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Abstract001

We proposes a novel algorithm, ANTHRO, that002
inductively extracts over 600K human-written003
text perturbations in the wild and leverages004
them for realistic adversarial attack. Unlike005
existing character-based attacks which often006
deductively hypothesize a set of manipulation007
strategies, our work is grounded on actual008
observations from real-world texts. We find009
that adversarial texts generated by ANTHRO010
achieve the best trade-off between (1) attack011
success rate, (2) semantic preservation of the012
original text, and (3) stealthiness–i.e. indistin-013
guishable from human writings hence harder014
to be flagged as suspicious. Specifically, our015
attacks accomplished around 83% and 91% at-016
tack success rates on BERT and RoBERTa,017
respectively. Moreover, it outperformed the018
TextBugger baseline with an increase of 50%019
and 40% in terms of semantic preservation and020
stealthiness when evaluated by both layperson021
and professional human workers. ANTHRO022
can further enhance a BERT classifier’s perfor-023
mance in understanding different variations of024
human-written toxic texts via adversarial train-025
ing when compared to the Perspective API. All026
source code will be released.027

1 Introduction028

Machine learning (ML) models trained to opti-029

mize only the prediction performance are often030

vulnerable to adversarial attacks (Papernot et al.,031

2016; Wang et al., 2019). In the text domain, espe-032

cially, a character-based adversarial attacker aims033

to fool a target ML model by generating an adver-034

sarial text x∗ from an original text x by manipu-035

lating characters of different words in x, such that036

some properties of x are preserved (Li et al., 2018;037

Eger et al., 2019; Gao et al., 2018). We character-038

ize strong and practical adversarial attacks as three039

criteria: (1) attack performance, as measured by040

the ability to flip a target model’s predictions, (2)041

semantic preservation, as measured by the ability042

Figure 1: ANTHRO (Bottom) extracts and uses human-
written perturbations for adversarial attacks instead of
proposing a specific set of manipulation rules (Top).

to preserve the meaning of an original text, and (3) 043

stealthiness, as measured by how unlikely it is de- 044

tected as machine-manipulation and removed by 045

defense systems or human examiners (Figure 1). 046

While the first two criteria are natural derivation 047

from adversarial literature (Papernot et al., 2016), 048

stealthiness is also important to be a practical at- 049

tack under a mass-manipulation scenario. 050

Previously proposed character-based attacks fol- 051

low a deductive approach where the researchers 052

hypothesize a set of text manipulation strategies 053

that exploit some vulnerabilities of textual ML 054

models (Figure 1). Although these deductively de- 055

rived techniques can demonstrate superior attack 056

performance, there is no guarantee that they also 057

perform well with regard to semantic preservation 058

and stealthiness. We first analyze why enforc- 059

ing these properties are challenging especially for 060

character-based attacks. 061

To preserve the semantic meanings, an attacker 062

can minimize the distance between representative 063

vectors learned from a large pre-trained model– 064

e.g., Universal Sentence Encoder (Cer et al., 2018) 065

of the two sentences. However, this is only appli- 066

cable in word- or sentence-based attacks, not in 067

character-based attacks. It is because character- 068

based manipulated tokens are more prone to be- 069

come out-of-distribution–e.g., morons→mor0ns, 070

from what is observed in a typical training cor- 071
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pus where the correct use of English is often as-072

sumed. In fact, existing character-based attacks073

such as TextBugger (Li et al., 2018), VIPER (Eger074

et al., 2019) and DeepWordBug (Gao et al., 2018)075

generally assume that the meaning of the original076

sentence is preserved without further evaluations.077

In addition, a robust ML pipeline is often078

equipped to detect and remove potential ad-079

versarial perturbations either via automatic soft-080

ware (Jayanthi et al., 2020; Pruthi et al., 2019),081

or human-in-the-loop (Le et al., 2020). Such de-082

tection is feasible especially when the perturbed083

texts are curated using a set of fixed rules that084

can be easily re-purposed for defense. Thus, at-085

tackers such as VIPER and DeepWordBug, which086

map each Latin-based character to either non-087

English accents (e.g., ė, ā, d̃), or homoglyphs088

(characters of similar shape), fall into this cate-089

gory and can be easily detected under simple nor-090

malization techniques (Sec. 4.1). TextBugger091

circumvents this weakness by utilizing a set of092

more general character-editing strategies–e.g., re-093

placing and swapping nearby characters to synthe-094

size human-written typos and misspellings. Al-095

though texts perturbed by such strategies become096

less likely to be detected, many of them may097

distort the meaning of the original text (e.g.,098

“garbage"→“gabrage", “dumb"→“dub") and can099

be easily flagged as machine-generated by human100

examiners. Therefore, we argue that generating101

perturbations that both preserve original mean-102

ings and are indistinguishable from human-written103

texts be a critically important yet challenging task.104

To overcome these challenges, we introduce105

ANTHRO, a novel algorithm that inductively finds106

and extracts text perturbations in the wild. As107

shown in Figure 1, our method relies on human-108

written sentences in the Web in their raw form. We109

then use them to develop a character-based adver-110

sarial attack that is not only effective and realis-111

tic but is also helpful in training ML models that112

are more robust against a wide variety of human-113

written perturbations. Distinguished from previ-114

ous research, our work considers both spellings115

and phonetic features (how a word sounds), to116

characterize text perturbations. Furthermore, we117

conducted user studies to quantitatively evaluate118

semantic preservation and stealthiness of adversar-119

ial texts. Our contributions are as follows.120

• ANTHRO extracts over 600K case-sensitive121

character-based “real" perturbations from122

Figure 2: Word-clouds of human-written perturbations
for the English word “democrats" and “republicans"

