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Abstract

In the race toward creating a strong Al, we have histori-
cally focused on replicating human intelligence. For many
advanced tasks such as language and image generation, com-
plex classifications in fields such as medicine, computer vi-
sion and other sensor data in self-driving cars, we have been
successful. However, for complex behaviours like creativity,
we often deem machines incapable. Maybe we are desperate
to have something of our own, that machines could never do.
Maybe we are too prideful in our own intelligence. What if
we were tasked to build a truly creative Al capable of intuition
and insight? What should we consider? Would replicating hu-
man abilities be the best option, or could we make something
even better?

This article holds a mirror up to us and explores scientific
creativity. We first explore the many properties that may al-
low machines to surpass humans in creative insight, such as
unbounded effort and lack of competition. We should exploit
these, rather than limit them in the attempt to make AI more
‘human-like’. In the second half of this article, we realise
there are many traits we have overlooked in ourselves, that
we should strive to emulate in machines. There is no doubt
that machines someday could mimic human creativity. The
purpose of this reflection is to realise it is not about what we
can build, but what we should build.

Introduction

In the race toward creating a strong Al, we have historically
been focused on understanding and replicating human intel-
ligence in machines. For complex behaviours like creativity,
we deem machines incapable. Maybe we are too prideful in
our own intelligence. A true general Al should capture the
foundations of intelligence rather than be a carbon copy of
the human mind. This article holds up a mirror to human cre-
ativity, encourages critical thinking about areas where ma-
chines excel over humans, as well as qualities we have over-
looked in ourselves. Through this reflection, we realise that
it is not what we can build, but what we should build.

We first explore properties allowing machines to surpass
humans, such as unbounded effort and lack of competition.
In the second half of this article, we compare these to quali-
ties which directly benefit human creativity (that we should
strive to emulate in machines).

Imagine the brilliance of Albert Einstein’s mind, a brain
so unique that, when examined, it revealed an extraordinary

network of connections unlike any other. This intricate web
of neurons may have been the secret behind his unparalleled
ability to revolutionise physics. Could a machine possess a
similar spark? Not just calculating but creating, not just com-
puting, but conceiving ideas that challenge the very fabric
of our understanding. Can Al ever achieve this level of cre-
ativity, or are we chasing a mirage in the digital desert? To
critically explore this topic, it is essential to first understand
what creativity means in humans, especially in comparison
to machines.

Creativity

As Steve Jobs famously remarked, “Creativity is just con-
necting things”. In humans, scientific creativity is often char-
acterised by the ability to produce ideas or solutions that are
both original and valuable. It involves making unexpected
connections, thinking divergently, and applying insights in
innovative ways (Roberts et al. 2021).

Unlike intelligence, which focuses on logical reasoning
and problem-solving, creativity requires exploring new pos-
sibilities and recognizing patterns that are not immediately
apparent. The central question in developing creative ma-
chines is whether machines can achieve similar creative ca-
pabilities. Unlike humans, Al systems leverage vast datasets
and advanced algorithms to detect patterns and make con-
nections at scales beyond human capability. Through deep
learning, neural networks, and other machine learning tech-
niques, machines are believed to replicate certain aspects of
human creative processes.

However, creativity, according to philosophers, can be
mainly summed up into two forms: “Big-C” creativity, re-
ferring to groundbreaking, paradigm-shifting innovations
such as the theory of relativity or the invention of the
Internet, and “little-c” creativity, which refers to every-
day problem-solving and creative expression (Gilhooly and
Gilhooly 2021). Understanding these distinctions is crucial
when evaluating the creative potential of machines.

This brings us to an important question: What type of sci-
entific creativity do our current Al systems exhibit? Con-
sider the creativity displayed by DeepMind’s AlphaGo. It
surprised even the most skilled human players with un-
expected strategic moves in the game of Go. particularly
Move 37. Was that intentional? Were these moves pre-
programmed? Obviously not; they emerged from AlphaGo’s



ability to explore a vast array of possibilities using deep neu-
ral networks and Monte Carlo Tree Search algorithms. This
kind of innovation prompts us to ask whether such actions
represent true creativity or merely reflect the execution of
advanced computational strategies.

Currently, Al systems are primarily designed to achieve
“little-c” creativity by automating routine creative tasks,
such as generating music, writing text, or creating visual
art. While AI has demonstrated remarkable capabilities in
“little-c” creativity, achieving “Big-C” creativity would re-
quire machines to move beyond imitation and produce
work that fundamentally alters our understanding of a field
(Gilhooly and Gilhooly 2021). This remains an elusive goal,
raising questions about the true nature of machine creativ-
ity. However, even within these limitations, machines wield
a different kind of creative power, one that does not mimic
human thought, but thrives in areas where our minds often
falter.

Advantages that machines have over humans

The first advantage of machines is their lack of emotion.
Emotions can sometimes cloud human judgement. We often
develop attachment to our ideas. This motivates ownership
and leads to their further development, but also limits further
ideation of alternative approaches. Contrastingly, machines
have unbiased evaluation of ideas; they are not limited by
their first good idea and can choose the best one when final-
ising the solution.

