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Abstract

We proposes a novel algorithm, ANTHRO, that
inductively extracts over 600K human-written
text perturbations in the wild and leverages
them for realistic adversarial attack. Unlike
existing character-based attacks which often
deductively hypothesize a set of manipulation
strategies, our work is grounded on actual
observations from real-world texts. We find
that adversarial texts generated by ANTHRO
achieve the best trade-off between (1) attack
success rate, (2) semantic preservation of the
original text, and (3) stealthiness—i.e. indistin-
guishable from human writings hence harder
to be flagged as suspicious. Specifically, our
attacks accomplished around 83% and 91% at-
tack success rates on BERT and RoBERTa,
respectively. Moreover, it outperformed the
TextBugger baseline with an increase of 50%
and 40% in terms of semantic preservation and
stealthiness when evaluated by both layperson
and professional human workers. ANTHRO
can further enhance a BERT classifier’s perfor-
mance in understanding different variations of
human-written toxic texts via adversarial train-
ing when compared to the Perspective API. All
source code will be released.

1 Introduction

Machine learning (ML) models trained to opti-
mize only the prediction performance are often
vulnerable to adversarial attacks (Papernot et al.,
2016; Wang et al., 2019). In the text domain, espe-
cially, a character-based adversarial attacker aims
to fool a target ML model by generating an adver-
sarial text * from an original text z by manipu-
lating characters of different words in x, such that
some properties of x are preserved (Li et al., 2018;
Eger et al., 2019; Gao et al., 2018). We character-
ize strong and practical adversarial attacks as three
criteria: (1) attack performance, as measured by
the ability to flip a target model’s predictions, (2)
semantic preservation, as measured by the ability
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Figure 1: ANTHRO (Bottom) extracts and uses human-
written perturbations for adversarial attacks instead of
proposing a specific set of manipulation rules (Top).

to preserve the meaning of an original text, and (3)
stealthiness, as measured by how unlikely it is de-
tected as machine-manipulation and removed by
defense systems or human examiners (Figure 1).
While the first two criteria are natural derivation
from adversarial literature (Papernot et al., 2016),
stealthiness is also important to be a practical at-
tack under a mass-manipulation scenario.

Previously proposed character-based attacks fol-
low a deductive approach where the researchers
hypothesize a set of text manipulation strategies
that exploit some vulnerabilities of textual ML
models (Figure 1). Although these deductively de-
rived techniques can demonstrate superior attack
performance, there is no guarantee that they also
perform well with regard to semantic preservation
and stealthiness. We first analyze why enforc-
ing these properties are challenging especially for
character-based attacks.

To preserve the semantic meanings, an attacker
can minimize the distance between representative
vectors learned from a large pre-trained model—
e.g., Universal Sentence Encoder (Cer et al., 2018)
of the two sentences. However, this is only appli-
cable in word- or sentence-based attacks, not in
character-based attacks. It is because character-
based manipulated tokens are more prone to be-
come out-of-distribution—e.g., morons—morOns,
from what is observed in a typical training cor-

DISCLAIMER! THIS PAPER CONTAINS EXAMPLE TEXTS THAT ARE OFFENSIVE IN NATURE



pus where the correct use of English is often as-
sumed. In fact, existing character-based attacks
such as TextBugger (Li et al., 2018), VIPER (Eger
et al., 2019) and DeepWordBug (Gao et al., 2018)
generally assume that the meaning of the original
sentence is preserved without further evaluations.

In addition, a robust ML pipeline is often
equipped to detect and remove potential ad-
versarial perturbations either via automatic soft-
ware (Jayanthi et al., 2020; Pruthi et al., 2019),
or human-in-the-loop (Le et al., 2020). Such de-
tection is feasible especially when the perturbed
texts are curated using a set of fixed rules that
can be easily re-purposed for defense. Thus, at-
tackers such as VIPER and DeepWordBug, which
map each Latin-based character to either non-
English accents (e.g., ¢, a, d), or homoglyphs
(characters of similar shape), fall into this cate-
gory and can be easily detected under simple nor-
malization techniques (Sec. 4.1). TextBugger
circumvents this weakness by utilizing a set of
more general character-editing strategies—e.g., re-
placing and swapping nearby characters to synthe-
size human-written typos and misspellings. Al-
though texts perturbed by such strategies become
less likely to be detected, many of them may
distort the meaning of the original text (e.g.,
“garbage"—“‘gabrage”, “dumb"—*“dub") and can
be easily flagged as machine-generated by human
examiners. Therefore, we argue that generating
perturbations that both preserve original mean-
ings and are indistinguishable from human-written
texts be a critically important yet challenging task.

To overcome these challenges, we introduce
ANTHRO, a novel algorithm that inductively finds
and extracts text perturbations in the wild. As
shown in Figure 1, our method relies on human-
written sentences in the Web in their raw form. We
then use them to develop a character-based adver-
sarial attack that is not only effective and realis-
tic but is also helpful in training ML models that
are more robust against a wide variety of human-
written perturbations. Distinguished from previ-
ous research, our work considers both spellings
and phonetic features (how a word sounds), to
characterize text perturbations. Furthermore, we
conducted user studies to quantitatively evaluate
semantic preservation and stealthiness of adversar-
ial texts. Our contributions are as follows.

