∆(Ai). At time t, given a joint state st = (s1t , . . . , s

N
t )

and a joint action at = (a1t , . . . , a
N
t ), the system transitions to a new state st+1 = (s1t+1, . . . , s

N
t+1)

with probability

P (st+1|st, at) =
N∏
i=1

P i(sit+1|sit, ait), (1)

and each agent i receives two rewards, ri0(s
i
t, a

i
t) and ri1(s

i
t, a

i
t). Note that equation (1) means that we

assume that the actions of the agents do not affect the states or rewards of others. The Markov property
ensures that the dynamics only depend on the last state and action, i.e. P (st+1|s0, a0, . . . , st, at) =
P (st+1|st, at). In our formulation, the rewards are conflicting, with r0 acting as the main objective
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and r1 as the secondary objective. Specifically, we aim to maximize the sum of all agents’ long-term
average rewards for ri0(st, at), while ensuring that the sum of all agents’ long-term average rewards
for ri1(st, at) exceeds a given threshold c. We use this formulation since we are interested in systems
that are subject to continuous operation and real world scenarios. This constrained optimization
problem can be expressed as

maximize
π

N∑
i=1

lim
T→∞

1

T
Es,a∼πi

[
T∑

t=0

ri0(st, at)

]
(2a)

subject to

N∑
i=1

lim
T→∞

1

T
Es,a∼πi

[
T∑

t=0

ri1(st, at)

]
≤ c. (2b)

By defining value functions as the long-term average of each reward,

V i
j (π

i) ≜ lim
T→∞

1

T
Es,a∼πi

[
T∑

t=0

rij(s
i
t, a

i
t)

]
, (3)

we can rewrite the maximization problem in (2) in the following more concise manner:

maximize
π

N∑
i=1

V i
0 (π

i) subject to

N∑
i=1

V i
1 (π

i) ≤ c. (4)

In what follows, we formalize two assumptions that are central to our algorithm. These assumptions
ensure the tractability and effectiveness of our distributed approach.
Assumption (A1). Each agent i selects an action taking into account only its local state according to
its policy πi : Si → ∆(Ai), where ∆(Ai) is a probability distribution over its actions.

This first assumption allows each agent to operate based solely on local information, which is essential
for scalability and decentralization, as it reduces the need for global state information and minimizes
communication.
Assumption (A2). The actions of one agent do not affect the states or rewards of others, resulting in
a transition probability defined by P i(sit+1|sit, ait). Since we are in a constrained setting, the actions
taken by the agents result in a collection of several rewards rij : S

i ×Ai → R for j = 0, . . . , 1 that
only depend on the state and action of the specific agent.

The second assumption ensures that the interactions between agents are structured in a way that the
global objectives can be achieved through local decisions. This facilitates the use of the consensus
mechanism to maintain coordination and adherence to global constraints, as the decoupling of agents’
actions means that each agent can update its policy and dual variables independently. The consensus
mechanism synchronizes these updates across the network, ensuring that the global constraints are
respected collectively. Together, these assumptions provide a foundation that supports the feasibility
and robustness of our algorithm in managing complex, distributed multi-agent systems.

4 Methodology

We start by formulating the Lagrangian of the optimization problem in (4). This involves introducing
Lagrange multipliers to transform the constrained optimization problem into a form where the
constraints are incorporated into the objective function as penalty terms.

L(π, λ) =
N∑
i=1

V i
0 (π

i) + λ

(
c−

N∑
i=1

V i
1 (π

i)

)
=

N∑
i=1

(
V i
0 (π

i) + λ
( c

N
− V i

1 (π
i)
))

, (5)

where λ ∈ R+ is the Lagrange multiplier, interchangeably called the dual variable, associated with the
inequality constraint of problem (2), hereinafter refereed to as the global multiplier. Further, we have
rewritten the Lagrangian as the sum of the individual agent components to maintain the distributed
nature of the formulation. This decomposition allows each agent to optimize its local objective
independently while contributing to the global constraint satisfaction, facilitating decentralized
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computation and coordination. We can now consider the dual function d(λ) ≜ maxπ L(π, λ) and
state the dual problem as

min
λ

d(λ) = min
λ

[
max
π

N∑
i=1

(
V i
0 (π

i) + λ
( c

N
− V i

1 (π
i)
))]