Detachment also makes machines free from competition,
allowing open sharing of findings. History is littered with
examples of competition hindering progress: for example,
the bitter rivalry which led to Newton-Leibniz calculus con-
troversy, and the race between Elisha Gray and Alexander
Graham Bell to invent the telephone. Awards such as No-
bel prizes incentivise scientific discovery, but also accentu-
ate competition and a “hero complex”.

Similar to immunity from emotion, machines are also free
from self-doubt. Human effort into a task is dictated by per-
ception of success. We create a ceiling for ourselves in what
we believe we can achieve. This often translates to our actual
achievements, but does not speak to each person’s poten-
tial intelligence or creativity. Our education, parents, peers,
where we live, gender, and ability/disability all contribute to
who we are, and more importantly what we think we can do.
This suggests that creativity and success in a field is driven
more by opportunity and circumstance, rather than innate
intelligence.

Machines are free from worry of how others perceive
them, or even how they perceive themselves, meaning their
progress is not hindered by comparison and self-doubt. The
reclusive mathematician Grigori Perelman, after proving a
very important conjecture in mathematics, rejected the high-
est award in mathematics and a prize award of a million dol-
lars. He said that the awards were irrelevant for him and that
if the proof is correct then no other recognition is needed. In
a world where we hero worship Nobel laureates and glorify
external achievements and awards, Perelman had completely
rejected the idea of external validation. He was fulfilled by

the joy of working on problems and not by any external re-
ward at the end of the journey: a life lived on his own terms.
Can we ever replicate this in machines?

Circumstance also dictates a person’s quality of educa-
tion. In both humans and machines, high quality founda-
tional knowledge (training data) is key to high creativity.
Children who have a good education are more likely to do
well in life. There is a parallel to how high quality training
data can unlock a computer model’s full potential. The two
things that contribute to a computer model’s success are: its
architecture (which gives it the ability to learn), and its train-
ing data (which it learns from). Nowadays, with the avail-
ability of such complex neural architectures, it is often the
training data that limits the model. Hence, it is difficult for
us to even know the model’s true capability.

Machines seemingly have unbounded effort: they do not
tire. This allows them to practise the creative process. The
first question this raises is, can creativity be practised? Sci-
entific creativity seems to manifest as ‘eureka’ moments, but
how much can we trust this? We only remember what gets
stored in our brain; perhaps it is only those emotional break-
throughs that are recorded. We ignore the less glamorous
computation leading up to it (Hadamard 1945). In reality, the
creative process might be something that can be improved
over time, as our brain gets better at making the connections
that lead to those ‘eureka’ moments.

Jacques Hadamard, in his seminal book “The psychology
of invention in the mathematical field” (Hadamard 1945),
spoke about the role of the subconscious in solving difficult
problems: he related the story of the French polymath Henri
Poincare struggling with a mathematical problem for years.
One day while visiting a friend he got on a bus: as soon as
he got on the footboard, the solution came to him. In reality,
Poincare was thinking about the problem (incubating) for a
long time (he only remembered the idea coming to him when
he got on the bus).

Pat Langley considers memory as a graph (Langley and
Jones 1997), with nodes containing objects (or experiences)
and edges of different weights representing the strength of
connections between them. A creative insight is an analogi-
cal mapping between a node with a familiar known process,
and another with a presently unknown process. This map-
ping is discovered as activation spreads from the new unfa-
miliar activated node, outward to neighbouring nodes, pro-
portional to the edge weights. If activation reaches a node
above a threshold value, an analogy is formed.

We could liken “practising creativity” to strengthening
connections between nodes, building a more comprehen-
sive mental model of the interactions in the physical world.
This in turn allows us to make better analogies. By adjusting
the reward function, we can even train machines (or our-
selves) to make more abstract connections between nodes
further apart in the memory space during training, allowing
for seemingly ‘more creative’ insights. Treating creativity as
an innate ability rather than one that can be practised, is hin-
dering our progress in creating an Al in this field. Perhaps
we need a more humble approach to artificial creativity.

A machine’s unbounded effort also allows it to generate
more creative insights than humans who have limited capac-



ity. Langley (Langley and Jones 1997) details how all gener-
ated insights need verification. Some may be false positives,
which need to be discarded. We can set machine parameters
to generate a much greater number of insights. A larger pro-
portion may be false positives, but the overall number of true
positives will be greater too. Either the machine could filter
these for the correct solution, or a human could (leveraging
the power of human-machine collaboration, where both hu-
man and machine complement each other).

The above arguments highlighted advantages machines
have over humans. However, many human traits such as
collaboration and motivation contribute to creative outputs,
which have not yet been considered. These are qualities we
can try to emulate in machines.

Advantages that humans have over machines

Collaboration is a relatively underexplored phenomenon fu-
eling creativity. Humans rely on collaboration for inspira-
tion and verification (through peer review). The innovations
built at societal level are much greater than what could be
achieved by an individual.