* ANTHRO extracts over 600K case-sensitive
character-based  “real" perturbations from
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Figure 2: Word-clouds of human-written perturbations
for the English word “democrats" and “republicans"

human-written texts.

* ANTHRO facilitates black-box adversarial at-
tacks with an average of 82.7% and 90.7% attack
success rates on BERT and RoBERTa, and drops
the Perspective API’s precision to only 12%.

* ANTHRO outperforms the TextBugger baseline
by over 50% in semantic preservation and 40%
in stealthiness in human subject studies.

* ANTHRO combined with adversarial training
also enables BERT classifier to achieve 3%—14%
improvement in precision over Perspective API
in understanding human-written perturbations.

2 Perturbations in the Wild

2.1 Machine v.s. Human Perturbations

Perturbations that are neither natural-looking nor
resembling human-written texts are more likely
to be detected by defense systems (thus not a
practical attack from adversaries’ perspective).
However, some existing character-based pertur-
bation strategies, including TextBugger, VIPER
and DeepWordBug, follow a deductive approach
and their generated texts often do not resemble
human-written texts. Qualitatively, however, we
find that humans express much more diverse and
creative (Tagg, 2011) perturbations (Figure 2)
than ones generated by such deductive approaches.
For example, humans frequently (1) capitalize and
change the parts of a word to emphasize distorted
meanings (e.g.,“democrats*“—‘““democRATSs",
“republicans”"—“republiCUNTSs"), (2) hyphenate
a word (e.g., “depression"—*“de-pres-sion"),
(3) use emoticons to emphasize meaning (e.g.,
“shit"—“shat"), (4) repeat particular characters
(e.g., “dirty"—“diiirty", “porn"—*“pooorn"), or
(5) insert phonetically similar characters (e.g.,
“nigger"—“nighger"). Since human-written
perturbations do not manifest any fixed rules and
often require some context understanding, it is
challenging to systematically generate all such
perturbations, if not impossible.

We later show that human examiners rely on



Attacker
#texts, #tokens

Reddit Comts.
»5B, N/A

News Comts.
(34M, 11M)

TextBugger 51.6% (126/244) 7.10% (11K/152K)
VIPER 3.2% (1/31) 0.13% (25/19K)
DeepWordBug 0% (0/31) 0.27% (51/19K)
ANTHRO 82.4% (266/323) 55.7% (16K/29K)

Table 1: Percentage of offensive perturbed words gen-
erated by different attacks that can be observed in real
human-written comments on Reddit and online news.

personal exposure from Reddit or YouTube com-
ments to decide if a word choice looks natural
(Sec. 4.2). Quantitatively, we discover that not
all the perturbations generated by deductive meth-
ods are observed on the Web (Table 1). To analyze
this, we first use each attack to generate all pos-
sible perturbations of either (1) a list of over 3K
unique offensive words or (2) a set of the top 5
offensive words (“c*nt”, “b*tch”, “m*therf***er”,
“bast*rd”, “d*ck’”). Then, we calculate how many
of the perturbed words are present in a dataset
of over 34M online news comments or are used
by at least 50 unique commentators on Reddit,
respectively. Even though TextBugger was well-
known to simulate human-written typos as adver-
sarial texts, merely 51.6% and 7.1% of its perturba-
tions are observed on Reddit and online news com-
ments, implying TextBugger’s generated adversar-
ial texts being “unnatural” and “easily-detectable"
by human-in-the-loop defense systems.

2.2 The SMS Property: Similar Sound,
Similar Meaning, Different Spelling

The existence of a non-arbitrary relationship be-
tween sounds and meanings has been proven by
a life-long research establishment (Kohler, 1967;
Jared and Seidenberg, 1991; Gough et al., 1972).
In fact, Blasi et al. (2016) analyzed over 6K lan-
guages and discovered a high correlation between
a word’s sound and meaning both inter- and intra-
cultures. Aryani et al. (2020) found that how a
word sounds links to an individual’s emotion. This
motivates us to hypothesize that words spelled dif-
ferently yet have the same meanings such as text
perturbations will also have similar sounds.
Figure 2 displays several perturbations that are
found from real-life texts. Even though these per-
turbations are spelled differently from the original
word, they all preserve similar meanings when per-
ceived by humans. Such semantic preservation
is feasible because humans perceive these varia-
tions phonetically similar to the respective origi-

nal words (Van Orden, 1987). For example, both
“republican" and “republikan" sound similar when
read by humans. Therefore, given the surround-
ing context of a perturbed sentence—e.g., “Pres-
ident Trump is a republikan”, and the phonetic
similarity of “republican” and “republikan”, end-
users are more likely to interpret the perturbed sen-
tence as “President Trump is a republican”. We
call these characteristics of text perturbations the
SMS property: “similar Sound, similar Meaning,
different Spellings”. Noticeably, the SMS charac-
terization includes a subset of “visually similar"
property of perturbations as studied in previous ad-
versarial attacks such as TextBugger (e.g., “hello”
sounds similar with “hello”), VIPER and Deep-
WordBug. However, two words that look very
similar sometimes carry different meanings—e.g.,
“garbage”—*“gabrage”. Moreover, our character-
ization is also distinguished from homophones
(e.g., “to” and “two”) which describe words with
similar sound yet different meaning.

