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ABSTRACT

Time series forecasting plays a crucial role in data mining, driving rapid advance-
ments across numerous industries. With the emergence of large models, time series
foundation models (TSFMs) have exhibited remarkable generalization capabilities,
such as zero-shot learning, through large-scale pre-training. Meanwhile, Retrieval-
Augmented Generation (RAG) methods have been widely employed to enhance the
performance of foundation models on unseen data, allowing models to access to
external knowledge. In this paper, we introduce TimeRAF, a Retrieval-Augmented
Forecasting model that enhance zero-shot time series forecasting through retrieval-
augmented techniques. We develop customized time series knowledge bases
that are tailored to the specific forecasting tasks. TimeRAF employs an end-to-
end learnable retriever to extract valuable information from the knowledge base.
Additionally, we propose Channel Prompting for knowledge integration, which
effectively extracts relevant information from the retrieved knowledge along the
channel dimension. Extensive experiments demonstrate the effectiveness of our
model, showing significant improvement across various domains and datasets.

1 INTRODUCTION

Time series (TS) forecasting has gained significant popularity in recent years due to its vital role
in various domains, including finance (Yu et al., 2023), healthcare (Li et al., 2024), weather (Wu
et al., 2023b), and traffic (Jin et al., 2021). The popular approach in the past typically learns from
single-domain, small-scale datasets (Nie et al., 2023; Zeng et al., 2023), which inherently constrains
their generalization capabilities. However, the landscape of time series analysis is evolving rapidly
with the advent of large models. Time series foundation models (TSFMs), trained on large-scale,
multi-domain datasets, have demonstrated zero-shot learning abilities, revolutionizing various time
series domains and diverse applications (Liang et al., 2024; Woo et al., 2024; Liu et al., 2024).

Meanwhile, Retrieval-Augmented Generation (RAG) is an increasingly prevalent technique that en-
hances the capabilities of foundation models in various domains, including text generation (Karpukhin
et al., 2020) and image generation (Chen et al., 2023). This approach allows models to access external
knowledge through various information retrieval techniques, enabling them to gather supplementary
information during the generation process. Typically, the retrieval knowledge can be sourced from
external datasets in the same format with the training corpus. For instance, in dialogue systems,
RAG can help generate more contextually relevant responses by retrieving previous dialogues or
similar interactions from a database (Huang et al., 2023). However, similar studies have garnered
little attention in the time series domain. A natural question arises: Can the integration of time series
foundation models with retrieval-augmented methods also improve performance, particularly in
challenging scenarios that require strong generalization abilities, such as zero-shot forecasting?

As an intuitive example, a pre-trained model trained on a general time series dataset may struggle
when forecasting for specific domains such as weather patterns in a particular region, which is
illustrated in the left plot of Figure 1. However, by accessing domain-specific external knowledge
bases, the model could dynamically retrieve relevant information—such as time series data from
similar weather conditions—without requiring extensive parameter updates. This allows the model
to integrate domain-specific prior knowledge, improving its zero-shot forecasting capability. In this
manner, retrieved external data provides valuable context and serves as an additional source of prior
information, enabling more accurate predictions. These advancements motivate our exploration of
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Figure 1: Left: Time series foundation models (TSFMs), while capable of zero-shot forecasting,
are limited by insufficient prior knowledge, resulting in constrained prediction accuracy. Right:
By dynamically retrieving relevant information from an external knowledge base, our TimeRAF
enhances prediction accuracy, leading to more precise zero-shot forecasting performance.

Retrieval-Augmentation for time series Forecasting (RAF). However, designing an effective RAF
framework for time series forecasting involves several key challenges: (1) What types of data can
serve as knowledge bases to support time series models? (2) How can relevant knowledge be
retrieved when encountering inputs from diverse domains? (3) How can retrieved knowledge be
effectively integrated to improve model performance?

To address these challenges, we introduce TimeRAF, a novel framework designed to leverage retrieval-
augmented generation techniques for time series foundation models. As shown in the right of Figure 1,
by retrieving and integrating external time series data, we aim to overcome the limitations of existing
TSFMs and enhance zero-shot time series forecasting performance. TimeRAF consists of a retriever
that scores and selects relevant time series data from an external knowledge base. The knowledge
base can either be a comprehensive database composed of multiple datasets across various domains
or a domain-specific database comprising a singular dataset relevant to test data. Furthermore, an
end-to-end learnable retrieval methodology is introduced to ensure that the retrieved data delivers
enhancement. To leverage retrieved time series, we introduce an effective approach, named Channel
Prompting, to integrate the knowledge from retrieved data. Our extensive experiments on various
datasets demonstrate that TimeRAF significantly achieves a substantial improvement over TSFM and
outperforms several existing zero-shot time series forecasting methods.

Overall, our contributions can be summarized as follows:

• We propose TimeRAF, a novel framework that leverages retrieval augmentation techniques
to enhance zero-shot time series forecasting. By retrieving relevant data from an external
knowledge base and effectively integrating the retrieved information, TimeRAF supplements
the pre-trained knowledge of foundation models, enhancing their forecasting capabilities.

• We employ a learnable retriever to calculate retrieval scores for time series within the
knowledge base and select the best options. To integrate retrieved knowledge, we introduce
Channel Prompting to extract valuable information from the retrieved data effectively.

• Our TimeRAF demonstrates significant improvement through the incorporation of RAF
into TSFM and even outperforms several full-shot methods. Furthermore, we present
comprehensive ablation studies and visualizations to evaluate the efficacy of our approach.

2 RELATED WORK

Foundation Models for Zero-shot Time Series Forecasting: Recent years have witnessed the rise of
TSFMs. TimeGPT-1 (Garza & Mergenthaler-Canseco, 2023) is the first closed-source model offering
zero-shot forecasting capabilities. ForecastPFN (Dooley et al., 2024), pre-trained on synthetic time
series data, serves as a zero-shot forecaster, but excels primarily in data- or time-limited settings.
Lag-llama (Rasul et al., 2023) leveraged the LLaMA architecture (Touvron et al., 2023) with lagged
time series features for time series forecasting. TimesFM (Das et al., 2024)is a patch-based, decoder-
only foundational model designed for time series forecasting, which employs a larger output patch
size to enhance decoding efficiency. The model is pre-trained on a comprehensive dataset sourced
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from Google Trends and Wikipedia pageviews, in combination with open data. MOIRAI (Woo et al.,
2024) introduces LOTSA, a large-scale collection of open time series datasets, and utilizes it to
train a foundation model based on a masked encoder architecture. MOIRAI achieves competitive or
superior performance as a zero-shot forecaster when compared to full-shot models. Tiny Time Mixers
(TTMs) (Ekambaram et al., 2024) leverages a lightweight mixer-style architecture and demonstrated
remarkable zero-shot forecasting performance. Since TSFMs have shown potential in zero-shot time
series forecasting, our approach aims to enha nce their generalization capabilities by applying RAG
techniques to leverage external knowledge.