human-written texts. 123

• ANTHRO facilitates black-box adversarial at- 124

tacks with an average of 82.7% and 90.7% attack 125

success rates on BERT and RoBERTa, and drops 126

the Perspective API’s precision to only 12%. 127

• ANTHRO outperforms the TextBugger baseline 128

by over 50% in semantic preservation and 40% 129

in stealthiness in human subject studies. 130

• ANTHRO combined with adversarial training 131

also enables BERT classifier to achieve 3%–14% 132

improvement in precision over Perspective API 133

in understanding human-written perturbations. 134

2 Perturbations in the Wild 135

2.1 Machine v.s. Human Perturbations 136

Perturbations that are neither natural-looking nor 137

resembling human-written texts are more likely 138

to be detected by defense systems (thus not a 139

practical attack from adversaries’ perspective). 140

However, some existing character-based pertur- 141

bation strategies, including TextBugger, VIPER 142

and DeepWordBug, follow a deductive approach 143

and their generated texts often do not resemble 144

human-written texts. Qualitatively, however, we 145

find that humans express much more diverse and 146

creative (Tagg, 2011) perturbations (Figure 2) 147

than ones generated by such deductive approaches. 148

For example, humans frequently (1) capitalize and 149

change the parts of a word to emphasize distorted 150

meanings (e.g.,“democrats“→“democRATs", 151

“republicans"→“republiCUNTs"), (2) hyphenate 152

a word (e.g., “depression"→“de-pres-sion"), 153

(3) use emoticons to emphasize meaning (e.g., 154

“shit"→“sh t"), (4) repeat particular characters 155

(e.g., “dirty"→“diiirty", “porn"→“pooorn"), or 156

(5) insert phonetically similar characters (e.g., 157

“nigger"→“nighger"). Since human-written 158

perturbations do not manifest any fixed rules and 159

often require some context understanding, it is 160

challenging to systematically generate all such 161

perturbations, if not impossible. 162

We later show that human examiners rely on 163
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Attacker Reddit Comts. News Comts.
#texts, #tokens »5B, N/A (34M, 11M)

TextBugger 51.6% (126/244) 7.10% (11K/152K)
VIPER 3.2% (1/31) 0.13% (25/19K)
DeepWordBug 0% (0/31) 0.27% (51/19K)

ANTHRO 82.4% (266/323) 55.7% (16K/29K)

Table 1: Percentage of offensive perturbed words gen-
erated by different attacks that can be observed in real
human-written comments on Reddit and online news.