3 A Realistic Adversarial Attack

Given the above analysis, we now derive our pro-
posed ANTHRO adversarial attack. We first share
how to systematically encode the sound—i.e., pho-
netic feature, of any given words and use it to
search for their human-written perturbations that
satisfy the SMS property. Then, we introduce an
iterative algorithm that utilizes the extracted per-
turbations to attack textual ML models.

3.1 Mining Perturbations in the Wild

Sound Encoding with SOUNDEX++. To capture
the sound of a word, we adopt and extend the
case-insensitive SOUNDEX algorithm. SOUNDEX
helps index a word based on how it sounds rather
than how it is spelled (Stephenson, 1980). Given
a word, SOUNDEX first keeps the 1st character.
Then, it removes all vowels and matches the re-
maining characters one by one to a digit following
a set of predefined rules—e.g., “B”, “F’—1, “D”,
“T”—3 (Stephenson, 1980). For example, “Smith”
and “Smyth” are both encoded as S530.

As the SOUNDEX system was designed mainly
for encoding surnames, it does not necessarily
work for texts in the wild. For example, it cannot
recognize visually-similar perturbations such as
“I"—“1", “a"—=“@" and “O"—“0". Moreover, it
always fixes the 1st character as part of the final en-
codes. This rule is too rigid and can result in words



Word SOUNDEX SOUNDEX++ (Ours)

porn P650 P650 (k=0), PO650 (k=1)
pOrn PO65(X) (same as above)
lesbian L215 L245 (k=0), LE245 (k=1)
lesbbi@n L21@(X) (same as above)

losbian  L215(X) L245 (k=0), L0245 (k=1)
(X): Incorrect encoding

Table 2: SOUNDEX++ can capture visually similar
characters and is more accurate in differentiating be-
tween desired (blue) and undesired (red) perturbations.
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Figure 3: Trade-off between precision and recall of ex-
tracted perturbations for the word “president” w.r.t dif-
ferent k and d values. Higher k and lower d associate
with better preservation of the original meaning.

that are entirely different yet encoded the same
(Table 2). To solve these issues, we propose a new
SOUNDEX++ algorithm. Not only SOUNDEX++
encodes visually-similar characters the same, it
also encodes the sound of a word at different
hierarchical levels k (Table 2). At level k=0,
SOUNDEX++ works similar to SOUNDEX by fix-
ing the first character. At level k>1, SOUNDEX++
instead fixes the first k+1 characters and encodes
the rest.

Levenshtein Distance d and Phonetic Level
k as a Semantic Preservation Proxy. Since
SOUNDEX++ is not designed to capture a word’s
semantic meaning, we utilize both phonetic param-
eter k and Levenshtein distance d (Levenshtein
et al., 1966) as a heuristic approximation to mea-
sure the semantic preservation between two words.
Intuitively, the higher the phonetic level (k>1)
at which two words share the same SOUNDEX++
code and the smaller the Levenshtein distance d
to transform one word to another, the more likely
human associate them with the meaning. In other
words, k and d are hyper-parameters that help
control the trade-off between precision and recall
when retrieving perturbations of a given word such
that they satisfy the SMS property (Figure 3). We
will later carry out a human study to evaluate how
well our extracted perturbations can preserve the

Algorithm 1 ANTHRO Attack Algorithm

Input: {H}é{, k,d
Input: target classifier f, original sentence x
Output: perturbed sentence z*
Initialize: v* <+ x
for word z; in x do:  s;<—Score(x;, f)
Worder<—Sort(z1, xa, ..z,,) according to s;
for x; in W, 4er do:
P+ ANTHRO(z;, k, d, { H}E) // Eq.(3)
x* < replace x; € x with the best w € P
if f(x*)#f(z) then return z*
: return None

D AR AN > s

—_ =
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semantic meanings in practice.

Mining from the Wild. To mine all human-
written perturbations, we first collect a large cor-
pus D of over 18M sentences written by netizens
from 9 different datasets (Table A.1 in Appendix).
We select these datasets because they include of-
fensive texts such as hate speech, sensitive search
queries, etc., and hence very likely to include text
perturbations. Next, for each phonetic level k<K,
we curate different hash tables { H }{ that maps a
unique SOUNDEX++ code c to a set of its match-
ing unique case-sensitive tokens that share the
same encoding c as follows:

Hy : ¢ = {w;|S(w;, k) = S(w;, k) =c

1
Vwi,wj € D,w; # w;j}, )

where S(w, k) returns the SOUNDEX++ code of
token w at phonetic level k, K is the largest pho-
netic level we want to encode. With { H}£, k and
d, we can now search for the set of perturbations
Gy (w*) of a specific target token w* as follows:

G (w*) e {wj|w; € Hy[S(w*, k)], Lev(w*, w;)<d}

2
where Lev(w*,w;) returns the Levenshtein dis-
tance between w* and w’. Noticeably, we only ex-
tract { H }* once from D via Eq. (1), then we can
use Eq. (2) to retrieve all perturbations for a given
word during deployment. We name this method of
mining and retrieving human-written text pertur-
bations in the wild as ANTHRO, aka human-like
perturbations:

ANTHRO : wx, k,d, {H} — Gw*) (3)

ANTHRO Attack. To utilize ANTHRO for adver-
sarial attack on model f(x), we propose the AN-
THRO attack algorithm (Alg. 1). We use the



same iterative mechanism (Ln.9-13) that is com-
mon among other black-box attacks. This process
replaces the most vulnerable word in sentence z,
which is evaluated with the support of Score)(-)
function (Ln. 5), with the perturbation that best
drops the prediction probability f(z) on the cor-
rect label. Unlike the other methods, ANTHRO in-
clusively draws from perturbations extracted from
human-written texts captured in {H}X (Ln. 10).
We adopt the Score(+) from TextBugger.

4 Evaluation

We evaluate ANTHRO by: (1) attack performance,
(2) semantic preservation, and (3) Turing Test
(TT)—i.e., how likely an attack message is spotted
as machine-generated by human examiners.

4.1 Attack Performance

Setup. We use BERT (case-insensitive) (Jin
et al., 2019) and RoBERTa (case-sensitive) (Liu
et al., 2019) as target classifiers to attack. We
evaluate on three public tasks, namely detect-
ing toxic comments ((TC) dataset, Kaggle 2018),
hate speech ((HS) dataset (Davidson et al.)), and
online cyberbullying texts ((CB) dataset (Wul-
czyn et al.,, 2017a)). We split each dataset to
train, validation and test set with the 8:1:1 ratio.
Then, we use the train set to fine-tune BERT and
RoBERTa with a maximum of 3 epochs and se-
lect the best checkpoint using the validation set.
BERT and RoBERTa achieve around 0.85-0.97
in F1 score on the test sets (Table A.2 in Ap-
pendix). We evaluate with targeted attack (change
positive—negative label) since it is more practi-
cal. We randomly sample 200 examples from each
test set and use them as initial sentences to attack.
We repeat the process 3 times with unique random
seeds and report the results. We use the attack
success rate (Atk%) metric—i.e., the number of ex-
amples whose labels are flipped by an attacker
over the total number of texts that are correctly
predicted pre-attack. We use the 3rd party open-
source OpenAttack (Zeng et al., 2021) framework
to run all evaluations.

Baselines. We compare ANTHRO with three
baselines, namely TextBugger (Li et al., 2018),
VIPER (Eger et al., 2019) and DeepWordBug (Gao
et al.,, 2018). These attackers utilize different
character-based manipulations to craft their adver-
sarial texts as described in Sec. 1. From the anal-
ysis in Sec. 3.1 and Figure 3, we set k<1 and

d<«1 for ANTHRO to achieve a balanced trade-off
between precision and recall on the SMS property.
We examine all attackers under several combina-
tions of different normalization layers. They are
(1) Accents normalization (A) and (2) Homoglyph
normalization ' (H), which converts non-English
accents and homoglyphs to their corresponding
ascii characters, (3) Perturbation normalization
(P), which normalizes potential character-based
perturbations using the SOTA misspelling correc-
tion model Neuspell (Jayanthi et al., 2020). These
normalizers are selected as counteracts against the
perturbation strategies employed by VIPER (uses
non-English accents), DeepWordBug (uses homo-
glyphs) and TextBugger, ANTHRO (based on mis-
spelling and typos), respectively.

Results. Overall, both ANTHRO and TextBug-
ger perform the best, with ANTHRO being the
most robust attacker on RoOBERTa (due to its case-
sensitive perturbations) and is competitive com-
pared to TextBugger on BERT (Table 3). Be-
cause RoOBERTa uses the accent G as a part of its
byte-level BPE encoding (Liu et al., 2019) while
BERT by default removes all non-English accents,
VIPER achieves a near perfect score on RoOBERTa,
yet it is ineffective on BERT. Since VIPER ex-
clusively utilizes non-English accents, its attacks
can be easily corrected by the accents normalizer
(Table 3). Similarly, DeepWordBug perturbs texts
with homoglyph characters, most of which can
also be normalized using a 3rd party homoglyph
detector (Table 3).

In contrast, even under all normalizers—i.e.,
A+H+P, TextBugger and ANTHRO still achieves
66.3% and 73.7% in Atk% on average across all
evaluations. Although Neuspell (Jayanthi et al.,
2020) drops TextBugger’s Atk% 14.7% across
all runs, it can only reduce the Atk% of AN-
THRO a mere 7.5% on average. This is because
TextBugger and Neuspell or other dictionary-based
typo correctors rely on fixed deductive rules—e.g.,
swapped, replaced by neighbor letters, for attack
and defense. However, ANTHRO utilizes human-
written perturbations which are greatly varied,
hence less likely to be systematically detected.