Retrieval Augmented Generation for Foundation Models: Foundation Models like LLMs have
achieved remarkable success, though they still face limitations in domain-specific or knowledge-
intensive tasks. To address these challenges, various RAG methods have been proposed: DocPrompt-
ing (Zhou et al., 2022) curated a retrieval annotation dataset to train a retriever for augmenting input
in code generation. DPR (Karpukhin et al., 2020) develops a dense embedding model for indexing
passages in a low-dimensional, continuous space. RePlug (Shi et al., 2023) refined the retriever
by distilling the knowledge from the language model’s probability. LAPDOG (Huang et al., 2023)
introduces an end-to-end dense retriever framework specifically for personalized dialogue generation,
emphasizing objective optimization. Beyond NLP tasks, RAG has also been applied to other do-
mains: REACT (Liu et al., 2023) freezes the original model and updates only the additional trainable
weights on the retrieved knowledge, significantly enhancing visual model’s zero-shot performance.
Re-Imagen (Chen et al., 2023) uses retrieved information to produce high-fidelity and faithful images,
even for rare or unseen entities. Additionally, in time series analysis, RATSF (Wang & Cui, 2024)
develops a cross-attention module to integrate additional data for better prediction. But its retrieval
process is constrained to historical data. ReTime (Jing et al., 2022) retrieves relational references to
improve forecasting and imputation for incomplete time series. However, existing methods cannot
adapt to zero-shot tasks. In contrast, our work is specifically designed to address this gap. We use
extensive public time series data to build a knowledge base and enhance zero-shot prediction in
TSFMs with an effective RAF method.

3 METHOD

3.1 OVERVIEW

An illustration of our TimeRAF framework is provided in Figure 2. Firstly, a retriever is utilized for
learning to retrieve relevant data from the external knowledge base (refer to section 3.5). Following
this, the proposed Channel Prompting approach is employed for the integration of retrieved knowledge.
Therefore, the entire forecaster F is capable of harnessing external knowledge, thereby facilitating
knowledge enhanced forecasting (refer to section 3.4). During training, the backbone of TSFM
remains frozen. Details of training and inference process are provided in section 3.5.2 and section 3.6.
Besides, the knowledge bases utilized for training and inference are detailed in section 3.3.

3.2 PROBLEM FORMULATION

Following previous work (Nie et al., 2023), we employ the channel inpendent strategy. Let X ∈ Rsl×c

be a multivariate time series of length sl and number of channels c. The input can be denoted as
x ∈ Rsl×1, and the forecasting task can be formally defined as predicting the future values ŷ ∈ Rfl×1

given the history/lookback window x. Upon completing the analysis of all data channels, the final
comprehensive prediction result Ŷ ∈ Rfl×c is derived. Here, fl denotes the forecast length/horizon.
The ground truth is denoted as Y ∈ Rfl×c. In the zero-shot forecasting setting, the model generates
predictions for future values based on datasets that have not been encountered during training. Given
a set of retrieved time series data C from the external knowledge base (details will be elaborated in
Section 3.5), we aim to leverage the valuable information within them to enhance the forecasting
capability of the forecaster F . The entire process can be formulated as Ŷ = F(X,C).

3.3 KNOWLEDGE BASE

In order to facilitate knowledge retrieval, it is essential to first establish a knowledge base. To enhance
the efficiency of knowledge integration and extraction, we undertake a preprocessing of all sequences
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Figure 2: Overview of TimeRAF: TimeRAF utilizes a retriever to dynamically retrieve relevant
candidates from an external knowledge base and then utilizes the proposed Channel Prompting
module to integrate knowledge between the retrieved data and the input. The knowledge-enhanced
embeddings are subsequently fed into the backbone of the foundation model to improve forecasting
results. During training, the backbone remains frozen.

within the knowledge base to align with the dimensions of the lookback window, resulting in the
following representation: Knowledge Base = {ti|ti ∈ Rsl×1}nkb

i=1, where nkb represents the size
of knowledge base. The data in the knowledge base will use the same normalization as the input.
To maintain the generalization capabilities of the foundation model, we use multi-domain datasets
for training, similar to the pre-training phase of the foundation model, which will be detailed in
section 4.1.

Subsequently, we apply a sliding window with the same window size as the input of the foundation
model across the training datasets. Based on the scale of each sub-dataset, we ultimately establish a
knowledge base in which each domain has an equal proportion to uphold the balance. Additionally,
there is no overlap present in the data within the knowledge base. During Training, to prevent data
leakage caused by accessing future sequences, the retriever is constrained to retrieve information
solely from datasets that are different from the dataset of input sequence. During inference, TimeRAF
has the option to utilize the extensive multi-domain knowledge base that we have developed or to opt
for a domain-specific dataset as the knowledge base, based on the specific requirements.

3.4 KNOWLEDGE INTEGRATION

Given k retrieved time series data C = {c1, c2, . . . , ck} from the external knowledge base (details
will be discussed in Section 3.5), we aim to leverage the valuable information within them, thereby
complementing the pre-trained knowledge of TSFMs to enhance forecasting performance.

Following the preprocessing procedure of the TSFM, each sequence ci in C will undergo normal-
ization followed by patching, analogous to the input. Thereafter, these patches will be processed
through a projection layer to derive their respective embeddings. Let x̃ ∈ Rn×d denotes the input
embedding and c̃i ∈ Rn×d represents the embedding of the ith retrieved candidate. Here, n denotes
to the number of patches, while d indicates the dimensionality of the embedding.

The Channel Prompting begins with a flatten operation on both embedding of input and retrieved can-
didates. Subsequently, the flattened embedding of input and retrieved candidate will be concatenated:

zi = Concat(Flatten(x̃),Flatten(c̃i)). (1)

By integrating the input embedding with the external knowledge embedding, the representation of
the input is enriched with supplementary contextual information. Furthermore, after obtaining the
concatenated embedding zi ∈ R2∗n∗d, the foundation model is better positioned to comprehend the
lookback window through the incorporation of domain-specific knowledge or external facts.

