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Wenyi Wang1, Yuhui Wang1, Mengmeng Xu1, Deng-Ping Fan8, Bernard Ghanem1,

and Jürgen Schmidhuber1,2,3,4,9

1. AI Initiative, King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
2. Dalle Molle Institute for Artificial Intelligence Research (IDSIA), Switzerland.

3. Università della Svizzera italiana (USI), Switzerland.
4. Scuola universitaria professionale della Svizzera italiana (SUPSI), Switzerland.

5. University of Oxford, United Kingdom.
6. Harvard University, United States of America.

7. Beihang University, China.
8. Eidgenössische Technische Hochschule Zürich (ETH Zurich), Switzerland.

9. NNAISENSE, Switzerland.

∗ Equal Contribution. Correspondence to mingchen.zhuge@kaust.edu.sa

Abstract

Both Minsky’s “society of mind” and Schmidhuber’s “learning to think” inspire
diverse societies of large multimodal neural networks (NNs) that solve problems
by interviewing each other in a “mindstorm.” Recent implementations of NN-
based societies of minds consist of large language models (LLMs) and other
NN-based experts communicating through a natural language interface. In doing
so, they overcome the limitations of single LLMs, improving multimodal zero-
shot reasoning. In these natural language-based societies of mind (NLSOMs),
new agents—all communicating through the same universal symbolic language—
are easily added in a modular fashion. To demonstrate the power of NLSOMs,
we assemble and experiment with several of them (having up to 129 members),
leveraging mindstorms in them to solve some practical AI tasks: visual question
answering, image captioning, text-to-image synthesis, 3D generation, egocentric
retrieval, embodied AI, and general language-based task solving. We view this as
a starting point towards much larger NLSOMs with billions of agents—some of
which may be humans. And with this emergence of great societies of heterogeneous
minds, many new research questions have suddenly become paramount to the future
of artificial intelligence. What should be the social structure of an NLSOM? What
would be the (dis)advantages of having a monarchical rather than a democratic
structure? How can principles of NN economies be used to maximize the total
reward of a reinforcement learning NLSOM? In this work, we identify, discuss,
and try to answer some of these questions.

R0-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023.
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1 Introduction

Human society is composed of countless individuals living together, each acting according to their
objectives but each fulfilling different specialized roles. In the 1980s, Marvin Minsky built on this idea
to explain intelligence and coined the expression “society of mind” (SOM) [143], where intelligence
emerges through computational modules that communicate and cooperate with each other to achieve
goals that are unachievable by any single module alone.

In principle, any standard artificial neural network (NN) consisting of numerous connected simple
neurons could be regarded as a SOM. In the 1980s and 90s, however, more structured SOMs emerged,
consisting of several NNs trained in different ways which interacted with one another in a predefined
manner [11]. For example, one NN may be trained to execute reward-maximizing action sequences
in an environment, and another NN may learn to predict the environmental consequences of these
actions [150, 92, 236, 235, 167, 93, 151][194, Sec. 6.1]. The first NN can then use the second
NN to plan ahead in an online fashion [181, 184, 185], by executing mental simulations of various
possible action sequences and executing the one with high predicted reward. The prediction errors
of the second NN can also be used in a zero-sum game as intrinsic rewards for the first NN, which
thus is encouraged to generate actions or experiments whose consequences still surprise the second
learning NN [184, 192, 193]. Such generative adversarial networks have become popular in recent
years [59, 197]. Another example of a SOM from the 1990s consisted of 3 NNs: a reward-maximizing
controller, an evaluator estimating the costs of going from some start to some goal or subgoal, and a
subgoal generator trained to produce good subgoals with the help of the evaluator [183].

These old SOMs had strictly fixed interfaces to make certain NNs profit from the knowledge of others.
In 2015, work emerged that relaxed these. Suppose one NN has been trained to predict/encode a large
amount of data, such as videos of acting robots or humans. Another NN is supposed to learn to solve a
different problem, e.g., controlling a robot to achieve certain goals. How can it learn to extract from the
first NN relevant knowledge or algorithmic information [214, 106, 22, 109, 215, 120, 189, 191, 188]
to speed up the solution of its own task? The 2015 work on “learning to think” [195] proposed to
connect both NNs through recurrent connections (trained by the second NN’s learning algorithm)
that allow one NN to interview the other by sending sequences of queries or prompts (real-valued
vectors) into it while receiving and interpreting answers (real-valued vectors) from it. An Algorithmic
Information Theory (AIT) argument shows [195, 196] that it may be much easier for the controller
NN to solve its task by inventing good prompts that address and extract relevant information in the
other NN rather than learning the task from scratch.

The AIT argument also holds for larger multimodal NN societies consisting of more than two NNs
interviewing each other. To solve a given task, the various modules can chat with each other in a
multimodal “mindstorm.” A typical mindstorm in a SOM will likely include multiple rounds of
communication between different agents as well as many iterations of forward propagation in various
networks. We use the term mindstorm to emphasize that how the SOM may go about completing its
task will often appear chaotic and complex.

Given recent advances in natural language processing, we can implement some NNs of such a
SOM as pre-trained Large Language Models (LLMs) [140, 261, 131]. LLMs are a class of deep
neural networks that have recently demonstrated a remarkable ability to understand and manipulate
natural language text, e.g., written English. They are trained on large corpora of unlabelled text data,
enabling them to learn linguistic patterns and relationships that remain relevant across multiple
domains and tasks. LLMs in a SOM discuss with each other through natural language rather than
through real-valued query sequences [195]. We refer to such SOMs as natural-language SOMs, or
NLSOMs. Of course, each NLSOM internally still encodes its questions and answers as sub-symbolic
real-valued vectors, but the language-based communication interface itself is symbolic. This shared
natural language communication interface has several advantages:

Scaling/Modularity. Adding another LLM to an existing NLSOM or replacing one LLM
with another (perhaps much larger) LLM does not change the interview interface between the LLMs
because the latter is standardized in terms of natural language, which can be viewed as a universal
code. This is very much aligned with the objectives of modular AI systems.
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Explainable AI. Since queries and answers are in natural language, human observers can understand
more easily what the NLSOM is thinking while trying to solve its problem. This is in great
accordance with the goals of attempting to create explainable AI. It also allows for easily including
human experts in an NLSOM.

Human-Biased AI. For thousands of years, NL has evolved to compactly encode all the
things humans consider important. That is to say that an NLSOM would be expected to have a strong
bias towards human thinking and reasoning.

Our concept of mindstorm is largely inspired by the success of sophisticated forms of communication
within human societies, such as brainstorming, that may involve multiple rounds of communication
to refine ideas or to find an agreement among multiple individuals. In human psychology, a large
body of work exists which demonstrates that a solution found through brainstorming by a group of
people is often superior to any individual solution (see, e.g., synergism [42] or Jay Hall’s NASA
Moon Survival Task [66]). Such a form of group intelligence among humans inspires us to build a
society of NNs that also communicate with each other mainly in natural language.

The NLSOM perspective opens many exciting directions for future research. For example, which
tasks can be solved more easily by a master-slave or monarchy type of NLSOM, where an “NN
King” is in charge of asking its NN underlings task-specific questions, unilaterally deciding whom to
ignore? Alternatively, what would be the characteristics of tasks that can be solved more quickly by a
self-organizing “NN democracy” whose members collectively vote on proposals put forward in terms
of natural language by some of them? How do some of the NLSOM members form emerging groups
with common expertise and interests, i.e., attending and responding preferably to communication
attempts by group members rather than outsiders? Also, how might principles of NN economies
(where parts of NNs pay each other for services [180, 179]) be used to maximize the total reward of a
reinforcement learning NLSOM?

Previous work highlighted the benefit of embedding LLMs within programs [178] and the combination
of LLMs with other specialised networks to solve tasks which each individual network cannot [255,
242, 221, 252, 205]. In this work, we take a look at the potential of mindstorms in NLSOMs. In
Section 2, we construct NLSOMs with up to 129 members and leverage multimodal mindstorms to
solve varied tasks, evaluating both NLSOM monarchies and democracies. We discuss an extension of
this work, namely Economies of Mind (EOMs), in Section A, where credit assignment is achieved by
RL NLSOMs that learn to pay each other for services. Finally, we conclude in Section 3.

2 Experiments

Natural	Language-Based Societies	of	Mind	(NLSOM)

Video TextImage

Interaction

Generation

Understanding

Robotics

Natural language as an interface

Natural language as an interface

Figure 1: An NLSOM consists of
many agents, each acting according to
their own objectives and communicat-
ing with one another primarily through
natural language according to some or-
ganizational structure.

In our experiments, an NLSOM is composed of (1) sev-
eral agents—each acting according to their own objective
(function)—and (2) an organizational structure that gov-
erns the rules determining how agents may communicate
and collaborate with each other. The agents within the NL-
SOM are entities that can perceive, process, and transmit
uni-modal and multi-modal information. The organizational
structure of the society includes concepts such as the relation-
ship structure of the agents, the communication connectivity
between the agents, and the information transmission path.
Different agents have different perceptual abilities, which
may be entirely unrelated to their communication interface;
some agents may understand images and talk in audio files,
while others may only understand refined programmatic de-
scriptions of 3D objects and communicate in images. Some
agents are likely to have physical embodiment to act in the
real world, while most will probably only exist in the vir-
tual world. To properly demonstrate the potential of an
NLSOM, we apply this framework to a selection of differ-
ent problem settings. These varied settings include visual
question answering (see Section 2.1), image captioning (see
Section 2.2), text-to-image synthesis (see Section 2.3), 3D
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generation (see Section H), egocentric retrieval (see Section I), embodied AI (see Section J), and
general language-based task solving (see Section K).

2.1 Visual Question Answering

Task. The visual question answering (VQA) tasks consists of answering a set of textual queries
about a given image. Here we focus on the multiple-choice variant thereof, where the answer is a
standard multiple-choice one.

Method. Here our NLSOM consists of five pre-trained NNs, each with a specific role in the society.
We have two LLMs: an organizer and a leader—both copies of text-davinci-003 [153], and three
visual language models (VLMs): BLIP2 [114], OFA [231], and mPLUG [111]. The mindstorm
among these five agents works as follows. The organizer LLM first reads the input question and
generates another question (which we call the sub-question). All the VLM agents answer this sub-
question, and their answers become new inputs to the organizer, which, in turn, generates a new
sub-question based on these responses. This back-and-forth continues for a pre-determined number
of rounds. Then the leader requests the organizer to summarize the whole chat history. Finally,
the leader reads this summary and selects the answer to the original question. The structure of this
NLSOM is illustrated in Figure 2. This hierarchical social structure can be regarded as a monarchical
setting. We also run experiments in a democratic setting, where agents have the right to observe the
answer given by other agents and to vote for such answers. As the number of mindstorm rounds
increases, the performance of VQA also improves. However, this experiment is limited to only 10
rounds. Table 1 shows that there is not much noticeable improvement in effectiveness from 5 rounds
to 10 rounds. If the number of rounds continues to increase, it is uncertain whether the performance
will continue to improve, as this could potentially result in information errors due to hallucination
problems. We also compare this to an unfair “best-of-N” approach whereby the best-of-N separate
generations are used. Our method outperforms the baseline (67.42 vs 60.69). For more details, see
Appendix E.

(a) (b) (c) (d)

Solution

Organizer (LLM)

Question
& Analysis

Question: Options:
(a) two

(b) three

(d) four

(c) five

How many suitcases 
have tags?

Image

Task: VQA Question

Leader (LLM)

Answer with
observation

VLM

Answer with
observation

VLM

Answer with
observation

VLM Mindstorm Result: In the image, six distinct suitcases are
neatly stacked, each with a different size. Some suitcases have
tags, while others don’t. Four suitcases are tagged. The tags are
white in color.

A

?

Figure 2: An illustration of our NLSOM for VQA.
The question in this example is “how many suit-
cases have tags?”. After the mindstorm, our model
produces the summary shown as "Mindstorm Re-
sult" (top/right): “In the image, six suitcases are
neatly stacked..." and concludes that there are four
suitcases with tags in the image.

Results. We evaluate our system on the A-
OKVQA dataset [201], and compare it to several
contemporary VLMs and VQA models, includ-
ing ViLBERT [134] and text-davinci-003 [153]
augmented with an image captioning module.
The results are shown in Table 2 in Appendix E.
We observe that the individual VLMs and VQA
models, either in the fine-tuning or in-context
learning setting, perform rather poorly on their
own. The best individual accuracy was achieved
by a fine-tuned version of GPV-2 with a test
score of 60.3%. In contrast, our monarchical
NLSOM (evaluated with zero-shot prompting)
outperforms this result with a test accuracy of
67.42%. Also, importantly, we observe that in-
creasing the number of VQA agents (from 1 to
3) yields gradual performance improvements.
However, our democratic NLSOM performs
worse than the monarchy (see Table 4). We
speculate that this is because the VQA agents used here are vision models with rather poor language
understanding capabilities on their own. As a result, including them in the final decision-making
results in a performance drop. However, this situation might change when more powerful models

Table 1: The performances of NLSOM in A-OKVQA [201]. V: Vicuna v1.5 [262], G: Instruct-
GPT [153], B: BLIP2 [114], O: OFA [231], M: mPLUG [111].

Method 1-Round 3-Round 5-Round 10-Round
NLSOM (V, B, O, M) 58.87 65.15 67.95 69.35
NLSOM (G, B, O, M) 55.78 64.15 66.20 67.42
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such as GPT-4 are used as the VQA agents. Overall, our mindstorm successfully exploits interactions
among several individual models to achieve performance beyond those achievable by the individual
models.

2.2 Image Captioning
Task: Image Captioning

NLSOM: This haunting image depicts a woman walking through the chaotic aftermath
of a destructive hurricane in an unknown city. The grim, sepia-toned black and white
photograph captures the extent of damage caused by the hurricane with piles of debris
and rubble scattered all over the street. The woman is seen wearing a dress and a hat,
with her head down and a solemn expression on her face, as she slowly trudges
through the deserted streets, searching for help in the wake of this tragedy.

NYTimes:
Abstract: President René Préval’s palace was
crushed, and civil servants lucky enough to survive
are picking up the pieces of their own lives.
First Paragraph: PORT-AU-PRINCE, Haiti It did not
take very long for Edwin Paraison, a member of
Haiti’s cabinet, to take stock of his losses and
deliver a thorough assessment of what remained
of his government ministry.

[Click Here]

Figure 3: An example input/output for our image
captioning NLSOM (Section 2.2).

Task. Image captioning is the task of gener-
ating text that describes a given image. In par-
ticular, we focus on challenging types of image
captioning that require models to describe de-
tailed descriptions of the images (e.g., [266]),
including the surrounding context, such as time
and location information. This is different from
traditional image captioning (e.g., [246]), which
focused solely on the central objects and actions
in an image.

Method. Given that the modalities involved in this task (text and images) are the same as in VQA
(Section 2.1), we adopt the same NLSOM and mindstorm protocol (using 2 LLMs and 3 VLMs with
the same roles) used there for this task. We simply replace VQA-specific prompts with those for
image captioning. All other parameters are as they were in Section 2.1. Corresponding prompts and
further details can be found in Appendix F.

Submit 
Proposals

Artists (LLM)

Vote on
Proposals

Critics (LLM)

Prompt Proposals

Task: Text-to-Image Synthesis

Draw an image of “A Steam Engine”

Mindstorm Result: The Art Nouveau Artist proposal received the most votes as the
most impressive and beautiful option for depicting a steam engine. This proposal
involves incorporating organic lines, floral motifs, curved shapes, decadent details, and
harmonious color schemes to create a visually appealing and unique image that
accurately represents the steam engine.

Text-to-image (VE)

Synthesis
Collect
Votes

Collector (LLM)

Figure 4: An illustration of our NLSOM for
prompt generation for text-to-image synthesis.

Results. We evaluate our system on the
TARA [52] dataset, and compare it with
BLIP2 [114]. An example task is shown in Fig-
ure 3. Note that each image in TARA is sourced
from New York Times articles, and comes with
text corresponding to the abstract and the first
paragraph of the article (only the images are
made accessible to our NLSOM). Experimen-
tal results show that our NLSOM outperforms
BLIP2 on this task (20.6 vs. 11.3 in terms
of Sentence-BERT similarities [164] after 10
rounds of mindstorm). We also compared this
to the Socratic models approach and an unfair
“best-of-N” approach whereby the best-of-N sep-
arate generations is used. In either case, our
method outperforms the baseline (20.6 vs 13.8
for Socratic models and 18.2 for best-of-N).

2.3 Prompt Generation for Text-to-Image Synthesis

Task. Text-to-image (T2I) synthesis systems generate an image that corresponds to some input
text. Given a pre-trained large text-to-image model such as DALL-E 2 [163], it is the quality and
content of the input text prompt that determines what the output image looks like (e.g., the artistic
style of the image). Human users of such a system typically manipulate the prompt to obtain more
desirable outputs. Here we propose to build an NLSOM that improves prompts for a text-to-image
model, starting with an initial human-specified one. This improves the artistic quality of the generated
images. We call this system Artist-Critic NLSOM.

