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ABSTRACT

A wide body of evidence shows that human language processing difficulty is pre-
dicted by the information-theoretic measure surprisal, a word’s negative log prob-
ability in context. However, it is still unclear how to best estimate these probabili-
ties needed for predicting human processing difficulty – while a long-standing be-
lief held that models with lower perplexity would provide more accurate estimates
of word predictability, and therefore lead to better reading time predictions, recent
work has shown that for very large models, psycholinguistic predictive power de-
creases. One reason could lie in the fact that language models might be more con-
fident of their predictions than humans, because they have had exposure to several
magnitudes more data. In this paper, we test what effect temperature-scaling of
large language model (LLM) predictions has on surprisal estimates and their pre-
dictive power of reading times of English texts. Firstly, we show that calibration of
large language models typically improves with model size, i.e. poorer calibration
cannot account for poorer fit to reading times. Secondly, we find that temperature-
scaling probabilities lead to a systematically better fit to reading times (up to 89%
improvement in delta log likelihood), across several reading time corpora. Finally,
we show that this improvement in fit is chiefly driven by words that are composed
of multiple subword tokens.1

1 INTRODUCTION

In psycholinguistics, a key finding is that words with higher surprisal (= negative log probability of
the word in context) require more time for processing (Hale, 2001; Levy, 2008). Numerous studies
provided experimental evidence supporting this theory, demonstrating that surprisal is a powerful
predictive measure of processing complexity (e.g., Demberg & Keller, 2008; Wilcox et al., 2020;
2023; Shain et al., 2022), and that the relationship between surprisal and reading times (RTs) indeed
seems to be linear (Smith & Levy, 2013; Wilcox et al., 2020; Shain et al., 2022).

However, prior work implicitly made the assumption that human predictability estimates would be
similar to the actual probability of a word occurring in a given context, and that therefore, surprisal
values estimated from models that achieve lower perplexities should also approximate human pro-
cessing difficulty better (Goodkind & Bicknell, 2018; Merkx & Frank, 2021).

Recent research has however found that this is not true – surprisal values from very large LLMs
provide in fact a very poor fit to reading times. Oh & Schuler (2023) hypothesize that this might be
due to LLMs being “too confident” in their estimates of rare named entities compared to humans,
thanks to their manifold larger exposure to data and greater memory capacity compared to humans.
Furthermore, work on NLP applications like question answering has reported that probability esti-
mates from pretrained language models are often overconfident, i.e. they are higher than the ground
truth probability (Si et al., 2022; Kumar, 2022). These findings hence beg the question whether
current LLMs are well-calibrated with respect to “objective” word occurrence probabilities. Relat-

1Code in this paper will be released upon paper acceptance.
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edly, we ask whether LLM probability estimates are overconfident compared to human estimates (as
observed in reading times).

One approach to address calibration problems is to use temperature scaling, as done e.g., in vision
tasks (Guo et al., 2017; Hendrycks et al., 2019). Temperature-scaling with a temperature T > 1 has
the effect that the probability distribution is flattened such that it becomes more similar to a uniform
distribution. Temperature-scaling hence incorporates uncertainty into the probability estimates from
LLMs.

We note that the idea to work with flattened distributions instead of the original probability distribu-
tions from LLMs is also related to contextual Rényi Entropy as discussed by Pimentel et al. (2023).
Pimentel et al. find that Rényi entropy with α = 0.5 can explain RTs better than Shannon entropy
(α = 1). Similarly to temperatures greater than 1, α values lower than 1 have the effect of mak-
ing the distribution more similar to a uniform distribution. We’d like to point out however that our
work and that of Pimentel et al. (2023) differ in the assumed underlying reasons for why a slightly
flattened distribution may be more suitable, and whether this change in distribution is applied when
calculating surprisal vs. when calculating entropy.

Our experimental results show that scaling probabilities can largely improve the fit to reading times
in all 12 settings (3 corpora × 4 neural LMs). Our contributions are summarized as follows: (1) We
propose temperature-scaled surprisal, where surprisal is calculated from temperature-scaled proba-
bilities. (2) We demonstrate that temperature-scaling with temperature T≈2.5 improves predictabil-
ity of human reading times of English texts compared to T=1. (3) We identify linguistic phenomena
that correlate with the benefit of temperature-scaled surprisal by analyzing residual errors from re-
gression models. (4) We relate temperature-scaled surprisal to contextual Rényi entropy.

2 PREDICTIVE POWER FOR READING TIMES

In psycholinguistics, RTs on a word are believed to correlate with its processing difficulty.
RTs can be gathered using different paradigms, including eye-tracking while reading text on a
screen (Rayner, 1998), self-paced reading (Aaronson & Scarborough, 1976; Mitchell & Green,
1978) and the Maze task (Forster et al., 2009).

The most common procedure for predicting words’ RT is first to select a set of predictor variables
thought to impact RTs v = [v(1), ..., v(d)]⊤ ∈ Rd, which include, e.g., the length of a word wt, |wt|,
the frequency of a word freq(wt). Let fϕ : Rd → R be a regression model parametrized by ϕ used
to fit these predictors for the prediction of human RTs rt: rt(wt|w<t) ∼ fϕ(v), given the previous
context w<t. The performance of fϕ is quantified by its log-likelihood, with a higher log-likelihood
indicating a better psychometric predictive power for human RTs (Frank & Bod, 2011; Fossum &
Levy, 2012).

Besides the word length |wt| and word frequency freq(wt), a word’s surprisal (i.e., its negative log-
probability in context) Hale (2001); Levy (2008) has been shown to be predictive of RTs (Demberg
& Keller, 2008; Goodkind & Bicknell, 2018; Wilcox et al., 2020; Shain et al., 2022).

3 METHODS

In this section, we delve into key aspects of information-theoretic measures in language compre-
hension. We start with surprisal, a method connecting processing difficulty to word predictability.
As word predictability is empirically estimated by LLMs, we introduce the notion of calibration
errors, metrics quantifying how good the estimation of word predictability is. Further, we lay out
temperature-scaled surprisal, and the relation between varying temperature vs. varying α in contex-
tual Rényi entropy.

3.1 SURPRISAL

Starting from Shannon (1948), the information conveyed by a word wt has been quantified as the
negative log probability of the word wt given its previous context w<t. In Surprisal Theory (Hale,
2001; Levy, 2008), this quantity is called surprisal s(wt) and proposed to be predictive of the word’s
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processing difficulty, typically quantified as its RT. Surprisal values are typically estimated from
language models p̂(wt|w<t).

s(wt) = −log2 p(wt|w<t), (1)

3.2 CALIBRATION ERROR

Definitions Let D = {(xi, yi)}Ni be a data set where xi ∈ X is an sample (i.e., context) and
yi ∈ K = [K] is a category label. Let gθ and ẑi = gθ(xi) denote a language model parametrized
by θ and the output logit vector of sample i, respectively. The predicted class label ŷi for sample i
is given by ŷi = argmaxk∈K g(xi)k and confidence for sample i is given by p̂i = maxk∈K g(xi)k.
A model is perfectly calibrated when the confidence p̂ is equal to the frequency of correctness, i.e.,
P(ŷi = yi|p̂i = p) = p holding for all p ∈ [0, 1] and any sample i. Any difference between the left
and right sides of the above equation indicates there exists a calibration error.

Expected calibration error (ECE) (Guo et al., 2017) ECE is the most popular calibration metric,
which empirically approximates the calibration error by discretizing the probability interval into a
fixed number of bins (Bm with m ∈ {1, 2, ...,M}), and measures the gaps of averaged confidence
and averaged accuracy in each bin Bm.

ECE =
1

N

M∑
m=1

|
∑
i∈Bm

p̂i −
∑
i∈Bm

1[ŷi = yi]|, (2)

where 1 is the indicator function. However, it does not necessarily measure the actual-word prob-
ability, which is the probability required for calculating surprisal in Eq. 1. It focuses only on the
top-label probability for a given sample.

Classwise-ECE (CECE) (Kumar et al., 2019; Kull et al., 2019) In comparison, CECE measures
probabilities of all classes. For each bin and every class k, it assesses the difference between the
average confidence of samples for class k and the actual proportion of class k. If assuming all classes
weigh equally, we have:

CECE =
1

NK

K∑
k=1

M∑
m=1

|
∑
i∈Bm

p̂i,k −
∑
i∈Bm

1[k = yi]|, (3)

where p̂i,k is the predicted probability of sample i for class k.

Human-likeness calibration error (HCE) We define the HCE as the Kullback-Leibler diver-
gence (KL divergence) between predicted probability p̂ from a neural LM and actual probability p∗

of human language model.
HCE = DKL(p̂||p∗). (4)

Empirically, since p∗ is not directly observable, we approximate it by the estimates of a temperature-
scaled model that best fits reading times (as discussed later). We denote the approximated HCE
using such a method as HCETS.