Subsequently, we employ a MLP to effectively extract and combine the most relevant information
from both the lookback window and the retrieved candidates. This process enables the compression of
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the combined representation into a more meaningful and compact form. In particular, the concatenated
embedding z is compressed back to the original dimensions corresponding to the foundation model,
yielding z̃ ∈ Rn×d. Besides, the original input embedding is reintroduced through a residual
connection to ensure the complete preservation of the information from the lookback window. The
entire process can be formulated as follows:

x̃∗ = x̃+ z̃ = x̃+ MLP(z). (2)

In the case where k candidates are retrieved, each candidate will undergo the aforementioned
processing steps, resulting in k embeddings denoted as z̃ = {z̃1, z̃2, . . . , z̃k}. Prior to imple-
menting the residual connection, we compute the average of these embeddings z̃, i.e. x̃∗ =
x̃ + Avg(MLP(z1), . . . ,MLP(zk)). By extracting the relevant feature of the concatenated em-
bedding, the foundation model is empowered to to incorporate additional contextual information
from the external knowledge base. Consequently, the final knowledge-enhanced input embedding x̃∗

will be fed into the foundation model backbone, thereby enhancing prediction accuracy.

3.5 KNOWLEDGE RETRIEVAL

Inspired by DPR (Karpukhin et al., 2020), we employ a dual-encoder retriever to efficiently obtain
relevant information from the external knowledge base.

3.5.1 KNOWLEDGE RETRIEVAL LEARNING

The retriever adopts a MLP-based encoder to respectively embed the query and the candidates. In
TimeRAF, we utilize the input directly as the query. Then, the retriever calculates the dot product
similarity score between the query and each candidate using their respective embeddings. Finally, the
candidates with the k highest similarity scores are retrieved, denoted as C = {c1, c2, . . . , ck}.

Intuitively, by augmenting the model with retrieved knowledge, the goal is to improve predictions
based on desired metrics, such as Mean Squared Error (MSE). However, it is challenging to guarantee
that retrieved candidates with higher similarity scores will consistently provide more useful knowledge
for forecasting. To address this, we employ the foundation model F as an evaluator, leveraging its
strong forecasting capability to provide feedback and guide the selection of knowledge.

Specifically, using the retrieved candidate ci, we employ the foundation model F to obtain the the
metric values of prediction ŷ = F(x, ci). If F finds that integrating the knowledge from ci is
beneficial for forecasting, we encourage the retriever to rank the score of ci to be higher. In this
way, the model can automatically decide the usefulness of the candidates and learn to retrieve more
helpful candidates from the knowledge base. To implement this learning strategy, we first transform
the metric values into a probability distribution as:

pi =
exp( 1

τm
M(F(x, ci),y))∑k

j=1 exp( 1
τm

M(F(x, cj),y))
, (3)

where M(ŷ,y) denotes the metric function to evaluate the quality of the prediction ŷ given the
ground truth y and τm is a temperature hyperparameter to control the sensitivity of the metric. Here
the metric function satisfies that a higher value of M(·, ·) indicates better performance. If a smaller
value of M(·, ·) indicates better performance, we can replace M(·, ·) with −M(·, ·) in equation 3.

It is evident that a beneficial ci will correspond to a higher pi, allowing pi to serve as a supervised
signal to guide the learning of the retriever. In particular, we aim to align the similarity score generated
by the retriever with P = {pi}ki=1. Formally, suppose we have top-k retrieval candidates Cq along
with their associated retrieval scores Sq ∈ Rk with respect to the query q. We can then aim to
minimize the Kullback-Leibler divergence between Sq and P as follows:

LR = DKL(P , softmax(Sq/τs)), (4)

where DKL denotes the KL divergence and τs is a temperature hyperparameter to control the
sensitivity of the similarity scores.
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Statistics Energy Transport Nature Web Sales Healthcare

Dataset
# Datasets 3 2 2 2 2 2
# Obs 10,875,374 8,223,748 9,784,137 157,104,689 58,411,778 72,583,275
% 3.43% 2.59% 3.09% 49.56% 18.43% 22.90%

Knowledge Base
# Datasets 3 2 2 2 2 2
# Obs 545,792 585,216 513,024 512,000 484,864 512,512
% 17.31% 18.56% 16.27% 16.24% 15.38% 16.25%

Table 1: Key statistics of dataset and knowledge base by domain. # Datasets refers to the number of
datasets and # Obs denotes the number of observable data points.

However, during the training process, there is a risk that the retriever may become entrenched in a local
optimum, thereby consistently retrieving a limited set or a narrow range of candidates. Consequently,
the forecaster fails to learn from the retriever and disregards the retrieved knowledge. To address
this issue, we employ a straightforward augmentation strategy by incorporating randomly sampled
data from the knowledge base to promote a broader exploration of candidates within the framework.
Specifically, we initially replace each ci with a randomly selected candidate caugi at a probability of
ρ, yielding Caug

q . Then the dot product similarity between the query q and each candidate caugi will
be updated as the retrieval scores Saug

q = {saugi }ki=1. Finally, based on equation 4, we can minimize
the following loss to update the retriever:

Laug
R = DKL(P

aug, softmax(Saug
q /τs)). (5)

3.5.2 RETRIEVER-FORECASTER JOINT TRAINING

Utilizing the candidates retrieved by the retriever, we aim to enhance forecasting capability by
leveraging external knowledge and further supervising the training of the forecaster. As illustrated
in Figure 2, the backbone of foundation model remains frozen throughout the training process. To
maintain consistency, we employ the same prediction loss utilized during the pre-training phase to
update the entire forecaster. Formally, the prediction loss can be formulated as follows:

LPred = LPretrain(F(x,C),y). (6)

Combined with the loss utilized for updating the retriever, the whole training loss is

L = LPred + λ · Laug
R , (7)

where λ is a weight hyperparameter of Laug
R .

3.6 INFERENCE PROCEDURE

During the inference process, given a query, candidates with the highest k retrieval scores from
the knowledge base are retrieved by the retriever. Following preprocessing, the embeddings of the
input and the retrieved candidates are processed through Channel Prompting to effectively integrate
external knowledge. Ultimately, the knowledge-enhanced embeddings are fed into the backbone of
the time series foundation model, which then generates the final prediction.