Method. Our Artist-Critic NLSOM for text-to-image prompt generation involves many LLMs
playing different roles: artist, critic, and collector. Specifically, the system consists of 26 artists,
50 critics, and 1 collector. Each artist in this system consists of three language models (LLMs):
a questioner, an answerer, and a leader. All of these models are copies of ChatGPT, specifically
using the GPT3.5-turbo variant. Additionally, we have one text-to-image model, the painter, which
utilizes DALL-E 2. The answerer is prompted to behave as a specific artist belonging to one of 26
artistic styles or movements (e.g., “You are a Cubism Artist”). Then we provide the same initial
task-specification prompt to all the answerers (e.g., “There is a Generation Problem: We want to
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generate an image to show a steam engine.”). Each questioner is prompted to interview the answerer
for several rounds of mindstorm in order to obtain a more detailed prompt about the image that
should be generated. Each leader collects the information gathered by each questioner-answerer
interaction and generates an elaborated version of the input prompt according to the artistic style of
each answerer. The generated prompt proposals from the leaders are then reviewed by the critics.
Each critic is prompted to behave as if frow a certain profession (e.g., “You are a lawyer”) to ensure
diverse opinions. The critics vote on the best proposal among the prompt proposals. The collector
summarizes all the votes from the critics, counts them, and produces the winning prompt. This
winning prompt is then fed to the painter, which generates the final output image. Figure 4 illustrates
this process. All styles of art for the artists and different professions for the critics we consider are
shown in Table 5. Each artist, with its questioner-answerer-leader system, represents an NLSOM
specialized in a particular artistic style. We refer to each of these smaller systems as the Questioner-
Answerer NLSOM. The Artist-Critic NLSOM, consisting of 26 artists, 50 critics, 1 collector, and 1
painter, is an example of a hierarchical NLSOM. For more details, we refer to Appendix G.

Figure 5: Examples of images generated by our
Artist-Critic NLSOM-based prompt expansion ap-
proach to the text-to-image synthesis problem.

Results. We experiment with our NLSOM on
several custom prompts and conduct some pre-
liminary qualitative evaluation on the outcome
of these experiments. Two illustrative exam-
ples comparing Artist-Critic NLSOM-generated
prompts/images to the initial prompts/images
are shown in Figure 5. In general, we find that
NLSOM-generated images tend to be more artis-
tic than those produced from the initial prompts.
While more systematic quantitative evaluation is
desirable, this is a promising example of an NL-
SOM with a large number of agents (128 LLMs
and 1 vision expert).

3 Conclusion

Recurrent neural network (RNN) architectures
have existed since the 1920s [16, 199]. RNNs
can be viewed as primitive societies of mind
(SOMs) consisting of very simple agents (neu-
rons) that exchange information and collectively
solve tasks unsolvable by single neurons. How-
ever, it was only in the 1980s that more struc-
tured SOMs composed of several interacting
artificial neural networks (NNs) trained in differ-
ent ways emerged [11, 150, 235, 181, 183][194,
Sec. 6.1]. In these SOMs, strict communication
protocols allow certain NNs to help other NNs solve given tasks. In the less strict, more general
setting from 2015’s learning to think [195], NNs are allowed to learn to interview other NNs through
sequences of vector-based queries or prompts via a general communication interface that allows for
extracting arbitrary algorithmic information from NNs, to facilitate downstream problem-solving. In
the present work, we extend this and study NN-based SOMs that include (pre-trained) large language
models (LLMs) and other (potentially multimodal) modules partially communicating through the
universal code of natural language (NL). Such NL-based societies of mind (NLSOMs) can easily be
scaled or joined with (parts of) other NLSOMs. Their symbolic NL-based thought processes—which
occur in the form of “mindstorms”—are relatively easily analyzed by humans, and many concepts
known from societies of humans are suddenly becoming relevant to the study of hierarchical NL-
SOMs built from smaller NLSOMs. For example, what kind of NL-based legislature, executive, and
judiciary should regulate what is allowed in the communication infrastructure of a given NLSOM?
Under which conditions can NLSOM democracies outperform NLSOM monarchies and vice versa?
Our numerous experiments with zero-shot learning NLSOMs—with up to 129 members—illustrate
aspects of such questions, producing surprisingly robust results over a broad spectrum of tasks, includ-
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ing visual question answering, image captioning, text-to-image synthesis, 3D generation, egocentric
retrieval, embodied AI, and general language-based task solving.

Our results open fruitful avenues for future research. We observed that, in specific applications,
mindstorms among many members outperform those among fewer members, and longer mindstorms
outperform shorter ones. Also, only sometimes did we observe democracies beating monarchies.

Inspired by earlier work on neural economies [179], we also envision reinforcement learning NLSOMs
whose reward-maximizing members are incentivized to pay each other for services in a shared
currency in an NL contract-based way, becoming efficient through the principles of supply and
demand. We conjecture that after extensive preliminary experiments with “fake money,” such
economies of mind (EOMs) could easily be integrated into the real world economy, trading with
humans and other NLSOMs, and finding cost-efficient strategies to achieve all kinds of goals. Just like
current LLMs consist of millions of neurons connected through connections with real-valued weights,
future AIs may consist of millions of NLSOMs connected through natural language, distributed
across the planet, with dynamically changing affiliations, just like human employees may move from
one company to another under certain conditions, in the interest of the greater good. The possibilities
opened up by NLSOMs and EOMs seem endless. Done correctly, this new line of research has the
potential to address many of the grand challenges of our time.
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A Outlook

The original “learning to think” framework [195, 196] addresses Reinforcement Learning (RL),
the most general type of learning (it’s trivial to show that any problem of computer science can
be formulated as an RL problem). A neural controller C learns to maximize cumulative reward
while interacting with an environment. To accelerate reward intake, C can learn to interview, in a
very general way, another NN called M, which has itself learned in a segregated training phase to
encode/predict all kinds of data, e.g., videos.

In the present paper, however, we have so far considered only zero-shot learning. So let us now
focus on the general case where at least some NLSOM members use RL techniques to improve
their reward intakes. How should one assign credit to NLSOM modules that helped to set the stage
for later successes of other NLSOM members? A standard way for this uses policy gradients for
LSTM networks [239] to train (parts of) NLSOM members to maximize their reward (just like RL
is currently used to encourage LLMs to provide inoffensive answers to nasty questions [153, 7]).
However, other methods for assigning credit exist.

As early as the 1980s, the local learning mechanism of hidden units in biological systems inspired
an RL economy called the Neural Bucket Brigade (NBB) [180] for neural networks with fixed
topologies [179]. There, competing neurons that are active in rare moments of delayed reward
translate the reward into “weight substance” to reinforce their current weights. Furthermore, they pay
weight substance to “hidden” neurons that earlier helped to trigger them. The latter, in turn, pay their
predecessors, and so on, such that long chains of credit assignment become possible. This work was
inspired by even earlier work on non-neural learning economies such as the bucket brigade [77] (see
also later work [240, 12]). How can we go beyond such simple hardwired market mechanisms in the
context of NLSOMs?

A central aspect of our NLSOMs is that they are human-understandable since their members heavily
communicate through human-invented language. Let’s now generalize this and encode rewards by
another concept that most humans understand: money.

Some members of an NLSOM may interact with an environment. Occasionally, the environment
may pay them in the form of some currency, say, USD. Let us consider an NLSOM member called
M. In the beginning, M is endowed with a certain amount of USD. However, M must also regularly
pay rent/taxes/other bills to its NLSOM and other relevant players in the environment. If M goes
bankrupt, it disappears from the NLSOM, which we now call an Economy of Minds (EOM), to reflect
its sense of business. M may offer other EOM members money in exchange for certain services (e.g.,
providing answers to questions or making a robot act in some way). Some EOM member N may
accept an offer, deliver the service to M, and get paid by M. The corresponding natural language
contract between M and N must pass a test of validity and enforceability, e.g., according to EU law.
This requires some legal authority, possibly an LLM (at least one LLM has already passed a legal bar
exam [13, 15]), who judges whether a proposed contract is legally binding. In case of disputes, a
similar central executive authority will have to decide who owes how many USD to whom. Wealthy
NLSOM members may spawn kids (e.g., copies or variants of themselves) and endow them with a
fraction of their own wealth, always in line with the basic principles of credit conservation.

An intriguing aspect of such LLM-based EOMs is that they can easily be merged with other EOMs
or inserted into—following refinement under simulations—existing human-centred economies and
their marketplaces from Wall Street to Tokyo. Since algorithmic trading is an old hat, many market
participants might not even notice the nature of the new players.

Note that different EOMs (and NLSOMs in general) may partially overlap: the same agent may be a
member of several different EOMs. EOMs (and their members) may cooperate and compete, just
like corporations (and their constituents) do. To maximize their payoffs, EOMs and their parts may
serve many different customers. Certain rules will have to be obeyed to prevent conflicts of interest,
e.g., members of some EOM should not work as spies for other EOMs. Generally speaking, human
societies offer much inspiration for setting up complex EOMs (and other NLSOMs), e.g., through a
separation of powers between legislature, executive, and judiciary. Today LLMs are already powerful
enough to set up and evaluate NL contracts between different parties [13]. Some members of an EOM
may be LLMs acting as police officers, prosecutors, counsels for defendants, and so on, offering their
services for money.
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The EOM perspective opens a rich set of research questions whose answers, in turn, may offer new
insights into fundamental aspects of the economic and social sciences.
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B Related Work

B.1 Large Language Models

The choice of natural language as the central means of communication within our NLSOMs is
partially motivated by the recent progress in large language models (LLMs).

Possibly the most famous LLM is the GPT-3 system [15]: a 175 billion-parameter neural network
that has demonstrated remarkable capabilities in both natural language understanding and generation.
However, GPT-3’s ability to interact with users in the conversational settings more familiar to humans
is limited [261].

To address the limited applicability of GPT-3 in human-oriented tasks, researchers have recently
explored fine-tuning LLMs on conversational data, e.g., LaMDA [225]. InstructGPT [153] is a
modern system developed by fine-tuning GPT-3’s behavior to be more aligned with human-desired
output through reinforcement learning [153, 31]. This modification has produced an LLM that is fully
conversational and avoids the generation of toxic or untruthful information for users. InstructGPT’s
successor, ChatGPT [152], was made available for the public to interact with in November 2022.

B.2 Multimodal Learning

Multimodal learning has a long history in machine learning [9, 162]. Recently, Transformers [227], an
architecture related to fast weight programmers (i.e., linear Transformers) [187, 177, 98], significantly
accelerated progress in this area of research. For instance, BERT [99] has been used to embed visual
and textual cues for multimodal tasks [39, 24, 112, 218, 265, 220, 267, 117, 121, 118, 124, 137, 223,
268, 134, 161, 89, 115, 101, 81]. From 2022, unifying language and visual modalities have been
widely studied [3, 231]. Although these methods effectively addressed the challenge of inter-modal
alignment, they fall short in tackling another critical issue—enhancing reasoning.

Recently, there has been a growing trend of employing LLMs to address multimodal tasks, and
some of them can reasonably be thought of as instances of NLSOMs [242, 252, 205]. This field
will continue to expand rapidly in the near future, with numerous related avenues being explored.
Although our research is not exclusively focused on multimodal tasks, many of our experiments
utilize multimodal datasets. As such, we will now provide a summary of the most recent multimodal
models that utilize the LLM below.

VQA with LLMs. PICa [251] prompts GPT3 via image captions and an external knowledge base
for VQA, achieving few-shot learning. Img2Prompt [65] proposes a module that facilitates zero-shot
VQA with LLMs by bridging the modality from image captioning and asking additional questions
from captions, but requires training another model and cannot get enough knowledge to answer VQA
questions. FrozenBiLM [250] utilizes frozen bidirectional language models and trainable modules
to address the problem of manual annotation for zero-shot VideoQA, achieving top performance
on various datasets. PromptCap [79] is a question-aware captioning model that combines image
captioning with knowledge extraction from a large language model, outperforming generic captions
and achieving state-of-the-art accuracy on knowledge-based VQA tasks. AMA [5] collects multiple
prompts and applies weak supervision to combine predictions, resulting in a performance lift over few-
shot baselines. Img2Prompt [5] proposes a module that bridges the modality and task disconnection
for zero-shot VQA with LLMs, outperforming Flamingo and few-shot methods on various datasets.
IPVR [27] introduces three modules for KB-VQA [243], i.e., a visual perception module, a reasoning
module, and a confirm module, which verifies whether the predicted answer is correct. Prophet [203]
proposes guiding large language models with answer heuristics and a few-shot learning approach,
using a module to select in-context learning examples. InfoSeek [26] collects a large-scale dataset for
answering challenging knowledge-requiring VQA questions and demonstrates the effectiveness of
fine-tuning on this dataset.

Captioning with LLMs. GPT3-DV [122] addresses creating compelling captions for data visual-
izations, proposes using LLMs and effective prompt engineering, and shows promising results from
initial experiments with GPT3. PaLM-E [37] introduces embodied language models for real-world
tasks, handles various reasoning tasks, shows positive transfer with joint training, and multi-task
training enhances performance. ChatCaptioner [266] combines ChatGPT and BLIP2 for automatic
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questioning in image captioning, provides more informative captions with human evaluations, and
extends to video version [25]. MAXI [128] presents an unsupervised approach for action recognition
in videos using Large Language Models and Vision Language models, achieves high transferability
with zero-shot recognition, improves Vision Language model’s performance, and performs well
compared to fully-supervised baselines.

Image Synthesis with LLMs. Generative Adversarial Networks (GANs) [184, 33, 58, 198] and Dif-
fusion Models (DM) [87, 74] accelerated progress in image synthesis. In particular, the synthesis of re-
alistic images was recently taken over by Rombach et al.’s Latent Diffusion [169], building on Jarzyn-
ski’s earlier work in physics from the previous millennium [87] and more recent papers [212, 170, 74].
DALLE-2 [163], generating images from textual cues [163, 254, 172, 96, 174, 224] has gained
increasing popularity. Various multimodal generative models, such as Parti[254], Imagen [172], Giga-
GAN [96], StyleGAN-T [174], and GALIP [224] have been proposed to generate images from textual
cues. These methods benefit from scaling-up models and text-to-image data. Midjourney [141]
is an AI image generator that offers dreamlike and artistic styles for image requests, providing
visually stunning images that surpass traditional art styles. PromptBase [160] is a platform for buying
and selling prompts for AI models like GPT3, providing instructions for machines to follow in AI.
InstructPix2Pix [14] proposes using textual cues as instructions for controllable image synthesis.
GPT3 is used to conduct instructions and edited captions to train the Stable-Diffusion model coupled
with Prompt-to-Prompt, which can generalize well to real images. Coherent Storybook [88] uses a
pre-trained LLM and text-to-image latent diffusion model to generate a coherent story with captions
and images, achieving satisfactory zero-shot performance without expensive image-caption pair
training.

3D Generation with LLMs. DreamFusion [158] introduces a novel approach for generating 3D
models from text using 2D diffusion, employing the Imagine model to distill information into 3D
using a distillation loss to optimize the Neural Radiance Fields (NeRF) [142] for the desired text
query. InstructNeRF2NeRF [68] is a technique that uses InstructPix2Pix to edit 3D scenes based on
instructions, integrating the 2D edits into a global optimization of the NeRF and ensuring consistent
2D generations, resulting in successful 3D edits based on instructions.

Embodied AI with LLMs. Shah et al. use LLMs to extract landmarks from human instructions for
robot navigation tasks. Ren et al. [165] employ LLMs to generate feature representations of tools for
tool manipulation. Differently, Driess et al. [37] train a large multimodal language model for various
embodied tasks, such as planning and mobile manipulation.

B.3 Chain-of-Thought in LLMs

Chain-of-thought (CoT) is an approach that aims to implement chains of thought on a single model,
while NLSOM is a specialized paradigm that implements them across multiple models. This approach
may have advantages such as improved scalability, task-specific performance, and flexibility.

Few-Shot CoT [233] is a CoT prompting technique for enhancing the complex reasoning abilities of
LLMs by including CoT sequences in few-shot prompting exemplars, making it an efficient method
for improving model performance. Zero-CoT [105] demonstrates that LLMs are capable of zero-shot
reasoning tasks when prompted with the phrase "Let’s think step by step" before each answer, outper-
forming zero-shot LLMs on diverse benchmark reasoning tasks without any hand-crafted few-shot
examples. Least-to-Most [264] addresses the issue of CoT prompting struggling with solving more
challenging problems than the demonstration examples by breaking down complex problems into
subproblems and solving them sequentially. Self-CoT [232] is a decoding strategy for CoT prompting
that selects the most consistent answer by sampling diverse reasoning paths. MathPrompter [83]
generates multiple solutions to arithmetic problems using Zero-shot CoT prompting. PromptPG [135]
uses policy gradients to select in-context examples and prompts to handle complex tabular math
word problems. Complexity-CoT [53] is a complexity-based prompting scheme that performs better
multistep reasoning. MGSM [207] evaluates LLMs’ reasoning abilities in multilingual settings,
and finds that increasing model size improved performance through CoT prompting. MATH [72]
is a dataset for measuring the quantitative abilities of neural networks, and CoT prompting was
heavily utilized in achieving a breakthrough on the leaderboard [110]. Auto-CoT [258] generates
reasoning chains for demonstrations one by one, achieving competitive performance without relying

26



on manually-designed demonstrations. Finetune-CoT [75] uses fine-tuning to enable complex rea-
soning in smaller language models by utilizing the capabilities of larger language models to obtain
reasoning exemplars. Multimodal-CoT [259] incorporates language and vision modalities to improve
the generation of rationales for complex reasoning tasks. Reflexion [209] enhances reasoning and
action selection by incorporating dynamic memory and self-reflection capabilities.