3.3 TEMPERATURE-SCALED SURPRISAL

Temperature scaling (Guo et al., 2017) is a widely-used method to improve model calibration. Given
the output logit vector ẑi for sample i, a single scalar T > 0 is applied to rescale ẑi before the
softmax activation:

q̂i = max
k

σSM (
ẑi
T
)(k), (5)

where q̂i is the calibrated confidence for sample i, and σSM is the softmax function. Scaling by
a scalar T does not alter the ranking; hence, the predicted label ŷi remains unchanged. As T >
1, it “softens” the probability distribution (i.e., makes the distribution more uniform), increasing
uncertainty and entropy of the probability distribution, while T < 1 peaks the distribution. The
parameter T in research on calibration is optimized by minimizing the negative log-likelihood on
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the validation set. In our experiments of fit to human RTs, we manually tune this temperature with
T > 1.

Temperature scaling has been successfully applied in several applications: In knowledge distilla-
tion (Hinton et al., 2015), temperature scaling (with T > 1) is used to “soften” the knowledge (i.e.,
probability distribution) provided by the teacher model; in text generation, temperature is used to
shape the probability distribution to ease certain aspects of the problems of top-k sampling (e.g.,
choosing an appropriate k value across varying contexts) (Ficler & Goldberg, 2017; Fan et al.,
2018). Temperature tuning inherently shifts the model’s output in the generation’s quality/diversity
spectrum (Caccia et al., 2018), with higher temperature decreasing the quality of generation while
improving its diversity. This also aligns with our consideration of a possibility that human probabil-
ity distributions might be flatter than the ones learned by language models and thus increasing the
predictive diversity of surprisal provided by LLMs could potentially yield more human-like distri-
butions.

Given Eq. 5, temperature-scaled surprisal is:

sT (wt, T ) = −log2(σSM (ẑwt/T )
(k∗)), (6)

where ẑwt
and k∗ = ywt

denote the logit vector and the actual word wt class, respectively. For given
t ∈ (0,∞), we simply denote sT (wt, T = t) as sT |T=t. A temperature T with its best performance
of final fit to RTs is denoted as T ∗.

Figure 1: Temperature-scaled sur-
prisal sT (wt, T ) with corresponding
T ∈ [1, 2.5] for two random five-
class probability distributions: pi =
[0.8, 0.05, 0.05, 0.05, 0.05] and pj =
[0.8, 0.2, 0, 0, 0]. Dashed lines show
Shannon entropy (H1). Loosely dashed
lines show Rényi entropy with α = 1/2
(H1/2).

The extent to which a word’s surprisal is affected by tem-
perature scaling depends on the distribution and thus cor-
relates with the entropy at word wt. Consider an ex-
ample of two five-class probability distributions pi =
[0.8, 0.05, 0.05, 0.05, 0.05] and pj = [0.8, 0.2, 0, 0, 0],
for which the word indicated by the first position in
the probability vector has identical surprisal in both
pi and pj . Notably, pi is more uniform and pj is
more peaked, resulting in distinct entropy characteris-
tics: H(wi|w<i) > H(wj |w<j), where the entropy de-
fined as the expectation of surprisal of current word wt

over vocabulary, H(wt|w<t) = Ew′∼p(·|w<t)
[s(w

′
)] =

−
∑

w′∈W p(w
′ |w<t) log2 p(w

′ |w<t), where W = W ∪
{EOS} denotes the set of vocabulary W with EOS to-
ken. Fig. 1 illustrates a greater increase in surprisal for
a word with a more uniform distribution than with a more
peaked distribution. This figure also anecdotally shows
that the effect of applying temperature scaling with T > 1
is similar to the effect of setting α < 1 in Rényi entropy.
We will discuss the relationship between these parameters
in more detail in the next section.

3.4 CONNECTION TO CONTEXTUAL RÉNYI
ENTROPY

While a lot of work has investigated the effect of next word entropy on reading times (Hale, 2003;
2006; Linzen & Jaeger, 2014; Angele et al., 2015; van Schijndel & Linzen, 2019; Aurnhammer &
Frank, 2019; Pimentel et al., 2023), we will here focus on contextual Rényi entropy (the entropy
of the probability distribution at the current time stamp, which is parameterized by α), as proposed
in Pimentel et al. (2023) to represent human anticipatory reading process. Pimentel et al. (2023)
find that Rényi entropy with an optimal α∗ in the range of (0, 1) (around 1/2) obtains the best
performance in reading time prediction (compared to Shannon Entropy (α = 1) or compared to
unscaled surprisal estimates).

Mathematically, Contextual Rényi entropy (Rényi, 1961) is defined as:

Hα(wt | w<t) = lim
β→α

1

1− β
log2

∑
w∈W

(p(w|w<t))
β . (7)

4



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

For given α
′ ∈ (0,∞), we simply denote Hα(wt | w<t)|α=α′ as Hα|α=α′ .

Theorem 1 (Monotonicity of sT (wt, T ) and Hα(wt | w<t)). Given any probability distribution p
with actual-word probability pwt > 1/K, where K is the number of classes, temperature-scaled
surprisal sT (wt, T ) is strictly monotonically increasing in ∆T ∈ [1,∞], Rényi entropy Hα(wt |
w<t) is strictly monotonically decreasing in ∆α ∈ [0, 1], especially,

sT |T=1 < sT |T=T∗ < lim
T→∞

sT (wt, T ) (8)

Hα|α=1 < Hα|α=1/2 < Hα|α=0, (9)
where T ∗ is the optimal T of fit to RTs in the range of ∆T .

Theorem 2 Rényi entropy with α = 0 is equivalent to temperature-scaled surprisal with T → ∞.
Hα(wt | w<t)|α=0 = lim

T→∞
sT (wt, T ). (10)

Theorem 3 For K ≥ 2, the expectation of the L1 norm between Rényi entropy with α = 1 and
temperature-scaled surprisal with T = 1 has an upper bound.

E[|sT |T=1 −Hα|α=1|] <
√

1

4
log2(K − 1) + 1 (11)

Figure 2: A comparison of aver-
aged temperature-scaled surprisal
sT |T={1,T∗,∞} and Rényi entropy
Hα|α={0,1/2,1}.

Proofs of the above theorems are shown in Appendix A.
Theorem 2 claims the equivalence of temperature-scaled
surprisal sT (wt, T ) and Rényi entropy Hα when T → ∞
and α = 0. Theorem 3, on the other side, gives an up-
per bound when T = 1 and α = 1. Intuitively, when
T ∈ (1,∞), sT can be considered as a softened version
of sT |T=1. Similarly, when α ∈ (0, 1), Hα can be con-
sidered as a softened version of Hα|α=1. Mathematically,
Theorem 1 provides the monotonicity of both functions
within their respective domains. Hypothetically, given
the above conditions, when tuning both functions with
the aim of a better fit to RTs, sT |T=T∗ and Hα|α=1/2

might be close. Empirically, Fig. 2 illustrates the rela-
tionship between averaged Rényi entropy Hα|α={0,1/2,1}
and sT |T={1,T∗,∞} on probabilities on three corpora. No-
tably, Hα|α=1/2 and sT |T=T∗ are closely aligned, espe-
cially when compared with other entropy and surprisal
data points. This empirical evidence partly verifies Theorem 2, Theorem 3 and our hypothesis.

4 EXPERIMENTAL SETUP

4.1 DATASETS

We conduct analyses on two self-paced reading corpora, the Natural Stories Corpus (Futrell et al.,
2018) and the Brown Corpus (Smith & Levy, 2013), as well as on the Dundee Corpus (Kennedy
et al., 2003) of eye-tracking measures. We follow previous work with respect to the preprocessing
steps for each corpus (Kuribayashi et al., 2022; Shain et al., 2022). Appendix C shows details about
the preprocessing steps of each corpus.

4.2 LANGUAGE MODELS

Recent observations showed that surprisal provided by LLMs with more parameters and lower per-
plexity is less predictive of self-paced reading times and eye-gaze durations (Shain et al., 2022;
Oh & Schuler, 2023); across different experiments, GPT-2 (Radford et al., 2019) surprisals were
found to predict human RTs the best. Therefore, we take four variants of pretrained GPT-2 (small,
medium, large, xl) as our language models in all experiments. Following prior work, we obtain the
surprisal for words composed of more than one subword by summing up the surprisal estimates of
the subwords.
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4.3 METRICS AND EVALUATION

We measure the predictive power of surprisal estimates from different language models, which is
denoted as the log-likelihood difference per data point between a linear mixed-effects (LME) re-
gression model with a predictor of surprisal estimates (target model) and a model without surprisal
(base model), following Goodkind & Bicknell (2018); Wilcox et al. (2020). More specifically, the
metric of delta log-likelihood is defined as:

∆llh = llh(fϕ(v
tgt))− llh(fϕ(v

base)), (12)

where vtgt is target predictor variables that include baseline predictor variables as well as predictor
variables of our interest, such as surprisal or temperature-scaled surprisal. vbase is base predic-
tor variables only including baseline predictor variables. The greater the value of ∆llh, the more
valuable the additional surprisal estimates are for predicting human reading times.