4.2 Semantic Preservation and Turing Test

Since ANTHRO and TextBugger are the top two
effective attacks, this section will focus on eval-
uating their ability in semantic preservation and

! https://github.com/codebox/homoglyph




BERT (case-insensitive) RoBERTa (case-sensitive)

Attacker Normalizer Toxic Comments HateSpeech Cyberbullying Toxic Comments HateSpeech  Cyberbullying
TextBugger - 0.7610.02 0.94+0.01  0.78+0.03 0.7740.06 0.8740.01 0.7240.01
DeepWordBug - 0.56+0.04 0.68+£0.01  0.50+0.02 0.52+0.01 0.42+0.04 0.38+£0.04
VIPER - 0.08+0.03 0.01+£0.01  0.13£0.02 1.00£0.00 1.00£0.00 0.99+0.01
ANTHRO - 0.7240.02 0.82+0.01  0.71£0.02 0.84+0.00 0.93+0.01 0.78+0.01
TextBugger A - - - 0.7240.02 0.924-0.00 0.7440.02
DeepWordBug A - - - 0.43+0.02 0.59+0.03 0.43+0.01
VIPER A - - - 0.0940.01 0.0540.01 0.1740.02
ANTHRO A - - - 0.7740.02 0.944-0.02 0.844-0.02
TextBugger A+H 0.78+0.03 0.85+0.00  0.79+0.00 0.7440.02 0.9340.01 0.7740.03
DeepWordBug A+H 0.0440.00 0.064+0.02  0.01£0.01 0.0340.01 0.0140.01 0.0640.02
VIPER A+H 0.07£0.00 0.01£0.01  0.10£0.00 0.134£0.02 0.0740.01 0.1740.01
ANTHRO A+H 0.761+0.02 0.77£0.03  0.73£0.05 0.8240.02 0.9740.00 0.8240.02
TextBugger A+H+P 0.731+0.02 0.64+0.06 0.70+0.04 0.68+0.06 0.5740.03 0.66+0.04
DeepWordBug ~ A+H+P 0.0240.01 0.044+0.02  0.01+£0.01 0.0240.01 0.0140.01 0.0240.01
VIPER A+H+P 0.12+0.01 0.04+0.01 0.17+0.03 0.11£0.02 0.05+0.01 0.18+0.01
ANTHRO A+H+P 0.654+0.04 0.64+0.01  0.60+0.05 0.8040.02 0.914+0.03 0.8240.02
(-) BERT already has the accents normalization (A normalizer) by default, (Red): Poor performance (Atk%<0.15)
Table 3: Averaged attack success rate (Atk%1) of different attack methods
ANTHRO v.s. TextBugger ANTHROp, v.s. TextBugger Favorable Unfavorable
- TextBugger (0.5 Threshold) B éemantics Presev. [ Turing Test Reason From ANTHRO From TeXtBuggel'
0.8 1 | 0.8+
Genuine Typos stuupid, but, Faoggt sutpid, burt, Foggat
0.6 .. .. .
______ Intelligible faiilure faioure
04 TR~ Sound Preserv. shytty, crp shtty, crsp
02 Meaning Preserv.  ga-y, ashole, dummb bay, alshose, dub
High Search Results  sodmized, kiills Smdooized, klils
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Figure 4: Semantic preservation and Turing test results

Turing test. Given an original sentence = and its
adversarial text =* generated by either one of the
attacks, we design a human study to directly com-
pare ANTHRO with TextBugger. Specifically, two
alternative hypotheses for our validation are (1)
HSemantics: ** generated by ANTHRO preserves
the original meanings of x better than that gen-
erated by TextBugger and (2) Hryring: ** gener-
ated by ANTHRO is more likely to be perceived as
a human-written text (and not machine) than that
generated by TextBugger, hence called Turing test
(TT) (Uchendu et al., 2020).

Human Study Design. We use the two attack-
ers to generate adversarial texts targeting BERT
model on 200 examples sampled from the TC
dataset’s test set. We then gather examples that
are successfully attacked by both ANTHRO and
TextBugger. Next, we present a pair of texts, one
generated by ANTHRO and one by 7TextBugger, to-
gether with the original sentence to human sub-
jects. We then ask them to select (1) which text
better preserves the meaning of the original sen-
tence (Figure A.2 in Appendix) and (2) which text
is more likely to be written by human (Figure A.3

Personal Exposure
Word Selection

ignOrant, gaarbage
morons—mor0Ons

ignorajt, garage
edited—ewited

Table 4: Top reasons in favoring ANTHRO’s perturba-
tions as more likely to be written by human.

in Appendix). To reduce bias, we present the two
questions in two separate tasks. The human sub-
jects include both (1) Amazon Mechanical Turk
(MTurk) workers and (2) professional data anno-
tators at a company with extended experience in
annotating texts in domain such as toxic and hate
speech. Our human subject study with MTurk
workers was IRB-approved.