4 EXPERIMENT

4.1 EXPERIMENTS SETUPS

Datasets and Knowledge Base: Our training employs a subset of about 320 million time points
from LOTSA (Woo et al., 2024) and UTSD (Liu et al., 2024), which were used for the pre-training of
Time Series Foundation Models. The dataset encompasses a diverse range of domains to maintain the
generalization capabilities of the foundation model. The knowledge base used for training contains
approximately 3 million data points, as introduced in section 3.3, selected from the training datasets.
Each domain within the knowledge base is designed to contain a roughly equivalent number of data
points to maintain balance. Detailed statistics of our training dataset and knowledge base are provided
in Table 1. Consistent with LOTSA, we adopt Arrow (Richardson et al., 2024) as the unified storage
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Figure 3: Improvement by TimeRAF on zero-shot forecasting. 5% Few shot denotes finetuning
TSFM with 5% of downstream dataset. TimeRAF demonstrates significant improvements across
various datasets, even outperforming results obtained by few-shot fine-tuning.

format, which is suitable for deep learning pipelines. For evaluation, we consider the popular long
sequence forecasting benchmark, including six public datasets : ETTh1, ETTh2, ETTm1, ETTm2,
Weather, and Electricity, which are commonly utilized in previous works (Jin et al., 2023; Woo et al.,
2024). It should be noted that all evaluation datasets are inaccessible during the training process. The
detail of our training datasets and evaluation datasets are provided in Appendix A.

Metric: We employ mean squared error (MSE) as the standard error metric for our experiments.

Implementation Detail: We employ TTM-Base (TTMB), one of the latest State of The Art (SOTA)
TSFM, as our backbone. The input context length is set to 512 and the forecasting length is 96,
consistent with TTMB. During inference, TimeRAF uses the same knowledge base employed during
the training phase. More implementation details are provided in Appendix B.

Baselines: We compare with 12 of the latest open-sourced state-of-the-art forecasting methods cate-
gorized as follows: (a) Time Series Foundation Model: TTM (Ekambaram et al., 2024), Moirai (Woo
et al., 2024), MOMENT (Goswami et al., 2024), Timer (Liu et al., 2024), Chronos (Ansari et al.,
2024), TimesFM (Das et al., 2024). (b) LLM-based Time Series Model: TimeLLM (Jin et al., 2023),
GPT4TS (Zhou et al., 2023). (c) Other architectures: iTransformer (Liu et al.), TimesNet (Wu et al.,
2023a), PatchTST (Nie et al., 2023) and DLinear (Zeng et al., 2023). All results are sourced from Liu
et al. (2024) or our reproduction. Due to page limitation, we report the results of the base version of
TSFMs in the main text. Full results are provided in Appendix C.1.

4.2 RESULTS OF ZERO-SHOT FORECASTING

Improvement by TimeRAF on zero-shot forecasting: As shown in Figure 3, we demonstrate
the improvements brought by our method in zero-shot forecasting. The yellow bar represents the
scenario where 5% of the training data from the dataset is used to fine-tune the foundation model
backbone. Augmented by retrieved knowledge, our TimeRAF presents significant improvements
across all the datasets. The experiment results indicate that, through our training, our retriever
has learned to search for valuable information from the knowledge base. Subsequently, through
channel prompting, TimeRAF successfully extracts useful knowledge, ultimately enhancing the
prediction results. Moreover, TimeRAF also outperforms the performance achieved through few-shot
fine-tuning, which further demonstrate the effectiveness of our method.

TimeRAF vs. other models: We compare TimeRAF against 12 baseline models. The experiment
results are shown in Table 2, where ’zero-shot’ refers to the forecasting results of various foundation
models without any prior training on the test datasets, while ’full-shot’ represents the prediction
results of baseline models that have been fully trained on each dataset. Compared to the foundation
models, TimeRAF achieves either the best or competitive results across multiple datasets. Besides,
our method is an enhancement built upon the foundation model. As the foundation model continues
to evolve, TimeRAF is anticipated to yield further improvements when adapted to new backbones.
Additionally, we observe that TimeRAF achieves strong results compared to full-shot baselines,
thereby underscoring the effectiveness of retrieval-augmented forecasting.
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Table 2: Full results of long sequence forecasting experiments. Best results are highlighted in bold
and second best results are underlined. Besides, best results of zero-shot marked in Red.

Dataset Zero-shot Full-shot

TimeRAF TTMB MoiraiB MOMENT Timer1B TimesFM ChronosS1 TimeLLM GPT4TS iTransformer TimesNet PatchTST DLinear

ETTh1 0.359 0.364 0.383 0.674 0.438 0.414 0.571 0.362 0.376 0.386 0.384 0.414 0.386

ETTh2 0.276 0.285 0.295 0.330 0.314 0.318 0.423 0.268 0.285 0.297 0.340 0.302 0.333

ETTm1 0.399 0.415 0.448 0.670 0.690 0.354 0.632 0.272 0.292 0.334 0.338 0.329 0.345

ETTm2 0.177 0.186 0.225 0.257 0.213 0.201 0.272 0.161 0.173 0.180 0.187 0.175 0.193

Weather 0.152 0.158 0.197 0.255 0.181 - - 0.147 0.162 0.174 0.172 0.177 0.196

Electricity 0.168 0.170 0.162 0.744 0.192 - - 0.131 0.139 0.148 0.168 0.195 0.197

Table 3: Ablation Studies on Retriever and Channel Prompting. Random signifies the random selection
while Cosine refers to retrieval based on cosine similarity. Token-Concat represents concatenating
the retrieved candidates with the input at the token level. Average denotes directly computing the
mean of the candidate and input embeddings. The best results are highlighted in bold.

Dataset TimeRAF Random Cosine Token-Concat Average
ETTh1 0.359 0.365 0.360 0.363 0.367
ETTh2 0.276 0.287 0.282 0.278 0.292
ETTm1 0.399 0.420 0.401 0.404 0.421
ETTm2 0.177 0.188 0.184 0.180 0.190
Weather 0.152 0.159 0.153 0.153 0.166
Electricity 0.168 0.173 0.172 0.174 0.181

4.3 ABLATION STUDIES

4.3.1 EFFECTIVENESS OF THE RETRIEVER

As described in section 3.5, we employ an end-to-end approach to train the retriever, encouraging
it to select the most valuable candidates from the knowledge base. To validate the effectiveness of
the learnable retriever, we have designed two baselines for comparison: one that randomly selects
candidates from the knowledge base and another that selects the top k candidates based on cosine
similarity. As shown in Table 3, randomly selecting candidates fails to provide useful information to
the forecaster and may even introduce noise, degrading the model’s predictive performance. While
the cosine similarity-based retrieval method offers some knowledge, its improvement is limited and
falls short compared to our method, which automatically learns how to retrieve useful knowledge.