For the calibration error evaluation, we set the number of bins M to 15 for both ECE and CECE,
aligning with prior literature, such as works by Guo et al. (2017); Kumar et al. (2019); Rahimi et al.
(2020b), to ensure consistency in addressing problems where comparable probability ranges are
relevant. The calibration metrics (ECE and CECE) are evaluated separately on each of the reading
time corpus D. For simplicity, our calibration evaluation is conducted at the token level. Given
that many words have extremely low probabilities and thus are often grouped into a single bin, we
also evaluate the calibration error under the log probability binning scheme. For other descriptions
regarding the metrics and evaluation, see Appendix. G.

5 RESULTS

5.1 CALIBRATION OF LLMS

Table 1 shows ECE and CECE in log binning scheme for GPT-2 models of different sizes. LLMs
are in general well calibrated on language modeling. Besides, LLM calibration improves with
scale. Larger LMs are more calibrated. This conclusion is consistent with calibration investigation
evaluated in BIG-bench multiple-choice tasks in Srivastava et al. (2023) as well as in several tasks
including language modelling in Zhu et al. (2023).

5.2 MAIN RESULT: TEMPERATURE-SCALED SURPRISAL IMPROVES HUMAN READING TIME
PREDICTION

We evaluate the predictive power of temperature-scaled surprisal. We scale T in the range of [1, 10]
and measure ∆llh, see Fig 3. First, a confirmatory observation regarding the relationship between
model size and predictive power: At T = 1, GPT-2 small exhibits the best predictive performance,
and as the model size increases, ∆llh declines, which is consistent with previous studies (Shain
et al., 2022; Oh et al., 2022; Oh & Schuler, 2023). Secondly, scaling the surprisal with T > 1
can significantly improve the predictive power across all corpora and LLMs. With optimal
T ∗, on Dundee, Natural Stories, and Brown, the ∆llh improvement is 23-43%, 60-89%, and 14-
24%, respectively. We also observe a consistent pattern: when increasing T , ∆llh first rises then
declines; the optimal value T ∗ falls within the range of (2, 3) (around 2.5) across all models
and corpora in our setting. At T ∗, even though the impact of model size on final performance is
not fully recovered, the disparity diminishes. Smaller models continue to outperform, but the extent
of model sizes influencing performance is reduced.

Finally, larger LMs typically have a larger human-likeness calibration error, shown in Table 1.
Larger LMs also require a higher value of T to reach their best performance and have a greater
increase by temperature-scaled surprisal.

5.3 CALIBRATION ERROR VS. RT PREDICTION ERROR

Table 2 shows ECE and CECE in both equally-spaced and log binning schemes when T equals 1
and T ∗ on three corpora. Probability distribution shaped by an optimal T ∗ learnt for fit to human
RTs drastically hurts the model calibration regarding these two metrics. ECE and CECE with T ∗

are more than 10 times worse than values with T = 1. This discrepancy can be attributed to the
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Table 1: Optimal T ∗, ∆llh improvement (%)
(∆llh+ = (∆llh(T = T ∗) − ∆llh(T =
1))/∆llh(T = 1)), and calibration errors
(HCETS, % ECE and % CECE) for GPT2s
on Dundee, Natural Stories (NS) and Brown.
∆llh values are multiplied by 1000. ECE and
CECE are evaluated on log binning scheme.

T ∗ ∆llh+HCETS ↓ ECElog ↓CECElog ↓

Dundee

s 2.75 22.5 3.11 1.59 4.07E-03
m 3.0 42.0 3.61 1.74 4.13E-03
l 3.0 39.9 3.82 1.55 3.99E-03
xl 3.25 43.2 4.13 1.29 3.84E-03

NS

s 2.5 60.3 3.31 1.91 1.53E-02
m 2.5 63.0 3.50 1.80 1.50E-02
l 2.5 82.6 3.97 1.70 1.40E-02
xl 2.5 89.0 4.07 1.56 1.35E-02

Brown

s 2.5 13.7 3.10 1.69 1.53E-02
m 2.5 16.2 3.29 2.27 1.51E-02
l 2.75 21.8 4.18 1.58 1.44E-02
xl 2.75 24.4 4.29 1.56 1.38E-02

Table 2: Expected calibration errors (% ECE
and % CECE) for GPT-2 small on Dundee,
Natural Stories (NS) and Brown. Results are
all evaluated on the equally-spaced binning
scheme and log binning scheme.

T ECE↓ ECElog ↓ CECE↓ CECElog ↓

Dundee 1 1.43 1.59 4.05E-03 4.07E-03
T ∗ 28.68 28.68 7.30E-03 9.88E-03

NS 1 2.48 1.91 1.83E-02 1.53E-02
T ∗ 35.85 35.85 3.16E-02 3.97E-02

Brown 1 1.82 1.69 1.67E-02 1.53E-02
T ∗ 33.16 33.16 2.75E-02 3.34E-02

Figure 3: Relationship between ∆llh of GPT-2 models and corresponding temperature. T is scaled
from 1.0 to 10.

different minima of deviations in LM human RT prediction and expected calibration error. The for-
mer is minimized towards words where LMs surprisal significantly deviates from human processing
difficulty, while the latter is typically minimized with respect to the negative log-likelihood on a
hold-out dataset (Guo et al., 2017; Rahimi et al., 2020a).

6 LINGUISTIC ANALYSIS

Next we want to gain insight into what words benefit the most from temperature scaling. To this
end, we analyze residuals from fitting LME regression models, identifying data points where scal-
ing the temperature parameter notably enhances the fit of human RTs. Specifically, we quantify
the improvement in fit by comparing the mean squared error (MSE) before and after adjusting the
temperature to its optimal value as follows:

∆MSE(F ) = MSET=1(xF )−MSET=T∗(xF ), (13)

where MSET=T ′ (xF ) is the MSE calculated by all the data xF under the linguistic factor F . The
difference ∆MSE(F ) thus quantifies the impact of scaling relative to the linguistic factor F . A
higher ∆MSE(F ) signifies a greater influence of temperature-scaled surprisal of factor F . To ensure
sufficient data in each subset, we only consider subsets including more than 1% of the data in each
corpus.

6.1 INFLUENCE OF LOW PROBABILITY WORDS

Given that temperature scaling enhances human likeness by shaping the probability distribution,
it is natural to think about investigating whether there exists an inherent relationship between the
distribution of probability and ∆MSE. Specifically, one might ask questions like if samples with low
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probability gain more from temperature scaling or the other way around. We find that high surprisal
words benefit more from temperature scaling than low surprisal words, across all corpora, see Fig 9
in Appendix H.

6.2 INFLUENCE OF WORD TYPES

We investigate the effects of word-level properties, which include:

Named entities. Research has substantiated that named entities (NEs) require increased reading
time for humans since during the processing of such words (Damasio et al., 2004; Wang et al.,
2013). Oh & Schuler (2023) showed that NEs are among the top two significant factors contributing
to the discrepancies of large and small LMs across all corpus-by-LM combinations. Therefore, we
were wondering whether the effect of temperature-scaling might be driven by NE. To test this, we
automatically tagged NEs using a BERT base model (Devlin et al., 2019) fined-tuned for NER2.

Part-of-speech tags. Similarly, previous research has argued that the poor fit of large LMs is primar-
ily due to assigning too low surprisal estimates to open-class words like nouns and adjectives (Oh
& Schuler, 2023). We POS-tagged the corpora using the NLTK toolkit (Bird et al., 2009) with the
default Penn Treebank Tag set. In the following, we mainly focus on the four classes of open-class
tags, as well as a subset of the whole closed-class tags (CC).