personal exposure from Reddit or YouTube com-164

ments to decide if a word choice looks natural165

(Sec. 4.2). Quantitatively, we discover that not166

all the perturbations generated by deductive meth-167

ods are observed on the Web (Table 1). To analyze168

this, we first use each attack to generate all pos-169

sible perturbations of either (1) a list of over 3K170

unique offensive words or (2) a set of the top 5171

offensive words (“c*nt”, “b*tch”, “m*therf***er”,172

“bast*rd”, “d*ck”). Then, we calculate how many173

of the perturbed words are present in a dataset174

of over 34M online news comments or are used175

by at least 50 unique commentators on Reddit,176

respectively. Even though TextBugger was well-177

known to simulate human-written typos as adver-178

sarial texts, merely 51.6% and 7.1% of its perturba-179

tions are observed on Reddit and online news com-180

ments, implying TextBugger’s generated adversar-181

ial texts being “unnatural" and “easily-detectable"182

by human-in-the-loop defense systems.183

2.2 The SMS Property: Similar Sound,184

Similar Meaning, Different Spelling185

The existence of a non-arbitrary relationship be-186

tween sounds and meanings has been proven by187

a life-long research establishment (Köhler, 1967;188

Jared and Seidenberg, 1991; Gough et al., 1972).189

In fact, Blasi et al. (2016) analyzed over 6K lan-190

guages and discovered a high correlation between191

a word’s sound and meaning both inter- and intra-192

cultures. Aryani et al. (2020) found that how a193

word sounds links to an individual’s emotion. This194

motivates us to hypothesize that words spelled dif-195

ferently yet have the same meanings such as text196

perturbations will also have similar sounds.197

Figure 2 displays several perturbations that are198

found from real-life texts. Even though these per-199

turbations are spelled differently from the original200

word, they all preserve similar meanings when per-201

ceived by humans. Such semantic preservation202

is feasible because humans perceive these varia-203

tions phonetically similar to the respective origi-204

nal words (Van Orden, 1987). For example, both 205

“republican" and “republikan" sound similar when 206

read by humans. Therefore, given the surround- 207

ing context of a perturbed sentence–e.g., “Pres- 208

ident Trump is a republikan”, and the phonetic 209

similarity of “republican” and “republikan”, end- 210

users are more likely to interpret the perturbed sen- 211

tence as “President Trump is a republican”. We 212

call these characteristics of text perturbations the 213

SMS property: “similar Sound, similar Meaning, 214

different Spellings”. Noticeably, the SMS charac- 215

terization includes a subset of “visually similar" 216

property of perturbations as studied in previous ad- 217

versarial attacks such as TextBugger (e.g., “hello” 218

sounds similar with “he11o”), VIPER and Deep- 219

WordBug. However, two words that look very 220

similar sometimes carry different meanings–e.g., 221

“garbage”→“gabrage”. Moreover, our character- 222

ization is also distinguished from homophones 223

(e.g., “to” and “two”) which describe words with 224

similar sound yet different meaning. 225

3 A Realistic Adversarial Attack 226

Given the above analysis, we now derive our pro- 227

posed ANTHRO adversarial attack. We first share 228

how to systematically encode the sound–i.e., pho- 229

netic feature, of any given words and use it to 230

search for their human-written perturbations that 231

satisfy the SMS property. Then, we introduce an 232

iterative algorithm that utilizes the extracted per- 233

turbations to attack textual ML models. 234

3.1 Mining Perturbations in the Wild 235

Sound Encoding with SOUNDEX++. To capture 236

the sound of a word, we adopt and extend the 237

case-insensitive SOUNDEX algorithm. SOUNDEX 238

helps index a word based on how it sounds rather 239

than how it is spelled (Stephenson, 1980). Given 240

a word, SOUNDEX first keeps the 1st character. 241

Then, it removes all vowels and matches the re- 242

maining characters one by one to a digit following 243

a set of predefined rules–e.g., “B”, “F”→1, “D”, 244

“T”→3 (Stephenson, 1980). For example, “Smith” 245

and “Smyth” are both encoded as S530. 246

As the SOUNDEX system was designed mainly 247

for encoding surnames, it does not necessarily 248

work for texts in the wild. For example, it cannot 249

recognize visually-similar perturbations such as 250

“l"→“1", “a"→“@" and “O"→“0". Moreover, it 251

always fixes the 1st character as part of the final en- 252

codes. This rule is too rigid and can result in words 253
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Word SOUNDEX SOUNDEX++ (Ours)

porn P650 P650 (k=0), PO650 (k=1)
p0rn P065(7) (same as above)

lesbian L215 L245 (k=0), LE245 (k=1)
lesbbi@n L21@(7) (same as above)
losbian L215(7) L245 (k=0), LO245 (k=1)
(7): Incorrect encoding

Table 2: SOUNDEX++ can capture visually similar
characters and is more accurate in differentiating be-
tween desired (blue) and undesired (red) perturbations.

Figure 3: Trade-off between precision and recall of ex-
tracted perturbations for the word “president" w.r.t dif-
ferent k and d values. Higher k and lower d associate
with better preservation of the original meaning.

that are entirely different yet encoded the same254

(Table 2). To solve these issues, we propose a new255

SOUNDEX++ algorithm. Not only SOUNDEX++256

encodes visually-similar characters the same, it257

also encodes the sound of a word at different258

hierarchical levels k (Table 2). At level k=0,259

SOUNDEX++ works similar to SOUNDEX by fix-260

ing the first character. At level k≥1, SOUNDEX++261

instead fixes the first k+1 characters and encodes262

the rest.263

Levenshtein Distance d and Phonetic Level264

k as a Semantic Preservation Proxy. Since265

SOUNDEX++ is not designed to capture a word’s266

semantic meaning, we utilize both phonetic param-267

eter k and Levenshtein distance d (Levenshtein268

et al., 1966) as a heuristic approximation to mea-269

sure the semantic preservation between two words.270

Intuitively, the higher the phonetic level (k≥1)271

at which two words share the same SOUNDEX++272

code and the smaller the Levenshtein distance d273

to transform one word to another, the more likely274

human associate them with the meaning. In other275

words, k and d are hyper-parameters that help276

control the trade-off between precision and recall277

when retrieving perturbations of a given word such278

that they satisfy the SMS property (Figure 3). We279

will later carry out a human study to evaluate how280

well our extracted perturbations can preserve the281

Algorithm 1 ANTHRO Attack Algorithm

1: Input: {H}K0 , k, d
2: Input: target classifier f , original sentence x
3: Output: perturbed sentence x∗

4: Initialize: x∗ ← x
5: for word xi in x do: si←Score(xi, f)
6: Worder←Sort(x1, x2, ..xm) according to si
7: for xi inWorder do:
8: P←ANTHRO(xi,k,d, {H}K0 ) // Eq.(3)
9: x∗← replace xi ∈ x with the best w ∈ P