4.3.2 CHANNEL PROMPTING

An effective integration method, named Channel Prompting, is used to extract the relevant knowledge
from the retrieved data, as detailed in section 3.4. To validate the effectiveness of channel prompting,
we establish two baselines for comparison: the first, called Token-Concat, entails concatenating the
retrieved candidates with the input at the token level, while the second, termed Average, involves
directly computing the mean of the candidate and input embeddings for integration. As shown
in Table 3, our TimeRAF outperforms both baselines. The token-level concatenation imposes
restrictions on the integration to tokens located in the same position. While averaging input and
retrieved candidates embeddings prove insufficient for extracting valuable information.

4.4 MODEL ANALYSIS

4.4.1 CHOICE OF KNOWLEDGE BASE

Source of Knowledge Base: The previous experimental results have convincingly demonstrated that
following training, TimeRAF has acquired the capability to dynamically access pertinent knowledge
from an external knowledge base and effectively leverage this valuable information. To further
explore the implications of employing various knowledge bases during inference, we have devised the
following three scenarios: (a) TimeRAFR randomly selects data from the pre-trained multi-domain
dataset, which may result in an uneven distribution across different domains. (b) TimeRAFD utilizes
a knowledge base closely related to the test data. Specifically, the training set from the same dataset is
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Table 4: Comparison of TimeRAF with various knowledge bases. TimeRAFR employs random multi-
domain data as the knowledge base and TimeRAF leverages the curated multi-domain knowledge
base used for training. TimeRAFD utilizes a single-domain knowledge base, which differs from the
one used during training but aligns with the domain of the test data. Best results are highlighted in
bold and second best results are underlined.

Dataset w/o RAF TimeRAFR TimeRAF TimeRAFD

ETTh1 0.364 0.362 0.359 0.360
ETTh2 0.285 0.280 0.276 0.278
ETTm1 0.415 0.404 0.399 0.400
ETTm2 0.186 0.181 0.177 0.178
Weather 0.158 0.155 0.152 0.152
Electricity 0.170 0.169 0.168 0.168

directly employed as the knowledge base for retrieval. (c) TimeRAF engages a meticulously curated
multi-domain dataset, which is detailed in Table 1. As presented in Table 4, TimeRAF achieves the
best performance across different datasets. As a specifically designed knowledge base, it encompasses
a rich repository of information across multiple domains, enabling it to provide useful information to
enhance predictions. Meanwhile, the knowledge base used in TimeRAFD is particularly relevant to
the test data, providing domain-specific knowledge. As a result, the zero-shot time series forecasting
performance achieved with this knowledge base ranks just below that of TimeRAF. However, the
randomly selected knowledge base used in TimeRAFR suffers from domain imbalance, which limits
the enhancement that external knowledge can provide to the forecaster.

100% 50% 30% 10% 1%

M
SE

TimeRAF
TimeRAFD

Figure 4: Influence of knowledge
base size. Smaller knowledge base
provides less information, leading
to worse performance.

Size of Knowledge Base: The size of knowledge base also
plays a vital role in the framework, determining the extent of
external knowledge that can be accessed. We perform a com-
prehensive analysis of this aspect, presenting average results
across various datasets in Figure 4. Full results are provided
in Appendix C.3. Initially, both TimeRAF and TimeRAFD uti-
lize knowledge bases of comparable scale, each consisting of
approximately 3 million data points, as outlined in section 4.1.
Then, we progressively reduce the size of the knowledge base.
As shown in Figure 4, the MSE are influenced by modifications
in the knowledge base size. As the size diminishes, the amount
of external knowledge it can provide decreases, leading to a de-
cline in the performance. Once the knowledge base is reduced
beyond a certain point, using a domain-specific knowledge base
(TimeRAFD) can provide more relevant information compared
to a multi-domain knowledge base (TimeRAF), resulting in
better forecasting performance.

4.4.2 INFLUENCE OF THE CANDIDATES NUMBER

We investigate the impact of varying the numbers of retrieved candidates on prediction performance.
As illustrated in Figure 5, using multiple retrieved candidates (e.g., 4 or 8) equips the forecaster with
a more comprehensive set of external information compared to relying on a single candidate, thereby
further enhancing prediction performance. Nevertheless, the performance gains do not persist as the
variable k increases. In our analysis of the test data, we observe that when k is elevated to 16 or 32,
there is no significant improvement in the model’s prediction accuracy. This phenomenon may be
attributable to the introduction of excessive candidates, which can lead to redundant information,
ultimately detracting from the overall effectiveness of the prediction results.

4.5 CASE STUDY ON RETRIEVED KNOWLEDGE

To conduct a detailed analysis of the information provided by the retriever and its contribution to
enhancing the zero-shot forecasting capabilities of the foundation model, we present two illustrative
examples in Figure 6. As shown in Figure 6(a), the retrieved knowledge exhibits similar periodicity
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k=1 k=4 k=8 k=16 k=32
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k=1 k=4 k=8 k=16 k=32
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k=1 k=4 k=8 k=16 k=32
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k=1 k=4 k=8 k=16 k=32
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k=1 k=4 k=8 k=16 k=32
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Weather
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Figure 5: Influence of the Candidates Number k. As k increases, the performance gradually improves
due to the integration of more relevant knowledge. However, when k exceeds a certain threshold, the
abundance of information can introduce redundancy, negatively affecting the prediction.

Input Retrieved Knowledge

w/o RAF TimeRAF

(a) Example A

Input Retrieved Knowledge

w/o RAF TimeRAF

(b) Example B
Figure 6: Case Study on Retrieved Knowledge. (a) Example A: The retrieved knowledge shares
similar periodicity and subtle fluctuations with the input, facilitating the forecaster’s ability to effec-
tively capture the prior knowledge inherent in the input, thereby improving prediction performance.
(b) Example B: The retrieved data provides supplementary insights, including partial future informa-
tion (highlighted within the red dashed box), empowering the forecaster to generate better predictions.

and nuanced fluctuations to the input, enhancing the forecaster’s capacity to effectively capture the
prior knowledge inherent in the input data, thereby improving prediction performance.