Named entities POS tags
GPT2 Avg. NE non-NE NN ADJ VERB ADV CC

Dundee

s 26.3 87.0 23.4 33.8 100.5 -2.0 2.6 10.4
m 41.7 152.3 36.4 57.0 123.3 7.8 27.6 16.4
l 40.1 158.2 34.5 56.3 126.5 4.8 19.2 14.0
xl 41.4 168.2 35.4 60.0 125.5 6.9 19.7 13.5

NS

s 105.7 186.8 104.6 148.7 152.5 122.0 49.0 77.1
m 108.5 155.9 107.9 145.3 152.0 130.1 60.8 80.8
l 127.7 151.6 127.3 175.6 158.6 152.9 74.8 94.3
xl 123.3 141.8 123.1 163.6 145.4 161.2 81.5 89.0

Brown

s 37.2 266.0 28.1 54.3 -65.2 138.1 32.1 5.9
m 41.4 257.6 32.8 71.4 -60.6 137.5 38.6 3.5
l 42.6 265.3 51.1 69.9 -110.3 160.8 17.2 24.7
xl 54.8 282.3 45.8 90.5 -90.2 151.3 32.2 20.0

Figure 4: ∆MSE measurement on word-level properties of
GPT-2 models on Dundee, Natural Stories (NS) and Brown.
Top-3 on each corpus-by-LM are underlined.

Results. The result, as shown in
Table 6.2, shows primary factors re-
sponsible for the benefit of using
sT (wt, T ) for each corpus-by-LM
combination. The top three influen-
tial subsets for each corpus are under-
lined. Among all datasets and mod-
els, named entities perform to be
the most beneficial word-level at-
tribute. In contrast, closed-class
words profit least from tempera-
ture scaling. Performance trends
are consistent across different model
variants on the same corpus.

We also measured empirically how often temperature scaling increased vs. decreased the surprisal
estimate of a word. Our results show that for ca. 90% of words, surprisal estimates are increased
through temperature scaling across all word classes. For the subset of named entities, a slightly
smaller percentage exhibits increased surprisal estimates. For a full analysis across different cor-
pora and models, see Table 3 in Appendix B. A further analysis reveals that the primary benefit of
temperature-scaled surprisal arises from the increase of low surprisal values, particularly noticeable
in the case of named entities, see Table 4 in Appendix B.

6.3 INFLUENCE OF MULTIPLE-TOKEN WORDS

A fact that is often ignored (but see Nair & Resnik, 2023) is that modern LLMs use subword tok-
enization. This means that long words may consist of several tokens. In this case, the probability
of the complete word is calculated by multiplying the probabilities of the subword tokens (and the
word’s surprisal is correspondingly calculated by adding the surprisals of the subwords). While this
may often not matter, whether a word is tokenized into a single subword or several subwords can
make a remarkable difference when applying temperature scaling: imagine a long / difficult word
which has a low probability (and correspondingly a high surprisal). If this word were to be repre-
sented as a single subword token, temperature scaling might have the effect that the probability of
this word gets increased during temperature scaling, and its surprisal estimate is hence decreased at
T > 1.

If, on the other hand, the same word were to be composed of two subword tokens based on the LM’s
subword vocabulary, one or both of the subword tokens can be expected to have a higher probability

2Link: https://huggingface.co/dslim/bert-base-NER

8



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

(than a hypothetical single subword token), and it is possible that during temperature scaling, the
probabilities of the subword tokens would each be decreased at T > 1, such that the sum of the
surprisals of the subword tokens would be much higher, compared to the word’s surprisal estimate
at T = 1.

Figure 5: Relationship between ∆llh of
GPT-2 s on three corpora and corre-
sponding temperature. T is scaled from
1.0 to 10. Dashed vs. full lines de-
note only scaling tokens in single-token
words and scaling tokens in both single-
token and multiple-token words, respec-
tively.

To summarize, whether the surprisal of a certain word
would increase or decrease after temperature scaling
could depend on whether that word happens to be in-
cluded in the subword token vocabulary or not. Distri-
butions of surprisal for single vs. multiple token words
before and after temperature scaling are provided in Fig-
ure 8 in Appendix H. In order to quantify to what extent
subword tokenization affects surprisal estimates, we con-
ducted several analyses.

Fig. 5 shows ∆llh under various conditions: scaling
all words (consistent with experiments in Section 5.2)
vs. taking into the analysis only the subset of single-
token words. The comparison between the dashed and
full curves highlights that the benefit of temperature-
scaled surprisal comes primarily from the scaling of
multiple-token words.

Next, it is interesting to consider for what percentage of
multiple-token words temperature-scaling increases the
surprisal. We find that the ratio of surprisal increase is higher for multi-token words than across
single-token words by ca. 6% on Dundee and Brown, see Table 7 in Appendix H for more details.

7 DISCUSSION

We found that temperature scaling is particularly effective for fitting RTs of named entities and
open-class words; our later analysis on subword tokenization showed that this effect might be driven
especially by words that are composed of several subword tokens. Of course open class words
and named entities tend to be more complex and less likely to be contained in the vocabulary as
single-word tokens, hence the observed correlation is to be expected.

So what does all of this mean for surprisal estimates from LLMs and reading time prediction?
Firstly, it is possible that indeed the effect is driven by humans failing to accurately estimate the
probability of rare words, because they do not reach sufficient language experience or because hu-
man language models do not track these probabilities well, in line with Oh & Schuler (2023); in this
case, temperature-scaling rare words to which the LLM assigns a high probability (and hence a low
surprisal) would be a good strategy to counteract the discrepancy between humans and LLMs.

Secondly, it is possible that the beneficial effect of temperature scaling is an artifact of subword
tokenization, and that it would disappear if all words were composed of only a single subword
token. In order to test this hypothesis, one would have to re-train a GPT-2 model from scratch using
a vocabulary that at least includes all words that are contained in the reading time corpora, and then
re-running the analysis to check whether a beneficial effect of temperature scaling can still be found.

Finally, it is also possible that the splitting of a word into subwords coincides with the reader fixating
a word several times, and that these added fixations lead to an overestimate in RTs compared to the
actual surprisal experienced by a human reader. Future work could investigate this hypothesis by
analysing RTs on subwords instead of aggregated words. This would require re-calculating reading
measures, and comes at the caveat that subword tokens are not cognitively plausible units.

8 CONCLUSION

This paper studies the prediction of human RTs from the perspective of probability distribution.
We make the following contributions: (1) We demonstrate that the prediction of RTs can be sig-
nificantly improved via temperature scaling of LLM probability estimates. (2) We establish that

9
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temperature-scaled surprisal is related to Rényi entropy. (3) We demonstrate that the primary ben-
efit of temperature-scaled surprisal is driven by words composed of several subword tokens. These
words also tend to be rarer / long open-class words. Future work should investigate the interaction
of subword tokenization and temperature scaling, as well as the issue of tokenization in the analysis
of eye-tracking data.
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69, Montréal, Canada, June 2012. Association for Computational Linguistics. URL https:
//aclanthology.org/W12-1706.

Stefan L Frank and Rens Bod. Insensitivity of the human sentence-processing sys-
tem to hierarchical structure. Psychological science, 22(6):829–834, 2011. URL
https://journals.sagepub.com/doi/full/10.1177/0956797611409589?
casa_token=-TqMYhYCHwgAAAAA%3AmtY-SRlgH-s67iMCuS_
5L4EWau2LY221Sj2HFqrh-mFm0MfHH79EgtkrDqGSVpl-sPA4RNLEAWPq.

Richard Futrell, Edward Gibson, Harry J Tily, Idan Blank, Anastasia Vishnevetsky, Steven Pi-
antadosi, and Evelina Fedorenko. The natural stories corpus. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018), 2018. URL
https://aclanthology.org/L18-1012.pdf.

Adam Goodkind and Klinton Bicknell. Predictive power of word surprisal for reading times is a
linear function of language model quality. In Asad Sayeed, Cassandra Jacobs, Tal Linzen, and
Marten van Schijndel (eds.), Proceedings of the 8th Workshop on Cognitive Modeling and Compu-
tational Linguistics (CMCL 2018), pp. 10–18, Salt Lake City, Utah, January 2018. Association for
Computational Linguistics. doi: 10.18653/v1/W18-0102. URL https://aclanthology.
org/W18-0102.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017. URL
https://proceedings.mlr.press/v70/guo17a/guo17a.pdf.

John Hale. A probabilistic earley parser as a psycholinguistic model. In Second meeting of the
north american chapter of the association for computational linguistics, 2001. URL https:
//aclanthology.org/N01-1021.pdf.

John Hale. The information conveyed by words in sentences. Journal of psycholinguistic re-
search, 32:101–123, 2003. URL https://link.springer.com/article/10.1023/
A:1022492123056.

John Hale. Uncertainty about the rest of the sentence. Cognitive science, 30(4):
643–672, 2006. URL https://onlinelibrary.wiley.com/doi/abs/10.1207/
s15516709cog0000_64.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model
robustness and uncertainty. In International conference on machine learning, pp. 2712–
2721. PMLR, 2019. URL https://proceedings.mlr.press/v97/hendrycks19a/
hendrycks19a.pdf.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015. URL https://arxiv.org/pdf/1503.02531.pdf.

Alan Kennedy, Robin Hill, and Joël Pynte. The dundee corpus. In Proceedings of the 12th European
Conference on Eye Movement, 2003.

Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, and
Peter Flach. Beyond temperature scaling: Obtaining well-calibrated multi-class prob-
abilities with dirichlet calibration. Advances in neural information processing sys-
tems, 32, 2019. URL https://proceedings.neurips.cc/paper/2019/file/
8ca01ea920679a0fe3728441494041b9-Paper.pdf.

11

https://aclanthology.org/W17-4912
https://aclanthology.org/W17-4912
https://link.springer.com/article/10.3758/brm.41.1.163
https://link.springer.com/article/10.3758/brm.41.1.163
https://aclanthology.org/W12-1706
https://aclanthology.org/W12-1706
https://journals.sagepub.com/doi/full/10.1177/0956797611409589?casa_token=-TqMYhYCHwgAAAAA%3AmtY-SRlgH-s67iMCuS_5L4EWau2LY221Sj2HFqrh-mFm0MfHH79EgtkrDqGSVpl-sPA4RNLEAWPq
https://journals.sagepub.com/doi/full/10.1177/0956797611409589?casa_token=-TqMYhYCHwgAAAAA%3AmtY-SRlgH-s67iMCuS_5L4EWau2LY221Sj2HFqrh-mFm0MfHH79EgtkrDqGSVpl-sPA4RNLEAWPq
https://journals.sagepub.com/doi/full/10.1177/0956797611409589?casa_token=-TqMYhYCHwgAAAAA%3AmtY-SRlgH-s67iMCuS_5L4EWau2LY221Sj2HFqrh-mFm0MfHH79EgtkrDqGSVpl-sPA4RNLEAWPq
https://aclanthology.org/L18-1012.pdf
https://aclanthology.org/W18-0102
https://aclanthology.org/W18-0102
https://proceedings.mlr.press/v70/guo17a/guo17a.pdf
https://aclanthology.org/N01-1021.pdf
https://aclanthology.org/N01-1021.pdf
https://link.springer.com/article/10.1023/A:1022492123056
https://link.springer.com/article/10.1023/A:1022492123056
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog0000_64
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog0000_64
https://proceedings.mlr.press/v97/hendrycks19a/hendrycks19a.pdf
https://proceedings.mlr.press/v97/hendrycks19a/hendrycks19a.pdf
https://arxiv.org/pdf/1503.02531.pdf
https://proceedings.neurips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf


To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

Ananya Kumar, Percy S Liang, and Tengyu Ma. Verified uncertainty calibration. Advances in Neural
Information Processing Systems, 32, 2019. URL https://proceedings.neurips.cc/
paper/2019/file/f8c0c968632845cd133308b1a494967f-Paper.pdf.

Sawan Kumar. Answer-level calibration for free-form multiple choice question answering. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
665–679, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/
v1/2022.acl-long.49. URL https://aclanthology.org/2022.acl-long.49.

Tatsuki Kuribayashi, Yohei Oseki, Ana Brassard, and Kentaro Inui. Context limitations make
neural language models more human-like. In Yoav Goldberg, Zornitsa Kozareva, and Yue
Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 10421–10436, Abu Dhabi, United Arab Emirates, December 2022. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.712. URL https:
//aclanthology.org/2022.emnlp-main.712.

Roger Levy. Expectation-based syntactic comprehension. Cognition, 106(3):
1126–1177, 2008. URL https://www.sciencedirect.com/science/
article/pii/S0010027707001436?casa_token=YFQzL2RFTqkAAAAA:
VQyrXnoLZqHqIouZA0Ui7DQgzfC9DAPECT6McgAk8LUmyMgHXpHmHZZIdu5grZmdG0HDMYtP1g.

Tal Linzen and T Florian Jaeger. Investigating the role of entropy in sentence processing. In Pro-
ceedings of the fifth workshop on cognitive modeling and computational linguistics, pp. 10–18,
2014. URL https://aclanthology.org/W14-2002.pdf.

Danny Merkx and Stefan L. Frank. Human sentence processing: Recurrence or attention? In
Emmanuele Chersoni, Nora Hollenstein, Cassandra Jacobs, Yohei Oseki, Laurent Prévot, and
Enrico Santus (eds.), Proceedings of the Workshop on Cognitive Modeling and Computational
Linguistics, pp. 12–22, Online, June 2021. Association for Computational Linguistics. doi: 10.
18653/v1/2021.cmcl-1.2. URL https://aclanthology.org/2021.cmcl-1.2.

Don C Mitchell and David W Green. The effects of context and content on im-
mediate processing in reading. The quarterly journal of experimental psychol-
ogy, 30(4):609–636, 1978. URL https://www.tandfonline.com/doi/
abs/10.1080/14640747808400689?casa_token=OL71aT-qSEIAAAAA:
hfVjpi1R6FEKL77GAR_Tz-tbM1utlrnCGEDXN-SzBzWMvAQ7HByi_
6DVQlMfYw-ssAfNdvkVNthbdQ.

Sathvik Nair and Philip Resnik. Words, subwords, and morphemes: What really matters in
the surprisal-reading time relationship? In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 11251–
11260, Singapore, December 2023. Association for Computational Linguistics. URL https:
//aclanthology.org/2023.findings-emnlp.752.

Byung-Doh Oh and William Schuler. Why does surprisal from larger transformer-based lan-
guage models provide a poorer fit to human reading times? Transactions of the Associ-
ation for Computational Linguistics, 11:336–350, 2023. doi: 10.1162/tacl a 00548. URL
https://aclanthology.org/2023.tacl-1.20.

Byung-Doh Oh, Christian Clark, and William Schuler. Comparison of structural parsers and
neural language models as surprisal estimators. Frontiers in Artificial Intelligence, 5:777963,
2022. URL https://www.frontiersin.org/articles/10.3389/frai.2022.
777963/full.

Tiago Pimentel, Clara Meister, Ethan G. Wilcox, Roger Levy, and Ryan Cotterell. On the effect
of anticipation on reading times. Transactions of the Association for Computational Linguistics,
2023. URL https://arxiv.org/abs/2211.14301.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Lan-
guage models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. URL https:
//insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf.

12

https://proceedings.neurips.cc/paper/2019/file/f8c0c968632845cd133308b1a494967f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f8c0c968632845cd133308b1a494967f-Paper.pdf
https://aclanthology.org/2022.acl-long.49
https://aclanthology.org/2022.emnlp-main.712
https://aclanthology.org/2022.emnlp-main.712
https://www.sciencedirect.com/science/article/pii/S0010027707001436?casa_token=YFQzL2RFTqkAAAAA:VQyrXnoLZqHqIouZA0Ui7DQgzfC9DAPECT6McgAk8LUmyMgHXpHmHZZIdu5grZmdG0HDMYtP1g
https://www.sciencedirect.com/science/article/pii/S0010027707001436?casa_token=YFQzL2RFTqkAAAAA:VQyrXnoLZqHqIouZA0Ui7DQgzfC9DAPECT6McgAk8LUmyMgHXpHmHZZIdu5grZmdG0HDMYtP1g
https://www.sciencedirect.com/science/article/pii/S0010027707001436?casa_token=YFQzL2RFTqkAAAAA:VQyrXnoLZqHqIouZA0Ui7DQgzfC9DAPECT6McgAk8LUmyMgHXpHmHZZIdu5grZmdG0HDMYtP1g
https://aclanthology.org/W14-2002.pdf
https://aclanthology.org/2021.cmcl-1.2
https://www.tandfonline.com/doi/abs/10.1080/14640747808400689?casa_token=OL71aT-qSEIAAAAA:hfVjpi1R6FEKL77GAR_Tz-tbM1utlrnCGEDXN-SzBzWMvAQ7HByi_6DVQlMfYw-ssAfNdvkVNthbdQ
https://www.tandfonline.com/doi/abs/10.1080/14640747808400689?casa_token=OL71aT-qSEIAAAAA:hfVjpi1R6FEKL77GAR_Tz-tbM1utlrnCGEDXN-SzBzWMvAQ7HByi_6DVQlMfYw-ssAfNdvkVNthbdQ
https://www.tandfonline.com/doi/abs/10.1080/14640747808400689?casa_token=OL71aT-qSEIAAAAA:hfVjpi1R6FEKL77GAR_Tz-tbM1utlrnCGEDXN-SzBzWMvAQ7HByi_6DVQlMfYw-ssAfNdvkVNthbdQ
https://www.tandfonline.com/doi/abs/10.1080/14640747808400689?casa_token=OL71aT-qSEIAAAAA:hfVjpi1R6FEKL77GAR_Tz-tbM1utlrnCGEDXN-SzBzWMvAQ7HByi_6DVQlMfYw-ssAfNdvkVNthbdQ
https://aclanthology.org/2023.findings-emnlp.752
https://aclanthology.org/2023.findings-emnlp.752
https://aclanthology.org/2023.tacl-1.20
https://www.frontiersin.org/articles/10.3389/frai.2022.777963/full
https://www.frontiersin.org/articles/10.3389/frai.2022.777963/full
https://arxiv.org/abs/2211.14301
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf


To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

Amir Rahimi, Kartik Gupta, Thalaiyasingam Ajanthan, Thomas Mensink, Cristian Smin-
chisescu, and Richard Hartley. Post-hoc calibration of neural networks. arXiv
preprint arXiv:2006.12807, 2, 2020a. URL https://www.researchgate.net/
profile/Thalaiyasingam-Ajanthan/publication/342408476_Post-hoc_
Calibration_of_Neural_Networks/links/5ef95f0fa6fdcc4ca43a1b2e/
Post-hoc-Calibration-of-Neural-Networks.pdf.

