
High-Fidelity Talking Portrait Synthesis with Personalized 3D Generative Prior

Jaehoon Ko1 Kyusun Cho1 JoungBin Lee2 Heeji Yoon2 Seungryong Kim2

1Korea University 2KAIST AI

https://cvlab-kaist.github.io/Talk3D/

Abstract

Recent audio-driven talking head synthesis methods opti-
mize neural radiance fields (NeRF) on monocular videos
but struggle with incomplete face geometry reconstruction
due to limited 3D information. We introduce Talk3D, a
novel framework that reconstructs plausible facial geome-
tries by adopting pre-trained 3D-aware generative priors
through generator personalization. Our audio-guided at-
tention U-Net architecture predicts dynamic face variations
in NeRF space driven by input audio, with conditioning to-
kens that disentangle scene variations unrelated to audio.
Talk3D excels at generating realistic frames under extreme
head poses, demonstrating superior performance compared
to existing methods in extensive quantitative and qualitative
evaluations.

1. Introduction
Audio-driven talking portrait synthesis [18, 29, 30] aims
to synthesize facial videos with lip movements synchro-
nized to input audio. This task poses challenges includ-
ing accurately capturing phonemes, generating realistic fa-
cial dynamics, and achieving high-fidelity synthesis. Early
approaches utilized 2D generative models [18, 30] but ex-
hibited limitations in head pose control. To address this,
some works employed explicit structural priors using 2D
landmarks or 3D facial models [20, 22, 29], but these often
struggle with consistent pose control and coherent deforma-
tions due to errors in intermediate representations.

Recent studies have utilized neural radiance fields
(NeRF) [17] for talking head generation, leveraging NeRF’s
multi-view consistency and pose controllability. These
approaches either directly condition NeRF on audio fea-
tures [11, 15, 16, 21] or use intermediate representa-
tions [24, 25]. However, constructing dynamic facial NeRF
from monocular videos remains challenging due to limited
head poses and 3D information, resulting in poor visual
quality from unseen viewpoints and implausible depth ar-
tifacts at extreme poses (see Fig. 1).

ER-NeRF [15] Talk3D (Ours)

Figure 1. Comparison of generated talking heads by NeRF-
based ER-NeRF [15], and Talk3D rendered at extreme camera
poses. Talk3D robustly generates high-fidelity realistic geometry
of talking heads at unseen poses during training.

To address these challenges, we introduce Talk3D, a
framework for synthesizing plausible talking portraits at un-
seen viewpoints by leveraging 3D-aware generative adver-
sarial networks (3D-GANs) [1, 5]. Our method adopts a
personalization strategy [10] to fine-tune the generator and
obtain personalized triplanes. Our U-Net architecture pre-
dicts triplane offsets (deltaplanes) modulated by audio fea-
tures, representing precise lip movements in NeRF space.
Additionally, our attention-based module with conditioning
tokens disentangles subtle variations (torso, background,
eye movements) from lip movement, enhancing reconstruc-
tion quality and lip-sync accuracy.

2. Preliminary
2.1. NeRF-based 3D-aware GANs
While conventional NeRF [17] aims to be optimized for
a single static scene, NeRF-based 3D-aware GANs [1, 5]
achieved explicitly pose-controllable image generation by
conditioning their NeRF space with random-sampled latent
code w. Among these works, EG3D [5] demonstrates its
superior performance using three stages. First, EG3D em-
ploys a plane generator G(·; θG) parametrized by θG that
efficiently synthesizes low resolution feature plane P such
that P = G(w; θG). This feature plane is reshaped into
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Figure 2. Overview of our Talk3D framework and audio-guided attention U-Net.

three orthogonal feature planes, {Pxy,Pyz,Pzx}. EG3D
then utilizes an MLP that takes features aggregated from
the orthogonal planes and maps it to volume density σ and
feature f . This feature field is rendered to a low resolu-
tion 2D feature map F. Finally, the produced feature map
F undergoes processing in a 2D super-resolution module
comprised of several convolutional layers to generate the
final image I . We denote R(·; θR) as this sequential pro-
cess involving volume rendering and super-resolution mod-
ule. Given θR as the learnable parameters, the final synthe-
sized image from camera parameter π can be formulated as:
I = R(P, π; θR).