= min
λ

[
N∑
i=1

max
πi

(
V i
0 (π

i) + λ
( c

N
− V i

1 (π
i)
))]

, (6)

where the last equality follows from Assumptions (A2) and (A1), meaning that each agent indepen-
dently maximizing its portion of the Lagrangian with respect to πi, is equivalent to maximizing it
jointly. The next step involves the dual optimization process, where we aim to find the optimal value
of the dual variable λ, which is crucial for balancing the primary and secondary objectives across
all agents. We seek a value of λ that minimizes the dual function d(λ), which is now expressed as
the sum of the independently maximized terms from each agent. However, problem (6) still exhibits
coupling between agents through λ. To address this, we weaken this coupling by allowing each
agent i to have its own Lagrangian multiplier λi, while requiring that these individual multipliers are
continuously aligned closer and closer to each other through a consensus process. This modification
means that the problem we solve is not entirely the same as the one in (6) unless we achieve perfect
consensus. However, in practice, it is sufficient to perform a single consensus step at each iteration.

We consider a communication network among the agents, given by an undirected graph G = (V,E),
where V is the set of vertices (agents) and E ⊂ N × N is the set of edges (communication links
between vertices). The neighborhood of a node i ∈ V , denoted by N i, is the set of nodes that are
directly connected to node i by an edge; i.e., N i = {j ∈ V | (i, j) ∈ E}. In other words, N i

consists of all nodes j such that there exists an edge (i, j) in the graph G, indicating that node j can
directly communicate with node i. Under this model, we can equivalently rewrite the dual problem
(6) in distributed dual consensus form

minimize
λ1,...,λN

N∑
i=1

max
πi

(
V i
0 (π

i) + λi
( c

N
− V i

1 (π
i)
))

(7a)

subject to λi =
1

N i

∑
n∈N i

λn, i = 1, . . . , N. (7b)

We can then write the Lagrangian of this distributed dual problem as

LD(λi, µi) = min
λi

[
N∑
i=1

max
πi

(
V i
0 (π

i) + λi
( c

N
− V i

1 (π
i)
))

+

N∑
i=1

µi

(
λi − 1

N i

∑
n∈N i

λn

)]
.

Where µ ∈ R is the Lagrange multiplier, associated with the inequality constraint of problem (7),
hereinafter refereed to as the consensus multiplier. The resulting dual problem of this dual Lagrangian
results in a completely distributed problem across agents i = 1, . . . , N , written as

max
µi

{
min
λi

[
max
πi

(
V i
0 (π

i) + λi
( c

N
− V i

1 (π
i)
))

+ µi

(
λi − 1

N i

∑
n∈N i

λn

)]}
. (8)

Given the structure of (8), one can address the problem by using three distinct optimization steps
to iteratively produce actions and update the dual variables for each agent i. First, each agent takes
actions from the policy that maximizes its local objective, given the current values of the dual
variables λi. Namely,

ait ∼ πi,⋆(sit, λ
i
k) with πi,⋆ = argmax

πi

(
V i
0 (π

i) + λi
k

( c

N
− V i

1 (π
i)
))

. (9)

Second, the central loop updates the dual variables of the global constraint given the current value of
the consensus multiplier and the current policy, using a gradient descent approach:
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λi
k+1 ←

[
λi
k − αi

( c

N
− V i

1 (π
i,⋆, λi

k) + µi
k

)]
+
. (10)

Here, αi is the learning rate, and [·]+ denotes the projection onto the non-negative orthant to ensure
that λ ≥ 0. Finally, the outer loop updates the consensus multiplier µi given the current values of
the policy and the versions of the global multiplier of each agent in the neighborhood of i, using a
gradient ascent approach:

µi
k+1 ← µi

k + βi

(
λi
k −

1

N i

∑
n∈N i

λn
k

)
, (11)

where βi is the learning rate. The communication protocol is simple, at every timestep, each agent
shares its current value of the global multiplier λi with all the agents in its neighborhood. Note
that solving (8) is equivalent to solving the original problem if, and only if, all the λi values are
equal across agents. Achieving this would require running the consensus step until full convergence
for each agent. However, to make the problem more tractable, we assume that performing a single
consensus step per iteration is sufficient for the algorithm to converge to a solution that is close to the
original problem’s solution. While this assumption simplifies the algorithm, we acknowledge that it
lacks formal theoretical guarantees at this stage. In future work, we plan to rigorously analyze this
assumption and provide theoretical guarantees to support it.