Amir Rahimi, Amirreza Shaban, Ching-An Cheng, Richard Hartley, and Byron
Boots. Intra order-preserving functions for calibration of multi-class neural net-
works. Advances in Neural Information Processing Systems, 33:13456–13467,
2020b. URL https://proceedings.neurips.cc/paper/2020/file/
9bc99c590be3511b8d53741684ef574c-Paper.pdf.

Keith Rayner. Eye movements in reading and information processing: 20 years of research.
Psychological bulletin, 124(3):372, 1998. URL https://psycnet.apa.org/record/
1998-11174-004.

David Reeb and Michael M Wolf. Tight bound on relative entropy by entropy difference. IEEE
Transactions on Information Theory, 61(3):1458–1473, 2015. URL https://ieeexplore.
ieee.org/abstract/document/7001656?casa_token=OcXEuthJRWkAAAAA:
qWEDYzmkI4mma7ETdqNOsu0fG9dDrOYypmNebZMvcPRZywigOGkNkYaDD1aaT9yH920tgJTEplv_.
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imitation game: Quantifying and extrapolating the capabilities of language models. Transactions
on Machine Learning Research, 2023. URL https://arxiv.org/abs/2206.04615.

Marten van Schijndel and Tal Linzen. Can entropy explain successor surprisal effects in reading?
In Gaja Jarosz, Max Nelson, Brendan O’Connor, and Joe Pater (eds.), Proceedings of the Society
for Computation in Linguistics (SCiL) 2019, pp. 1–7, 2019. doi: 10.7275/qtbb-9d05. URL
https://aclanthology.org/W19-0101.

Lin Wang, Zude Zhu, Marcel Bastiaansen, Peter Hagoort, and Yufang Yang. Recog-
nizing the emotional valence of names: An erp study. Brain and Language, 125
(1):118–127, 2013. URL https://www.sciencedirect.com/science/
article/pii/S0093934X13000229?casa_token=gMuI4AO-9ewAAAAA:

13

https://www.researchgate.net/profile/Thalaiyasingam-Ajanthan/publication/342408476_Post-hoc_Calibration_of_Neural_Networks/links/5ef95f0fa6fdcc4ca43a1b2e/Post-hoc-Calibration-of-Neural-Networks.pdf
https://www.researchgate.net/profile/Thalaiyasingam-Ajanthan/publication/342408476_Post-hoc_Calibration_of_Neural_Networks/links/5ef95f0fa6fdcc4ca43a1b2e/Post-hoc-Calibration-of-Neural-Networks.pdf
https://www.researchgate.net/profile/Thalaiyasingam-Ajanthan/publication/342408476_Post-hoc_Calibration_of_Neural_Networks/links/5ef95f0fa6fdcc4ca43a1b2e/Post-hoc-Calibration-of-Neural-Networks.pdf
https://www.researchgate.net/profile/Thalaiyasingam-Ajanthan/publication/342408476_Post-hoc_Calibration_of_Neural_Networks/links/5ef95f0fa6fdcc4ca43a1b2e/Post-hoc-Calibration-of-Neural-Networks.pdf
https://proceedings.neurips.cc/paper/2020/file/9bc99c590be3511b8d53741684ef574c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9bc99c590be3511b8d53741684ef574c-Paper.pdf
https://psycnet.apa.org/record/1998-11174-004
https://psycnet.apa.org/record/1998-11174-004
https://ieeexplore.ieee.org/abstract/document/7001656?casa_token=OcXEuthJRWkAAAAA:qWEDYzmkI4mma7ETdqNOsu0fG9dDrOYypmNebZMvcPRZywigOGkNkYaDD1aaT9yH920tgJTEplv_
https://ieeexplore.ieee.org/abstract/document/7001656?casa_token=OcXEuthJRWkAAAAA:qWEDYzmkI4mma7ETdqNOsu0fG9dDrOYypmNebZMvcPRZywigOGkNkYaDD1aaT9yH920tgJTEplv_
https://ieeexplore.ieee.org/abstract/document/7001656?casa_token=OcXEuthJRWkAAAAA:qWEDYzmkI4mma7ETdqNOsu0fG9dDrOYypmNebZMvcPRZywigOGkNkYaDD1aaT9yH920tgJTEplv_
https://static.renyi.hu/renyi_cikkek/1961_on_measures_of_entropy_and_information.pdf
https://static.renyi.hu/renyi_cikkek/1961_on_measures_of_entropy_and_information.pdf
https://psyarxiv.com/4hyna/
https://psyarxiv.com/4hyna/
https://ieeexplore.ieee.org/abstract/document/6773024?casa_token=wOUk3OSa4pAAAAAA:aJjxiYCpWL_jQPt52e5hktJp3bCmZ9e00MKiA3-KHjq7GyQuTrx8s1EKQfGt4xdtAVFjQFIUZ87S
https://ieeexplore.ieee.org/abstract/document/6773024?casa_token=wOUk3OSa4pAAAAAA:aJjxiYCpWL_jQPt52e5hktJp3bCmZ9e00MKiA3-KHjq7GyQuTrx8s1EKQfGt4xdtAVFjQFIUZ87S
https://ieeexplore.ieee.org/abstract/document/6773024?casa_token=wOUk3OSa4pAAAAAA:aJjxiYCpWL_jQPt52e5hktJp3bCmZ9e00MKiA3-KHjq7GyQuTrx8s1EKQfGt4xdtAVFjQFIUZ87S
https://aclanthology.org/2022.findings-emnlp.204
https://aclanthology.org/2022.findings-emnlp.204
https://www.sciencedirect.com/science/article/pii/S0010027713000413
https://www.sciencedirect.com/science/article/pii/S0010027713000413
https://arxiv.org/abs/2206.04615
https://aclanthology.org/W19-0101
https://www.sciencedirect.com/science/article/pii/S0093934X13000229?casa_token=gMuI4AO-9ewAAAAA:gf74S5ZHqD83XJy-GxZ_z0LpRZtOFPhI9yEAkoUDatoM6VwshPWB_Wrw5FzYUH27LW607Coszw
https://www.sciencedirect.com/science/article/pii/S0093934X13000229?casa_token=gMuI4AO-9ewAAAAA:gf74S5ZHqD83XJy-GxZ_z0LpRZtOFPhI9yEAkoUDatoM6VwshPWB_Wrw5FzYUH27LW607Coszw
https://www.sciencedirect.com/science/article/pii/S0093934X13000229?casa_token=gMuI4AO-9ewAAAAA:gf74S5ZHqD83XJy-GxZ_z0LpRZtOFPhI9yEAkoUDatoM6VwshPWB_Wrw5FzYUH27LW607Coszw
https://www.sciencedirect.com/science/article/pii/S0093934X13000229?casa_token=gMuI4AO-9ewAAAAA:gf74S5ZHqD83XJy-GxZ_z0LpRZtOFPhI9yEAkoUDatoM6VwshPWB_Wrw5FzYUH27LW607Coszw


To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

gf74S5ZHqD83XJy-GxZ_z0LpRZtOFPhI9yEAkoUDatoM6VwshPWB_
Wrw5FzYUH27LW607Coszw.

Ethan Gotlieb Wilcox, Jon Gauthier, Jennifer Hu, Peng Qian, and Roger P. Levy. On the predictive
power of neural language models for human real-time comprehension behavior. In Proceedings of
the 42nd Annual Meeting of the Cognitive Science Society, pp. 1707–1713, 2020. URL https:
//arxiv.org/abs/2006.01912.

Ethan Gotlieb Wilcox, Tiago Pimentel, Clara Meister, Ryan Cotterell, and Roger P Levy. Testing the
predictions of surprisal theory in 11 languages. Transactions of the Association for Computational
Linguistics, 2023. URL https://arxiv.org/abs/2307.03667.