3. Methodology
3.1. Problem Formulation and Overview
We describe the main components of Talk3D, which en-
ables pose-controllable audio-driven talking portrait synthe-
sis. Given N video frames for a specific identity, V = {In},
our model takes n-th frame image In with corresponding
audio feature* to extract audio features from each speech
audio. an and camera parameter πn. We formulate the
audio-driven rendering process as:

P = G(w; θG), I ′n = R(P, πn,an; θR). (1)

To attain the rendered portrait image I ′n that best replicates
the lip movement of the frame In, our model aims to find the
optimal EG3D parameters denoted as {θ∗G , θ∗R}, and the op-
timal triplane P∗ which encapsulates the appropriate scene
encodings. At inference, given new audio anoveln , we refor-
mulate (1) as:

PID = G(wID; θ
∗
G),

Inoveln = R(PID, πn,a
novel
n ; θ∗R),

(2)

*In practice, we utilize a pre-trained Wav2Vec model [2]

where wID denotes an identity latent code that corresponds
to a specific person’s facial identity. Then, such a personal-
ized generator generates PID, namely identity triplane.

To formulate this, we first train a personalized generator
that gives wID and {θ∗G , θ∗R}. In the renderer R(·), to condi-
tion anoveln , we propose a deltaplane generator that generates
a new plane ∆Pnovel

n from anoveln to manipulate the identity
plane PID to PID + ∆Pnovel

n . Then our final renderer is
defined as follows:

Inoveln = R(PID +∆Pnovel
n , πn; θ

∗
R). (3)

3.2. Personalized Generator
3D-aware GANs trained on extensive facial datasets like
FFHQ [14] generate diverse identities but may not be
optimal for single-person monocular videos. We adopt
VIVE3D [10], a fine-tuning strategy for single-identity gen-
eration. This strategy uses pivotal tuning [19], inverting
selected frames to find optimal latent vectors in w-space,
then jointly fine-tuning generator G and R. They optimize
latent vectors wID + om for M frames Im, where om cap-
tures local variants like expressions. After fine-tuning on
Im with fixed optimal latents, they conduct frame-by-frame
inversion on fine-tuned generator GID for all N frames, pre-
dicting offsets on and camera parameters πn.

3.3. Audio-Guided Attention U-Net
Through the inversion process, we obtain personalized gen-
erator GID, global identity wID, and camera parameters πn.
We derive identity triplane PID = GID(wID; θ

∗
G) for our

training framework. Our goal is modulating the generator
with audio features for NeRF space conditioning. While
predicting latent vectors within the generator’s manifold [3]
is straightforward, we found this may not be optimal. Alter-
natively, we introduce a training method that focuses on the



direct prediction of a triplane grid rather than the w-space
latent vector. In the following, we explain how to manipu-
late the triplane with given condition an.

As depicted in Fig. 2, the U-Net-based architecture
F is employed, where identity triplane serves as input,
yielding an offset triplane grid ∆Pn such that: ∆Pn =
F(PID,an; θ), where a denotes a given audio feature. This
offset grid ∆Pn, which we call deltaplane is further com-
bined with PID through summation. This training strategy
offers several distinct advantages compared to manipulation
in the GAN latent space. Editing in the GAN latent space
cannot represent the disentangled lip movement due to the
high-dimensionality of GAN latent space. This obstacle
leads to undesired movements within the predicted scene,
such as flickering in the background or torso area. Fur-
thermore, the triplane grid directly represents the 3D grid
structure of the NeRF space which guides the model to un-
derstand and manipulate the spatial relationships within the
scene. Lastly, the triplane grid is basically a 2D feature map
returned from convolutional networks, which enables lever-
aging existing 2D-based network architectures.
Attention design. In an ideal setting, the deltaplane should
seamlessly amalgamate temporal motion signals with the
identity triplane, ensuring that the signals are appropriately
synchronized with the relevant facial segments. This be-
comes imperative for audio, as their impact on the entirety
of the facial movements is not uniform. We incorporate
cross-attention at the deepest hidden layer of U-Net archi-
tecture to effectively capture localized facial dynamics dur-
ing the generation of the deltaplane. Specifically, the U-Net
encoder Fenc encodes P into a low-resolution feature map
as E = Fenc(P). Consequently, this feature map passes
through a NA number of attention layers, each composed
of self-attention layer (SA) and cross-attention (CA) layer,
which we denote as: FSA and FCA. Specifically, SA and
CA can be defined as:

e = FSA(flatten(E+Epos)),

Eout
n = FCA(e,an),

(4)

where Epos denotes 3D positional encoding. Finally, the
U-Net decoder yields deltaplane by ∆Pn = Fdec(E

out
n ).