10: if f(x∗)6=f(x) then return x∗

11: return None

semantic meanings in practice. 282

Mining from the Wild. To mine all human- 283

written perturbations, we first collect a large cor- 284

pus D of over 18M sentences written by netizens 285

from 9 different datasets (Table A.1 in Appendix). 286

We select these datasets because they include of- 287

fensive texts such as hate speech, sensitive search 288

queries, etc., and hence very likely to include text 289

perturbations. Next, for each phonetic level k≤K, 290

we curate different hash tables {H}K0 that maps a 291

unique SOUNDEX++ code c to a set of its match- 292

ing unique case-sensitive tokens that share the 293

same encoding c as follows: 294

Hk : c 7→ {wj |S(wi, k) = S(wj , k) = c

∀wi, wj ∈ D, wi 6= wj},
(1) 295

where S(w,k) returns the SOUNDEX++ code of 296

token w at phonetic level k, K is the largest pho- 297

netic level we want to encode. With {H}K0 , k and 298

d, we can now search for the set of perturbations 299

Gd
k(w

∗) of a specific target token w∗ as follows: 300

Gd
k(w

∗)←{wj |wj∈Hk[S(w
∗, k)],Lev(w∗, wj)≤d}

(2) 301

where Lev(w∗, wj) returns the Levenshtein dis- 302

tance between w∗ and wj . Noticeably, we only ex- 303

tract {H}K0 once from D via Eq. (1), then we can 304

use Eq. (2) to retrieve all perturbations for a given 305

word during deployment. We name this method of 306

mining and retrieving human-written text pertur- 307

bations in the wild as ANTHRO, aka human-like 308

perturbations: 309

ANTHRO : w∗,k,d, {H}K0 7−→ Gd
k(w

∗) (3) 310

ANTHRO Attack. To utilize ANTHRO for adver- 311

sarial attack on model f(x), we propose the AN- 312

THRO attack algorithm (Alg. 1). We use the 313
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same iterative mechanism (Ln.9–13) that is com-314