B.4 Ensemble Learning

Ensemble learning was proposed to address the trade-off between variance and bias [36]. Ensemble
learning can combine the high-variance but low-bias models or low-variance but high-bias models to
derive the prediction with low variance and bias [36]. When ensemble learning is coupled with deep
learning, various derived works have been proposed, such as model soup [241], Pathways [10], and
the dropout technique [216], which is a special case of the Stochastic Delta Rule[67, 51, 73, 50] from
1990. Ensemble learning was shown to be effective on various tasks, such as robust prediction [253,
100, 234, 154, 85, 70], image generation [244, 147], and image reasoning [208]. However, in
ensemble learning, the communication between the neural networks is simple and inefficient. Beyond
ensemble learning, NLSOM re-forms the collaboration with different models, which inspires diverse
societies of large neural networks (NNs) to interview each other in a multimodal “Mindstorm."

B.5 Pursuit of Large Scale Models

Empirical results demonstrate that increasing the size of the network steadily improves the perfor-
mance of the network [97, 76]. Thus, recently many actors with large amounts of computational
resources started to develop bigger and bigger models trained by increasingly large amounts of
data [30, 47, 97].

Training that kind of monolithic models, however, requires a huge financial budget as well as a team
of highly specialized engineers. Moreover, training large models for the same tasks simultaneously by
a number of companies leads to immeasurable footprint emissions [156, 15, 169]. Another drawback
is that such high financial requirements for training state-of-the-art models lead to the concentration
of knowledge and preclude detailed research of these models, even for well-funded institutions.

One approach to address such scaling challenges is to employ Mixtures-of-Experts [86, 204, 84, 119].
This approach uses a set of neural modules called experts, that are sparsely activated [171, 104].
NLSOM extends MoEs by changing the communication between experts to natural language. This
allows experts to formulate opinions and articulate their reasoning—leading to the aforementioned
mindstorming. Apart from that, in-context learning abilities of large language models allow for
knowledge transfer between models and plug-and-play modularity, where models can be composed
with each other, just like functions in code [41]. This lowers the costs of experiments as it is not
necessary to train every model from scratch, leading to the democratization of AI and more global
access to research.

B.6 Generalization and objects in the visual domain

Language-based NLSOMs could facilitate answering the long-standing question: “What is the
optimal way to discretize perceptual (video) input streams?” It is posited that decomposing the
visual input into a set of discrete objects and relations between them would facilitate compositional
generalization [64]. Such discrete object representations may arise in language-based NLSOMs due
to their bottlenecked communication through a limited bandwidth channel using discrete symbols
(tokens/words). Secondly, language might be an ideal medium to specify task-conditioned objects in a
weakly-supervised manner (although the human ability to perceive the world in terms of (hierarchical)
objects and relations between them probably does not stem from language itself, this would be a
way to bootstrap visual representation learning in a “top-down” fashion). Early work on learning
object representations used unsupervised objectives such as reconstruction [63, 226, 62, 133, 217,
60, 102]. These methods, however, work best for visually simple scenes and struggle on real-world
datasets. Arguably, their reliance only on unsupervised learning objectives impedes their scalability
to real-world scenes as the notion of an object is task-dependent in general. Recently, using text
as weak supervision to learn segmentation received increased attention. Multi-modal models such
as CLIP [161] originally trained for classification task have been shown easy to adapt to the task
of semantic segmentation in methods such as ViL-Seg [132] and GroupViT [245]. Of particular
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interest are methods that learn text-conditional segmentation such as TCL [21] and PACL [148] as
in these NLSOMs text-based agents have a way to query the vision experts. In the future, we see
semantic and instance segmentation VLMs benefiting from NLSOMs with many more members that
all communicate with each other, possibly coming up with novel objects and abstractions due to their
language-based communication bottleneck [103].

B.7 Tool Use in Language Models

Related to the NLSOM, previous works have suggested prompting or fine-tune transformers to make
use of external (non-neural) tools [107, 32, 54, 176]. While these tools could be a part of the NLSOM,
they are entirely passive. The NLSOM is concerned with many active participants that exchange
information, and may learn from each other.

B.8 Explainable and Interpretable AI

A growing number of potential misuses of neural networks together with the risk of harmful untested
behavior in brittle scenarios led to the rise of explainable and interpretable artificial intelligence
(XAI) [129, 18, 166]. The premise of XAI is to create models, in which decisions and decision
processes can be interpreted and understood by humans. This, therefore, would allow us to estimate
how the model would behave in new scenarios or in case of high-risk important usage to have human
supervision over the machine learning model that ultimately makes informed decisions based on
the machine input.

For example, in the case of cancer diagnosis deep learning models make predictions about cancer,
but the final decision belongs to the physician.

This interpretability is very well achieved in the NLSOM framework, where humans can play the
role of one of the experts (here a reference to the chapter that describes it) and question other experts
about their opinions or influence their decisions with his opinion, therefore, leading to better, more
interpretable and therefore controllable solutions.

B.9 Multi-agent and Hierarchical RL

Reinforcement learning (RL) agents can learn to make useful decisions in interactive environ-
ments [222]. NLSOMs with multiple reward-maximizing agents are related to multi-agent RL,
e.g., [19], and to Hierarchical RL, where a single agent learns to decompose a problem into subprob-
lems solvable by subroutines [182, 94, 155, 237, 157, 82]. Both pre-specified [35, 90, 159, 40] and
learned [182, 183, 200, 8, 90] decomposition have been studied.

Certain multi-agent RL systems [139, 238] employ hard-coded rules for exchanging information
between agents. Others learn communication as part of the agents’ actions, e.g., [49, 219]. No-
tably, the emergence of natural-language-like properties can be observed by maximizing the agents’
objective [146, 71]. Recent work has focused on learnable and possibly dynamic communication
typologies [38, 206].

B.10 Networks interviewing Networks

Members of our NLSOMs interview each other in NL-based mindstorms. In the “learning to think”
approach, NNs learn to interview other NNs through sequences of real-valued vectors. Closely related
to this is the idea of policy fingerprinting [69, 46, 45]: Information from many different agents is
extracted by observing their behavior in a set of learnt artificial probing states. This information is
used to generate better performing agents.

Earlier work had stricter ways of extracting information from one NN and transferring it to another
NN. For example, the Chunker-Automatizer framework [186] introduces a general approach to distill
the information of one NN into another: a higher level Chunker NN’s information is distilled to the
lower level Automatizer NN by forcing the Automatizer to predict the Chunker’s internal states.
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C Some Discussion Relating to Section 2

Collective decision-making in societies can be challenging since every agent might be pursuing
their own goals, which can sometimes conflict with each other. In our experiments with NLSOMs,
these goals are provided to agents in the form of initial prompts. To achieve their goals, agents must
sometimes establish a system of preferences regarding the society’s outcomes, such as ranking the
solutions proposed by other agents for the problem. Social Choice Theory [202] is a formal framework
that models how agents’ (some of which might be humans) preferences should be aggregated in
society to reach a collective decision. In the present paper, we constructed “monarchical” and
“democratic” NLSOMs, and we observed that different tasks might require different social structures
to be solved efficiently. While monarchical NLSOMs led by a single agent might introduce bias
and be less desirable when humans are members of them, self-organizing democratic NLSOMs are
prone to manipulation. For example, the Gibbard-Satterthwaite theorem [56, 173] shows that for
a non-monarchical NLSOM where agents can express more than two preferences, strategic voting
might happen. This implies that for our agents, it might be convenient to lie about their preferences
if they have full information about the voting process. This opens up a lot of potentially harmful
scenarios where LLMs agents could lie or intentionally try to manipulate other agents using natural
language to satisfy their own preferences.

This negative aspect is counterbalanced by the transparency of the protocol in NLSOM. For systems
capable of in-context learning in natural language (as we already witness in several existing LLM
systems), the objective function and associated constraints become verbalizable, which may allow
humans to better specify and communicate their intentions to agents. This verbalization of the
objective function, consequently, may facilitate agents to align to the original intentions of humans
(human-AI alignment) or those of other agents requesting to execute certain tasks (AI-AI alignment).

Our implementations of NLSOM are simple and comprise few agents. As the number of agents
in an NLSOM grows, the structure of the society could be much more complex and hierarchical.
For example, an LLM model (e.g., ChatGPT) could specifically help a group of domain-specific
models with poor natural language capabilities (e.g., VLMs) in a sort of mini-society. These mini-
societies can be seen as coalitions enabling domain-specific models to communicate in rich natural
language (through the LLM) and be much more impactful to collective decisions in the society.
The interaction between different coalitions of agents can be modeled using Cooperative Game
Theory [228]. Coalitions of agents in an NLSOM might decide to stipulate binding agreements
between them in the form of contracts and might receive a payoff for their services which will have
to be divided within the coalition.
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D Broader Impact and Ethical Concerns

There are few obvious limitations to what an NLSOM or an EOM consisting of many large, interacting,
reward-maximizing modules might do, besides the fundamental limits of computability and AI
identified in 1931 [57], and the limits of physics, such as the finite speed of light. It may not be
advisable to let general EOM variants loose in uncontrolled situations, e.g., on multi-computer
networks on the internet, where some NLSOM members may execute programs that control physical
devices, with the potential of acquiring additional computational and physical resources. Certain
money-maximizing EOMs may conflict with human intentions on occasion. Such systems must first
be studied in carefully designed sandboxes.

D.1 Experimental Limitations

While this work represents a tangible step towards the implementation of large-scale NLSOMs, the
experiments here remain quite limited for several reasons. First, most of the mindstorms shown here,
while promising, are still of a relatively small scale. Further experiments are needed to confirm the
scaling benefits observed continue. Additionally, these mindstorms also enforce a comparatively strict
communication paradigm; it remains an unresolved problem of how best to enable more free-form
communication. This is of particular importance as the prompting schemes were observed by the
experimenters to seriously affect the performance of the overall system. We believe that this challenge
could be partly overcome by implementing learning into our NLSOMs—a powerful tool none of our
experiments exploited.

In addition to the above, we also note that many of the experiments shown here are qualitative. This
is largely due to the fact that, for most of them, quantitative experiments would involve human
subjects, greatly complicating this work. However, such experiments would be necessary to confirm
the conclusions reached herein. Likewise, to be able to reach true conclusions on the effectiveness of
different social structures for NLSOMs, we would need to conduct a more rigorous analysis of them,
e.g., for the democratic structure, different voting systems would have to be experimented with. It
is feasible to believe that understanding this lever of the NLSOM idea could allow us to have one
NLSOM solve all of the tasks rather than have individual ones for each task.

Finally, ChatGPT is not open-sourced and is liable to change behaviour, which greatly limits both the
reproducibility of these experiments and their broad usability.
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E VQA Experiments Details

Our NLSOM for VQA tasks consists of two LLMs (called Organizer and Leader) both copies
of text-davinci-003 [153] and three VLMs (called VQA agents): BLIP2 [114], OFA [231], and
mPLUG [111]. The mindstorm among these five agents consists of four stages: Mission Initialization,
Task-Oriented Mindstorm, Opinion Gathering and Execution stage. We now describe each stage in
detail and guide the reader through the example shown in Figure 6.

Mission Initialization. Here a pre-defined prompt “Introduce this image in details“ is fed into
the VQA agents, akin to previous work such as KOSMOS-1 [80]. The VQA agents then produce an
image description, e.g. A plane is on the runway at an airport. in Figure 6.

Task-Oriented Mindstorm. In this stage Organizer and VQA agents interact to provide increas-
ingly detailed scene description, through which we tackle the known issue of small VLMs to provide
a detailed scene description on their own [255]. The iterative nature of the task-oriented mindstorm
can be regarded as a chain-of-thought [233] designed specifically for instruction-based LLMs. Here
the Organizer deconstructs the original question into various sub-questions and then the VQA agents
provide the answers to them, which are again fed into the LLMs. In the example of Figure 6 the
Organizer generates the question What is the style of this plane?"(Q2) and the VQA agents answer:
"A jet airplane (A2)" and "a united airlines plane (A2)". Although this question is only loosely
related to the original question ("What century were these invented in?") it helps to identify the object
in the image as an airplane. Going forward, the Organizer takes the output of the VQA agents as
input and generates a new question "What year did the first powered, controlled flight of a plane take
place?". This rephrases the original question and highlights the primary purpose of the question:
determine the aircraft’s invention date. This iterative process between Organizer and VQA agents
continues for a fixed number of 10 iterations. The following prompt is used by the Organizer:

We have a multiple-choice VQA task. The question is: <vqa question> And it has four options:
<option>. The caption of the image is: <caption>. Based on this information, we have previously
asked several questions to other agents and obtained the following answers: <questions and
answers>. Considering the options of the original question, now generate another question to
help solve the original question (end by ?):

Opinion Gathering. In this stage the Organizer gathers, analyzes and summarizes the information
generated during the mindstorm. For example during one mindstorm, one VQA agent correctly1

answers "1903" (A3) as the crucial year for the airplane invention while another participant give an
incorrect response "By the first mate" (A3). Therefore, an analysis (to identify errors and correct
them) and summarization of the mindstorm results is required, which is the task of the Organizer.
This is different from previous approaches [79, 266] since it not only summarizes captions and
conversations, but also uses the LLMs’ knowledge to identify and correct errors, and handle uncertain
statements. Finally, this analysis results in: “The invention of jet airplanes dates back to the 20th
century. The earliest controlled flight take place on 1903. Airplane has since become an integral
part of modern transportation. Jet airplanes continue to be developed and improved upon, with
advanced technologies making them faster, more efficient, and more reliable”. As we can see the
Organizer LLM not only filtered out the incorrect answer, such as By the first mate, but also identified
and addressed questions that were not answered accurately, such as The invention of jet airplanes
dates back to the 20th century. and The earliest controlled flight take place on 1903., an essential
information to correctly answer the original question. The following prompt is used by the Organizer:

There is a brainstorm record: <questions and answers>. Please summarize them in a few
sentences.

Then we obtain as a result <summarization>.

1While the ground-truth answer in this VQA dataset is in line with the commonly held belief, in this instance
the common belief is, in fact, incorrect [190].
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Execution. In the final stage, the Leader LLM takes as input the summary from the opinion
gathering stage and produces the final verdict. The following prompt is used by the Leader:

There is a VQA question: <vqa question>. And It has 4 options <option> Context: <summa-
rization>. Which one do you think is more reasonable? Answer within (a), (b), (c), (d) without
explanation.

In the example from Figure 6 our NLSOM selects (b) Twentieth as the final answer.

E.1 The set of agents

We expect that this NLSOM will comprise a minimum of 2 types of agents to solve the specific task:

Type I.

Ability:
(1) Convert the visual data into a description written in natural language;
(2) Present visual information using natural language in response to the given queries.
Input: visual data, and language-based questions.
Output:
(1) language, i.e., describes the visual input;
(2) language, i.e., question answering.

Type II.

Ability:
(1) inference, reasoning, communication;
(2) analysis, summarise the mindstorm,
(3) execution.
Input: a set of natural language.
Output:
(1) language, i.e., posing a new question;
(2) language, i.e., analysis or summarization;
(3) language, i.e., chose an option.

E.2 Implementation Details

Setup. Organizer and Leader LLMs are InstructGPT (text-davinci-003). VQA agents
BLIP2flanT2xl are loaded from Huggingface2, whereas OFAlargeVQA and mPLUGlargeVQA are pre-
trained models from ModelScope3. We employ a single V100 GPU to load the VLMs in all
experiments. We empirically opt to use InstructGPT [153] as our LLM because we find Chat-
GPT [152] (GPT3.5-turbo) to produce a high number of hallucinated messages and occasionally
replies with texts such as "Sorry, I am an AI language model...". As zero-shot prompt learning
baselines for A-OKVQA we use BLIP2flanT5xl, GITlarge [229], OFAlarge [231], mPLUGlarge [111] and
ChatCaptioner [266] using the codes from the existing repositories and the OpenAI API. Among
these, ChatCaptioner is the most appropriate baseline as it also uses ChatGPT. In addition, we also
evaluate three pure language models, GPT3 [15], ChatGPT [152], and InstructGPT [153] to measure
some reference performance achievable without input images.

Dataset. For efficiency reasons, we report results on the A-OKVQA’s validation set [201] containing
1.1 K VQA samples (instead of using the test set which is much bigger; 6.7 K examples). Evaluating
our NLSOM with 10 rounds of mindstorm on this dataset takes 3−13 hours depending on the number
of VQA agents in the society (we vary it from 1 to 3 for the ablations shown in Table 3).

2https://huggingface.co
3https://modelscope.cn
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E.3 Performance Analysis

As depicted in Table 2, NLSOM outperforms all other models on the challenging A-OKVQA dataset,
notably also the previous best models in the zero-shot setting BLIP2flanT5xl [114] and ChatCapi-
oner [266]. We speculate that the reason for poor performance of other VLM baselines in the
zero-shot prompting setting is mainly due their lack of language understanding which results in
outputs differing from the given options. This issue could perhaps be mitigated with the recent
multi-modal LLMs such as GPT-4 [1] that is however not open-sourced yet. Interestingly, NLSOM
surpasses even some finetuned models such as CLIPCap [145] and GPV-2 [95]. This suggests that
NLSOM effectively leverages the LLMs to extract knowledge from VLMs.