Chiwei Zhu, Benfeng Xu, Quan Wang, Yongdong Zhang, and Zhendong Mao. On the calibration
of large language models and alignment. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 9778–9795, Sin-
gapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-emnlp.654. URL https://aclanthology.org/2023.findings-emnlp.
654.

14

https://www.sciencedirect.com/science/article/pii/S0093934X13000229?casa_token=gMuI4AO-9ewAAAAA:gf74S5ZHqD83XJy-GxZ_z0LpRZtOFPhI9yEAkoUDatoM6VwshPWB_Wrw5FzYUH27LW607Coszw
https://www.sciencedirect.com/science/article/pii/S0093934X13000229?casa_token=gMuI4AO-9ewAAAAA:gf74S5ZHqD83XJy-GxZ_z0LpRZtOFPhI9yEAkoUDatoM6VwshPWB_Wrw5FzYUH27LW607Coszw
https://www.sciencedirect.com/science/article/pii/S0093934X13000229?casa_token=gMuI4AO-9ewAAAAA:gf74S5ZHqD83XJy-GxZ_z0LpRZtOFPhI9yEAkoUDatoM6VwshPWB_Wrw5FzYUH27LW607Coszw
https://www.sciencedirect.com/science/article/pii/S0093934X13000229?casa_token=gMuI4AO-9ewAAAAA:gf74S5ZHqD83XJy-GxZ_z0LpRZtOFPhI9yEAkoUDatoM6VwshPWB_Wrw5FzYUH27LW607Coszw
https://arxiv.org/abs/2006.01912
https://arxiv.org/abs/2006.01912
https://arxiv.org/abs/2307.03667
https://aclanthology.org/2023.findings-emnlp.654
https://aclanthology.org/2023.findings-emnlp.654


To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

A PROOF OF THEOREMS 1, 2 AND 3

Theorem 1 (Monotonicity of sT (wt, T ) and Hα(wt | w<t)). Given any probability distribution p
with actual-word probability pwt

> 1/K, where K is the number of classes, temperature-scaled
surprisal sT (wt, T ) is strictly monotonically increasing in ∆T ∈ [1,∞], Rényi entropy Hα(wt |
w<t) is strictly monotonically decreasing in ∆α ∈ [0, 1], especially,

sT |T=1 < sT |T=T∗ < lim
T→∞

sT (wt, T ) (14)

Hα|α=1 < Hα|α=1/2 < Hα|α=0, (15)

where T ∗ is the optimal T in the range of ∆T .

Proof. Eq. equation 8 can be easily verified by considering the monotonicity of temperature-scaled
softmax output σSM (ẑwt

/T ). The second part of Eq. equation 9 can be rewritten as:

Hα|α=1/2 = 2 log2
∑
w∈W

√
p(w|w<t) (16)

< 2 log2

√
K

∑
w∈W

p(w|w<t) (17)

= − log2(1/K) = Hα|α=0, (18)

where for the step from Eq. equation 16 to Eq. equation 17 we use AM-QM inequality and K is the
number of classes in tokenizer. The first part of Eq. equation 9 can be rewritten as:

Hα|α=1/2 = 2 log2
∑
w∈W

√
p(w|w<t) (19)

> 2 log2

√√√√ ∏
w∈W

(
1

p(w|w<t)
)p(w|w<t) (20)

=
∑
w∈W

p(w|w<t) log2 p(w|w<t) = Hα|α=1, (21)

where from Eq. equation 19 to Eq. equation 20 we use AM-GM inequality.

Theorem 2 Rényi entropy with α = 0 is equivalent to temperature-scaled surprisal with T → ∞.

Hα(wt | w<t)|α=0 = lim
T→∞

sT (wt, T ). (22)

Proof. By plugging in α = 0, Contextual Rényi entropy recovers to be the entropy that readers
concentrate on the count of potential words with nonzero probabilities, which is defined in Eq.
(5) in Pimentel et al. (2023). As T → ∞, temperature-scaled surprisal converges to the surprisal
induced by random guessing. Given the assumtion that p(w|w<t) > 0 for each word w ∈ W , LHS
becomes:

LHS = −log2(1/K), (23)

where K is the number of classes. As T → ∞, RHS becomes:

RHS = − lim
T→∞

log2
ezwt/T∑

w∈W ezw/T
(24)

= −log2(1/K) (25)

Theorem 3 For K ≥ 2, the expectation of the L1 norm between Rényi entropy with α = 1 and
temperature-scaled surprisal with T = 1 has an upper bound.

E[|sT |T=1 −Hα|α=1|] <
√

1

4
log2(K − 1) + 1 (26)
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Proof. With Jensen’s inequality, we have:
E[|sT |T=1 −Hα|α=1|] (27)

≤
√

E[(sT |T=1 −Hα|α=1)2] (28)

=

√
E[(− log2 pwt

−
∑
w∈W

p(w)(− log2 p(w)))
2] (29)

=
√

Var[sT |T=1] (30)

<

√
1

4
log2(K − 1) + 1, (31)

where Var[·] denotes the variance. The last inequality is shown by Lemma 4, completing the proof
of this theorem.

Lemma 4 (Maximum variance of the surprisal). (See Theorem 8 and Lemma 15 in (Reeb & Wolf,
2015)). Let ρ = diag(p1, p2, ..., pd) be a state on a d-dimensional system. Let − log pi be the
surprisal of the output i in this system. Define Nd to be:

Nd :=
1

4
log2(d− 1) + 1. (32)

For d ≥ 2, the variance of surprisal has a tight upper bound:
varρ(− log ρ) < Nd (33)

B FURTHER ANALYSIS IN SECTION 6.2

We observe that larger LMs exhibit an increased ∆MSE by utilizing temperature-scaled surprisal,
as shown in the average column (Avg.) of Table 6.2. Specifically, on Dundee, the top 2 models
achieving the largest improvement through temperature scaling are GPT-2 medium and xl, while
GPT-2 large and xl have the most benefit on Natural Stories and Brown. This result is consistent
with previously observed ∆llh improvement (∆llh+) across the corpus-by-LM reported in Table 1,
suggesting a correlation between model likelihood and MSEs of the regression models. We do
not observe a mismatch between them, as posited by Oh & Schuler (2023) that LME models achieve
similar MSEs irrespective of obvious differences in model likelihood.

Regarding the effect of the change (increase or decrease) of actual-word probability on the final fit
to RTs, we first analyzed the ratio of probabilities decreasing (or increasing) for all words, as well
as for subsets with specific word-level properties, choosing named entities as the representative, as
shown in Table 3. We observed that probabilities of the majority of words (around 80-90%) de-
crease by temperature scaling. Compared with the average across all word types (as indicated in
the ’Avg.’ column), named entities exhibit a lower ratio of probability reduction. Larger LMs tend to
have a higher ratio, especially the ratio for named entities, likely because smaller models may lack
the specific knowledge of less common terms, such as named entities. We further investigate the
benefit of temperature-scaled surprisal (quantified by ∆MSE) given the subset of words whose prob-
ability decreases (or increases). The results are in Table 4. On Dundee, the main gain arises from
the reduction of large probabilities via temperature scaling. Conversely, for Natural Stories, the pri-
mary benefit comes more strongly from words with originally very low probability, which get more
probable. For Brown, the effects are evenly split. This variation aligns with our theoretical intuition
that temperature scaling enhances the fit performance by making probabilities more smooth-
ing and uncertain, which means not only making high probabilities lower but also making super
low probabilities higher and close to 1/K, since a super low probability also means the model is
confident in the incorrectness of certain classes. For named entities, the story is converse on Dundee
vs. on Natural Stories and Brown, where for the latter two corpora, the advantage is primarily due to
reducing the probabilities of highly predictable entities. We shed light to the possible reason of such
a discrepancy in Fig 6, which displays the top 15 frequent words for GPT-2 small on each corpus.
Notably, Natural Stories and Brown show a marked lack of words with increased probabilities (blue
bins) compared to Dundee. This lack weakens the overall impact of rising probabilities (denoted by
∆MSE(pwt

↑)). Specifically, on Brown, only 4 out of 15 top frequent words have the composition of
increased probabilities, correlating with the largest discrepancy in ∆MSE between probabilities that
decreased (329.7) and those that increased (-170.6) in Table 4.
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Figure 6: Top 15 frequent named entities for GPT-2 small on Dundee, Natural Stories and Brown. ↑
and ↓ denote being higher and smaller, respectively. ⃝ and × denote unbeneficial words (absolute
residual error increases) and beneficial words (absolute residual error decreases) by temperature
scaling, respectively.
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Avg. Named entities
Corpus GPT2 pwt

↓ |res| ↓ pwt
↓ |res| ↓

Dundee

s 88.0 51.8 78.1 52.3
m 89.6 52.5 80.1 54.1
l 90.2 52.3 80.1 53.5
xl 91.4 52.4 82.7 54.3
s 93.8 55.0 85.3 51.8

Natural m 94.7 55.2 89.1 53.2
Stories l 93.5 55.7 89.1 53.4

xl 92.1 55.5 88.2 52.8

Brown

s 91.8 51.5 87.3 50.9
m 93.2 51.5 86.1 50.9
l 93.3 51.8 88.6 52.1
xl 93.5 51.7 87.8 53.3

Table 3: The ratio of probability of predicted word pwt and the absolute value of residuals |res|
getting smaller for GPT-2 models on three corpora.