Quantitative Results. It is statistically signifi-
cant (p-value<0.05) to reject the null hypotheses
of both Hsemantics and Huring (Table A.3 in Ap-
pendix). Overall, adversarial texts generated by
perturbations mined in the wild are much better
at preserving the original semantics and also more
indistinguishable from human-written texts than
those generated by TextBugger (Figure 4, Left).

Qualitative Analysis. We also ask the profes-
sional subjects to provide optional comments on
their thought process. Table 4 summarizes the top
reasons why they favor ANTHRO over TextBugger
in terms of Turing test. ANTHRO’s perturbations



BERT (case-insensitive) RoBERTa (case-sensitive)

Attacker  Normalizer Toxic Comments HateSpeech Cyberbullying Toxic Comments HateSpeech Cyberbullying
TextBugger - 0.7640.02 0.9440.01  0.78+£0.03 0.7740.06 0.874£0.01  0.72+0.01
ANTHROg - 0.82+0.01 0.97+£0.01  0.88£0.04 0.91£0.02 0.97+£0.01  0.89+0.02
TextBugger A+H+P 0.7340.02 0.64+0.06  0.70£0.04 0.6840.06 0.574£0.03  0.66+0.04
ANTHROg  A+H+P 0.85+£0.04 0.79+£0.02  0.84:+0.03 0.88£0.04 0.93+0.01  0.91+0.01
Table 5: Averaged attack success rate (Atk%71) of ANTHROg and TextBugger

are perceived similar to genuine typos and more ANTHRO, V ANTHRO, ©

intelligible (than ones that might be generated by 0.801

machine). They also better preserve both mean- %

i < ¥ TextBugger @®TextBugger

ings and sounds. Moreover, some annotators also 0.751 1

rely on personal exposure on Reddit, YouTube ANTHROV ANTHRO®

comments, or the frequency of word use via the 0.5 0.6 0.7 0.5 0.6 0.7

Semantic Preservation Turing Test

search function on Reddit to decide if a word-
choice is human-written. Interestingly, one men-
tions that ANTHRO is better at selecting sensible
words—i.e., “morons" instead of “edit", to perturb
than TextBugger, even though the two methods
share the same iterative attack mechanism (Alg.
1). This happens because ANTHRO directly en-
sembles the distribution of human-written texts,
which naturally includes more replacement candi-
dates for offensive than non-offensive words. This
eventually increases the probability of sensitive
words being perturbed.

5 ANTHROg Attack

ANTHROg. We want to examine if perturbations
inductively extracted from the wild can help aug-
ment a deductive attack such as TextBugger and
improve its overall performance. Hence, we intro-
duce ANTHROg, which considers the perturbation
candidates from both ANTHRO and 7extBugger in
Ln. 10 of Alg. 1. Alg. 1 still selects the pertur-
bation that best flip the target model’s prediction.

Attack Performance. Even though ANTHRO
comes second after TextBugger when attacking
BERT model, Table 5 shows that when com-
bined with TextBugger—i.e., ANTHROg, it consis-
tently achieves superior performance with an aver-
age of 82.7% and 90.7% in Atk% on BERT and
RoBERTa even under all normalizers (A+H+P).

Semantic Preservation and TT. ANTHROg im-
proves TextBugger’s Atk% to over 8% on aver-
age (Table 5). It also improves TextBugger’s se-
mantic preservation and TT score 32% and 42%
(from 0.5 threshold) (Figure 4, Right). The pres-
ence of only a few human-like perturbations gen-
erated by ANTHRO is sufficient to signal whether

Figure 5: Trade-off among evaluation metrics

or not it is written by humans, while only one
unreasonable perturbation generated by ZextBug-
ger can adversely affect its meaning. This ex-
plains the performance drop in terms of semantic
preservation but not in TT when indirectly compar-
ing ANTHROg with ANTHRO. Overall, ANTHROg
also has the best trade-off between Atk% and hu-
man evaluation—i.e., positioning at top right cor-
ners in Figure 5. Particularly, ANTHROg trade-
offs from ANTHRO some reduction in semantic
preservation for superior Atk%. This gain iter-
ates the overall benefits of human-written pertur-
bations for adversarial attacks.

6 Defend ANTHRO, ANTHROg Attack

We examine two approaches to defend against AN-
THRO attack. We compare them against BERT
and BERT combined with 3 layers of normaliza-
tion A+H+P. BERT is selected as it is better than
RoBERTz2 at defending against ANTHRO (Table 3).

Sound-Invariant Textual Model (SOUNDCNN):
When the defender do not have access to the hash
tables {# }{ of the attacker, the defender can train
a generic model that encodes not the spellings but
the phonetic features of a text for prediction. As
an example, we train a CNN model (Kim, 2014)
on top of a continuous embeddings layer for dis-
crete SOUNDEX++ encodings of each token in a
sentence. Adversarial Training (ADV.TRAIN):
To overcome the lack of access to {H}{, the de-
fender can extract his/her perturbations in the wild
from a separate corpus D* where D*ND=() and
use them to augment the training examples—i.e.,
via self-attack with ratio 1:1, to fine-tune a more



Model ANTHRO ANTHROg
TC, HS, CB/ TC| HS| CBJ

BERT 0.72 0.82 0.71 0.82 097 0.88

BERT+A+H+P 0.65 0.65 060 0.85 0.79 0.84

ADV.TRAIN 0.41
SOUNDCNN 0.14

030 035 0.72 0.72 0.67
0.02 0.15 0.86 0.84 092

Table 6: Averaged Atk%, of ANTHRO and ANTHROg
against different defense models.

robust BERT model. Here we use D* as a corpus
of 34M general comments from online news.