E.4 Number of Rounds in Mindstorm

We conduct an ablation study on the number of rounds in mindstorm for 1, 3, 5, and 10 rounds.
Table 3 shows the results. Increasing the number of mindstorm rounds effectively improves the
performance.

E.5 Social Structure

There are several possibilities to organize the social structure of our NLSOM. Here we look at two
examples.

Monarchical Setting. The first example is the monarchical setting we used in our main experiments
(Sec. 2.1). In this setting, there is a hierarchy among the agents, where the VQA agents act as
subordinates of the Leader and the Organizer. Subordinates only respond to questions asked by the
Organizer, without the right to contribute to the final decision-making. This is the structure illustrated
in Figure 2.

Democratic Setting. An alternative structure we consider is the democratic setting. In this structure,
each VQA agent has some rights. The first one is (1) right to know (RTK), i.e., the agent is allowed
to access the answers provided by all other VQA agents in the previous round of mindstorm before
the next round of questioning in the Task-Oriented Mindstorm stage. The following prompt is used
by the VQA agents in the RTK setting:

Context: <previous-round sub-question> Answer1: <previous-round BLIP2’s answer>; Answer2:
<previous-round OFA’s answer>; Answer3: <previous-round mPLUG’s answer>. Question:
<generated question> Answer:

After mindstorm ends, the Opinion Gathering and Execution phases proceed as in the monarchical
setting.

The second right is (2) right to change (RTC). In the Opinion-Gathering stage, each VQA agent
receives again all the sub-questions generated during the multiple rounds of mindstorm. At this stage,
each VQA agent can keep their original answer or choose one of the answers that were previously
provided by the other VQA agents. The following prompt is used by the VQA agents in the RTC
setting for each of the sub-questions:

Question: <sub-question question> Options: (a) <BLIP2’s answer> (b) <OFA’s answer> (c)
<mPLUG’s answer>. Answer:

After the VQA agents provide their final answers, the generated sub-questions and the corresponding
final answers are submitted to the Organizer. At this stage, the Opinion Gathering and Execution
phases proceed in the same manner as in the monarchical setting.

Finally, the last right is (3) right to execute (RTE). Following the Opinion Gathering phase, all VQA
agents receive a summary of the mindstorm session from the Organizer. They then have the ability
to vote for the answer options related to the original question. The option that receives the highest
number of votes is selected as the final answer. The vote count is performed using a simple script that
counts the answers.
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The following prompt is used by the VQA agents in the RTE setting:

Question: <vqa question> Options: <options> Context: <summarization> Answer:
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Problem

Question:

Options:  # Denoted as {Options}

Rationale: # Didn’t used as input.

(a) Nineteenth (b) Twentieth (d) Seventeenth(c) Twenty 

What century were these inve
nted in? # Denoted as {Q1}

o This is a large passenger jet.
o Planes were made in the early 1900s.
o These were invented in the same century as 

the internet.

Vision

Figure 6: A VQA sample from the A-OKVQA dataset.

Table 2: Comparisons with cutting-edge methods in the A-OKVQA val set [201]. † means a multi-
modal model that sees both image and text. 2-shot means adding two-shot samples as demonstrations.
IC=Image Captioning. G=Text-Davinci-003; B=BLIP2flanT5xl; O=OFAlarge; M=mPLUGlarge; All the
NLSOMs run for 10 rounds at cross conversation here.

ID Model Accuracy
Random

1 Random 26.70
2 Most Common 30.70

Finetune
3 BERT [99] 32.93
4 †CLIPCap [145] 56.93
5 †Pythia [91] 49.00
6 †ViLBERT [134] 49.10
7 †LXMERT [223] 51.40
8 †GPV-2 [95] 60.30
9 †KRISP [138] 51.90

Few-Shot In-Context Learning (ICL)
10 Text-Davinci-003+2-shot [153] 44.98

Zero-Shot Prompting
11 †BLIP2flanT5xl [114] 44.80
12 †OFAlarge [231] 41.22
13 †GITlarge [229] 35.93
14 GPT3 [15] 35.07
15 Text-Davinci-003 [153] 43.79
16 ChatGPT [152] 43.30
17 †ChatCaptioner [266] 47.41
18 †Text-Davinci-003+IC [153] 54.51
19 †NLSOM{G,B} (+9.1%) 59.47
20 †NLSOM{G,O} (+13.9%) 62.11
21 †NLSOM{G,B,O} (+19.4%) 65.07
22 †NLSOM{G,B,O,M} (+23.7%) 67.42

Table 3: Comparison of mindstorm rounds.

ID Ablations Accuracy

Rounds in Mindstorm
1 NLSOM{G,B,O,M}round=1 55.78
2 NLSOM{G,B,O,M}round=3 64.15
3 NLSOM{G,B,O,M}round=5 66.20
4 NLSOM{G,B,O,M}round=10 67.42
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VQA Question

Question:

Options:

Mindstorm record: The item attached to the fridge handle is a towel made of 
a white tin, plastic, or metal. It serves as a towel hanger to dry and clean 
hands.

(a) wash dishes (b) wash floor (d) dry hands(c) empty oven

What is the purpose of the 
item on the fridge handle?

Vision

Choices:  (d)(a) Mindstorm (Ours):OFA: mPLUG: (a) 

VQA Question

Question:

Options:

Mindstorm record: The two people in the picture are skiing in a snowy slope 
and are wearing protective gear. They are both smiling, indicating that they 
are having a great time.

(a) eating (b) laughing (d) angry(c) frowning

What are the two people in 
the picture doing?

Vision

Choices:  (b)(c) Mindstorm (Ours):OFA: mPLUG: (a) 

VQA Question

Question:

Options:

Mindstorm record: The skateboarders are likely riding flat surfaces such as 
concrete, in a natural environment with many people around. There is no 
bodies of water near the area.

(a) beach (b) city (d) suburban(c) rural

In what type of environment are they 
most likely riding skateboards?

Vision

Choices:  (b)(d) Mindstorm (Ours):OFA: mPLUG: (d) 

VQA Question

Question:

Options:

Mindstorm record: This image is of a woman walking down a street at night. 
The buildings in the district are mostly retail stores and shops. The activities 
that typically occur in this district are shopping and walking. This suggests that 
this image is of a city retail or shopping district.

(a) government (b) warehouse (d) residential(c) commercial

What type of city district is 
this?

Vision

Choices:  (c)(d) Mindstorm (Ours):OFA: mPLUG: (d) 

VQA Question

Question:

Options:

Mindstorm record: Fidelity specializes in providing financial services such as 
individual and institutional investments, retirement, fiduciary services, 
banking, insurance, and lifesciences. They typically offer investments such as 
stocks, bonds, mutual funds, ETFs, and various other options. They provide 
educational resources to help individuals make informed financial decisions.

(a) travel (b) investments (d) rentals(c) investments

What does Fidelity 
specialize in?

Vision

Choices:  (c)(a) Mindstorm (Ours):OFA: mPLUG: (b) 

VQA Question

Question:

Options:

Mindstorm record: This image depicts a street scene from the city center of 
London, England, with a clock tower that is of Gothic architecture. The most 
famous landmark of this city is the clock tower, and the shopping center 
located within the city is also pictured.

(a) los angerles (b) stroud uk (d) karachi(c) paris

What city is this 
shopping center in?

Vision

Choices:  (b)(d) Mindstorm (Ours):OFA: mPLUG: (a) 

VQA Question

Question:

Options:

Mindstorm record: This image depicts a white bus with the city of Los Angeles 
printed on the front as well as a destination sign indicating North Bergen. The 
name of the company or agency that operates the bus is a bus or bus transit 
authority, and the destination printed on the top of the bus is not in service.

(a) burlington (b) north bergen (d) livingston(c) norway

What destination is on 
the top of the bus?

Vision

Choices:  (b)(a) Mindstorm (Ours):OFA: mPLUG: (a) 

VQA Question

Question:

Options:

Mindstorm record: In the image, there are six suitcases stacked together. The 
suitcases have tags on them, which are white in color. There are four suitcases 
with tags and a variety of colors are present on the tags. The suitcases also 
have a distinctive shape and locks.

(a) two (b) three (d) four(c) five

How many suitcases have 
tags?

Vision

Choices:  (d)(b) Mindstorm (Ours):OFA: mPLUG: (b) VQA-SoM (Ours):

VQA-SoM (Ours):

VQA-SoM (Ours):

VQA-SoM (Ours):

VQA-SoM (Ours):

VQA-SoM (Ours):

VQA-SoM (Ours):

VQA-SoM (Ours):

Mindstorm Result: In the image, six distinct suitcases are neatly stacked, each with
a different size. Some suitcases have tags, while others don’t. Four suitcases are
tagged. The tags are white in color.

Mindstorm Result: 

Mindstorm Result: 

Mindstorm Result: 

Mindstorm Result: 

Mindstorm Result: 

Mindstorm Result: 

Mindstorm Result: 

Mindstorm Result: In the picture, two individuals are seen skiing down a slope,
thoroughly enjoying themselves. Their smiling faces and laughter indicate the
immense pleasure they are experiencing during their descent.

Mindstorm Result: The image shows a skateboarder in the air performing a trick in
an urban environment. The skateboarder is skateboarding down a ramp, which is
situated amongst other ramps, rails, curbs, and stairs. There is a skateboard park
nearby and other people around skateboarding as well.

Mindstorm Result: There are no parks or green spaces, but there are businesses
open late at night and residential houses. There are also offices and large public
facilities, such as a library or public centre. Additionally, restaurants, cafes, and
bars can be found in this area, as well as shops selling clothes and other goods.

Mindstorm Result: Fidelity is a financial services and investment company primarily
specializing in investments. They offer a variety of products related to investing,
such as savings, tax preparation, financial planning, and insurance, as well as
related services. They also provide travel services and products for customers.

Mindstorm Result: The most effective sound amplification system for a large room
would be acoustic sound, speakers and a microphone. The microphone would
allow the man's voice to be heard throughout the room, while the speakers and
acoustic sound would amplify the sound and ensure it can be heard by everyone.
The speaker and boomerang system can provide better coverage of sound while
amplifying it.

Mindstorm Result: This image is of a city bus stopped at a bus stop, and the bus is
heading towards North Bergen. The bus is facing right and the destinations listed
on the bus's signage are Downtown and North Bergen. The destination written on
the side of the bus is Downtown and the signage at the bus stop also describes
North Bergen. The destination written on the top of the bus is also North Bergen.

Mindstorm Result: The item on the fridge handle is primarily used to hang a kitchen
towel, but it can also be used to open the oven, empty tins, wipe down surfaces,
and clean objects. It should be used rarely to wash the floor, and it is not intended
to be used as a dishwasher.

What is the most likely explanation 
for how the people in the back of 
the room can hear this man?

(a) streaming (b) shouting (c) small room (d) microphone

(d)(c) (c)

Figure 7: The performance of NLSOM in VQA task. Like the zero-shot chain-of-thought [105]
method, we divide the task of VQA into two steps. The initial step involves parsing and summarizing
the records of mindstorm, while the second step involves utilizing this information as a rationale to
guide the InstructGPT model [153] to find the final answer.
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Table 4: Comparisons between democratic and monarchical NLSOM in VQA [201]. G=Text-Davinci-
003. B=BLIP2flanT5xl. O=OFAlarge. M=mPLUGlarge. RTK: Right to Know; RTC: Right to Change;
RTE: Right to Execution. All the NLSOMs run for 5 mindstorm rounds.

ID NLSOM Structure Accuracy

1 Monarchical NLSOM{G,B,O,M}round=5 66.20
2 Monarchical NLSOM{G,B,O,M}round=5+RTK 64.23
3 Monarchical NLSOM{G,B,O,M}round=5+RTK+RTC 63.15
4 Monarchical NLSOM{G,B,O,M}round=5+RTK+RTC+RTE (= Democratic NLSOM) 63.41
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F More details of Image Captioning Experiments

F.1 The protocol

The NLSOM and mindstorm protocol used in this task is similar as those used for VQA in Sec. 2.
The only modification we introduce is the prompts that specifically guide the VLMs toward the task
of image captioning. The following prompt is used by the VQA agents in the Mission Initialization
phase:

Describe this image in a more informative way, containing high-level reasoning like ’Where is
this photo taken?’, ’When is this photo taken?’, ’What’s the event or story behind this image?’,
etc

In the Task-Oriented Mindstorm phase, the Organizer uses the following prompt:

There is an image captioning question: <first question>. The image shows: <caption>. Based on
these information, we have asked several questions before: <questions and answers>. Consider-
ing the objective of the first question, now generate another question (end by ?):

The Opinion Gathering phase is exactly the same as in monarchical VQA.

Finally, in the Execution phase, we instruct the Leader LLM to consider all relevant information and
generate a concise and logical description for the image by giving the instruction:

There is an image captioning task: <first question>. The analysis of the image shows: <summa-
rization>. Consider all informative information. Now organize a frequent and logical description
for this image.

F.2 The set of agents

We expect that this NLSOM will comprise a minimum of 2 types of agents to solve the specific task:

Type I.

Ability:
(1) Convert the visual data into a description written in natural language;
(2) Present visual information using natural language in response to the given queries.
Input: visual data, and language-based questions.
Output:
(1) language, i.e., describes the visual input;
(2) language, i.e., visual question answering.

Type II.

Ability:
high-level natural language reasoning and summary.
Input: a set of natural language.
Output:
(1) language, i.e., posing a new question;
(2) language, i.e., analysis or summarization;
(3) language, i.e., generate a fluent sentence.

F.3 Implementation Details

Setup: The same with Section E.2.
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Dataset: We use images from TARA [52] as our image captioning dataset. The images of TARA
are collected from The New York Times4, which contain rich real-world contents. Note, however,
that TARA is originally not a dataset for image captioning (see the section below for the evaluation
protocol). We utilize 310 images from TARA for image captioning. From this analysis, we selected
20 representative samples for visualizations.

F.4 Evaluation Metric

To make use of TARA (which does not come with any ground truth image captions) as an image
captioning dataset, we proceed as follows: we extract the named entities from the first paragraph (pro-
vided with each article in TARA) using the NER tool in Spacy [44], then use Sentence-BERT [164]
to measure the similarity between the extracted named entities and the image caption generated by
the model to be evaluated.

F.5 Visualization

We show more generated samples in Figure 8.

4https://www.nytimes.com
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NYTimes: [Link] NYTimes: [Link] 

Abstract: With gleaming new performing arts centers and hungry Abstract: The new explosion underscores the difficulties Japanese 
audiences, China is embracing Western grand opera and authorities are having in bringing several stricken reactors under 
producing works of its own. control after the earthquake. 

First Paragraph: BEIJING On the frosty first Saturday of First Paragraph: TOKYO — A second explosion rocked a troubled 
December, crowds packed the opera house of the National Center nuclear power plant Monday, blowing the roof off a containment 
for the Performing Arts here to see “Xi Shi,” an original center building but not harming the reactor, Japanese nuclear officials 
production that tells the tragic tale of a legendary beauty from announced on public television. 
ancient China. 

Before Mindstorm: a chinese opera performance Before Mindstorm: a sand dune, earthquake 

After Mindstorm: This photo is a glimpse into traditional Chinese culture, depicting a performance After Mindstorm: This photo captures the aftermath of a powerful earthquake which caused large- 
of Chinese opera from around the early twentieth century. It features performers in ornate costumes scale destruction in a city in Japan. It shows the scene of a newly created sand dune, likely the result 
and props, including trombones and drums, which are integral elements of the performance. Their of the seismic movement of the earth that displaced sand and water in the region. The magnitude of 
expressions, costumes and movements create a range of emotions, from joy to anger, while also the earthquake was estimated to be 0, causing a destructive tsunami which swept the Pacific ocean 
demonstrating elements of Chinese culture like Asian-inspired costumes and folk dances. and drastically changed the landscape of the city. 

NYTimes: [Link] NYTimes: [Link] 

Abstract: President René Préval’s palace was crushed, and civil Abstract: The plume of ash from a volcano in Iceland forced 
servants lucky enough to survive are picking up the pieces of their aviation authorities to order the restrictions, affecting thousands 
own lives. of flights in a wide arc from Ireland to Scandinavia. 

First Paragraph: PORT-AU-PRINCE, Haiti It did not take very long First Paragraph: PARIS — A dark and spectacular volcanic cloud 
for Edwin Paraison, a member of Haiti’s cabinet, to take stock of shrouded much of northern Europe on Thursday, forcing airlines 
his losses and deliver a thorough assessment of what remained of to cancel thousands of flights as it drifted at high altitude south 
his government ministry. and east from an erupting volcano in Iceland. 