Named entities
Avg. NE non-NE

Corpus GPT2 pwt↓ pwt↑ pwt↓ pwt↑∗ pwt↓ pwt↑
s 27.4 18.2 81.3 107.2 25.1 10.1
m 41.9 39.8 139.1 205.6 37.8 23.9
l 41.0 31.3 156.1 166.6 36.2 18.0Dundee

xl 42.5 29.8 170.2 158.8 37.0 16.9
s 94.5 275.6 218.5 3.0 92.9 284.9

Natural m 105.7 158.3 179.3 -34.9 104.7 163.9
Stories l 125 166.1 197.5 -224.8 124 175.4

xl 121.8 140.7 197.3 -272.6 120.8 149.5
s 37.6 32.6 329.7 -170.6 26.6 45.5
m 39.1 72.3 276 143.6 30.5 66.3
l 52.7 28.1 325.8 -205.9 42.5 44.4Brown

xl 50.9 111.5 298.2 168.2 41.7 107.1

Table 4: Given words whose probability decreases (and increases), the corresponding ∆MSE(pwt
↓)

(and ∆MSE(pwt
↑)) measurement for GPT-2 models on Dundee, Natural Stories (NS) and Brown. A

higher ∆MSE is displayed in bold in the average across all word types (Avg.), named entities (NE),
and non-named entities (non-NE) columns, respectively, for each corpus-by-LM combination. The
column with ∗ indicates insufficient (less than 1%) data.

C PROPROCESSING STEPS

On Dundee ET corpus (Kennedy et al., 2003), we use the first-pass gaze duration. Following prior
work (Kuribayashi et al., 2022), we remove words containing numbers or punctuation, words that
are either the first or the last one in a line, as well as words whose previous words contain numbers
or punctuation. On Natural Stories SPR corpus (Futrell et al., 2018), following Shain et al. (2022),
we remove words if the RT is less than 100ms or greater than 3,000ms, if the words are in the first
or last position of each story, if participants answered less than 5 out of 8 comprehension questions
correctly, if words contain numbers or punctuation, and if words whose previous words containing
numbers or punctuation. On Brown SPR corpus (Smith & Levy, 2013), following Shain et al. (2022),
we remove words if the RT is less than 100ms or greater than 3,000ms and if words contain numbers
or punctuation.

D EXPLORING FURTHER EFFECTIVENESS OF TEMPERATURE-SCALED
SURPRISAL OVER BASIC PREDICTORS

In this section, we explore the question of whether the benefit of temperature-scaled surprisal holds
only for regression models already containing other predictors such as length and frequency. We
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Figure 7: Relationship between ∆llh of GPT-2 small and corresponding temperature. T is scaled
from 1.0 to 10. Base predictor variables vbase and target predictor variables are 0 and temperature-
scaled surprisal sT (wt, T ), respectively.

ECEsingle ECEmultiple

Dundee T = 1 1.98 2.05
T = T∗ 25.58 36.10

Natural Stories T = 1 2.20 3.78
T = T∗ 32.38 47.02

Brown T = 1 1.69 3.86
T = T∗ 28.70 42.99

Table 5: Expected calibration errors of tokens in single-token (% ECEsingle) and multiple-token
words (% ECEmultiple) before and after temperature scaling for GPT-2 small on Dundee, Natural
Stories and Brown. Results are all evaluated on the equally-spaced binning scheme.

conduct experiments similar to those detailed in Section 5.2 while setting base predictor variables
vbase to 0 and target predictor variables vtgt to only temperature-scaled surprisal sT (wt, T ) in
Eq. 12. Fig. 7 shows that excluding base predictors decrease but not totally impact the effec-
tiveness of temperature-scaled surprisal.

E CALIBRATION ERROR FOR SINGLE-TOKEN AND MULTIPLE-TOKEN WORDS

In Table 5, we demonstrate the calibration error (% ECE) for single-token and multiple-token words
for GPT-2 small. Calibration evaluation is conducted at the token level as before. Results indicate
that multiple-token words show larger calibration errors than single-token words.

F PROBABILITY DISTRIBUTION BEFORE AND AFTER TEMPERATURE
SCALING

Fig. 8 shows actual-word probability distribution before and after temperature scaling for GPT-2
small on three corpora. Multiple-token words tend to have smaller probabilities than single-
token words, both before and after temperature scaling.

G OTHER DESCRIPTIONS ON METRICS AND EVALUATION

We evaluate calibration error (% ECE and % CECE) in both equally-spaced and log binning
schemes. In equally-spaced binning scheme, the samples are grouped into M ∈ N equally-spaced
interval bins based on their confidences p̂i. Conversely, the log binning scheme operates under
an empirical upper limit for − log2 p̂i, denoted as max(− log2 p̂). Table 6 shows ranges of p̂ and
− log2 p̂ for GPT2s on three corpora. For this scheme, we establish M ∈ N log-equally-spaced
interval bins within the range of (0, max(− log2 p̂)].

We investigate scaling T ∈ [1, 10], considering both densely and sparsely distributed points. The
values examined are detailed as follows: [1.0, 1.1, ..., 1.9] for dense intervals, [2.0, 2.25, ..., 3.25]
for moderately spaced intervals, and [3.5, 4.0, ..., 10.0] for sparse intervals.
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Figure 8: Distribution of negative log actual-word probability (surprisal) before (left side of figure)
and after (right side of figure) temperature scaling for single-token and multiple-token words for
GPT-2 small on three corpora. Values of surprisal with probability of 0.1, 0.01 and 1/K (random
guessing) are displayed using dash lines.
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p̂ − log2 p̂
Dundee [4.99e-03, 1) (0, 7.65]

Natural Stories [8.567e-03, 1) (0, 6.87]
Brown [8.15e-03, 1) (0, 6.94]

Table 6: Ranges of p̂ and − log2 p̂ for GPT2s on Dundee, Natural Stories and Brown.

Figure 9: Relationship between ∆MSE and negative log actual-word probability (surprisal). We take
the number of bins to 20. Red dashed lines denote ∆MSE = 0. Subsets containing less than 1% of
data are ignored for each corpus.

Following Kuribayashi et al. (2022), reading times of a base model are modelled by the following
formula:

rt ∼ freq ∗ length + freq prev 1 ∗ length prev 1 + (1|article) + (1|subj id) (34)

A target model additionally includes surprisal estimates of current words and previous words,
[surprisal, surprisal prev 1, surprisal prev 2]. On Dundee corpus, both models also include features
[screenN, lineN, segmentN].

H OTHER RESULTS IN SECTION 6

ratio of pwt
↓ ratio of named entities

# = 1 #>1 # = 2 # = 3 # = 1 #>1 # = 2 # = 3
Dundee 87.6 93.7 90.6 98.3 3.7 16.3 16.6 17.4
Natural Stories 92.1 93.0 92.2 97.2* 1.3 3.5 3.3 4.7*
Brown 93.0 98.1 97.6 35.2* 3.3 12.3 10.9 17.0*

Table 7: This table displays the ratio of words with decreasing probability (pwt↓) and the ratio of
named entities on subsets for both single-token words (#=1) and multiple-token words (#¿1) for
GPT-2 small on three corpora. Numbers marked with ∗ indicate subsets with insufficient (less than
1%) data.
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#=1 #>1 #=2 #=3
pwt

↓ pwt
↑ pwt

↓ pwt
↑ pwt

↓ pwt
↑ pwt

↓ pwt
↑

Dundee 8.0 19.6 269.5 -20.3* 50.5 26.6* 497.4 125.4**
NS 117.3 142.3 242.5 93.0* 312.6 95.8* -123.9* 50.6**
Brown 35.2 -61 327.3 5290.2** 17.3 5290.2** 655* 0**

Table 8: Given words with decreasing (and increasing) probability, the corresponding ∆MSE(pwt
↓)

(and ∆MSE(pwt
↑)) measurement for both single-token words (#=1) and multiple-token words (#¿1)

for GPT-2 small on three corpora. Numbers marked with ∗ indicate subsets with insufficient (less
than 1%) data. Numbers marked with ∗∗ indicate subsets with super insufficient (around or less than
0.1%) data.
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