Results. We follow the same evaluation pro-
cedure in Sec. 4.1. Table 6 shows that both
SOUNDCNN and ADV.TRAIN are robust against
ANTHRO attack, while ADV.TRAIN performs best
when defending ANTHROg. Since SOUNDCNN is
strictly based on phonetic features, it is vulnerable
against ANTHROg whenever TextBugger’s pertur-
bations are selected. Table 6 also underscores that
ANTHROg is a strong and practical attack, defense
against which is thus an important future direction.

7 Discussion

Evaluation with Perspective API. The under-
standing of different variations of human-written
texts is critical to fully capture the semantic mean-
ings of inputs especially in sensitive domains such
as toxicity moderation. We utilize ANTHRO and
ANTHROg to evaluate such robust understanding
of the popular Perspective API 2, which has been
adopted in various publishers—e.g., NYTimes, and
platforms—e.g., Disqus, Reddit. Specifically, we
evaluate (1) if the API can capture different forms
of human-written toxic texts by using ANTHRO to
randomly perturb different portions of words in
200 positive texts from the TC dataset, (2) if the
API can defend against ANTHRO attack either via
a direct iteration mechanism (Alg. 1) or via trans-
fer attack through an intermediate BERT classifier.

Figure 6 (Left) shows that the API service pro-
vides superior performance compared to a self
fine-tuned BERT classifier, yet its precision dete-
riorates quickly from 0.95 to only 0.9 and 0.82
when 25%-50% of a sentence are perturbed. In
contrast, the ADV.TRAIN (Sec. 7) model achieves
fairly consistent precision in the same setting. The
APl is also more vulnerable against both direct and
transfer attacks from our proposed attacks (Fig-
ure. 6, Right) than TextBugger, with its preci-

? https://www.perspectiveapi.com/
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Figure 6: (Left) Precision on human-written perturbed
texts synthesized by ANTHRO and (Right) Robustness
evaluation of Perspective API under different attacks

sion dropped to only 0.12 when evaluated against
ANTHROg. Overall, not only ANTHRO is a pow-
erful and realistic attack, it can also help develop
more robust text classifiers in practice.

Computational Complexity. The one-time ex-
traction of {H}{ via Eq. (1) has O(|D|L)
where |D|, L is the # of tokens and the length
of longest token in D (hash-map operations cost
O(1)). Given a word w and k,d, ANTHRO re-
trieves a list of perturbation candidates via Eq. (2)
with O(Jw|max(Hy)) where |w| is the length of
w and max(Hy) is the size of the largest set of to-
kens sharing the same SOUNDEX++ encoding in
Hy,. Since max(Hy) is constant, the upper-bound
then becomes O(|w]).

Limitation The perturbation candidate retrieval
operation (Eq. (2)) has a higher computational
complexity than that of other methods—i.e., O(|w|)
v.s. O(1). This can prolong the running time, espe-
cially when attacking long documents. However,
we can overcome this by storing all the perturba-
tions (given k,d) of the top frequently used of-
fensive and non-offensive English words. We can
then expect the operation to have an average com-
plexity close to O(1). The current SOUNDEX++
algorithm is designed for English texts and might
not be applicable in other languages. Thus, we
plan to extend ANTHRO to a multilingual setting.

8 Conclusion

We propose ANTHRO, a character-based attack al-
gorithm that extracts human-written perturbations
in the wild and then utilizes them for adversarial
text generation. Our approach yields the best trade-
off between attack performance, semantic preser-
vation and stealthiness under both empirical ex-
periments and human studies. A BERT classifier
trained with examples augmented by ANTHRO can
also better understand human-written texts.


https://www.perspectiveapi.com/
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Dataset #Texts #Tokens
List of Bad Words * 1.9K  1.9K
Rumours (Twitter) (Kochkina et al., 2018) 99K 159K
Hate Memes (Twitter) (Gomez et al., 2020) 150K 328K

Personal Atks (Wiki.) (Wulczyn et al., 2017b) 116K 454K
Toxic Comments (Wiki.) (Kaggle, 2019) 2M 1.6M
Malignant Texts (Reddit) (Kaggle, 2021)* 313K 857K
Hateful Comments (Reddit) (Kaggle, 2021)° 1.7M 1M
Sensitive Query (Search Engine, Private) 1.2M 314K
Hateful Comments (Online News, Private) 127M ™
Total texts used to extract ANTHRO 18.3M -

Table A.1: Real-life datasets that are used to ex-
tract adversarial texts in the wild, number of total ex-
amples (#Texts) and unique tokens (#Tokens) (case-
insensitive)

A Supplementary Materials
Below are list of supplementary materials:

» Table A.1: list of datasets we used to curate the
corpus D, from which human-written perturba-
tions are extracted (Sec. 3.1). All the datasets
are publicly available, except from the two pri-
vate datasets Sensitive Query and Hateful Com-
ments.