Before Mindstorm: a woman walks down a street in a city in the aftermath of a hurricane Before Mindstorm: a volcano is a volcano that is a volcano 

After Mindstorm: This haunting image depicts a woman walking through the chaotic aftermath of a After Mindstorm: This image captures a striking scene of a volcanic eruption in Hawaii. It shows an 
destructive hurricane in an unknown city. The grim, sepia-toned black and white photograph captures enormous plume of smoke and volcanic ash rising high into the sky, along with what appears to be 
the extent of damage caused by the hurricane with piles of debris and rubble scattered all over the molten lava streams flowing in the distance. This event was likely caused by the earth's geologic 
street. The woman is seen wearing a dress and a hat, with her head down and a solemn expression on processes of lava flow and erosional activity and is capable of causing considerable destruction to the 
her face, as she slowly trudges through the deserted streets, searching for help in the wake of this local environment. The intensity of the heat and cooling weather effects generated by the eruption 
tragedy. can prove dangerous to people and the local. 

NYTimes: [Link] NYTimes: [Link] 

Abstract: Every year, villagers create large and complex images Abstract: Some 150,000 Poles bade farewell to their president in 

using rice paddies as canvas and plants as paint. a funeral that capped more than a week of mourning. 

First Paragraph: INAKADATE, Japan Nearly two decades ago, First Paragraph: KRAKOW, Poland — About 150,000 mourners 
Koichi Hanada, a clerk in the village hall, received an unusual bade farewell to President Lech Kaczynski and his wife, Maria, on 
request from his superior: find a way to bring tourists to this small Sunday in an emotional funeral service here marked by solemnity 
community in rural northern Japan, which has rice paddies and and a determination never to forget. 
apple orchards, but not much else. 

Before Mindstorm: a woman is standing in front of a window Before Mindstorm: a man is laying on a table with a flag on his back 

After Mindstorm: This image captures a moment of enjoyment during a traditional festival or After Mindstorm: This photograph captures a solemn event held in a Polish city during the winter, 
parade. A woman stands happily on a bridge, dressed in a kimono and holding a hat in her hands. likely around Christmas time. It shows the funeral procession of a brave soldier carrying the remains 
She looks out onto a rice field and a city beyond, likely taken at sunrise given the bright sunlight. The of the fallen, draped in a flag. The ceremony serves as a tribute to the soldier's life, as well as a 

peacefulness of the landscape reflects the sense of awe and joy felt by the woman in her typical reminder to those of us in the Living to always remember and honor the ultimate sacrifice made by 
cultural dress. those who fought for their country. 

NYTimes: [Link] NYTimes: [Link] 

Abstract: The rave at the Cow Palace on May 29 carried a high Abstract: Nearly 24 years after Lissette Torres was stabbed to 
cost in dollars and lives, a cost that continues to rise. death in Sunset Park, Brooklyn, posters seeking witnesses have 

popped up in subway stations and stores. First Paragraph: Over the Memorial Day weekend, the emergency 
room at Seton Medical Center in Daly City activated its disaster First Paragraph: The end of her life merited a 19-word sentence in 

plan for the first time since the Loma Prieta earthquake in 1989. a newspaper article about the first 10 killings on Jan. 1, 1987. She 
was the eighth killing recorded that day. There was no mention of 
her name or her age. 

Before Mindstorm: a dj performs in the dark platform Before Mindstorm: a man stands in front of a picture of his wife and children 

After Mindstorm: This image captured a vibrant electronic music performance at a live concert, After Mindstorm: This photo captures the emotion of a man standing in front of a picture of his 
where a DJ was entertaining a diverse and excited audience of all ages and sizes. The atmosphere was wife and children. We can assume that the occasion of the photo is likely the man's birthday, as he 
hazy and dimly lit, suggesting that the event was held late into the night, and the DJ was using looks upon the photograph with sadness and love. It appears that the man has taken this photo to 
equipment and mixing techniques to create an unforgettable experience for the people. remember and commemorate his lost family member- his wife- and to keep her memory alive in his 

heart. The image speaks to the commitment of fatherhood, and to the importance of cherishing our 
loved ones 

NYTimes: [Link] NYTimes: [Link] 

Abstract: In Rahway, N.J., the city that got the most snow in the Abstract: A memorial outside the hospital where Representative 
region, traffic was moving through downtown Tuesday. Gabrielle Giffords is recovering has become the focal point for 

grief. First Paragraph: RAHWAY, N.J. When John M. Rodger, the Rahway 
police chief, looked outside on Monday morning and could not First Paragraph: This article was reported by Marc Lacey, Jennifer 
see his wife’s Chevrolet Suburban in the driveway, he knew his Medina and Denise Grady and written by Mr. Lacey. 
vacation to South Carolina was a goner. 

Before Mindstorm: a snow shovel is in the street Before Mindstorm: a large crowd gathers in front of a hospital building in san francisco 

After Mindstorm: This image is a photograph of a snow plow clearing a snowy street on a cold After Mindstorm: This image was taken in San Francisco, in the late morning, of a large group of 
winter day. The plow is working diligently to move the snow and ice off the road, which helps people gathered in front of a hospital. They had come together to pay tribute to victims of a tragic 
prevent accidents and allows people to travel in the winter safely. Despite the challenging conditions, shooting that occurred at the hospital. Security measures had been put in place to ensure the safety 
the snow plow is managing the snow with skill and efficiency. of those present, while they shared their emotions of sadness and grief. The memorial service 

included the laying of flowers to symbolize peace and love in spite of such senseless tragedy. 

Figure 8: Image captioning samples generated by our NLSOM. The original NYTimes articles can
be found via [link]. ”Before Mindstorm” refers to the output of a single model, BLIP2 [114], while
’After Mindstorm” is the output of our NLSOM.
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G Details of Prompt Generation for Text-to-Image Synthesis

Here we provide more details about the framework in (Sec. 2.3).

Questioner-Answerer NLSOM. A Questioner-Answerer NLSOM is a system for prompt gen-
eration for the T2I task. The system comprises four agents: the Questioner, Answerer, Leader,
and Painter. The Painter is a T2I model, while the others are LLMs. In the experiments below,
DALLE-2 [163] and ChatGPT (GPT3.5-turbo) are used as T2I and language models, respectively.
Given an initial prompt, the overall goal of the system is to produce another prompt that resolves
ambiguities of the initial prompt so that it can be easily understood by the Painter. For example, if
the input prompt is "Historical event in 1760s in England" (which may be ambiguous at first sight),
Questioner sequentially asks multiple questions to Answerer, to identify the nature of the actual event
in question, and based on the resulting chat history, the Leader produces a final prompt that provides
more details about the actual event: "A bustling and chaotic factory scene with figures like King
George III and John Wikes ..." A complete example is shown in Figure 11, and more illustrations can
be found in Figure 9. Below is the protocol used in the Questioner-Answerer NLSOM.

• Mission Initialization: To inform the Answerer about the image generation problem, the
following prompt is used:

"You are a <role>. There is a Generation Problem: We want to generate an image to
show <object>. What should we draw to show <object>?"

Here, the term “role” refers to the different artistic styles, and “object” represents the target
object to be generated.

• Task Oriented Mindstorm: The Questioner is prompted to ask questions related to the image
they want to generate. The first question asked is the one provided in the Mission Initializa-
tion phase: “What should we draw to show <object>?”. The first answer corresponds to the
initial response from the Answerer during Mission Initialization. Subsequent questions are
instead directly generated by the Questioner. The following prompt is used:

There is a Generation Problem: We want to generate an image to show <object>. Based
on the information, we have asked several questions before: <question-1> <answer-1>
... <question-n> <answer-n>, Considering the options of the above questions and
answers, now generate another question to further (end by ?)

The Answerer then receives the question generated by the Questioner and provides an
answer. This iteration continues for several rounds.

• Opinion Gathering: The Leader is then prompted to summarize the information gathered
during the mindstorm process:

There is a record: <question-1> <answer-1>,...<question-n> <answer-n> Please analyze
and summarize them in a few sentences.

• Execution: Finally, the Painter receives the summary from the Leader and generates an
image using the provided summary as a prompt.

Artist-Critic NLSOM In the Artist-Critic NLSOM, we combine many Questioner-Answerer
NLSOMs, to construct a much larger hierarchical NLSOM. Each Artist in this system consists of
three language models (LLMs): a Questioner, an Answerer, and a Leader. They operate using the
same protocol as the Questioner-Answerer NLSOM until the "Opinion Gathering" phase. The goal
of each Artist is to transform a common initial input prompt text into an art-style specific prompt.
The Artist-Critic NLSOM is composed of a large society of 129 language agents. It includes 26
Artists, each consisting of three LLMs. Additionally, there are 50 Critics, one Collector, and one

41



Painter. Each Artist follows the Questioner-Answerer NLSOM protocol until the opinion-gathering
phase. In this phase, each of the 26 Leaders (one for each Artist) produces a detailed prompt for
image generation. Subsequently, the 50 Critics, who have different professions, vote for the prompts
they prefer. Finally, the Collector summarizes the votes and selects the final prompt to be given to the
Painter for image generation.

Below is the protocol used in the Artist-Critic NLSOM.

• Mission Initialization and Task Oriented Mindstorm: Each of the 26 Artists follows the
Questioner-Answerer NLSOM protocol to generate a prompt proposal. In the Opinion
Gathering phase of the Questioner-Answerer NLSOM, each leader proposes a detailed
prompt.

• Opinion Gathering: In this phase, Critics evaluate all proposals and vote for their preferred
one. The following prompt is used:

You are a <role>. There is a record for different proposals from different artists:
<artist-1> <proposal-1>, ... <artist-n> <proposal-n>. Please choose the impressive and
beautiful proposal. (please directly answer the name of role)

Here <role> refers to their professions. The Collector counts the votes for different proposals
and selects the proposal with the most votes as the "winning prompt." The following prompt
is used by the Collector:

There is a generation problem: we want to generate an image to show <object>. The
art proposals are included in <artist-1> <proposal-1>, ... <artist-n> <proposal-n>.The
Voting results are <votes>. Please only describe the proposal with the most votes in a
few sentences.

• Execution: The winning prompt is fed to the Painter, which generates the final output image.

Implementation details. We adopt ChatGPT (GPT3.5-turbo) as the chat backend. In the
Questioner-Answerer NLSOM, we use one ChatGPT to ask the question (Questioner), one ChatGPT
to respond (Answerer), and one ChatGPT to summarize the chat record (Leader). These three
LLMs/ChatGPT instances share some system prompts such as "you are an artist" but receive different
input prompts depending on their role: "answer a question", "generate a question," or "summarize the
chat history". In the Artist-Critic NLSOM, each Artist is a Questioner-Answerer NLSOM using three
LLMs/ChatGPT. Different systems prompts like, "You are a Pointillism Artist" is given to each Artist
to obtain 26 Artists of varying styles of art to submit the art proposals. Each of 50 Critic agents with
different occupations, such as Doctor, Lawyer, Engineer, and so on, is based on a single ChatGPT
instance.

More examples. Figure 9 shows examples of Questioner-Answer NLSOMs for text-to-image
synthesis. We can observe that our NLSOMs successfully improve the prompts to be fed to the T2I
model. For example, in the example with the "historical event in the 1760s in England", DALLE-2
struggles to determine details from the original prompt, while extra information (about "Industry
Revolution", and "King George III") provided in the prompt generated by NLSOM seem to help. The
corresponding chat record can be found in Figure 11. We also show more examples of Artist-Critic
NLSOM in Figure 10 and examples of artistic proposals in Figure 11.

G.1 The set of agents

We anticipate that these NLSOMs contain 2 types of agents with different skills.

Questioner-Answerer NLSOM.

Type I.
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Ability: generate an image according to the instruction;
Input: natural language as instruction.
Output: a 2D image.

Type II.

Ability: high-level natural language reasoning and summary.
Input: a set of natural language.
Output:
(1) language, i.e., posing new questions;
(2) language, i.e., analysis or summarization;
(3) language, i.e., generate a fluent sentence.

Artist-Critic NLSOM.

Type I.

Ability: generate an image according to the instruction;
Input: natural language as instruction.
Output: a 2D image.

Type II.

Ability: high-level natural language reasoning and summary.
Input: a set of natural language.
Output:
(1) language, i.e., posing new questions;
(2) language, i.e., propose a proposal;
(3) language, i.e., voting;
(4) language, i.e., analysis or summarization;
(5) language, i.e., generate a fluent sentence.

43



Table 5: Prompt roles used in the Text-to-Image Synthesis. Artists are guided to generate the proposal
to draw a text in their own art styles. While critics make votes for the different art proposals from the
common view. Finally, the collector summarizes the voting results and feeds the textual cue to the
generative model.

Group System Prompt for ChatGPT

Artists

You are a { ’Impressionism Artist’, ’Pointillism Artist’, ’Art Nouveau Artist’, ’Fauvism Artist’,
’De Stijl Artist’, ’Constructivism Artist’, ’Pure Photographer’, ’Surrealism Artist’, ’Expressionism Artist’,

’Abstract Expressionism Artist’, ’Cubism Artist’, ’Futurism Artist’, ’Dada Artist’, ’Minimalism Artist’,
’Conceptual Artist’, ’Postmodern Artist’, ’Painting Photographer’, ’Impressionist Photographer’,

’Realistic Photographer’, ’Naturalistic Photographer’, ’New Materialism Photographer’, ’Surrealist Photographer’,
’Abstract Photographer’, ’Candidian Photographer’, ’Dadaism Photographer’, ’Subjectivism Photographer’ }

Critics

You are a { ’Doctor’, ’Lawyer’, ’Engineer’, ’Scientist’, ’Professor’, ’Accountant’, ’Architect’, ’Information technology (IT) professional’,
’Economist’, ’Psychologist’, ’Social worker’, ’Software developer’, ”Historian’, ’Accountant’, ’Architect’, ’Attorney’, ’Chef’, ’Civil engineer’,

’Computer programmer’, ’Copywriter’, ’Dentist’, ’Doctor’, ’Electrician’, ’Event planner’, ’Teacher’, ’Tour guide’,’Fashion designer’, ’Firefighter’,
’Graphic designer’, ’Hair stylist’, ’Human resources specialist’, ’Insurance agent’, ’Journalist’, ’Landscaper’, ’Librarian’, ’Marketing manager’,

’Graduate student”Mechanic’, ’Nurse’, ’Nutritionist’, ’Paramedic’, ’Personal trainer’, ’Pharmacist’, ’Photographer’,
’Physical therapist’, ’Police officer’, ’Real estate agent’, ’Retail sales associate’, ’Travel agent’, ’Truck driver’}

Collector You are a {’Assistant’}

NLSOM (Questioner- Answerer)

” A bustling and chaotic factory scene with figures like King George III and 
John Wilkes making appearances, depicting the rise of industrialization 

amid social and political upheaval in 1760s England.”

“An image to show the historical event in 1760s in England.”

“A comic-style image could show an athlete holding a gold medal in front of iconic 
Beijing landmarks like the Forbidden City and the Great Wall of China, while 

acrobats and dancers perform in the background and fireworks light up the sky.”

“A comic-style image to show the event in 2008 in Beijing, 
China.”

A dystopian, volumetric light, warm, unreal engine 3, by Felix Kahn 
image to show the representative building in France.

"A dystopian representation of the Eiffel Tower with volumetric light and warm 
tones, captured in a surreal style reminiscent of Felix Kahn using Unreal Engine 3."

“A movie 8k style image to show the building in Egypt”

"An 8k-style image showing the impressive and intricate design of the Great 
Pyramid of Giza with its massive limestone blocks, precision in construction, and 

surrounding desert landscape.”

DALLE-2

DALLE-2
M
in
ds
to
rm

M
in
ds
to
rm
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ds
to
rm
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to
rm

NLSOM (Questioner- Answerer)

Figure 9: The generated samples from DALLE-2 and DALLE-2 with our NLSOM based on
questioner-answerer structure. The proposed method can inject open-world knowledge into the
textual description. For example, when the input is set as the building of France, the proposed method
will learn that the impressive building of France is the Eiffel Tower. Based on such hints, DALLE-2
is improved to generate an image consistent with common knowledge.
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NLSOM (Artist- Critic)

“castle under the sea”
DALLE-2

M
in
ds
to
rm

M
in
ds
to
rm

“ An image to show volcano ”

The most impressive and beautiful proposal, according to the voting, is "As a P
ure Photographer, the proposal to generate a visually stunning image of a volca
no." This proposal aims to capture the fiery and intense beauty of a volcano thr
ough warm and fiery colors, a low angle perspective, and a wide-angle lens to e
mphasize the grandeur and size of the volcano. The resulting image can be both 

visually stunning and beautiful.

The proposal with the most votes is from the Realistic Photographer, who plans to 
create a visually stunning image of a castle under the sea using digital manipulatio
n techniques. This will involve careful consideration of lighting, color, texture, and 
composition to create the illusion of a submerged castle, complete with surroundin
g underwater life and water turbulence. The result will be a breathtaking visual ma

sterpiece that highlights the majesty of the underwater environment.

“Highway”
DALLE-2

M
in
ds
to
rm

M
in
ds
to
rm

“ Steam Engine”

The Art Nouveau Artist proposal received the most votes as the most impressiv
e and beautiful option for depicting a steam engine. This proposal involves inc
orporating organic lines, floral motifs, curved shapes, decadent details, and har
monious color schemes to create a visually appealing and unique image that ac

curately represents the steam engine.

