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Abstract

Erroneous or fraudulent invoices present signif-
icant risks to financial operations in online mar-
ketplaces, and anomaly detection offers a better
solution to mitigate those risks. Despite advances
in machine learning-based anomaly detection, the
black-box nature of these models limits their adop-
tion in Finance, where manual review is required.
Human investigators often struggle to review nu-
merous flagged invoices due to the absence of
clear, contextual explanations, resulting in only
40% of true defects being detected by investiga-
tor. We propose CLEAR, a multi stage model-
agnostic framework that combines contrastive
learning and large language models (LLMs) to
generate context-rich, human-readable explana-
tions. CLEAR projects anomalous examples into
a latent space to find semantically similar, non-
anomalous counterparts and identifying key dis-
tinguishing features using localized interpretable
models. These features are passed to a context-
aware LLM fine-tuned with historical investiga-
tor feedback to generate concise summaries, im-
proving investigation efficiency from 40% to 50%
and enabling estimated substantial annual savings
while providing interpretability through real-case
comparisons and contextual semantics.

1. Introduction
Finance teams at large firms can process hundreds of mil-
lions of invoices each year, amounting to billions of dollars
in payments to vendors. While the vast majority of these
transactions are accurate, a small yet critical fraction—are
canceled due to vendor errors, internal processing mistakes,
or instances of fraud and abuse. This seemingly minor per-
centage translates into over a billion dollars in potential
financial exposure annually, posing significant risks from
both economic and compliance standpoints. These risks
also evolve over time, making early detection of anoma-
lous invoices essential to prevent any fraud and abuse from
system and to safeguard the integrity of financial operations.

In response, major enterprises increasingly leverage ma-
chine learning (ML) models to proactively flag invoices
that may be erroneous or fraudulent. These models often
built using deep learning or ensemble methods are highly
effective at identifying subtle statistical patterns in large,
high-dimensional financial datasets. However, their predic-
tive power often comes at the cost of interpretability. As
a result, these models operate as black boxes, producing
predictions without offering clear explanations.

In the financial domain, this lack of transparency poses a
serious challenge. Regulatory and compliance requirements
prohibit fully automated actions based solely on model pre-
dictions. Every flagged invoice must be reviewed and justi-
fied by human investigators before cancellation. Yet, inves-
tigators are often left with little more than opaque feature
scores, lacking the context needed to make informed deci-
sions under tight deadlines and audit scrutiny.

This gap between model performance and human inter-
pretability has led to a significant operational bottleneck.
From the set of flagged invoices, only 40% of true defects
are correctly identified and acted upon by investigators. The
remaining 60% despite being flagged are missed due to lack
of explanation and actionable insights. Bridging this gap is
essential for realizing the full potential of ML-driven invoice
risk detection in high-stakes financial environments.

Traditional model-agnostic explainability techniques, such
as SHAP (5) and LIME (7), have been widely used to inter-
pret black-box predictions by estimating the marginal con-
tribution of individual features through local perturbation-
based approximations. These methods are effective but
present critical shortcomings in financial systems like fraud
detection (10). Specifically, they operate under the assump-
tion of feature independence and rely on synthetic perturba-
tions in the input space that may violate the underlying data
manifold (4). As a result, they often generate explanations
that are mathematically plausible but semantically invalid,
perturbing a vendor type or invoice amount in isolation,
without regard for inter-feature dependencies or business
rules (e.g., approval status conditional on amount or supplier
type). Moreover, their outputs are typically unstructured
importance scores across raw feature names, lacking seman-
tic enrichment or narrative grounding. For example, stating
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Figure 1. CLEAR vs Traditional Explainability Approaches

that ”feature 132 increased risk by 0.18” offers little action-
able insight to a financial investigator tasked with assessing
fraud.

This paper makes the following core contributions:

• Model-Agnostic Local Explainability Framework:
A novel plug-and-play interpretability pipeline that can
be layered on top of any anomaly detection model re-
gardless of its internal complexity—to produce clear,
localized explanations without modifying the underly-
ing predictive architecture.

• Real-Data Counterfactuals with Auditable Chains:
A novel approach to counterfactual explanation that
retrieves semantically similar, historically observed
normal cases via learned embeddings, preserving the
data manifold and yielding deterministic, fully trace-
able explanation chains rooted in actual examples.

• LLM-Driven Context-Aware Justifications: An ex-
planation module that ingests features from a metadata-
enhanced surrogate model and leverages a large lan-
guage model to generate concise, human-readable ex-
planations aligned with domain semantics and investi-
gator intuition.