The proposed methodology has several important implications. First, scalability is achieved by
decomposing the global problem into independent local problems, allowing our approach to efficiently
scale with the number of agents. Second, flexibility is a key advantage, as the dual formulation permits
the handling of various types of constraints, making the framework applicable to a wide range of multi-
agent reinforcement learning problems. Lastly, the coordination is ensured through the consensus
mechanism, which is crucial for achieving the global objectives in distributed settings.

5 Algorithm

Each agent optimizes its policy by maximizing the Lagrangian given the current values of the dual
variables. One could attempt to perform this step resorting to some form of policy gradient method.
However, the primal-dual nature of the algorithm can result in a lack of policy convergence. To
address this limitation, we resort to augment the state space of the environment with the Lagrange
multipliers of the constraints. This augmentation allows us to learn a policy πi,∗(sit, λ

i
t) that considers

the dual variables as part of the state. The policy optimization can be achieved through any RL
algorithm.

The dual variables, λi, are updated to reflect the current policy’s performance concerning the global
constraints. This step uses a gradient descent approach to adjust the dual variables based on the
difference between the global constraint and the observed performance. The update rule is given by
(10). Finally, to ensure consistency across agents, we employ a consensus mechanism where each
agent’s dual variable is updated based on the average of its neighbors’ dual variables. This is achieved
using the gradient ascent approach in (11).

Combining these steps, we summarize the execution process in Algorithm 1. The algorithm first
learns the optimal policy, and then iteratively updates the dual variables and consensus multipliers to
ensure that the global constraints are met while optimizing the local objectives. From Calvo-Fullana
et al. [2023, Theorem 1], we know that if we have an optimal policy for a given set of multipliers
π⋆(s, λ), and we continuously update these multipliers as in (10) and (11), then the state-action
trajectories generated satisfy the constraints in (2).
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Algorithm 1 Updating multipliers during execution of trained policy

1: Input: Trained policies πi,⋆(s, λ), learning rates αi, βi, requirement c
2: Output: Trajectories satisfying the constraints
3: for k = 0, 1, . . . do
4: Initialize: Dual variables λi

0 = 0, µi
0 = 0 for i = 1, . . . , N

5: for each agent i do
6: Take actions from policy ait ∼ πi,⋆(sit, λ

i
k) to obtain V i

1 (π
i,⋆, λi

k)
7: Update λi using:

λi
k+1 =

[
λi
k − αi

( c

N
− V i

1 (π
i,⋆, λi

k) + µi
k

)]
+

8: Update µi using:

µi
k+1 = µi

k + βi

(
λi
k −

1

|N i|
∑
n∈N i

λn

)
9: end for

10: end for

6 Use Case: Smart Grid Management

We use an example taken from the smart grid management setting; Demand Response (DR) in a
district of independently controlled buildings that have access to solar energy and battery storage
units. We want to minimize the prices of energy consumption for each building, while avoiding
critical energy peaks that could cause instabilities in the grid. To do so, we will use strategies such as
energy storage and load shifting. At each time step, the agent controlling each building’s consumption
observes a continuous variable for the current demand, the charge of the battery and the price of the
energy from the grid. The agent then takes a continuous action, deciding how much of the demand it
will supply with energy from the grid and how much with energy from the battery. The demand that
is not met is automatically postponed. We have the following local objective for a given agent i:

max
π

lim
T→∞

1

T
Es,a

[
T∑

t=0

−egrid(s
i
t, a

i
t)pt

]
, (12)

where egrid(s
i
t, a

i
t) is the amount of energy consumed from the grid and pt is the price of consuming

an unit of energy at time t. Note that we maximize the negative of the cost. The agents are subject to
the following global constraint:

lim
T→∞

1

T
Es,a

[
T∑

t=0

N∑
i=1

egrid(s
i
t, a

i
t)