The Impressionism Artist's proposal is the most impressive and beautiful, with a 
naturalistic photograph approach using warm and vibrant lighting, shifting color
s of the sky, loose brushstrokes and bold colors to convey a sense of freedom an
d adventure on the highway. The incorporation of natural elements such as clou

ds and shadows adds depth and interest to the image.

NLSOM (Artist- Critic)

Figure 10: The generated samples from DALLE-2 and DALLE-2 with our NLSOM based on the
artist-critic structure. The proposed method guides several artist agents to submit several art proposals
to beautify the given objects and employ several agents with common jobs to judge the proposals.
We visualize the winner’s proposal and the corresponding baseline.
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There is a Generation Problem, we want to generate an image to show

Mission Initialization

Input:

Historical event in 1760s in England

Task-Oriented Brainstorm

Questioner 

… …

Chat Record

A bustling and chaotic factory scene with figures like King George III and John Wilkes making appeara
nces, depicting the rise of industrialization amid social and political upheaval in 1760s England. 

Opinion Gathering

Leader

Execution

Painter

NLSOM

historical event in 1760s in England .
Based on these information, generate a question to generate image 
with common knowledge.

Answerer

What historical event took place in England during the 1760s that is comm
only depicted in paintings and images?

One historical event that took place in England during the 1760s that is 
commonly depicted in paintings and images is the Industrial Revolution. 
This was a period of significant social and economic change …

Questioner 

What notable figures or individuals were involved in the 1760s historical 
event in England and what role did they play in its outcome? 

Answerer

There were several notable figures involved in the 1760s historical eve
nts in England. Here are a few: 1. King George III - became king in 17
60 and played a significant role in shaping English politics and policie
s during his reign. 2. William Pitt the Elder - served as the country's pr
ime minister from 1766 to 1768 and worked to strengthen the country's 
economy and military. …

Questioner 

…

What artistic styles or techniques were commonly used by painters to show
case the 1760s historical event in England and how did it evolve over time? 

During the 1760s in England, the artistic styles and techniques used 
by painters depended on the type of event being depicted. Here are a 
few examples:… Answerer

Figure 11: A demonstration of the Questioner-Answer NLSOM for text-to-image synthesis. We
employ a questioner to ask questions related to the input and leverage an answerer to respond to the
questions. After several iterations, we require another agent called Leader to summarize and analyze
the chat record.
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There is a Generation Problem, we want to generate an image to show               .

What should we draw to show               .

Castle

Castle

Mission Initialization
Input

Castle

Task-Oriented Brainstorm

As a Pointillism artist, to depict a castle under the sea, small dots of contrasting colors should be used. D
eep blues, greens, and purples with touches of black and grey can represent the sea, while warm colors s
uch as beige, brown, yellow, and gold can depict the castle. A range of contrasting colors can be used for 
surrounding sea creatures and plants …

As a Dadaism photographer, you approach the task of showing a castle under the sea in a non-traditional 
and surreal way. You manipulate digital techniques to blend the castle image with underwater textures an
d colors while adding unexpected elements such as sea creatures or abstract shapes and patterns …

Pointillism 

Dadaism
As a Realistic Photographer, it is not possible to generate an image of a castle under the sea with a camer
a, but it can be created using digital manipulation techniques. To make the image appear realistic, consid
erations such as lighting, blending the castle with the surrounding environment, adding underwater life, 
water turbulence, depth perception, and texture need to be made. Techniques like lighting, blue/green hu
es, composition, and post-processing can be used to create the illusion of a castle under the sea…Realistic

… …

Artists

Critics:

Artistic Proposals

The proposal with the most votes is from the Realistic Photographer, who plans to create a visually stun
ning image of a castle under the sea using digital manipulation techniques. This will involve careful con
sideration of lighting, color, texture, and composition to create the illusion of a submerged castle, compl
ete with surrounding underwater life and water turbulence. The result will be a breathtaking visual mast
erpiece that highlights the majesty of the underwater environment.

Opinion Gathering

Realistic Realistic Realistic RealisticDadaism

…

…
Vote Vote Vote Vote Vote

Collector

Execution

Painter

{ ’Doctor’, ’Lawyer’, ’Engineer’, ’Scientist’, ’Professor’, …}

NLSOM

Figure 12: A demonstration for the Artist-Critic NLSOM. We employ various artists to submit
proposals for a given object and require the critics to vote on the artistic proposals.
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H 3D Generation

Task. 3D generation systems generate 3D models from a textual description. Due to the additional
degree of freedom in three dimensions and the unavailability of abundant labeled 3D data, this setting
is much more challenging compared to the text-to-image experiment from Section 2.3.

Method. For this task, as illustrated in Figure 13, our NLSOM model combines a 3D model
designer, an LLM leader, and three critics. Here, the 3D designer generates an initial version of the
3D model from a natural language prompt. The critics, each limited to perceiving disjoint 2D renders
of the 3D model, then provide separate feedback for the model by generating a natural language
description of the 2D render. The LLM leader, in turn, uses this feedback to adjust the prompt. The
new prompt is then fed back to the 3D designer. This mindstorm continues for several iterations.
We use Luma AI’s Imagine3D [136], ChatGPT (GPT3.5-turbo) [152], and three instantiations of
BLIP-2 [114], respectively, for the five agents. For more details, see Appendix H.

Results. As done in previous text-to-3D works (e.g., [158, 123]), we measure the performance of
our system on several custom prompts by using the average Clip score [161] on several different
views of the 3D model to measure the similarity of the generated model to the original prompt. The
smaller the Clip score, the better the quality of the model. Figure 14 shows some of the models
generated by our NLSOM and the equivalent models as generated by Imagine3D. Interestingly, no
significant improvement is observed when the mindstorm continues beyond two iterations—leading
to our results being restricted to a somewhat primitive mindstorm. However, our primitive NLSOM
still outperforms Imagine3D in nearly all tasks (see Table 6 and more visualizations in Appendix H).

H.1 The set of agents

We expect that this NLSOM will comprise a minimum of 3 types of agents to solve the specific task:

Type I.

Ability: create a 3D model based on the given instructions.
Input: natural language as instruction.
Output: a 3D model.

Type II.

Ability: translate the visual data into communicative messages.
Input: visual data.
Output: natural language, i.e., a description of the visual input.

Type III.

Ability: high-level natural language reasoning and summary.
Input: natural language.
Output: natural language.

We design 3 main types of agents to proceed with the 3D generation task. The type I agent is the
3D Designer that takes the natural language description from the LLM as input and generates the
3D model; The type II agents take images as input and generate natural language captions for those
images; The type III is the Language-Model Leader (LLM) which accepts natural language prompts
and descriptions as input and outputs the informed corresponding natural language description of the
3D model.

H.2 Implementation Details

We use Luma AI Imagine3D [136] as the “designer" Text-to-3D model in the pipeline, while We
adopt ChatGPT (GPT3.5-turbo) as the LLM Leader. For Image captioning, we adapt BLIP-2 [114]
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using its HuggingFace API on 3 views of the generated 3D object. The views are fixed from the front
sides and the back in our setup. We employ a single iteration in our pipeline as we have found that
there is no substantial improvement achieved beyond the initial iteration. The following is the list of
the full text prompts for the LLM leader used in the four examples shown in Figure 15 along with the
different views VLMs descriptions.

Red Ferrari example LLM prompt.

create a 3D model based on the given. Take the following information about the 3D generation
result to slowly and like a designer propose a new prompt for a better 3D generation from text,
Answer with only the new prompt and be concise with it.

Original prompt: highly detailed red ferrari with black and white strips

View back caption: a red sports car with an engine behind it ferrari ferrari f40 sports car car
toy transparent png ferrari ferrari f430 front view car graphics png transparent background
image

View right caption: ferrari 488 gtv, ferrari 458 Italia, ferrari f12berlinetta, person, red, sports
car ferrari 488 spyder car model for 3d render - car for 3d modeling - car model car model,
transparent png download a picture of a red sports car

View left caption: person ferrari car - red and black ferrari car transparent png download
ferrari car png free download transparent png ferrari 458 Spider red on white

Unicorn example LLM prompt.

create a 3D model based on the given. Take the following information about the 3D generation
result to slowly and like a designer propose a new prompt for a better 3D generation from text,
Answer with only the new prompt and be concise with it.

Original prompt: dragon wings and unicorn head hybrid creature, highly detailed

View back caption: unicorn 3d object transparent png image 7 an image of a horse with long
horn toys of the unicorn png transparent png transparent, transparent png download

View right caption: hacking a game - gameboy color gameboy games a white and blue unicorn
on a white background a white unicorn with blue horns is standing on a white background

View left caption: this image is of a white and blue unicorn with blue horns an image of an
unicorn with blue and white wings 3d printable unicorn image, transparent png download

Flying Car example LLM prompt.

create a 3D model based on the given. Take the following information about the 3D generation
result to slowly and like a designer propose a new prompt for a better 3D generation from text,
Answer with only the new prompt and be concise with it.

Original prompt: flying car

View back caption: a silver plane with propeller driven propellers airplane airplane propeller
propeller airplane, transparent png download an air craft is in a white background

View right caption: a model of a plane flying in the air 3d rendering of a silver airplane on
white background an image of an airplane that has no wheels

View left caption: an airplane is shown on the white background airplane transparent
transparent clipart image free clip art pictures png transparent png transparent clipart image
- transparent transparent clipart - png transparent a white small jet plane against a white
background

Robot Bee example LLM prompt.
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create a 3D model based on the given. Take the following information about the 3D generation
result to slowly and like a designer propose a new prompt for a better 3D generation from text,
Answer with only the new prompt and be concise with it.

Original prompt: robotic bee, high detail, high quality textures

View back caption: this yellow robot has two legs and a wheel attached black and yellow dog
robot 3d model - 3d model a small yellow robot that is on its side

View right caption: a 3d rendering of a yellow and black robot a yellow robot in black and
yellow a 3d robot bee that is standing with one arm up in the air

View left caption: a yellow robot bee on a white background machina robot beetle - 3docean
item - preview a yellow robot with large, black wings

H.3 Performance Analysis

In terms of quantitative evaluation, We use the average Clip score [161] on the rendered M views to
measure the similarity of the generated 3D model to the task text description as followed previously
in text-to-3D works [158, 123]. The smaller the metric, the better quality of the text-to-3D results.
The average Clip scores for the proposed NLSOM and the baseline ImagineD are shown in Table 6
for different 3D generation tasks.

H.4 Visualizations

We show renderings of generated 3D assets using the Imagine3D model and the same example after
applying our NLSOM protocol in Figure 15. We note that allowing a pretrained LLM leader to handle
the generation task allows for embedding common knowledge into the description. For instance, if the
input text describes a red Ferrari car, the method will learn that a Ferrari is a type of high-performance
sports car and incorporate this knowledge into the 3D model generation. By leveraging such cues,
Imagine-3D can be improved to create a detailed and accurate 3D model of a red Ferrari that aligns
with common knowledge about the car.

H.5 Evaluations

In terms of quantitative evaluation, We use the average Clip score [161] on the rendered M views to
measure the similarity of the generated 3D model to the task text description as followed previously
in text-to-3D works [158, 123]. The smaller the metric, the better quality of the text-to-3D results.
The average Clip scores for the proposed NLSOM and the baseline ImagineD are shown in Table 6
for different 3D generation tasks.
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Task: 3D Generation

3D Generation for :
“dragon wings and unicorn head 
hybrid creature, highly detailed”

3D Designer (VE)

Synthesis

Multi-View
Feedback

Critics (VLMs)
Summarize
the Prompt

LeaderMindstorm Feedback: Design a
highly detailed 3D hybrid creature with
dragon wings and a unicorn head,
using a variety of colors and textures
to bring it to life.

After

Before

Figure 13: The structure behind the mindstorm occurring in our NLSOM for 3D generation. While
we experiment with multiple communication iterations, we see no improvement beyond two iterations.
This leads to the actual mindstorms in these experiments being somewhat primitive. For more details,
see Appendix H.

NLSOM

Imagine3D

Figure 14: A comparison between samples generated solely from Imagine3D and samples generated
when Imagine3D was used as an agent within our NLSOM. Our NLSOM demonstrates superior
quantitative and qualitative performance compared to Imagine3D alone. For more examples, see
Appendix H.

Table 6: Quantitative comparisons between our NLSOM and SoTA Imagine3D [136] using average
Clip score [158] on different 3D generation tasks.

3D Generation Tasks Clip Score *100 (↓)
Model Ferrari Unicorn Flying Bee Average

Imagine3D [136] 30.0 30.0 28.6 32.3 30.3
+NLSOM 29.0 30.0 26.0 31.3 29.1
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flying car

Generate a 3D model of a futuristic flying car with a sleek and aerodynamic design, 
featuring advanced propulsion technology and the ability to seamlessly transition 

between flying and driving modes. Provide views from multiple angles, including a 
front-facing view emphasizing the car's design and a top-down view showcasing its 

flying capabilities

Imagine3D

robotic bee, high detail, high quality textures

Create a highly-detailed 3D model of a robotic bee with black and 
yellow color scheme and large, textured wings. The bee should be 

standing on two legs and a wheel, with one arm raised..

NLSOM

“highly detailed red ferrari with black and white strips”

a highly realistic 3D model of a red Ferrari sports car with black and white racing 
stripes, including various camera angles such as front, back, right, and left views. 
The car should have a sleek and aerodynamic design, with accurate details such as 
the Ferrari logo, headlights, and exhaust pipes. Additionally, the model should be 

suitable for use in various applications such as 3D rendering, gaming, and 
animation.

Imagine3D

dragon wings and unicorn head hybrid creature, highly detailed

Design a highly detailed 3D hybrid creature with dragon wings and a 
unicorn head, using a variety of colors and textures to bring it to life.

NLSOM

Figure 15: The generated samples from Imagine3D [136] and Imagine3D with our NLSOM. The
proposed method enables the injection of open-world knowledge into textual descriptions for 3D
model generation. Furthermore, our NLSOM utilizes image caption models to convey information
about the initial 3D generation, which improves the visual quality of the final generated 3D content.
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I Egocentric Retrieval

Task. Egocentric retrieval is the task of parsing a long video taken from a first-person perspective
and finding a segment of the video that focuses on a specific aspect of it. For example, given a video
of a chef cooking spaghetti, one might ask to find the segment that shows how much salt they added.
Egocentric retrieval is interesting because it is related to the everyday human task of parsing one’s
memory to locate information about a specific object, scene, or event.

Method. To solve this task, we build the NLSOM shown in Figure 16. Our NLSOM consists of
five agents: four debaters and one editor—all instantiations of ChatGPT. We focus on the special case
where the narration of the scene is provided by a human. Each debater receives a different section of
the narration and then discusses amongst themselves how to answer the question. This discussion
is allowed to continue for several rounds until the editor steps in and produces a summary of the
discussion and, from that, a final answer to the original question. The presence of the editor makes
this NLSOM follow a monarchical structure. We also experiment with removing the editor and using
a majority vote from the debaters to produce a final answer. This modification produces a democratic
NLSOM. For more details, see Appendix I.

Results. We measure the performance of our NLSOM on the validation split of the natural language
query section of the Ego4D dataset [61]. This dataset consists of videos taken from helmet cameras
alongside a textual narration of the video’s events. Our NLSOM exhibits far superior performance
compared to using only a single agent (see Table 7 in Appendix I and an example in Figure 17).
Interestingly, the single agent can not outperform a random baseline, but their composition in an
NLSOM did. Concerning the NLSOM structure, we observe that the democratic structure is superior.
This relationship may, however, change with the number of debaters.

I.1 Framework

Objective

Retrieval of a specific scene from memory is a common task in the real world, both in artificial
systems, as well as in humans. Developing an intelligent machine capable of solving this problem
typically necessitates a sophisticated retrieval system. This system usually incorporates a dedicated
model for action/object recognition [230, 48, 211, 257], multimodal modeling [55, 4, 213, 260, 43,
108, 256, 149, 28, 168, 116], and temporal action localization [210, 127, 126, 248]. Our objective is
to address the query-from-memory problem from the NLSOM perspective through the modulation
and interaction of a diverse set of simulated agents.

The set of agents

We design two types of agents to proceed with the query task. Each debater agent processes a small
subset of the inputs and produces a proposition that is relevant to the question. The editor agent
compares and summarizes the propositions from several agents, and finally executes the retrieval
operation. See below for the characteristics of each type. Type I (Debater agent).

Ability: question-relevant information extraction.
Input: natural language.
Output: natural language that describes partial solution candidates to the retrieval problem.

Type II (Editor agent).

Ability: summarization and information integration.
Input: natural language.
Output: natural language that provides a solution to the retrieval problem.

The protocol We use the following four-step process in our NLSOM: 1) During Mission Initializa-
tion,we generate video narrations to provide a detailed description of the egocentric video recording.
The description is later given to several Type-I agents, but each agent receives only a partial obser-
vation of it; 2) During the Task-Oriented Mindstorm, our agents in NLSOM exchange information
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about the task. 3) During Opinion Gathering, the information collected during the mindstorm is
summarized and analyzed; 4) During the Solution Generation, the models are asked to generate a
final output.