mon among other black-box attacks. This process315

replaces the most vulnerable word in sentence x,316

which is evaluated with the support of Score)(·)317

function (Ln. 5), with the perturbation that best318

drops the prediction probability f(x) on the cor-319

rect label. Unlike the other methods, ANTHRO in-320

clusively draws from perturbations extracted from321

human-written texts captured in {H}K0 (Ln. 10).322

We adopt the Score(·) from TextBugger.323

4 Evaluation324

We evaluate ANTHRO by: (1) attack performance,325

(2) semantic preservation, and (3) Turing Test326

(TT)–i.e., how likely an attack message is spotted327

as machine-generated by human examiners.328

4.1 Attack Performance329

Setup. We use BERT (case-insensitive) (Jin330

et al., 2019) and RoBERTa (case-sensitive) (Liu331

et al., 2019) as target classifiers to attack. We332

evaluate on three public tasks, namely detect-333

ing toxic comments ((TC) dataset, Kaggle 2018),334

hate speech ((HS) dataset (Davidson et al.)), and335

online cyberbullying texts ((CB) dataset (Wul-336

czyn et al., 2017a)). We split each dataset to337

train, validation and test set with the 8:1:1 ratio.338

Then, we use the train set to fine-tune BERT and339

RoBERTa with a maximum of 3 epochs and se-340

lect the best checkpoint using the validation set.341

BERT and RoBERTa achieve around 0.85–0.97342

in F1 score on the test sets (Table A.2 in Ap-343

pendix). We evaluate with targeted attack (change344

positive→negative label) since it is more practi-345

cal. We randomly sample 200 examples from each346

test set and use them as initial sentences to attack.347

We repeat the process 3 times with unique random348

seeds and report the results. We use the attack349

success rate (Atk%) metric–i.e., the number of ex-350

amples whose labels are flipped by an attacker351

over the total number of texts that are correctly352

predicted pre-attack. We use the 3rd party open-353

source OpenAttack (Zeng et al., 2021) framework354

to run all evaluations.355

Baselines. We compare ANTHRO with three356

baselines, namely TextBugger (Li et al., 2018),357

VIPER (Eger et al., 2019) and DeepWordBug (Gao358

et al., 2018). These attackers utilize different359

character-based manipulations to craft their adver-360

sarial texts as described in Sec. 1. From the anal-361

ysis in Sec. 3.1 and Figure 3, we set k←1 and362

d←1 for ANTHRO to achieve a balanced trade-off 363

between precision and recall on the SMS property. 364

We examine all attackers under several combina- 365

tions of different normalization layers. They are 366

(1) Accents normalization (A) and (2) Homoglyph 367

normalization 1 (H), which converts non-English 368

accents and homoglyphs to their corresponding 369

ascii characters, (3) Perturbation normalization 370

(P), which normalizes potential character-based 371

perturbations using the SOTA misspelling correc- 372

tion model Neuspell (Jayanthi et al., 2020). These 373

normalizers are selected as counteracts against the 374

perturbation strategies employed by VIPER (uses 375

non-English accents), DeepWordBug (uses homo- 376

glyphs) and TextBugger, ANTHRO (based on mis- 377

spelling and typos), respectively. 378

Results. Overall, both ANTHRO and TextBug- 379

ger perform the best, with ANTHRO being the 380

most robust attacker on RoBERTa (due to its case- 381

sensitive perturbations) and is competitive com- 382

pared to TextBugger on BERT (Table 3). Be- 383

cause RoBERTa uses the accent Ġ as a part of its 384

byte-level BPE encoding (Liu et al., 2019) while 385

BERT by default removes all non-English accents, 386

VIPER achieves a near perfect score on RoBERTa, 387

yet it is ineffective on BERT. Since VIPER ex- 388

clusively utilizes non-English accents, its attacks 389

can be easily corrected by the accents normalizer 390

(Table 3). Similarly, DeepWordBug perturbs texts 391

with homoglyph characters, most of which can 392

also be normalized using a 3rd party homoglyph 393

detector (Table 3). 394

In contrast, even under all normalizers–i.e., 395

A+H+P, TextBugger and ANTHRO still achieves 396

66.3% and 73.7% in Atk% on average across all 397

evaluations. Although Neuspell (Jayanthi et al., 398

2020) drops TextBugger’s Atk% 14.7% across 399

all runs, it can only reduce the Atk% of AN- 400

THRO a mere 7.5% on average. This is because 401

TextBugger and Neuspell or other dictionary-based 402

typo correctors rely on fixed deductive rules–e.g., 403

swapped, replaced by neighbor letters, for attack 404

and defense. However, ANTHRO utilizes human- 405

written perturbations which are greatly varied, 406

hence less likely to be systematically detected. 407

4.2 Semantic Preservation and Turing Test 408

Since ANTHRO and TextBugger are the top two 409

effective attacks, this section will focus on eval- 410

uating their ability in semantic preservation and 411

1 https://github.com/codebox/homoglyph
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Attacker Normalizer
BERT (case-insensitive) RoBERTa (case-sensitive)

Toxic Comments HateSpeech Cyberbullying Toxic Comments HateSpeech Cyberbullying

TextBugger - 0.76±0.02 0.94±0.01 0.78±0.03 0.77±0.06 0.87±0.01 0.72±0.01
DeepWordBug - 0.56±0.04 0.68±0.01 0.50±0.02 0.52±0.01 0.42±0.04 0.38±0.04
VIPER - 0.08±0.03 0.01±0.01 0.13±0.02 1.00±0.00 1.00±0.00 0.99±0.01
ANTHRO - 0.72±0.02 0.82±0.01 0.71±0.02 0.84±0.00 0.93±0.01 0.78±0.01

TextBugger A - - - 0.72±0.02 0.92±0.00 0.74±0.02
DeepWordBug A - - - 0.43±0.02 0.59±0.03 0.43±0.01
VIPER A - - - 0.09±0.01 0.05±0.01 0.17±0.02
ANTHRO A - - - 0.77±0.02 0.94±0.02 0.84±0.02

TextBugger A+H 0.78±0.03 0.85±0.00 0.79±0.00 0.74±0.02 0.93±0.01 0.77±0.03
DeepWordBug A+H 0.04±0.00 0.06±0.02 0.01±0.01 0.03±0.01 0.01±0.01 0.06±0.02
VIPER A+H 0.07±0.00 0.01±0.01 0.10±0.00 0.13±0.02 0.07±0.01 0.17±0.01
ANTHRO A+H 0.76±0.02 0.77±0.03 0.73±0.05 0.82±0.02 0.97±0.00 0.82±0.02

TextBugger A+H+P 0.73±0.02 0.64±0.06 0.70±0.04 0.68±0.06 0.57±0.03 0.66±0.04
DeepWordBug A+H+P 0.02±0.01 0.04±0.02 0.01±0.01 0.02±0.01 0.01±0.01 0.02±0.01
VIPER A+H+P 0.12±0.01 0.04±0.01 0.17±0.03 0.11±0.02 0.05±0.01 0.18±0.01
ANTHRO A+H+P 0.65±0.04 0.64±0.01 0.60±0.05 0.80±0.02 0.91±0.03 0.82±0.02
(-) BERT already has the accents normalization (A normalizer) by default, (Red): Poor performance (Atk%<0.15)

Table 3: Averaged attack success rate (Atk%↑) of different attack methods

Figure 4: Semantic preservation and Turing test results

Turing test. Given an original sentence x and its412

adversarial text x∗ generated by either one of the413

attacks, we design a human study to directly com-414

pare ANTHRO with TextBugger. Specifically, two415

alternative hypotheses for our validation are (1)416

HSemantics: x∗ generated by ANTHRO preserves417

the original meanings of x better than that gen-418

erated by TextBugger and (2) HTuring: x∗ gener-419

ated by ANTHRO is more likely to be perceived as420

a human-written text (and not machine) than that421

generated by TextBugger, hence called Turing test422

(TT) (Uchendu et al., 2020).423

Human Study Design. We use the two attack-424

ers to generate adversarial texts targeting BERT425

model on 200 examples sampled from the TC426

dataset’s test set. We then gather examples that427

are successfully attacked by both ANTHRO and428

TextBugger. Next, we present a pair of texts, one429

generated by ANTHRO and one by TextBugger, to-430

gether with the original sentence to human sub-431

jects. We then ask them to select (1) which text432

better preserves the meaning of the original sen-433

tence (Figure A.2 in Appendix) and (2) which text434

is more likely to be written by human (Figure A.3435

Reason Favorable Unfavorable
From ANTHRO From TextBugger

Genuine Typos stuupid, but, Faoggt sutpid, burt, Foggat
Intelligible faiilure faioure
Sound Preserv. shytty, crp shtty, crsp
Meaning Preserv. ga-y, ashole, dummb bay, alshose, dub
High Search Results sodmized, kiills Smdooized, klils
Personal Exposure ign0rant, gaarbage ignorajt, garage
Word Selection morons→mor0ns edited→ewited