Split-convolution. The original EG3D [5] employs a single
convolution network to generate the triplane, where each
plane, Pxy, Pyz, and Pzx, is channel-wise concatenated.
However, we observed a performance decline when utiliz-
ing the Fenc structure as a singular model. This degrada-
tion stems from the orthogonality of each plane within the
NeRF space, and the channel-wise concatenation hinders
the 3D-awareness of the triplane. To address this issue, our
architecture processes each plane independently to main-
tain each plane’s attributes. Nevertheless, since each plane’s
features equally contribute to the query sampled points by

concatenation, the aforementioned split convolution struc-
ture hinders the learning of the correlation between each
plane. Therefore, we incorporate the roll-out method [23]
to appropriately blend features from each plane.
Augmenting condition. Due to the image cropping process
in the utilization of the EG3D [5], our pre-processed video
data has variations in image crop regions. Consequently,
a specific challenge arises, wherein alterations to the crop
area may give the appearance of unnecessary movement be-
tween the background and the torso’s position, which inter-
feres with the learning of audio features. To mitigate this
challenge, we encode additional signals with causal rela-
tionships to the torso and background movements. Features
capturing independent actions, such as background motion
(inferred from facial landmarks), and torso dynamics (head
rotation), are tokenized as trot and tldm and then incorpo-
rated through cross-attention layers. The intuition here lies
in the effectiveness of our model’s cross-attention layer, al-
lowing diverse tokens to be efficiently learned for local edit-
ing within the triplane. Especially for tldm, we select only
portions of landmarks, since the landmarks near the lip re-
gions tend to degrade the lip-sync accuracy when novel au-
dio features are given. Following ER-NeRF [15], we also
employ the AU45 [9] features to predict eye movements,
which also be tokenized into teye. Additionally, a single
null-token tnull is incorporated uniformly across all frames
to encode global scene representation across video frames.
Again, (4) can be reformulated with tn which denotes the
concatenation of all tokens:

Eout
n = FCA(e, tn), tn = {an, teyen , trotn , tldmn , tnull}.

(5)

3.4. Loss Functions
During training, we mainly adopt L1 loss LL1 and LPIPS
loss Llpips [28] to reconstruct given input frame I . Let
Lrec denotes the combination of the above reconstruction
loss as: Lrec = LL1 + λlpipsLlpips. We give additional
reconstruction loss on lip segment Slip(I), extracted using
BiSeNet [26, 27], to enhance the reconstruction loss on the
local image area. Moreover, we adopt ID similarity loss
Lid and syncnet loss Lsync [7] to further optimize the gen-
eration results. We additionally take a few epochs to update
the super-resolution module to boost performance.

4. Experiments
4.1. Experimental Settings

Dataset. To perform audio-driven talking head synthesis,
we employ datasets from [11], comprising person-centric
videos averaging 6,000 frames at 25 fps. Following previ-
ous NeRF-based works [11, 15, 21], we split videos into
training and testing sets.



Head angle
(yaw, pitch)

(−30◦,−20◦) (−15◦,−10◦) (+15◦,+10◦) (+30◦,+20◦)

Sync↑ FID↓ IDSIM↑ Sync↑ FID↓ IDSIM↑ Sync↑ FID↓ IDSIM↑ Sync↑ FID↓ IDSIM↑

AD-NeRF 2.24 212.85 0.07 3.47 175.98 0.28 3.82 152.02 0.48 2.52 193.34 0.03

RAD-NeRF 4.94 167.83 0.19 5.54 123.92 0.38 6.83 94.67 0.61 5.45 185.72 0.28

ER-NeRF 4.77 198.29 0.23 7.34 87.59 0.58 6.65 80.56 0.50 2.70 141.63 0.02

Talk3D 7.20 81.11 0.61 7.93 37.77 0.77 8.14 39.97 0.80 7.77 68.68 0.64

Table 1. Quantitative comparison under the novel view syn-
thesis setting. The head poses are selected with 15◦ yaw intervals
and 10◦ pitch intervals. The best results are shown in bold.