By integrating structured similarity search, local explain-
able modeling, and contextualized language generation, we
bridge the gap between machine learning detection and hu-
man decision making, a necessary step toward trustworthy
AI in finance.

2. Related Works
Interpretable Models and Post-hoc Explainability: Tradi-
tional models like logistic regression and decision trees
are transparent but limited in capturing complex patterns,
SHAP(5) explains autoencoder reconstruction errors (1),
while LIME (7) uses local surrogates. Anchors (8) provide

high-precision if-then rules. These methods rely on syn-
thetic perturbations and often ignore contextual or temporal
dependencies. Comparison with CLEAR is in Table 1.

Embedding-based Retrieval for Explanation: Instance-based
explanations using embeddings show promise. Dang et al.
(3) used graph embeddings to retrieve similar fraud cases
but may miss transactional nuances.

Contrastive Learning (CL) for Anomaly Interpretation: CL
improves anomaly detection by separating normal and
anomalous cases. Zhang et al. (9) showed its utility in
fraud detection, though it requires careful sampling and
faces class imbalance issues.

LLM-based Explanation Generation: LLMs generate natu-
ral language explanations. Park et al. (6) translated anomaly
scores into narratives, but face hallucination, weak data
grounding, and audit challenges.

Summary and Positioning: CLEAR combines contrastive
embeddings, local interpretable models, and domain-
adapted LLMs for grounded, auditable, and regulatory-
aligned explanations.

Table 1. Comparison of CLEAR with SHAP and LIME
Aspect SHAP/LIME CLEAR

Perturbations Synthetic None (real data)
Global vs Local Local Local
Grounded in Training Data No Yes
Hallucination Risk High Minimal (prompt control)
Auditability Weak Strong

3. Methodology
CLEAR is a model-agnostic, post-hoc interpretability frame-
work designed to layer on top of any anomaly detection
model. It generates human-interpretable, audit-ready, and
context-rich explanations for anomalous instances. The
framework comprises four sequential stages (Figure 2) as
follows:
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Figure 2. CLEAR framework

3.1. Embedding and Anomaly Model Training

We first train an anomaly detector Mc on historical data Xh

to assign anomaly scores to new inputs. Since traditional
distance-based retrieval methods on high-dimensional tabu-
lar data suffer from poor discrimination, we train a separate
embedding model Me (e.g., using contrastive learning) to
capture semantic and contextual patterns. After training,
Me encodes all non-anomalous instances into a dense em-
bedding space, which serves as the retrieval corpus.

3.2. Neighbor Retrieval via Approximate KNN

For each data point flagged as anomalous by Mc, we gen-
erate its embedding using Me and retrieve its top-K most
similar normal cases via approximate K-nearest neighbor
search. These neighbors form a semantically and behav-
iorally grounded peer group for contrastive reasoning.

3.3. Local Surrogate Modeling and Feature Attribution

A local surrogate model (e.g.Random forest) is trained us-
ing the K retrieved neighbors and the flagged anomaly to
approximate Mc’s local decision boundary. We extract the
top-N discriminative features that distinguish the anomaly
from its peer group for further step.

3.4. Controlled Natural Language Explanation via LLM

Finally, a domain-adapted LLM uses the extracted N fea-
tures and contextual neighbors to generate structured, natu-
ral language justifications. Fine-tuned with domain knowl-
edge and contextual understanding between features, the
LLM ensures explanations are grounded, audit-friendly, and

semantically aligned with model behavior.

4. Dataset and Experimental Setup
4.1. Dataset

We use a proprietary dataset of six million structured busi-
ness invoices, each with raw attributes like amount, date,
source, approval status, and payment terms. From these, 210
derived features are created for the anomaly detector, cap-
turing current invoice properties (e.g., PO presence, source
legitimacy) and historical vendor behavior (e.g., transaction
volume, payment trends etc.) for rich contextual modeling.

4.2. Experimental Setup

CLEAR is tested on this tabular dataset to produce audit-
ready explanations for flagged invoices.

Anomaly Detector (Mc): A deep learning classifier trained
on the 210 features to score invoices by fraud likelihood.
It captures both cross-sectional and temporal patterns in
vendor-invoice interactions.