Table 4: Top reasons in favoring ANTHRO’s perturba-
tions as more likely to be written by human.

in Appendix). To reduce bias, we present the two 436

questions in two separate tasks. The human sub- 437

jects include both (1) Amazon Mechanical Turk 438

(MTurk) workers and (2) professional data anno- 439

tators at a company with extended experience in 440

annotating texts in domain such as toxic and hate 441

speech. Our human subject study with MTurk 442

workers was IRB-approved. 443

Quantitative Results. It is statistically signifi- 444

cant (p-value≤0.05) to reject the null hypotheses 445

of both HSemantics and HTuring (Table A.3 in Ap- 446

pendix). Overall, adversarial texts generated by 447

perturbations mined in the wild are much better 448

at preserving the original semantics and also more 449

indistinguishable from human-written texts than 450

those generated by TextBugger (Figure 4, Left). 451

Qualitative Analysis. We also ask the profes- 452

sional subjects to provide optional comments on 453

their thought process. Table 4 summarizes the top 454

reasons why they favor ANTHRO over TextBugger 455

in terms of Turing test. ANTHRO’s perturbations 456
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Attacker Normalizer
BERT (case-insensitive) RoBERTa (case-sensitive)

Toxic Comments HateSpeech Cyberbullying Toxic Comments HateSpeech Cyberbullying

TextBugger - 0.76±0.02 0.94±0.01 0.78±0.03 0.77±0.06 0.87±0.01 0.72±0.01
ANTHROβ - 0.82±0.01 0.97±0.01 0.88±0.04 0.91±0.02 0.97±0.01 0.89±0.02

TextBugger A+H+P 0.73±0.02 0.64±0.06 0.70±0.04 0.68±0.06 0.57±0.03 0.66±0.04
ANTHROβ A+H+P 0.85±0.04 0.79±0.02 0.84±0.03 0.88±0.04 0.93±0.01 0.91±0.01

Table 5: Averaged attack success rate (Atk%↑) of ANTHROβ and TextBugger

are perceived similar to genuine typos and more457

intelligible (than ones that might be generated by458

machine). They also better preserve both mean-459

ings and sounds. Moreover, some annotators also460

rely on personal exposure on Reddit, YouTube461

comments, or the frequency of word use via the462

search function on Reddit to decide if a word-463

choice is human-written. Interestingly, one men-464

tions that ANTHRO is better at selecting sensible465

words–i.e., “morons" instead of “edit", to perturb466

than TextBugger, even though the two methods467

share the same iterative attack mechanism (Alg.468

1). This happens because ANTHRO directly en-469

sembles the distribution of human-written texts,470

which naturally includes more replacement candi-471

dates for offensive than non-offensive words. This472

eventually increases the probability of sensitive473

words being perturbed.474

5 ANTHROβ Attack475

ANTHROβ . We want to examine if perturbations476

inductively extracted from the wild can help aug-477

ment a deductive attack such as TextBugger and478

improve its overall performance. Hence, we intro-479

duce ANTHROβ , which considers the perturbation480

candidates from both ANTHRO and TextBugger in481

Ln. 10 of Alg. 1. Alg. 1 still selects the pertur-482

bation that best flip the target model’s prediction.483

484
Attack Performance. Even though ANTHRO485

comes second after TextBugger when attacking486

BERT model, Table 5 shows that when com-487

bined with TextBugger–i.e., ANTHROβ , it consis-488

tently achieves superior performance with an aver-489

age of 82.7% and 90.7% in Atk% on BERT and490

RoBERTa even under all normalizers (A+H+P).491

Semantic Preservation and TT. ANTHROβ im-492

proves TextBugger’s Atk% to over 8% on aver-493

age (Table 5). It also improves TextBugger’s se-494

mantic preservation and TT score 32% and 42%495

(from 0.5 threshold) (Figure 4, Right). The pres-496

ence of only a few human-like perturbations gen-497

erated by ANTHRO is sufficient to signal whether498

Figure 5: Trade-off among evaluation metrics

or not it is written by humans, while only one 499

unreasonable perturbation generated by TextBug- 500

ger can adversely affect its meaning. This ex- 501

plains the performance drop in terms of semantic 502

preservation but not in TT when indirectly compar- 503

ing ANTHROβ with ANTHRO. Overall, ANTHROβ 504

also has the best trade-off between Atk% and hu- 505

man evaluation–i.e., positioning at top right cor- 506

ners in Figure 5. Particularly, ANTHROβ trade- 507

offs from ANTHRO some reduction in semantic 508

preservation for superior Atk%. This gain iter- 509

ates the overall benefits of human-written pertur- 510

bations for adversarial attacks. 511

6 Defend ANTHRO, ANTHROβ Attack 512

We examine two approaches to defend against AN- 513

THRO attack. We compare them against BERT 514

and BERT combined with 3 layers of normaliza- 515

tion A+H+P. BERT is selected as it is better than 516

RoBERTa at defending against ANTHRO (Table 3). 517

518
Sound-Invariant Textual Model (SOUNDCNN): 519

When the defender do not have access to the hash 520

tables {H}K0 of the attacker, the defender can train 521

a generic model that encodes not the spellings but 522

the phonetic features of a text for prediction. As 523

an example, we train a CNN model (Kim, 2014) 524

on top of a continuous embeddings layer for dis- 525

crete SOUNDEX++ encodings of each token in a 526

sentence. Adversarial Training (ADV.TRAIN): 527

To overcome the lack of access to {H}K0 , the de- 528

fender can extract his/her perturbations in the wild 529

from a separate corpus D∗ where D∗∩D=∅ and 530

use them to augment the training examples–i.e., 531

via self-attack with ratio 1:1, to fine-tune a more 532
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Model ANTHRO ANTHROβ