Methods PSNR ↑ LPIPS ↓ FID ↓ LMD ↓ AUE ↓ Sync ↑ IDSIM ↑

Ground Truth N/A 0 0 0 0 9.077 1

AD-NeRF 27.611 0.049 20.243 5.692 2.331 5.692 0.904

RAD-NeRF 28.797 0.038 14.218 3.467 2.163 6.316 0.921

ER-NeRF 29.284 0.032 11.860 3.417 2.025 6.724 0.940

Talk3D(Ours) 30.185 0.027 8.626 2.932 1.920 7.383 0.944

Table 2. Quantitative results of the audio-driven setting. The
best results are shown in bold.

Comparison methods. We compare against the standard
NeRF-based models: AD-NeRF [11], RAD-NeRF [21], and
ER-NeRF [15]. We conduct two evaluation settings: novel-
view synthesis assessing viewpoint robustness by render-
ing from diverse angles, and audio-driven evaluation us-
ing ground-truth video camera viewpoints with original au-
dio. We evaluate reconstruction quality using PSNR and
LPIPS. Additional metrics include FID [12], landmark dis-
tance LMD [6], SyncNet confidence score (Sync) [8], action
units error (AUE) [4], and identity similarity (IDSIM) [13].

4.2. Novel View Synthesis
We evaluate our method’s robustness to extreme viewpoints
by rendering from diverse novel angles. As shown in Tab.
1, while most methods exhibit comparable performance
in frontal view rendering, other NeRF-based techniques
show notable score decline at extreme angles. Our method
demonstrates consistently high scores across all metrics,
maintaining both generation quality and lip-sync accuracy
across diverse camera viewpoints. The qualitative results in
Fig. 3 reveal that previous NeRF-based methods suffer from
performance degradation at extreme camera angles. RAD-
NeRF and ER-NeRF experience substantial quality decline
due to their pseudo-3D deformable module, showing ir-
regular facial boundaries and geometry deterioration. AD-
NeRF, with independently learned head and torso volumes,
produces disembodied heads at certain angles. In contrast,
Talk3D maintains realistic facial geometry and consistent
quality across all viewpoints.

4.3. Audio-driven Synthesis
Our audio-driven evaluation demonstrates superior perfor-
mance across most image quality metrics while achieving
the best lip synchronization among NeRF-based methods.
As shown in Tab. 2, Talk3D outperforms in PSNR, LPIPS,
and IDSIM, demonstrating high-fidelity detail reconstruc-
tion and facial identity preservation. The superior FID score

y, p +30◦,+20◦ +15◦,+10◦ -15◦,-10◦ -30◦,-20◦

AD-NeRF

RAD-NeRF

ER-NeRF

Talk3D
(Ours)

Figure 3. Synthesized portraits from head poses unseen during
training. We show a randomly selected frame from synthesized
talking portraits rendered at various yaw and pitch (y, p) angles.

whoever pollitic work new peacefully

Ground
Truth

AD-NeRF

RAD-NeRF

ER-NeRF

Talk3D
(Ours)

Figure 4. The keyframe comparison of generated portraits. We
show visualizations of our method and previous methods gener-
ated using ground-truth head poses and audio from the test set.

indicates advantages of utilizing generative priors, while
improved Sync, LMD and AUE scores show enhanced fa-
cial dynamics accuracy. Fig. 4 shows qualitative results,
where Talk3D demonstrates robust results through its uni-
fied generation process.

5. Conclusion
Talk3D is a unified framework for audio-driven talking head
synthesis that leverages 3D-aware generative priors and di-
rect NeRF space manipulation. Talk3D achieves robust lip-
sync accuracy and high-fidelity facial detail reconstruction,
even under challenging novel-view and audio-driven sce-
narios. Extensive experiments demonstrate that Talk3D de-
livers consistent and realistic results, advancing the quality
of controllable talking portrait generation.
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