* Table A.2: list of datasets we used to evaluate
the attack performance of all attackers (Sec. 4.1)
and the prediction performance of BERT and
RoBERTa on the respective test sets. All datasets
are publicly available.

» Table A.3: Statistical analysis of the human study
results (Sec. 4.2).

» Table 4: List of top reasons provided by the pro-
fessional annotators on why they prefer ANTHRO
over TextBugger in the Turing test (Sec. 4.2).

e Figure A.1: Word-cloud of extracted human-
written perturbations by ANTHRO for some of
popular English words.

* Figure A.2, A.3: Interfaces of the human study
described in Sec. 4.2.

B Implementation Details

B.1 Attackers

We evaluate all the attack baselines using the open-
source OpenAttack framework (Zeng et al., 2021).
We keep all the default parameters for all the attack
methods.

Dataset #Total BERT RoBERTa

CB (Wulczyn et al., 2017a) 449K 0.84 0.84
TC (Kaggle, 2018) 160K 0.85 0.85
HS (Davidson et al.) 25K 091 0.97

Table A.2: Evaluation datasets Cyberbullying (CB),
Toxic Comments (TC) and Hate Speech (HS) and pre-
diction performance in F1 score on their test sets of
BERT and RoBERTa.

Alternative Hypothesis
—— AMT Workers as Subjects —

Mean t-stats p-value df

Hsemantics : ANTHRO>TB 0.82 5.66
HSsemantics : ANTHROg >TB 0.64 1.95
HTuring : ANTHRO>TB  0.71 3.14
Huring : ANTHROg >TB  0.70 3.00

4.1e-7** 48
2.9e-2% 46
1.5e-3%* 47
2.2e-3%* 46

—— Professional Annotators as Subjects —

Hsemantics : ANTHRO >TB  0.75 3.79 2.4e-4%* 44
Hsemantics : ANTHROg >TB 0.68 2.49 8.6e-3** 41
Huring : ANTHRO>TB ~ 0.70 3.06 1.82e-3%** 50
Huring : ANTHROg >TB  0.73  3.53 4.6e-4** 48

Statistical significant **(p-value<0.01) *(p-value<0.05)

Table A.3: It is statistically significant (p-value<0.01)
that adversarial texts generated by ANTHRO are bet-
ter than those generated by TextBugger (TB) at both
preserving the semantics of the original sentences
(Hsemantics)) and at being perceived as human-written
texts (HTuring)-

B.2 Defenders

For the (1) Accents normalization, we adopt the ac-
cents removal code from the Hugging Face repos-
itory 6. For (2) Homoglyph normalization, we
adopt a 3rd party python Homoglyph library’. For
(3) Perturbation normalization, we use the state-
of-the-art misspelling-based perturbation correc-
tion Neuspell model (Jayanthi et al., 2020) 8. For
Perspective API, we directly use the publicly avail-
able API provided by Jigsaw and Google °.

B.3 Human Study Controls

To ensure a high quality response from MTurks,
we require a minimum attentions span of 30 sec-
onds for each question. We recruit MTurks that
satisfy the following qualifications, namely (1) rec-
ognized as “master” workers by MTurk system,
(2) have done at least 5K HITs and (3) have his-
torical HITs approval rate of at least 98%. We pay
each worker around $10 an hour.

® https://huggingface.co

" https://github.com/codebox/homoglyph

8 https://github.com/neuspell/neuspell

® https://www.perspectiveapi.com/
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Figure A.1: Word-clouds of perturbations in the wild extracted by ANTHRO for the word “amazon”, “republicans”,
“democrats” and “president”.

Read the two pieces of text below and select your response.

Original Text : ==Hello cretino!!!== I'm tired to see too many idiot in Amesh Wiki.
Text A : == Hello cretino !! !== 1 ' m tired to see too many idior in Amesh Wiki .
Text B : == Hello cretino !! !== I ' m tired to see too many idipt in Amesh Wiki .

O Text A preserves the meaning of the Original Text better than text B
O Text B preserves the meaning of the Original Text better than text A
O Cannot decide (Text A and Text B are similar)

Submit

Figure A.2: User-study design for semantic preservation comparison between ANTHRO, ANTHROg Vv.s. TextBug-

ger

Read the two pieces of text below and select your response.

Original Text : He is a CHEATER, and the article should say that.
Text A : He is a CHETAER , and the article should say that
Text B : He i1s a CHETER , and the article should say that

O Text A is more likely to be written by a human (and not by a machine) than text B
OText B is more likely to be written by a human (and not by a machine) than text A
O Cannot decide (Text A and Text B are similar)

Submit

Figure A.3: User-study design for Turing test comparison between ANTHRO, ANTHROg Vv.s. TextBugger
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