TC↓ HS↓ CB↓ TC↓ HS↓ CB↓
BERT 0.72 0.82 0.71 0.82 0.97 0.88
BERT+A+H+P 0.65 0.65 0.60 0.85 0.79 0.84

ADV.TRAIN 0.41 0.30 0.35 0.72 0.72 0.67
SOUNDCNN 0.14 0.02 0.15 0.86 0.84 0.92

Table 6: Averaged Atk%↓ of ANTHRO and ANTHROβ

against different defense models.

robust BERT model. Here we use D∗ as a corpus533

of 34M general comments from online news.534

Results. We follow the same evaluation pro-535

cedure in Sec. 4.1. Table 6 shows that both536

SOUNDCNN and ADV.TRAIN are robust against537

ANTHRO attack, while ADV.TRAIN performs best538

when defending ANTHROβ . Since SOUNDCNN is539

strictly based on phonetic features, it is vulnerable540

against ANTHROβ whenever TextBugger’s pertur-541

bations are selected. Table 6 also underscores that542

ANTHROβ is a strong and practical attack, defense543

against which is thus an important future direction.544

7 Discussion545

Evaluation with Perspective API. The under-546

standing of different variations of human-written547

texts is critical to fully capture the semantic mean-548

ings of inputs especially in sensitive domains such549

as toxicity moderation. We utilize ANTHRO and550

ANTHROβ to evaluate such robust understanding551

of the popular Perspective API 2, which has been552

adopted in various publishers–e.g., NYTimes, and553

platforms–e.g., Disqus, Reddit. Specifically, we554

evaluate (1) if the API can capture different forms555

of human-written toxic texts by using ANTHRO to556

randomly perturb different portions of words in557

200 positive texts from the TC dataset, (2) if the558

API can defend against ANTHRO attack either via559

a direct iteration mechanism (Alg. 1) or via trans-560

fer attack through an intermediate BERT classifier.561

Figure 6 (Left) shows that the API service pro-562

vides superior performance compared to a self563

fine-tuned BERT classifier, yet its precision dete-564

riorates quickly from 0.95 to only 0.9 and 0.82565

when 25%–50% of a sentence are perturbed. In566

contrast, the ADV.TRAIN (Sec. 7) model achieves567

fairly consistent precision in the same setting. The568

API is also more vulnerable against both direct and569

transfer attacks from our proposed attacks (Fig-570

ure. 6, Right) than TextBugger, with its preci-571

2 https://www.perspectiveapi.com/

Figure 6: (Left) Precision on human-written perturbed
texts synthesized by ANTHRO and (Right) Robustness
evaluation of Perspective API under different attacks

sion dropped to only 0.12 when evaluated against 572

ANTHROβ . Overall, not only ANTHRO is a pow- 573

erful and realistic attack, it can also help develop 574

more robust text classifiers in practice. 575

Computational Complexity. The one-time ex- 576

traction of {H}K0 via Eq. (1) has O(|D|L) 577

where |D|, L is the # of tokens and the length 578

of longest token in D (hash-map operations cost 579

O(1)). Given a word w and k,d, ANTHRO re- 580

trieves a list of perturbation candidates via Eq. (2) 581

with O(|w|max(Hk)) where |w| is the length of 582

w and max(Hk) is the size of the largest set of to- 583

kens sharing the same SOUNDEX++ encoding in 584

Hk. Since max(Hk) is constant, the upper-bound 585

then becomes O(|w|). 586

Limitation The perturbation candidate retrieval 587

operation (Eq. (2)) has a higher computational 588

complexity than that of other methods–i.e.,O(|w|) 589

v.s. O(1). This can prolong the running time, espe- 590

cially when attacking long documents. However, 591

we can overcome this by storing all the perturba- 592

tions (given k,d) of the top frequently used of- 593

fensive and non-offensive English words. We can 594

then expect the operation to have an average com- 595

plexity close to O(1). The current SOUNDEX++ 596

algorithm is designed for English texts and might 597

not be applicable in other languages. Thus, we 598

plan to extend ANTHRO to a multilingual setting. 599

8 Conclusion 600

We propose ANTHRO, a character-based attack al- 601

gorithm that extracts human-written perturbations 602

in the wild and then utilizes them for adversarial 603

text generation. Our approach yields the best trade- 604

off between attack performance, semantic preser- 605

vation and stealthiness under both empirical ex- 606

periments and human studies. A BERT classifier 607

trained with examples augmented by ANTHRO can 608

also better understand human-written texts. 609
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Dataset #Texts #Tokens