The data retrieved by the retriever is not always highly similar to the input, as illustrated in Figure 6(b).
In the absence of the retrieval-augmented forecasting method, the model generates predictions with
small amplitude, relying solely on constrained historical data and underlying inertia. However,
the incorporation of retrieved data provides additional insights, including partial future informa-
tion (highlighted within the red dashed box), thereby improving the prediction generated by the
forecaster.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce TimeRAF, a novel framework designed to leverage retrieval-augmented
generation for zero-shot time series forecasting. We develop customized time series knowledge bases
that are tailored to the specific forecasting tasks and employ an end-to-end learnable retriever to
extract valuable information from the knowledge base. We also introduce Channel Prompting to
extract relevant information from the retrieved data for knowledge integration. By leveraging external
knowledge, TimeRAF exhibits a notable enhancement in zero-shot time series forecasting.

While TimeRAF achieves phenomenal performance, this represents merely the initial step in the
integration of time series methods and RAG. Due to resource constraints, the knowledge base is
established based on original time series data data without the implementation of advanced techniques
like trend-seasonal decomposition. In terms of architecture, our approach to integrate external
knowledge is somewhat heuristic and future work should design a more flexible and elegant approach.
Also, the current architecture has ignored the potential interdependencies among different channels,
which could be addressed more effectively in future methods. Finally, incorporating multi-modality
such as tabular or text data is an exciting new direction to provide supplementary knowledge.
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TimeRAF: Retrieval-Augmented Foundation model
for Zero-shot Time Series Forecasting
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A TIMERAF DATASETS

A.1 LIST OF TRAINING DATASETS

Our fine-tuning employs a subset of about 320 million time points from LOTSA (Woo et al., 2024)
and UTSD (Liu et al., 2024). To enhance data integrity, missing values are systematically addressed
using linear interpolation techniques. For each univariate, multivariate, or irregular-sampled time
series, we store them with timestamps, domains, sampling frequencies and other meta-information in
one directory using ARROW format. One dataset may composed of multiple related time series.

All datasets can be classified into six distinct domains by their source: Energy, Nature, Transport,
Web, Sales, and Healthcare. The datasets exhibit diverse sampling frequencies, ranging from macro
intervals such as daily to more fine-grained intervals like hourly and minutely. Notably, several
datasets can demonstrate exceptionally high-frequency sampling rates, such as the MotorImagery
dataset, which operates at a millisecond frequency.

A.2 LIST OF INFERENCE DATASETS

In the field of time series forecasting, several classical datasets such as ETT (Zhou et al., 2021),
ECL (Wu et al., 2021) and Weather (Wu et al., 2021) have become widely recognized benchmarks
for evaluating model performance. We also utilize these datasets to evaluate the zero-shot forecasting
performance and perform evaluation in a sliding window fashion following previous work (Nie et al.,
2023; Ekambaram et al., 2024). Below, we offer a brief overview of these datasets.

1. ETT datasets: The four ETT datasets (ETTH1, ETTH2, ETTM1, ETTM2) contain multi-
variate time series data collected from electrical transformers at two stations. ETTH1 and
ETTH2 are collected at an hourly interval, while ETTM1 and ETTM2 are collected every
15 minutes. All four datasets have 7 channels.

2. Weather: The weather dataset consists of 21 channels, which serve as weather indicators. It
is collected at 10-minute intervals at the Max Planck Institute of Biogeochemistry weather
station.

2. Electricity (ECL): The Electricity dataset, also known as the ECL dataset, comprises the
hourly electricity consumption data of 321 clients.

B ADDITIONAL IMPLEMENTATION DETAIL

B.1 KNOWLEDGE BASE FOR TRAINING

The knowledge base used for training contains approximately 3 million data points, as introduced
in section 3.3, selected from the training datasets. The key statistics of datasets in knowledge base
is provided in Table 1. The selection process entailed a meticulous curation to ensure a diverse
representation of data across various domains. This diversity enhances the robustness of the model,
enabling it to generalize better across different contexts. Each data point has been sourced from
reputable datasets, ensuring high-quality input that informs the training process. Besides, all the time
series data in the knowledge base has the same length as input, which is 512.

B.2 TRAINING DETAILS

Our training is performed on 4 NVIDIA A100 GPUs. Following the backbone configuration of the
foundation model we use (TTMB (Ekambaram et al., 2024)), the input length sl = 512 and fl = 96.
Both encoders in the retriever employ a two-layer MLP, with the size of the hidden layer configured
to be four times the input dimension. The tanh activation function is utilized in both layers. The MLP
in the Channel Prompting also use tanh activation function and has 4 layers. During the training
phase, all parameters of the time series foundation model remain fixed, with only the retriever and
channel prompting module undergoing training. The learning rate for the retriever is established at
0.001, whereas the learning rate for the channel prompting is set at 0.00001. The weight λ is set to 1.
The entire model was trained for 2 epochs, and for different test datasets, we reported the best results.
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Domain Dataset Frequency Time Points Source

Energy
BDG-2 Fox H 2,324,568 BuildingsBench (Emami et al., 2023)

Australian Electricity Demand 30T 1,153,584 Monash (Godahewa et al., 2021)
Solar Power 4S 7,397,222 Monash (Godahewa et al., 2021)

Transport
Los-Loop 5T 7,094,304 LibCity (Jiang et al., 2023)

Uber TLC Hourly H 1,129,444 GluonTS (Alexandrov et al., 2020)

Nature
Subseasonal Precipitation D 9,760,426 SubseasonalClimateUSA library (Mouatadid et al., 2024)

Saugeen D 23,711 Monash (Godahewa et al., 2021)

Web
Kaggle Web Traffic Daily D 116,485,589 Monash (Godahewa et al., 2021)

Wiki-Rolling D 40,619,100 GluonTS (Alexandrov et al., 2020)

Sales
M5 D 58,327,370 GluonTS (Alexandrov et al., 2020)

Favorita Transactions D 84,408 Kaggle

Healthcare
MotorImagery 0.001S 72,576,000 UCR Time Series Archive (Dau et al., 2019)

US Births D 7,275 Monash (Godahewa et al., 2021)

Table 5: Dataset detailed descriptions. Time Points denotes the total number of time points
aggregating from all variates if multivariate. Frequency denotes the sampling interval of time points.
Source denotes the original paper or resource of the dataset.

During the inference phase, with the exception of the ablation experiments detailed in section 4.4.2,
we consistently retrieved eight candidates from the knowledge base, where k = 8.