]
≤ c, (13)

where c is set to a percentage of the maximum peak demand of the whole energy grid, i.e., we require
the smart controllers to reduce the maximum peak demand of the grid to a given percentage of the
original one, on average over time. This guarantees that the consumption for the whole district is
maintained at an acceptable range for grid stability. We let the agents shift the load by deciding
whether or not to fulfill the entire demand at a given time step. The demand that is not met, will be
postponed for later. The battery is charged automatically when solar energy is available for generation.
We add a final local constraint that ensures the demand is met:

lim
T→∞

1

T
Es,a

[
T∑

t=0

(
dit − egrid(s

i
t, a

i
t)− ebattery(s

i
t, a

i
t)
)]

= 0, (14)

where dit is the demand af the i-th agent at time t and ebattery(s
i
t, a

i
t) is the energy consumed from the

battery at time step t. The training of the policy is performed following the state augmented procedure
described in Section 5 and the updates of the global constraint and the consensus multipliers are
performed as shown in Algorithm 1. For the handling of the local constraint we just add another term
to the Lagrangian which only needs the addition of the following update

νik+1 = νik − ηi
(
dik − egrid(s

i
k, a

i
k)− ebattery(s

i
k, a

i
k)
)
. (15)
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We take the data on energy prices ($/kWh), energy demand (kWh) and solar generation (W/kW) from
an open source Farama Foundation Gymnasium environment called City Learn which is used for the
implementation and benchmarking of MARL for demand response in cities [Vázquez-Canteli et al.,
2019, Vazquez-Canteli et al., 2020].

7 Experimental Results

We run the experiment for the different network configurations shown in Figure 1 which present
increasing levels of complexity with respect to the number of direct connections (edges) a node has
to other nodes, and also with respect to how many different demands distributions are present in the
network. The less connected the nodes are in the network, the harder it is for the agents to reach
consensus. Moreover, by allowing agents to have different demands, we can engineer scenarios where
the problem is unfeasible for individual agents without coordination but feasible for a coordinated
group. We present the results obtained for the configuration in Figure 1d which we consider to be
complex enough to validate the strengths of our algorithm. Specifically, this configuration has two
weakly connected groups of agents, each with one agent that has double the demands of the others. We
then train two policies; one for agents with normal demand, and one for agents with double demand.
The policies were trained using the Proximal Policy Optimization (PPO) algorithm. To be precise, we
utilize single-agent training with multi-agent execution. By leveraging assumptions A1 and A2, along
with the introduction of individual Lagrange multipliers (λi) for each agent, we enable a single-agent
policy to be trained while ensuring coordination during execution. Consensus over λi is crucial, as
it serves as the key mechanism that links single-agent training to multi-agent execution, ensuring
global constraint satisfaction. Each training episode consisted of 80 timesteps, which corresponded
to approximately 3 days of energy demand in our dataset. At the beginning of each episode, we
randomly sampled the global multiplier λ and the local multiplier µ from a uniform distribution,
and trained for around 10,000 episodes. During training, we allowed for values of λ ∈ {0, 15} and
µ ∈ {−20, 20}. We selected the range of values for the multipliers by gradually extending their
limits to include values that allowed for a solution under specific constraint requirements, while
trying to increase the state space size as little as possible. The dataset contained around 3,000 hours
of information, and for each episode, we randomly selected the starting point within this data.

Agent 0

Agent 1

Agent 2

Agent 3

(a) Circular connections, one
agent with double demand

Agent 0

Agent 1

Agent 2

Agent 3

(b) Linear connections, one
agent with double demand

Agent 0

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

(c) Two clusters, two agents with
double demand

Agent 0
Agent 1

Agent 2

Agent 3

Agent 4

Agent 5
Agent 6

(d) Two clusters, two agents
with double demand

Figure 1: Different Communication Networks and agent demands

The grid demand and grid unit energy price for the selected configuration can be observed in Figures
2a and 2b respectively. We set the requirement c to 27% of the total peak demand as we find it to be a
good value to obtain a difficult but feasible problem. We run the trained policies independently for
each agent during 3,000 time-steps, while continuously updating their respective multipliers as shown
in Algorithm 1 to obtain trajectories that optimize the objective and fulfill the constraint on average
over time. To validate the importance of coordination, we compare two versions of the algorithm;
one that reaches consensus and one that does not. In Figure 3, we see that the algorithm that reaches
consensus and the one that does not, have almost identical grid consumption, with an average that is
below the required percentage of the total peak demand. However, the algorithm without consensus
achieves this at the expense of indefinitely postponing the demand.
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(b) Price per unit of energy bought from the grid

Figure 2: States of the smart grid use case
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Figure 3: Comparison of the total grid consumption (on average) between algorithm where the global
constraints reach consensus and algorithm where it does not.