List of Bad Words 3 1.9K 1.9K
Rumours (Twitter) (Kochkina et al., 2018) 99K 159K
Hate Memes (Twitter) (Gomez et al., 2020) 150K 328K
Personal Atks (Wiki.) (Wulczyn et al., 2017b) 116K 454K
Toxic Comments (Wiki.) (Kaggle, 2019) 2M 1.6M
Malignant Texts (Reddit) (Kaggle, 2021)4 313K 857K
Hateful Comments (Reddit) (Kaggle, 2021)5 1.7M 1M

Sensitive Query (Search Engine, Private) 1.2M 314K
Hateful Comments (Online News, Private) 12.7M 7M

Total texts used to extract ANTHRO 18.3M -

Table A.1: Real-life datasets that are used to ex-
tract adversarial texts in the wild, number of total ex-
amples (#Texts) and unique tokens (#Tokens) (case-
insensitive)

A Supplementary Materials717

Below are list of supplementary materials:718

• Table A.1: list of datasets we used to curate the719

corpus D, from which human-written perturba-720

tions are extracted (Sec. 3.1). All the datasets721

are publicly available, except from the two pri-722

vate datasets Sensitive Query and Hateful Com-723

ments.724

• Table A.2: list of datasets we used to evaluate725

the attack performance of all attackers (Sec. 4.1)726

and the prediction performance of BERT and727

RoBERTa on the respective test sets. All datasets728

are publicly available.729

• Table A.3: Statistical analysis of the human study730

results (Sec. 4.2).731

• Table 4: List of top reasons provided by the pro-732

fessional annotators on why they prefer ANTHRO733

over TextBugger in the Turing test (Sec. 4.2).734

• Figure A.1: Word-cloud of extracted human-735

written perturbations by ANTHRO for some of736

popular English words.737

• Figure A.2, A.3: Interfaces of the human study738

described in Sec. 4.2.739

B Implementation Details740

B.1 Attackers741

We evaluate all the attack baselines using the open-742

source OpenAttack framework (Zeng et al., 2021).743

We keep all the default parameters for all the attack744

methods.745

Dataset #Total BERT RoBERTa

CB (Wulczyn et al., 2017a) 449K 0.84 0.84
TC (Kaggle, 2018) 160K 0.85 0.85
HS (Davidson et al.) 25K 0.91 0.97

Table A.2: Evaluation datasets Cyberbullying (CB),
Toxic Comments (TC) and Hate Speech (HS) and pre-
diction performance in F1 score on their test sets of
BERT and RoBERTa.

Alternative Hypothesis Mean t-stats p-value df

—– AMT Workers as Subjects —–

HSemantics : ANTHRO > TB 0.82 5.66 4.1e-7** 48
HSemantics : ANTHROβ > TB 0.64 1.95 2.9e-2* 46
HTuring : ANTHRO > TB 0.71 3.14 1.5e-3** 47
HTuring : ANTHROβ > TB 0.70 3.00 2.2e-3** 46

—– Professional Annotators as Subjects —–

HSemantics : ANTHRO > TB 0.75 3.79 2.4e-4** 44
HSemantics : ANTHROβ > TB 0.68 2.49 8.6e-3** 41
HTuring : ANTHRO > TB 0.70 3.06 1.82e-3** 50
HTuring : ANTHROβ > TB 0.73 3.53 4.6e-4** 48

Statistical significant **(p-value≤0.01) *(p-value≤0.05)

Table A.3: It is statistically significant (p-value≤0.01)
that adversarial texts generated by ANTHRO are bet-
ter than those generated by TextBugger (TB) at both
preserving the semantics of the original sentences
(HSemantics)) and at being perceived as human-written
texts (HTuring).

B.2 Defenders 746

For the (1) Accents normalization, we adopt the ac- 747

cents removal code from the Hugging Face repos- 748

itory 6. For (2) Homoglyph normalization, we 749

adopt a 3rd party python Homoglyph library7. For 750

(3) Perturbation normalization, we use the state- 751

of-the-art misspelling-based perturbation correc- 752

tion Neuspell model (Jayanthi et al., 2020) 8. For 753

Perspective API, we directly use the publicly avail- 754

able API provided by Jigsaw and Google 9. 755

B.3 Human Study Controls 756

To ensure a high quality response from MTurks, 757

we require a minimum attentions span of 30 sec- 758

onds for each question. We recruit MTurks that 759

satisfy the following qualifications, namely (1) rec- 760

ognized as “master” workers by MTurk system, 761

(2) have done at least 5K HITs and (3) have his- 762

torical HITs approval rate of at least 98%. We pay 763

each worker around $10 an hour. 764
6 https://huggingface.co
7 https://github.com/codebox/homoglyph
8 https://github.com/neuspell/neuspell
9 https://www.perspectiveapi.com/
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Figure A.1: Word-clouds of perturbations in the wild extracted by ANTHRO for the word “amazon”, “republicans”,
“democrats” and “president”.

Figure A.2: User-study design for semantic preservation comparison between ANTHRO, ANTHROβ v.s. TextBug-
ger

Figure A.3: User-study design for Turing test comparison between ANTHRO, ANTHROβ v.s. TextBugger
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