B.3 BASELINES

We conduct zero-shot forecasting experiments on seven datasets from iTransformer (Liu et al.). We
apply the same data-split strategy as Autoformer (Wu et al., 2021) and calculate the averaged MSE
of all predict-96 windows in the test split. We evaluate five open-source time series foundation
model, including Timer (Liu et al., 2024), Moirai (Woo et al., 2024), TimesFM (Das et al., 2024),
Chronos (Ansari et al., 2024), and MOMENT (Goswami et al., 2024). However, closed-source
models such as TimeGPT (Garza & Mergenthaler-Canseco, 2023) are not included due to their
inaccessibility.

• MOMENT: MOMENT1 employs a masking modeling approach for zero-shot forecasting
by concatenating the lookback series with a mask corresponding to the prediction length.
The output of the model, derived from the mask, serves as the forecast. This method involves
pre-training a Transformer encoder model in a univariate manner using a curated dataset
known as the “Time Series Pile,” which encompasses a diverse range of time series data.

• Chronos: Chronos2 is a probabilistic forecaster. ChronosS1 refers to sampling a single
prediction trajectory, while ChronosS20 involves averaging 20 sampled trajectories. Chronos
tokenizes the input time series and processes these tokens using a large language model,
specifically the T5 model. It is trained on an extensive corpus of time series data, including
synthetic data, to enhance generalization.

• TimesFM: TimesFM employs a decoder-style attention model, characterized by causal
self-attention, which is pre-trained in a univariate manner on an extensive array of both real-
world and synthetic datasets. We utilize the official checkpoint available on HuggingFace3,
which accommodates a variety of input and output lengths.

• Moirai: The Moirai family4 has three different sizes, labeled as MoiriaS, MoiriaM, and
MoiriaL. Moirai pre-trains a Transformer encoder on the extensive “LOTSA” dataset (27B
time points) by masking the forecast horizon of each target channel and performing mask
reconstruction. By flattening all channels in a multivariate time series, Moirai supports
pre-training in “any-variate” settings.

1https://huggingface.co/AutonLab/MOMENT-1-large
2https://huggingface.co/amazon/chronos-t5-large
3https://huggingface.co/google/timesfm-1.0-200m
4https://huggingface.co/collections/Salesforce/moirai-10-r-models-65c8d3a94c51428c300e0742
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• Timer: Timer provides three versions with increased scopes of pre-training. Timer1B is
pre-trained on UTSD5; Timer16B is pre-trained on UTSD and Buildings900K (Emami et al.,
2023); and Timer28B is pre-trained on UTSD and LOTSA.

• TTM: TTM6 pre-trains a compact model based on the light-weight TSMixer architecture,
incorporates innovations like adaptive patching, diverse resolution sampling, and resolution
prefix tuning on Monash and LibCity datasets.

We report the implementation details for all the time series foundation model baselines in Table 6.

Table 6: Implementation details for time series foundation model baselines
Baseline Used in Table Results Source Implementation Link

Moirai Zero-shot in Table 2 and Table 8 Liu et al. (2024) uni2ts
Timer Zero-shot in Table 2 and Table 8 Liu et al. (2024) Large-Time-Series-Model
MOMENT Zero-shot in Table 2 and Table 8 Liu et al. (2024) moment
Chronos Zero-shot in Table 2 and Table 8 Liu et al. (2024) chronos-forecasting
TimesFM Zero-shot in Table 2 and Table 8 Liu et al. (2024) TimesFM
TimesFM Zero-shot in Table 2 and Table 8 Our reproduction using official implementation granite-tsfm

Table 7: Quality evaluation of time series foundation models. Architecture denotes the Transformer
category. Model size presents the parameter counts. Token type presents the graininess of time series
tokens. Context length means the maximum/fixed input length of the model.

Method
Timer Moirai MOMENT Chronos TTM TimesFM
(2024) (2024) (2024) (2024) (2024) (2024)

Model size
29M, 50M, 14M, 91M, 40M, 125M 20M, 46M, 1M, 4M 17M, 70M,

67M 311M 385M 200M, 710M 8M 200M

Supported tasks
Forecast

Forecast
Forecast Imputation

Forecast Forecast ForecastImputation Classification

Detection Detection

Pre-training Scale 28B 27.65B 1.13B 84B 1B 100B

Token type Segment Segment Segment Point Segment Segment

Context length ≤1440 ≤5000 = 512 ≤512 ≤1536 ≤512

Variable length True True False True True True

Probabilistic False True False True False True

C ADDITIONAL EXPERIMENTS

C.1 ZERO-SHOT FORECASTING EVALUATION

We provide zero-shot time series forecasting results of TimeRAF and other time series foundation
model in Table 8. The results highlight the performance of TimeRAF in comparison to other leading
time series foundation models, demonstrating its effectiveness in integrating external knowledge.
This capability is particularly crucial for industries that require timely and reliable forecasting without
the luxury of extensive historical data. Overall, the findings suggest that TimeRAF not only sets a
new benchmark in zero-shot time series forecasting but also paves the way for future research on
enhancing model architectures and training methodologies in this domain.

C.2 ABLATION STUDY ON CANDIDATE AUGMENTATION

During the training process, there is a risk that the retriever may become entrenched in a local
optimum, thereby consistently retrieving a limited set or a narrow range of candidates. To address

5https://huggingface.co/datasets/thuml/UTSD/tree/main
6https://huggingface.co/ibm-granite/granite-timeseries-ttm-v1
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Table 8: Full results of zero-shot forecasting experiments. Best results are highlighted in bold and
second best results are underlined.

Dataset TimeRAF TTMB MoiraiS MoiraiB MoiraiL MOMENT Timer1B Timer16B Timer28B TimesFM ChronosS1 ChronosS20

ETTh1 0.359 0.364 0.441 0.383 0.394 0.674 0.438 0.364 0.393 0.414 0.571 0.34

ETTh2 0.276 0.285 0.295 0.295 0.293 0.330 0.314 0.294 0.308 0.318 0.423 0.326

ETTm1 0.399 0.415 0.562 0.448 0.452 0.670 0.690 0.766 0.420 0.354 0.632 0.451

ETTm2 0.177 0.186 0.218 0.225 0.214 0.257 0.213 0.234 0.247 0.201 0.272 0.190

Weather 0.152 0.158 0.195 0.197 0.221 0.255 0.181 0.203 0.243 - - -

Electricity 0.168 0.170 0.212 0.162 0.155 0.744 0.192 0.139 0.147 - - -

Table 9: Ablation study on candidate augmentation

Dataset TimeRAF TimeRAF
w/o candidate augmentation

ETTh1 0.359 0.363
ETTh2 0.276 0.282
ETTm1 0.399 0.410
ETTm2 0.177 0.186
Weather 0.152 0.161
Electricity 0.168 0.173

this issue, we employ a straightforward augmentation strategy. We provide experiments results of
TimeRAF without candidate augmentation in Table 9.