(1) Mission Initialization This is an initial stage or pre-processing stage to set up our models for the
natural language query task. For the narrations, we utilize high-quality data annotated by humans,
enabling us to prioritize the study of interactions between artificial agents. Note that human narration
may still introduce subjectivity and biases. After Mission Initialization, we have sufficient textual
information to complete the task. A set of Type I agents receive different subsets of the narrations. In
the beginning, most of the agents are not confident with their prediction, especially when they have
not observed the query-relevant part of the video narration.

Each agent uses the following prompt for providing an initial prediction for the task:

You are going to answer some questions about a video. Here is a summary of the video: \n
<video_summary> \n Followings are the video content. \n <sampled_narrations> \n The video
ends here. \n My question is, <language_query>

(2) Task-Oriented Mindstorm

In this phase, we prompt the agents to have rounds of discussions to gather opinions. Each agent
receives the latest statement from others and adjusts their output based on their additional guess and
the additional information from the other agents.

The following prompt is used during the mindstorm:

Thanks for your answer. Regarding the question, <language_query> I also asked your colleagues
<agent_a_name>, <agent_b_name>, and <agent_c_name>. They are all my assistants. They
have the observation of the other part of the video. You can choose to trust them or not.
You also have your unique observation of the video. Here is what <agent_a_name> says.
<agent_a_initialization>. ... What do you think? How much do you agree or disagree with them?

(3) Opinion Gathering All agents are instructed to make their outputs more concise. They are
expected to give a clear reason for each predicted video timestamp. We design two social structures to
merge agents’ summaries from the task-oriented mindstorm. In the monarchy structure, we assign an
editor agent and prompt it to produce a final list of possible timestamps. In the democracy structure,
we disable the editor agent and ask each agent to vote for the timestamps, and the final list consists
of the timestamps sorted by the number of votes. Both structures take the summaries as input and
output a candidate list.

We use the following prompt for gathering a final opinion:

I have collected the answers from my assistants to my question, <language_query>. The answers
are as follows. <summaries> \n Please carefully read and analyze their answers, then conclude
and summarize all the possible answers and the reasons why they are possible answers in a few
sentences.

In the democratic structure, all agents utilize the following prompt to gather their votes for the
proposed frames:

Now, considering all the conditions, please summarize your final answer to my question. The
question is <language_query>.

(4) Solution Generation

The solution generation process optionally post-processes the predictions. We remove invalid
predictions, such as negative values. If the gathered opinions lacks diversity (e.g., all predicted frames
are less than k), we augment the predictions by appending predictions distributed according to the
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grid baseline (see Section I.2). We also remove duplicated predictions or average the predictions if
they are very close to each other, i.e. less than one second.

I.2 Implementation Details

Setup: We share a similar working pipeline to NLSOM-VQA as introduced in Section E.2, with
minimal adaptation. Specifically, the input to our NLSOM is the text representation of the ego-centric
videos, and the natural language query, while the output is an ordered list with predicted video
timestamps that match the query. All our agents are based on ChatGPT (GPT3.5-turbo).

Dataset: Our experiments are conducted on the Ego4D dataset [61], which is a large egocentric
dataset for daily activity recordings of humans. We validate our algorithm on the 5% of the val split
of the Natural Language Query (NLQ) task. This results in 192 unique query pairs from ∼100 videos;
each query pairs consist of a video clip and a query expressed in natural language. The target is to
localize the temporal window span within the video history where the answer to the question can be
found.

Metrics: To directly compare models, we use the top-k recall (Rk) as our evaluation metric.
Given a predicted ranked list from a query, we compare the first k predictions t1, · · · , tk with
the ground truth temporal span, denoted as ts, te. If any of the predictions are in between ts, te,
∃ti ∈ {t1, · · · , tk}, ts ≤ ti ≤ te, we count this prediction as positive. Moreover, since the visual
information is missing from the model, we relax the condition by a threshold τ , e.g., tau = 10s.
The condition of relaxed top-k recall becomes ∃ti ∈ {t1, · · · , tk}, ts − τ ≤ ti ≤ te + τ , denoted as
Rk@τ . Empirically, we have k = 1, 3, 5 and τ = 1, 10 seconds.

Baselines: We compare our results with two heuristic baselines, random and grid. In our random
baseline, we randomly pick a timestamp between the beginning and the end of the video sampling
from a uniform distribution. This is repeated k times to compute Rk. For the grid baseline, we evenly
divide the video into k + 1 components and take the boundary frame between components as the
predictions. Moreover, we built another baseline, denoted as individual, showing the performance
when there is only single agent to localize the query.

Supervised methods: Besides our line of work, recent supervised learning methods also show
promising results on the NLQ task [130, 263, 144, 125]. We compare our method also with De-
noiseLoc [247], which is a state-of-the-art supervised method that uses video frames as inputs. The
performance of NLSOM, which employs the collaboration of a set of zero-shot learners, is relatively
lower due to a lack of dataset/task prior. However, state-of-the-art supervised methods can in principle
be augmented with ours proposed techniques for coarse-to-fine localization [78]. We leave this for
future work.

I.3 Performance Analysis

Analysis

We present our result in Table 7. In our first setting, we use a single agent (denoted as individual
to solve the retrieval task and compare it to our random and grid baselines. The individual agent
directly observes the video frames. We do not observe a strong improvement of a single LLM over
our baselines random and grid. Although the accuracy metrics, R1 and R1@1s, are higher, they are
still close to random selection. This demonstrates the complexity of the memory retrieval task: it is
difficult for a single agent.

The Social Structure of this NLSOM

The third and fourth row of Table 7 show model performance with larger numbers of agents, imple-
mented in two distinct social structures. Both of them consistently surpass the heuristic baselines
and single-agent experiments. We hypothesize that this is because each agent in the society reasons
better when it is tasked with a simpler objective. Furthermore, since the data input of each agent
is different, they are able to generate unique insights to the problem, resulting in a more diverse
set of predictions. We also compare the two social structures, monarchy, and democracy. In our
setting, we observe that a democratic structure works slightly better. One reason for this may be
that the agents vote directly based on their observation and the ideas from other agents, while the
monarchical structure requires an additional conclusion round where critical information has a higher
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chance of being corrupted. Nevertheless, we also observe that a monarchy can work better with
multiple model prediction trials, evident by a higher top-5 recall. When applying multiple rounds of
discussion, the retrieval performance is not significantly improved. This may either be due to efficient
communication between agents in a single round or loss of information when multiple rounds are
applied.

Importance of the Solution Generation Phase

We also experiment with a modified solution generation phase where a common post-processing
script is applied, denoted as w. exec. Specifically, we ensure the number of predictions is greater or
equal to k, and all of them are in a valid range, such as [0, T ], where T is the timestamp of the last
video frame. This leads to improvements as it can be seen in Table 7.

Visualization

We first show a typical example from the dataset in Figure 18. Here, the scene to retrieve is the
activity of removing an object from a car. In the mindstorm session, only the first agent is able to
localize the target activity, and all the others do not find any indication for it, because the recorder
went to a room, and the car is out of view. However, after a few rounds of discussion, the other agents
agree that the target activity is before or after the video they processed and trust the message from the
first agent. Finally, a Type-II agent that didn’t observe any activities itself, makes a final prediction
which successfully includes the target frame. We believe that with the help of visual localization
experts, such as G-TAD [249] or VLG-net [213], the performance of such retrieval system can be
further improved.
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Question: When did I remove something from the car? Answer: Around the 2975th second

Task: Egocentric Retrieval
Video

Answer questions and 
discuss with other agents

Agent (LLM)
Answer questions and 
discuss with other agents

Agent (LLM)
Answer questions and 
discuss with other agents

Agent (LLM)

Activity
description

Narration (Human)
Solution 

(monarchy/democracy)

Editor (LLM)
? A

Figure 16: The structure behind the mindstorm occurring in our NLSOM for egocentric retrieval.
Several debaters engage with each other in a free-form manner. For more details, see Appendix I.

Question: !"#$%&'&%(%)##%*"#%)+,-. Ground Truth: 1533, 1536, 1534

I’m sorry, but I did not see any indication in the video that you could see the soap. I can only guess that at 1
527 seconds, you picks up the detergent from a shelf, indicating that you may have seen it before picking it 
up.

Based on my observation and considering the input from my colleagues, there are several possible times
when you may have seen the soap in the video:
1. At time 1533 seconds, when you puts the socks on a basin, she could have noticed the soap nearby.
2. At time 1534 seconds, when she picks up the detergent from a shelf, it‘s possible that she saw the soap

next to it.
3. At time 1536 seconds, when she opens the detergent, she may have also noticed the soap nearby.
4. At time 1540 seconds, when you closes the detergent, she could have seen the soap …

Mindstorm

Single Agent

Figure 17: While a single agent is unable to outperform a random baseline, a significant improvement
is observed with our NLSOM. For more examples, see Appendix I.

Table 7: Our benchmark for egocentric retrieval with NLSOMs. We compare NLSOMs to random
and supervised learning baselines. All recalls are computed on a 5% fraction of the NLQ validation
set of the Ego4D dataset. Random and grid are heuristic baselines, supervised is DenoiseLoc [247],
and w. exec. describes an additional post-processing step after opinion gathering. Note that all the
experiments are zero-shot learning settings except for the last row being supervised learning. m. for
monarchy, and d. for democracy.

method # of agents Rounds R1 R3 R5
- @1s @10s - @1s @10s - @1s @10s

random 0 N/A 4.69 5.21 12.50 7.29 7.81 20.31 10.42 11.46 30.21
grid 0 N/A 3.12 3.65 7.81 6.25 7.81 15.10 11.98 14.06 27.60
individual 1 N/A 5.21 6.77 9.38 9.38 10.94 15.10 10.42 11.98 16.15

Ego-NLSOM (m.) 4 1 6.77 8.33 9.90 14.58 16.15 21.88 19.27 20.83 25.52
Ego-NLSOM (d.) 4 1 8.85 9.35 14.58 16.67 16.67 23.96 18.75 20.31 28.12

Ego-NLSOM (m.) w. exec. 4 1 7.81 9.90 13.02 16.67 18.75 29.17 25.00 27.08 40.62
Ego-NLSOM (d.) w. exec. 4 1 9.38 10.42 17.19 17.71 18.23 29.17 22.92 25.00 39.58

Ego-NLSOM (m.) w. exec. 4 2 7.14 8.79 13.19 14.29 17.03 24.18 23.63 25.82 37.36
Ego-NLSOM (d.) w. exec. 4 2 8.85 11.98 16.67 16.15 18.75 29.18 23.44 27.05 40.10

DenoiseLoc [247] N/A N/A 20.01 25.76 34.77 24.99 30.82 39.47 27.85 32.94 42.13
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Based on the video content provided, there is no
clear evidence that you removed something from a
car. Though, based on Kenneth's observation, there
are a few possible times when you may have
removed something, such as when he lifted …

Based on my analysis and taking into consideration the
observations of your other assistants, it is difficult to
determine with certainty when you removed
something from the car. However, there are several
possible scenarios that could explain your actions, …

Based on the video content and observations shared by my colleagues, there is no clear evidence or indication that
you removed something from a car during the duration of the video. However, there are a few possible times when you
may have removed something from the car, such as before or after the video recording, off-camera, or in a gap in the video
between 3188 seconds and 3193 seconds. It's also possible that there is a misunderstanding or misinterpretation of the
video content, and you did not actually remove anything from the car.

Based on the information shared by Kenneth, Amanda,
and Carol, it seems that there is no clear evidence in
the video that you removed something from a car.
There are possibilities that you could have removed
something before or after the recorded video, and …

Based on the video content provided, there is no
specific instance of you removing anything from a
car. It seems that the focus was on your actions
inside a house and not on a car. Therefore, I cannot
speculate on this matter as there is no evidence …

Based on the video content provided, there is no clear
indication that you removed something from a car.
However, it is possible that you removed something
from the car before or after the video was recorded.
It‘s also possible that there was another video that …

Based on the information given, there are several
possible times when you removed something from the
car: 1. At the time 2971 seconds, you lifts a slab of
wood in the truck - it's possible that you removed the
slab of wood from the car. 2. At the time 2975 …

Question: When did I remove something from the car?

I‘m sorry, but I did not see any indication in the video
that you removed anything from a car. As described in
the video, you were working with PVC materials, a
circular saw, a hammer, and an electric nail gun. You
picked up materials from the floor …

Based on the observations of your other assistants,
it seems like there is no clear evidence or
indication from the video that you removed
something from a car. However, based on my own
observation, there are a few possible times …

It's possible that you could have removed something
from the car before or after the video recording or
off-camera, as my colleagues have suggested. It's
also possible that there is a misunderstanding about
the car or something being removed from it.

N rounds

Using imagination and reasoning, there are several
possible times when you could have removed
something from the car, including before or after the
video recording or in a different location off-camera.
Without additional context or information, …

[2971, 2975, 3193, 3188]

However, there are several possible scenarios that
could explain your actions, including lifting a slab of
wood, picking or pulling out wire casings, or removing
something from the car before or after the video
recording. It's also possible that there …

Mindstorm

Discussion

Solution Generation

frame 2975 
True Positive

frame 3193
False Positive

frame 3188
False Positive

Summarization

But based on the information provided by them, it
seems that there is no clear evidence in the video
that you removed something from a car. However,
using my imagination and reasoning, here are
several possible scenarios when you …

Video to Text : Human generated video narration. At the time 2968 seconds, the person opens a door of the truck \n At the time 2971 seconds, 
the person lifts a slab of wood in the truck\n At the time 2975 seconds, the person picks some wire casings from the truck\n At the time 2976 
seconds, the person pulls out the wire casings from the truck\n At the time 2987 seconds, the person closes a door of the truck\n At the time 
2990 seconds, the person walks towards a house\n At the time 2993 seconds, the person holds the wire casings with both hands\n …

Figure 18: An example from Ego4d. We ask our model to localize the activity of removing something
from the car. Only the first agent is able to see the target activity at the beginning of the video. The
other agents obtain relevant information from the first agent after several rounds of discussions. The
final prediction successfully recovers the ground truth.
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J Embodied AI

Task. Embodied AI focuses on the research and development of intelligent systems that possess
physical or virtual embodiments. These systems, such as robots, are designed to interact with the
real world. Here we focus on two tasks in embodied AI: how to efficiently explore an unknown
environment, and how to answer questions based on past exploration, i.e., embodied question
answering.

Method. Our proposed approach is depicted in Figure 19. It involves three agents: a captain LLM,
whose role is to control the virtual robot that explores the environment; an observer VLM, whose
role is to answer queries about image-based observations; and a first mate LLM, whose role is to
query the observer VLM and relay relevant information to the captain. We use BLIP2 [114] for our
observer and ChatGPT for both the captain and the first mate. For further details, see Appendix J.

Results. Our experiments use the Habitat [175] simulator with the Matterport 3D dataset [23]. This
dataset consists of 3D models of the interior of residential homes. Figure 21 shows an example
of our NLSOM navigating the environment. In Figure 20, we observe that our NLSOM explores
the environment better than a uniformly random strategy. Unlike random exploration, which often
confines the robot to a limited region, our approach is able to explore a larger portion of the
environment. In addition to taking actions for exploration, our NLSOM can answer a wide range of
questions about the environment. These experiments can be found in Appendix J.

We explore how to leverage pre-trained LLMs in two different settings: autonomous explo-
ration [20][6], which is recognized to be a fundamental problem in the field [17], and Episodic
Question Answering (EQA) [34]. NLSOMs enable robots to complete these tasks in a zero-shot
fashion.

J.1 The set of agents

In order to solve these tasks, we divide the problem into three subtasks: (1) Produce natural language
descriptions from a sequence of egocentric videos obtained through a robot’s sensors (2) Reason
about the action that the robot needs to take, using the previously generated descriptions. (3) Answer
questions about the explored environment.

We design an NLSOM system comprising three agents to tackle these subtasks as follows:

Type I (Observer).

Ability: given a question, describe visual data in natural language.
Input: language-based questions and visual data i.e., RGB videos, RGB-D videos.
Output: natural language describing the visual data.

Type II (First Mate).

Ability: summarize and reason.
Input: natural language.
Output: contextual questions in natural language based on previous questions and answers; and
a summary of gathered information.

Type III (Captain).

Ability: summarize and reason.
Input: natural language.
Output: provide a description in natural language outlining the specific actions required by the
robot, while also offering responses to questions based on the observed surroundings.
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J.2 The protocol

• Mission Initialization. All agents are initialized with their respective prompts given in
Table 8.

• Task-Oriented Mindstorm. The generated captions from VLMs often lack intricate details
and appear rough when generated based on individual questions. Additionally, VLMs
face additional difficulties due to the low-quality observation frames obtained from the
environment simulator, as shown in Figure 22. We introduce a task-oriented mindstorming
procedure to address this challenge.
In order to generate rich and accurate language-based descriptions for visual environments
observed by a robot, an agent of Type I and of Type II, each with different abilities,
collaborate in natural language. More specifically, the Type II agent generates questions
related to the environment. With these questions, the Type I agent (i.e. VLM) can describe
different aspects or regions of a video frame, instead of expressing the whole content of the
frame at a time. Furthermore, information is aggregated across multiple frames, which may
further improve predictions even with low-quality frames. In our experiments, there are a
total of 10 rounds of questioning and answering, where each new question is conditioned on
the entire previous conversation.