Embedding Model (Me): To learn contextual represen-
tations, we employ SCARF (2), a contrastive learning
method with random feature corruption (See Figure 3 in
Appendix 7.2 for embedding model architecture). The ar-
chitecture consists of: (1) an MLP M for encoding categor-
ical features, (2) an encoder E, and (3) a projection head
H . Each input xi and its corrupted version x+

i are passed
through these layers to yield embeddings zi and z+i :

zi = gϕ(xi) = H(E(xi +M(xi))), z+i = gϕ(x
+
i )
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The model minimizes the InfoNCE loss:

Lctr(ϕ) = − 1

N

N∑
i=1

log
exp(sim(zi, z

+
i )/τ)∑N

j=1 exp(sim(zi, zj)/τ)

where sim(·, ·) is cosine similarity and τ is the temperature.

Neighbor Retrieval: In production, if Mc flags an invoice,
it is encoded via Me, and the top-K (K = 200) most similar
non-anomalous embeddings are retrieved using approximate
KNN. These neighbors define a context-aware peer group
for interpretation.

Local Surrogate Modeling: A Random Forest classifier is
trained on the flagged invoice and its K neighbors to identify
key discriminative features. The top N = 5 features based
on importance scores form the explanation vector. These
K,N values were empirically tuned for optimal fidelity.

LLM-based Explanation: We fine-tuned Gemma-7b on
50K labeled invoices with investigator notes and feature
metadata. At inference, the top-N features and metadata are
passed to the LLM, which generates structured, fluent ex-
planations grounded in domain-specific semantics, closing
the loop from detection to interpretation.

5. Results
We have reported CLEAR framework’s performance for
three different settings : Responsiveness to counterfactu-
als, alignment score, and impact on downstream decision-
making using A/B testing.

• Responsiveness to counterfactuals is defined as the
consistency and sensitivity of the explanation method
to minimal changes in the input features. A method is
deemed responsive if small, plausible perturbations to
the input lead to coherent changes in the top-N features
identified as most important. We tested this across
1000 randomly selected invoices where we introduced
targeted counterfactual edits (e.g., modifying the in-
voice amount or vendor history flags). CLEAR exhib-
ited a 22.4% & 10.5% relative improvement in respon-
siveness compared to the SHAP+LLM & LIME+LLM
respectively. This suggests that CLEAR captures better
nuanced shifts in feature interactions.

• Alignment Score: To measure how useful the explana-
tions were to actual users, we introduced the Alignment
Score metric. The alignment score captures how well
the top-N features identified by each method match the
investigator’s own reasoning. Based on investigator
notes, we extracted the most critical features for each
case (blind to model output) and scored overlap via
the Jaccard index between annotated and suggested
features. CLEAR achieved a 22.4% and 15.5% relative

improvement in alignment score over the SHAP+LLM
and LIME+LLM respectively. The Jaccard Index is
defined as:

J(A,B) =
|A ∩B|
|A ∪B|

(1)

where A is set of top-N features identified by the expla-
nation method & B is set of critical features extracted
from the investigator notes.

• A/B testing: We conducted an A/B test across control
and three treatment groups of investigators to assess the
real-world impact of CLEAR. The test results demon-
strated a statistically significant (p = 0.02) 25% relative
improvement in investigator efficiency. The A/B test
provides clear evidence that CLEAR enhances both
the quality of explanations (more faithful and readable)
and the practical results of investigations.

Investigator Efficiency: Investigator Efficiency (IE), analo-
gous to recall in machine learning, measures the proportion
of cancelled invoices correctly identified by investigators
out of all cancelled invoices in the model-flagged sample.
It reflects how effectively investigators detect true cancel-
lations among flagged invoices.Investigator Efficiency is
formally defined as:

Investigator Efficiency =
C

N
(2)

where: C is the number of cancelled invoices correctly
identified and N is total cancelled invoices in the flagged
sample.

Table 2. Comparison of Explanation Methods
Method Resp. (%) Align. Score Eff. (%)

Control/Baseline - - 40.2
CLEAR 93.0 0.71 50.1
SHAP + LLM 76.0 0.58 44.3
LIME + LLM 68.0 0.49 42.9

6. Conclusion and Future Works
In this paper, we proposed CLEAR, a comparison-based
explainability framework that distinguishes anomalous from
normal cases by comparing them directly to historical in-
stances instead of synthetic perturbations. It addresses key
limitations of SHAP (5) and LIME (7), which often pro-
duce explanations lacking alignment with human reason-
ing. CLEAR offers interpretable explanations that resonates
with how investigators reason through known examples. Fu-
ture work will focus on scaling CLEAR to heterogeneous
datasets. By bridging model performance and interpretabil-
ity, CLEAR enables more actionable and trustworthy AI in
enterprise applications.
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7. Appendix
7.1. CLEAR-Generated Natural Language

Explanations with Structured Feature Comparison

Example 1

LLM Prompt:

Human: <COT prompt>

<model output>

{
total_dollar_amount: {
feature_importance: 0.42,
flagged_invoice: 187000,
non_flagged_invoices_avg: 49245

},
po_number_flag: {
feature_importance: 0.21,
flagged_invoice: 0,
non_flagged_invoices_mode: 1

},
invoiceSource_others_flag: {
feature_importance: 0.14,
flagged_invoice: 1,
non_flagged_invoices_mode: 0

},
wfapproval_yes_flag_dollar_amount: {
feature_importance: 0.12,
flagged_invoice: 52000,
non_flagged_invoices_avg: 18010

},
documentId_flag: {
feature_importance: 0.11,
flagged_invoice: 1,
non_flagged_invoices_mode: 1

}
}

<\model output>
Assistant:

LLM Output:

“This invoice stands out due to an unusually high
dollar amount—nearly four times the average of
this vendor’s past invoices. It was submitted with-
out a purchase order and came from an unfamiliar
invoice source. Additionally, the dollar amount
far exceeds the maximum observed for recently
approved invoices, suggesting an anomaly.”

Example 2
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LLM Prompt:

Human: <COT prompt>

<model output>

{
invoiceDate_to_invoiceCreationDate: {

feature_importance: 0.38,
flagged_invoice: 25,
non_flagged_invoices_avg: 2

},
workflow_approval: {

feature_importance: 0.25,
flagged_invoice: NOT_REQUIRED,
non_flagged_invoices_mode: REQUIRED

},
vendor_monthly_volume: {

feature_importance: 0.18,
flagged_invoice: very_low,
non_flagged_invoices_mode: moderate

},
documentId_flag: {

feature_importance: 0.10,
flagged_invoice: 0,
non_flagged_invoices_mode: 1

},
po_number_flag: {

feature_importance: 0.09,
flagged_invoice: 1,
non_flagged_invoices_mode: 1

}
}

<\model output>
Assistant:

LLM Output:

“This invoice shows an abnormally long delay
between the invoice date and its creation, which
is inconsistent with usual processing timelines.
It bypassed workflow approval and came from a
vendor with minimal historical volume, raising
concerns of a one-off or suspicious transaction.
The absence of a document ID further weakens
its audit trail.”

Example 3

LLM Prompt:

Human: <COT prompt>

<model output>

{
payment_method_WIRE_flag: {
feature_importance: 0.33,
flagged_invoice: 1,
non_flagged_invoices_mode: 0

},
supplier_type_code_TAX_AUTH_flag: {
feature_importance: 0.27,
flagged_invoice: 1,
non_flagged_invoices_mode: 0

},
paymentFlag_N_flag_dollar_amount: {
feature_importance: 0.21,
flagged_invoice: 99000,
non_flagged_invoices_avg: 14593

},
ofaCountryCode_others_flag: {
feature_importance: 0.11,
flagged_invoice: 1,
non_flagged_invoices_mode: 0

},
documentId_flag: {
feature_importance: 0.08,
flagged_invoice: 1,
non_flagged_invoices_mode: 1

}
}

<\model output>
Assistant:

LLM Output:

“This invoice was paid via wire transfer—a
method rarely used for this vendor type. It’s asso-
ciated with a tax authority but shows a high unpaid
amount, which is atypical. The country code is
also marked as ‘others,’ adding to the irregularity
of this transaction.”

Example 4

LLM Prompt:

Human: <COT prompt>

<model output>

{
terms_date_to_invoiceCreationDate: {
feature_importance: 0.29,
flagged_invoice: -20,
non_flagged_invoices_avg: 5
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},
holdCounts_flag_dollar_amount: {

feature_importance: 0.23,
flagged_invoice: 300,
non_flagged_invoices_avg: 7580

},
business_group_Corp_flag: {

feature_importance: 0.18,
flagged_invoice: 1,
non_flagged_invoices_mode: 0

},
invoiceDescription_flag: {

feature_importance: 0.17,
flagged_invoice: 0,
non_flagged_invoices_mode: 1

},
po_number_flag: {

feature_importance: 0.13,
flagged_invoice: 1,
non_flagged_invoices_mode: 1

}
}

<\model output>
Assistant:

LLM Output:

“This invoice reflects a negative gap between the
payment terms and invoice creation dates, an un-
common pattern suggesting backdating or early
terms application. Despite a very low dollar value,
it was placed on hold, and lacks a description,
both of which are not standard for corporate group
invoices.”

7.2. Embedding Model Architecture
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Figure 3. Embedding Model (Me) Training and Inference Architecture
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