C.3 SIZE OF KNOWLEDGE BASE

Table 10: Influence of different knowledge base size. Best results are highlighted in bold.
Dataset TimeRAF TimeRAFD

100% 50% 30% 10% 1% 100% 50% 30% 10% 1%
ETTh1 0.3592 0.3598 0.3603 0.3608 0.3622 0.3599 0.3600 0.3601 0.3602 0.3611
ETTh2 0.2763 0.2767 0.2773 0.2790 0.2844 0.2779 0.2785 0.2791 0.2804 0.2823
ETTm1 0.3991 0.3995 0.4002 0.4017 0.4038 0.3998 0.4002 0.4008 0.4015 0.4024
ETTm2 0.1768 0.1773 0.1778 0.1792 0.1815 0.1776 0.1780 0.1784 0.1791 0.1807
Weather 0.1522 0.1527 0.1533 0.1542 0.1558 0.1524 0.1528 0.1533 0.1540 0.1551
Electricity 0.1681 0.1686 0.1692 0.1701 0.1715 0.1684 0.1688 0.1691 0.1698 0.1710

We conduct an experiment to examine the impact of knowledge base size on performance. Initially,
TimeRAF and TimeRAFD uses knowledge bases of identical scale, each comprising approximately 3
million data points, as detailed in section 4.1. We progressively reduce the size of the knowledge base
and valuate the task. As shown in Figure 1, the zero-shot forecasting results on the ETTh1 dataset
vary with changes in the knowledge base size. As shown in the figure, when the knowledge base
becomes smaller, the amount of external knowledge it can provide decreases, leading to a decline
in prediction performance. Once the knowledge base is reduced beyond a certain point, using a
domain-specific knowledge base can provide more relevant information compared to a multi-domain
knowledge base, resulting in better forecasting performance.

C.4 FORECASTING VISUALIZATION

We provide several visualization of zero-shot forecasting in Figure 7. These visualizations illustrate
the effectiveness of our proposed method based on leveraging external knowledge. Each subplot
in Figure 7 captures distinct scenarios, allowing for a comprehensive understanding of the model’s
capabilities under different conditions.

C.5 MODEL EFFICIENCY COMPARISON

The comparison of model efficiency is presented in Table 11. The supplementary modules incor-
porated in RAF are designed to be lightweight, contributing only a minimal increase in parameters.
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Figure 7: Visualization of zero-shot forecasting across different datasets.

TimeRAF TTMB MoiraiB MOMENT TimesFM ChronosS1

Model Size 8M 1M 91M 348M 200M 8M
Inference Time 0.13s 0.01s 3.7s 1.4s 0.4s 2500s

Table 11: Model Efficiency Comparison: We provide model size and per batch CPU inference time
of each foundation model.

Furthermore, the retrieval process is based on a dot product calculation, which enhances efficiency.
Consequently, TimeRAF maintains a satisfactory model size and inference time.

C.6 MULTIPLE FORECAST HORIZONS

The full results of multiple forecast horizons are presented in Table 11. From these results, we observe
that TimeRAF consistently delivers significant improvements over the backbone across all forecast
horizons, further demonstrating the method’s robustness and generality.

C.7 ALTERNATIVE BACKBONE
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TimeRAF w/o RAF

ETTh1

96 0.359 0.364
192 0.384 0.387
336 0.397 0.403
720 0.457 0.475

ETTh2

96 0.276 0.285
192 0.335 0.346
336 0.364 0.385
720 0.408 0.419

ETTm1

96 0.399 0.415
192 0.377 0.380
336 0.397 0.402
720 0.442 0.446

ETTm2

96 0.177 0.186
192 0.238 0.246
336 0.290 0.323
720 0.386 0.406

Weather

96 0.152 0.158
192 0.192 0.195
336 0.251 0.256
720 0.321 0.328

Electricity

96 0.168 0.170
192 0.194 0.197
336 0.212 0.214
720 0.261 0.264

Table 12: Full Forecasting Results: TimeRAF consistently delivers significant improvements over
the backbone across all forecast horizons

Timer w/o RAF Timer w/ RAF Improvements (%)

ETTh1 0.427 0.438 2.51
ETTh2 0.305 0.314 2.87
ETTm1 0.671 0.69 2.75
ETTm2 0.203 0.213 4.69
Weather 0.173 0.181 4.42

Electricity 0.187 0.192 2.60

Table 13: Zero-shot Forecasting Results: Using Timer (Liu et al., 2024) as the backbone, TimeRAF
consistently delivers significant improvements over the backbone across all datasets.

To further evaluate the effectiveness of RAF, we conducted additional experiments using Timer (Liu
et al., 2024) as the backbone. The results are provided in the Table 13. These experiments demonstrate
that our method consistently delivers significant improvements across different backbone models.

D ADDITIONAL DISCUSSION

D.1 DISCUSSION ON CHANNEL PROMPTING

For each retrieved candidate ci, we will extract the valuable feature from the combined embedding zi
first. Then, to retain useful information from all k retrieved sequences, the features extracted from
these sequences are averaged. This ensures that the model captures information from all retrieved
data while balancing their contributions. These two operations are complementary and work together
to integrate the retrieved information effectively.

21


	Introduction
	Related Work
	Method
	Overview
	Problem Formulation
	Knowledge Base
	Knowledge Integration
	Knowledge Retrieval
	Knowledge Retrieval Learning
	Retriever-Forecaster Joint Training

	Inference Procedure

	Experiment
	Experiments Setups
	Results of Zero-shot Forecasting
	Ablation Studies
	Effectiveness of the Retriever
	Channel Prompting

	Model Analysis
	Choice of Knowledge Base
	Influence of the Candidates Number

	Case Study on Retrieved Knowledge

	Conclusion and Future work
	TimeRAF Datasets
	List of Training Datasets
	List of Inference Datasets

	Additional Implementation Detail
	Knowledge Base for Training
	Training Details
	Baselines

	Additional Experiments
	Zero-shot forecasting evaluation
	Ablation Study on Candidate Augmentation
	Size of Knowledge Base
	Forecasting Visualization
	Model Efficiency Comparison
	Multiple Forecast Horizons
	Alternative Backbone

	Additional Discussion
	Discussion on Channel Prompting