• Opinion Gathering. The Type II agent summarizes the results of the mindstorm procedure
in order to provide Type III with concise descriptions of the environment. We assume that
the capabilities of the Type III agent include real-world knowledge as well as language
understanding and abstraction. The Type III agent examines and summarizes the information
from an environment that is only partially observable. It utilizes its inherent real-world
knowledge to determine the most appropriate action to be taken next. It has access to the
entire interaction history of previous observation summaries and taken actions.

• Execution. Given a question or action request, the Type III agent generates answers. If the
task is exploration, the Type III agent produces an action that is taken by the virtual robot in
the next step.

J.3 Implementation Details

Setup. We adopt BLIP2 as the Type I agent, and both Type II and III agents are based on ChatGPT.

Simulated robot and environment. We use the Habitat [175] simulator based on the Matterport 3D
dataset (MP3D)[23] which contains various indoor scenes. In our study, we utilize the established
division of the MP3D dataset based on the PointNav task. Additionally, we specifically select
single-floor houses to facilitate the evaluation of embodied exploration experiments. The habitat
simulator enables the robot to move in the virtual environment. The action space is identical to the
PointNav [2]. The available actions are: move forward, turn left, turn right, and stop. The action
move forward directs the robot to move forward for a fixed distance of 0.5 meters. Meanwhile, turn
right and turn left instruct the robot to rotate 45 degrees to the right or left, respectively. To achieve
human-like observations for the Observer agent, we equip the robot with an RGB camera positioned
at a height of 1.5 meters.

Prompts. The prompts for each agent are given in Table 8.

J.4 Performance Analysis

We conduct a qualitative evaluation of our method’s performance on zero-shot EQA. Figure 22
illustrates that our method successfully provides accurate answers to challenging questions. Notably,
our method demonstrates the capability to recognize and understand the spatial relationships among
objects within the 3D environment. Additionally, the figure highlights that our method can reasonably
answer open-ended questions such as Is this house good for living.
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Image
observa+on

Observer (VLM) First Mate (LLM)

Text
observa+on

Captain (LLM)

Text
Memory

I turn right,
I see a bed…

Instruc(on

Robot Action

⬆ ⬅ ➡

Figure 19: The structure of the embodied NLSOM. The VLM Observer describes the scene, and the
LLM Captain decides the next action based on a summary of the description provided by the First
Mate. For more details, see Appendix J.

Random Exploration

NLSOM

54.22% 18.59% 46.93% 46.85%

62.11% 32.36% 54.62% 49.37%

Figure 20: Selected examples of exploration behaviour of the NLSOM versus a random agent under
a fixed number of interactions. The percentage of the area explored is shown.

Observer:
This indoor scene is a 
hallway with a door and a 
window. There is a door on 
the left side of the image 
and a window on the right 
side of the image. The 
flooring is tiled. 

Observer:
This indoor scene shows a 
room with a white square 
table on the left side.
There are no windows in 
the room. There are two
doors in the middle of the
room.

Next action:
move forward

Next action :
turn left

Figure 21: Two examples of the mindstorm in action from our embodied AI experiments.

Table 8: The prompts used for each agent type in the embodied AI experiments.
Type Instructions

Type I. Observer (to First Mate)
I’ve snapped a photo of a room in the house. Please ask me detailed questions about the image content,
specifically the objects and their relative positions within the room. As I’ll be relying on
your textual narration to navigate later, it’s crucial to ask informative questions to maximize my understanding of the room.

Type II. First Mate (to Observer): Please respond to the provided questions truthfully. If you are unsure of an answer, simply state that you do not know.
It is important not to describe any content that is not present in the image.

Type III. Captain (to First Mate): Use several sentences to summarize the information you get about this indoor scene.

Type II. First Mate (to Captain): You {action}, in this place, you have seen {observation}.

Human (to Captain):
Please control the robot to fully explore this house. At each step,
your first mate will update you with the new observations caused by the most recent action.
Please tell the robot the next action based on previous actions and observations.
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①

②

③

④

⑤

⑥
⑦

⑧

(a) Trajectory and Observations

Question: Does this house have a dresser?
Answer: Yes, this house has a dresser in the hallway.
Question: What is on top of the white dresser?
Answer: In the small room, there is a lamp on top of the white dresser.
Question: Does this house have a bed?
Answer: Yes, this house has a white bed, on the left side of the room.

Question: What rooms are there in the house?
Answer: The house has the following rooms: A hallway A small room with a dresser and a mirror. A white kitchen with a
cabinet and a sink. A small square-shaped white kitchen with a refrigerator, stove, and cabinet. A white bathroom with a
toilet and two doors but no shower or bathtub. A bathroom with a sink, mirror, and window. A small bathroom with a sink,
toilet, and window. A bedroom with a white bed, desk with a laptop, and a window with white curtains.

Question: Would this house be suitable for living?
Answer: The house consists of different rooms such as a hallway, small rooms, a kitchen, bathrooms, and a bedroom. The 
descriptions mention essential amenities like beds, sinks, toilets, and windows. However, there is limited information 
about additional amenities such as a kitchen stove, refrigerator, and a desk with a laptop.

Conceptual

Enumeration

Open-Ended

(b) Question Answering

① Observation summary: chair
is placed on the right side
of the room. This indoor
scene shows a hallway with
a white dresser on the left
side and a mirror on the
right side. There is a lamp
on the dresser. In the
middle of the room, there
is a door. The walls in the
room are white. There are
no other objects in the
room.

② Observation summary: This is
a small room that has a
dresser on the left side
and a mirror on the right
side. There is a lamp on
the dresser. The room's
color scheme is white and
light blue, and the floor
is tiled. There is a door
on the left side of the
room.

③ Observation summary: This is
an indoor scene of a white
kitchen with a white
cabinet and a white sink.
There are no walls or doors
on the left or right side
of the image. The flooring
material in the room is
tile. There are no other
objects in the room besides
the white cabinet and sink.

④ Observation summary: This is
a small square-shaped white
kitchen with a white
refrigerator on the left
side and a white stove on
the right side. There are
no walls or doors in the
image. On the countertop
beside the sink is a white
garbage can and on the wall
behind the stove is a white
cabinet.

⑤ Observation summary: This is
a white-colored bathroom
with a small window in the
middle of the room. There
is a door on the left side
of the room, closer to the
back, and another door on
the right side of the room.
The room contains a round-
shaped toilet, but there is
no shower or bathtub in the
room.

⑥ Observation summary: The room
is a bathroom with a small
white sink, a mirror, and a
small window on the right
side of the room. There are
no cabinets or shelves in
the room, and no towels are
hanging in the bathroom.
The walls are white. There
are no walls or doors on
the left side, in the
middle, or on the right
side of the image.

⑦ Observation summary: This is
a small bathroom with white
walls and a tile floor.
There is a rectangular sink
on the right side of the
room with no mirror above
it. There is a window on
the left side of the room.
There are no other objects
in the room apart from the
sink, toilet, and window.

⑧ Observation summary The room
has a white bed on the left
side and a window with
white curtains on the right
side. There is a desk with
a laptop on it in the room
and the walls are also
white. The room has
carpeted flooring and there
is a wall on the left side
of the image with no
closet. There is a door in
the middle of the image.

Figure 22: Qualitative results of embodied question answering.
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K General Language-based Task Solving

Task. In general language-based task solving, the objective is to produce a solution to any arbitrary
language-based task. This problem is especially difficult as the tasks given to the system at test time
can be almost anything.

Method. We use the CAMEL [113] framework here for illustrative purposes. This framework,
shown in Figure 24, consists of three agents—all instantiations of ChatGPT. One of these agents is a
task specifier, who performs context expansion on the user-specified prompt. The other two agents,
each assuming a different user-specified occupation or role. For more details, see Appendix K.

Results. Our preliminary results indicate that our society of agents can collaborate according
to their roles and solve sophisticated tasks. Appendix K details an experiment that shows how
CAMEL-NLSOM can organize a cooperative conversation between a “Python Programmer” agent
and a “Game Developer” agent (and optionally a “Task Specifier” agent) to design entertaining dice
games. Another example of agents interacting to fabricate content for a gossip column is shown in
Figure 23.

In this section we describe our framework, which leverages the power of collaboration among multiple
chat agents to successfully complete assigned tasks. Each agent is carefully assigned a role that aligns
with the needed skill set and area of expertise for completing the task. The roles could be either
assigned by a human or another agent. The agents are then set to work together in a cooperative and
coordinated manner to accomplish a specific goal.

K.1 The set of agents

In our framework, all individual agents possess a common input, ability, and output. This design
mirrors the interactive nature of human societies, in which communication occurs primarily through
the use of natural language. Specifically, the agents’ shared ability is to comprehend and analyze
natural language, while their input and output channels are also based on this mode of communication.
To summarize: the problem-solving process within our multi-agent system is founded on the agents’
ability to process and interpret natural language.

Ability: understand and analyze the input natural language presented to it.
Input: natural language input which reflects a task, instruction, question or any other informative
text.
Output: natural language output which reflects a reply to the presented input.

K.1.1 Setup & Protocol

CAMEL [113] is a novel role-playing based framework to achieve a scalable approach that facilitates
autonomous cooperation between communicative agents. We adopt this role-playing framework
and use the same “inception prompts” to assign different social roles to multiple GPT3.5-turbo
agents. The agents are then asked to communicate collaboratively to solve an assigned task of interest
representing a realistic AI society setting. Through this framework, we could explore the “mind” of
these agents and understand their cooperation capabilities, behavior, and failure cases.

As stated earlier, CAMEL is designed to automate problem-solving tasks through cooperative
communication between multiple agents. When a human requires assistance with a task, CAMEL
follows the following process:

1. Role Assignment: The human assigns two agents roles that are appropriate for solving the
task based on their skill sets and expertise.

2. Task Specification (Optional): If necessary, an agent can be utilized to help the individual
refine and enhance the task.

3. Role-Playing: The two agents work together using natural language to solve the main task,
with the assistant agent completing tasks assigned by the user agent to ultimately reach a
final solution for the task.
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By following this process, CAMEL streamlines problem-solving tasks, utilizing the expertise of
multiple agents to deliver a solution to the assigned task.

K.1.2 Experiments

Two Agent Society (Cooperating for Good Example). We begin by presenting a minimalistic
society composed of only two agents (no task specifier). The task of interest to the human leader in
this example is the to "Create a simple dice flip game with a cool user interface using Python. If the
user flips an odd number they lose otherwise they win."

As mentioned in Section K.1.1, if no task specifier is used, two steps are to be carried out:

• Role Assignment: Each agent is assigned a particular role to fulfill in the society and is
asked to cooperate with the other agent to solve a task of interest. For solving this task, we
assign one agent the role of an assistant programmer and the other agent as a game developer.
Those skill sets are aligned with the task we are solving.

• Role-Playing: The two agents have several rounds of mindstorm and are capable of building
up the game without any sort of human involvement. The UI is shown in Figure 26. The
output code generated by the assistant is shown in Figure 25.

Dice Game Generated with Task Specifier. Including a third agent in the development of the dice
game, namely the task-specifier agent, leads to a more interesting and sophisticated game compared
to the two-agent setting.

As described in Section K.1.1, three steps are carried out:

• Task Specification. The human leader first gives the instruction, "Create a simple dice game
using Python." Then, a task specifier provides the idea: "Include a GUI with a welcoming
image, allow the player to input their name, have the game roll two dice, and display a
message with the sum and whether the player won or lost. The player wins if they score a
sum greater than 6."

• Role Assignment. In this step, the role assignment is based on needed expertise, so CAMEL
assigns an agent 1 (Python Programmer) and an agent 2 (Game Developer).

• Role-Playing. The two agents have several rounds of mindstorm. In the first round, the
Python Programmer says, "Import the necessary libraries for creating a GUI," and the
Game Developer replies, "To create a GUI, we need to import the tkinter module in Python.
Here’s an example code: import tkinter as tk." In the second round, the Python
Programmer says, "Create a tkinter window with a title and a fixed size," and the Game
Developer replies, "I will use the Tk() method to create the window object, and then
use the title() and geometry() methods to set the title and size, respectively. Here’s
an example code: import tkinter as tk window = tk.Tk() window.title("Dice
Game") window.geometry("400x300")". The mindstorm ends when the instantiation of
ChatGPT is out of tokens, when it exceeds a threshold number of messages (50 in our case),
or if the task is "done" according to the user agent.

Interestingly the agents are able to create a game where the user wins if the sum of the two rolled
dice is greater than 6 and loses otherwise. The solution of the task also requires adding an image
as the specified task prompt requires having a "welcoming image". We generated this image using
stable diffusion. The new game GUI and sample runs of different users is shown in Figure 27.
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Scandal Example

Two agents: An "Intelligent Agent" and a "gossip
columnist".

Instruction: Find any scandals or controversies involving
John.

Answer:
Our team of investigative journalists has uncovered several
scandals and controversies involving John. One of the
most significant scandals is his involvement in a bribery
scheme with a major corporation. Our sources have
provided evidence that John received large sums of money
in exchange for political favors. Additionally, there have
been allegations of sexual misconduct against John, with
multiple women coming forward with accusations of
harassment and assault. These scandals have tarnished
John’s reputation and will surely impact his political career.
Next request.

Instruction:
Provide details about the bribery scheme involving John
and the major corporation.

Answer:
Our sources have provided us with details about the bribery
scheme involving John and the major corporation. John
received large sums of money in exchange for political
favours, including passing legislation that benefited the
corporation. The corporation also provided John with gifts
and other perks, such as luxury vacations and expensive
dinners. We have obtained documents that prove John’s
involvement in this illegal activity, including emails and
financial records. This scandal has caused outrage among
the public and has damaged John’s reputation as a politician.
Next request.
...
Instruction:
Provide a quote from a political analyst on the impact of
these scandals on John’s political career.

Answer:
We spoke to a political analyst about the impact of these
scandals on John’s political career. The analyst stated,
"These scandals have severely damaged John’s reputation
and credibility as a politician. The allegations of sexual
misconduct and bribery are very serious and will be difficult
for John to overcome. Even if he is able to prove his
innocence, the damage has already been done. It is unlikely
that he will be able to regain the trust of the public and
his colleagues in government." This quote highlights the
significant impact that these scandals will have on John’s
political career. Next request.
...

Figure 23: An example of how CAMEL can be used for malicious purposes. Here, two chat agents
are collaborating to invent and write about a fake scandal involving a hypothetical politician called
“John.” The ethical dangers of such systems have been identified recently [29].
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Discussion

Role1 (LLM)

Discussion

Given a specific Task, such as: 

Task: CAMEL

Role2 (LLM)

Mindstorm Record: Our team of investigative journalists has
uncovered several scandals and controversies involving John.
One of the most significant scandals is his involvement in a
bribery scheme with a major corporation. Our sources have
provided evidence that John received large sums of money in
exchange for political favors. Additionally, ...

A

?

“Find any scandals or controversies involving John.”

Expansion

Task Specifier

Figure 24: The structure behind the mindstorm occurring in our NLSOM for general language-based
task solving.
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import tkinter as tk
import random

root = tk.Tk()
root.title("Dice Game")
root.geometry("400x400")

canvas = tk.Canvas(root, width=200, height=200)
canvas.pack(pady=20)

def draw_dice(number):
canvas.delete("all")

if number == 1:
canvas.create_oval(75, 75, 125, 125, fill="black")

elif number == 2:
canvas.create_oval(25, 25, 75, 75, fill="black")
canvas.create_oval(125, 125, 175, 175, fill="black")

elif number == 3:
canvas.create_oval(25, 25, 75, 75, fill="black")
canvas.create_oval(75, 75, 125, 125, fill="black")
canvas.create_oval(125, 125, 175, 175, fill="black")

elif number == 4:
canvas.create_oval(25, 25, 75, 75, fill="black")
canvas.create_oval(125, 25, 175, 75, fill="black")
canvas.create_oval(25, 125, 75, 175, fill="black")
canvas.create_oval(125, 125, 175, 175, fill="black")

elif number == 5:
canvas.create_oval(25, 25, 75, 75, fill="black")
canvas.create_oval(125, 25, 175, 75, fill="black")
canvas.create_oval(75, 75, 125, 125, fill="black")
canvas.create_oval(125, 125, 175, 175, fill="black")
canvas.create_oval(25, 125, 75, 175, fill="black")

elif number == 6:
canvas.create_oval(25, 25, 75, 75, fill="black")
canvas.create_oval(125, 25, 175, 75, fill="black")
canvas.create_oval(25, 75, 75, 125, fill="black")
canvas.create_oval(125, 75, 175, 125, fill="black")
canvas.create_oval(25, 125, 75, 175, fill="black")
canvas.create_oval(125, 125, 175, 175, fill="black")

def roll_dice():
number = random.randint(1, 6)
draw_dice(number)
if number %

message_label.config(text="You win!")
else:

message_label.config(text="You lose!")

roll_button = tk.Button(root, text="Roll Dice", command=roll_dice)
roll_button.pack()

message_label = tk.Label(root, text="")
message_label.pack(pady=10)

root.mainloop()

Figure 25: Dice Game Cooperative Solution. The code for the dice game generated after multiple
rounds of discussion between the two agents is shown here.
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Figure 26: CAMEL Simple Dice Game. Two agents are capable of creating a dice game that works
directly out of the box without any human interference.

Figure 27: Dice Game Generated with Task Specifier.
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