To see the influence of consensus on demand satisfaction we consider four constraint levels c ∈
{0.2, 0.3, 0.4, 0.5}, and plot the cumulative average unmet demand over time for each of them. In
Figure 4a we can see the unmet demand for the consensus algorithm. When the problem is feasible
i.e., c ∈ {0.3, 0.4, 0.5}, the unmet demand stabilizes at a point, which is more negative the less
stringent the constraint. This makes sense as the agents are less penalized from grid energy usage. We
see that for c = 0.2 the unmet demand keeps increasing, which indicates that a solution is not reached,
likely because at this level the problem becomes unfeasible even with coordination. For the algorithm
that does not reach a consensus, the problem becomes unfeasible for less strict values of the constraint,
i.e. c ∈ {0.3, 0.4} (Figure 4b). We see then, that for the original constraint of 27% even though both
algorithms consume the same amount of energy from the grid, the non-consensus version is actually
not solving the problem, since the Lagrange multipliers never converge (Figure 5), and thus the
optimal solution is not found. In Figure 5a, we observe that our methodology successfully achieves
consensus for the global multipliers. This indicates that the agents are able to coordinate their actions
effectively, ensuring that the global constraints are met collectively. Conversely, when the consensus
mechanism is not used, the multipliers for the agents with double demand fail to converge and instead
reach the maximum allowed value of 15 (Figure 5b). This maximum value is imposed for practical
reasons, as allowing the multipliers to grow indefinitely is not feasible in real-world applications.
The fact that the multipliers hit this upper limit indicates that they have not converged within the
permissible range, suggesting that the optimal values have not been found. Consequently, this implies
that the problem is not being solved adequately in this scenario. The failure to achieve convergence
within the allowed range of the multipliers demonstrates the importance of the consensus mechanism
in ensuring the successful coordination and optimization of the agents’ actions in meeting the global
constraints.
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Figure 4: Comparison between algorithms for local constraint satisfaction, i.e., unmet demand

0 500 1000 1500 2000 2500 3000

0

1

2

3

4

5

6

7

La
m

bd
a 

Va
lu

e

Agent 0 Global multiplier
Lambda

0 500 1000 1500 2000 2500 3000

0

1

2

3

4

5

La
m

bd
a 

Va
lu

e

Agent 1 Global multiplier
Lambda

0 500 1000 1500 2000 2500 3000

0

1

2

3

4

La
m

bd
a 

Va
lu

e

Agent 2 Global multiplier
Lambda

0 500 1000 1500 2000 2500 3000

0

1

2

3

4

La
m

bd
a 

Va
lu

e

Agent 3 Global multiplier
Lambda

0 500 1000 1500 2000 2500 3000

0

1

2

3

4

La
m

bd
a 

Va
lu

e

Agent 4 Global multiplier
Lambda

0 500 1000 1500 2000 2500 3000

0

1

2

3

4

5

La
m

bd
a 

Va
lu

e

Agent 5 Global multiplier
Lambda

0 500 1000 1500 2000 2500 3000

0

1

2

3

4

5

6

7

La
m

bd
a 

Va
lu

e

Agent 6 Global multiplier
Lambda

(a) Global multipliers for algorithm that reaches consensus
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Figure 5: Comparison of global constraint multipliers for the algorithm that achieves consensus (a)
and for the algorithm that does not (b).

8 Conclusion

In this paper we have presented a novel CMARL algorithm that addresses some of the scalability
and coordination challenges inherent to distributed multi-agent systems (MAS) operating under con-
straints. Our proposed method integrates a consensus mechanism within a decentralized framework,
enabling each agent to independently optimize its local rewards while adhering to global constraints.
The application of our algorithm to the problem in smart grid management has demonstrated its
practical utility and effectiveness in optimizing energy distribution under operational constraints.
Future work includes the study of theoretical analysis of the proposed algorithm to establish formal
guarantees on performance, convergence and robustness.
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