Machines could benefit from such a collaborative
paradigm. Two machines with the same architecture but dif-
ferent random starting initialisations could arrive at two dif-
ferent theories. Sharing these insights could prove invalu-
able. Zhuge et al. (Zhuge et al. 2023) discuss the effective-
ness of Al societies of mind for natural language, in tasks
such as question answering and image captioning. The neu-
ral networks solve problems in a ‘mindstorm’ interviewing
each other in a virtual society of sorts. For humans, the act
of explaining to others often solidifies ideas in our minds.
Similarly, for machines, the act of communicating informa-
tion with other machines in natural language might reinforce
the mental model, by reinforcing relevant paths in the graph
representation of memory discussed earlier.

Motivation drives creativity in humans. Earlier we recog-
nised a lack of competitiveness as an advantage for ma-
chines. However, competition is also a great motivator.
Competition for recognition fuels hype cycles, which help
us decide where to direct our efforts; for example, rapid in-
novation is currently happening in generative Al. Hype cy-
cles could be beneficial for machines. Multiple machines ex-
ploring the solution space increases the likelihood of a good
solution. If those machines all arrive at the same solution, it
gives good verification to the group that this path should be
explored further. More machines also result in more infor-
mation sharing and iterative building of solutions.

Humans have a major tool at our disposal that ma-
chines are playing catch up on: our bodies. Embodied in-
telligence (as presented by Hubert Dreyfus (Dreyfus 1967)
and philosophers such as Edmund Husserl and Maurice
Merleau-Ponty) is the idea that an Al would need a physical
body to be truly intelligent. In the case of scientific insight,
we humans are able to experiment ourselves with potential
hypotheses from when we are babies. This helps us build a
strong mental model of the physical world. One could argue
we need to have this deeper understanding of our environ-
ment since we are required to operate our body within it: a
problem which an Al living in a computer does not face.

Finally, there are perceived weaknesses that actually play
to our strengths, such as forgetting and laziness. In Langley’s
representation of memory (Langley and Jones 1997), form-
ing an analogy involved activation spreading outwards from
the triggered unknown concept to neighbouring nodes. In
this representation, more domain knowledge actually means
an analogy is less likely, as the activation signal is divided
amongst many different neighbours. This means the signal
is less likely to be above a threshold value when it reaches
the node with the analogy. This can be observed in real life,
where a fresh set of eyes can help solve a problem. For-
getting, therefore, would mean some of these neighbouring
connections fade over time, effectively pruning the space for
only the useful information. Forgetting can also be useful in
cases of concept drift, where the ground truth can change
over time.

Laziness can lead to innovation. Previously we argued
that unbounded effort allows machines to discover many
more analogies, and as a result more true positives. How-
ever, implementing ‘creative’ machines on a wide scale will
be resource constrained. Finding the quickest path to suc-
cess may yield more creative solutions than unlimited re-
sources; for example, the webcam was invented by scientists
in Cambridge University to monitor when their coffee pot
was empty! Bill Gates famously said that companies should
hire a lazy person because they will find the most efficient
solution to the problem.

Dreams are also an important mechanism in creativity.
Hadamard in his book (Hadamard 1945) gives the exam-
ple of August Kekule who famously was meditating on the
structure of the benzene molecule. While thinking about this
problem, Kekule fell asleep. In his dream, he saw a picture
of a snake trying to eat its own tail. Upon waking up, he re-
alised that the structure of the benzene molecule can be a
circular ring of carbon atoms. A future Al that attempts to
tackle scientific creativity should also have a mechanism for
artificial dreams that allows it to connect pieces of informa-
tion and concepts that would have been difficult to connect
otherwise.

The prolific mathematician Srinivasa Ramanujan fre-
quently attributed his discoveries to dreams that he had. His
creativity, he claimed, came from his dreams. However, he
could not explain how he came up with the mathematical ex-
pressions. Explainability may be important in future creative
machines.

Discussion

How do we go about building a truly creative AI? The key
is balance. There are many parts of our brains we should
emulate (such as collaboration, motivation, forgetting, lazi-
ness and dreams). However, we should also preserve advan-
tages machines have over humans (such as lack of emotion,
competition, lack of self-doubt and unbounded effort), re-
specting our own limitations. What we create requires deep
thought, rather than blind replication of human abilities.
We often have strict benchmarking processes for ma-
chines on tasks that are designed for humans. Google’s
Gemini model was evaluated on human strengths: speech,
maths, and common-sense reasoning. What benchmarks we



strive for now, could eventually become limiting in the fu-
ture. The ultimate endeavour could be to build something
better or different that complements humans. We do not need
another artificial brain similar to the 8 billion human brains
we already have today.

Once we achieve Al creativity, will we recognise it? The
Turing Institute predicts that Al will execute Nobel-prize
winning work by 2050. In reality, no matter how intelligent
the Al is, we might just end up calling it a tool which supple-
ments human intelligence. Many intelligent inventions fall
victim to this; the printing press, the calculator and the com-
puter were all revolutionary at conception, but eventually be-
came commonplace.

Maybe Al is just an advanced tool. But what does that
make us? We tend to overvalue our own intelligence, and
devalue the intelligence of Al. OpenAl’s video generation
model, Sora, exhibits a deep understanding of interaction in
the physical world, however it may not have the same un-
derlying mental model as us. Does this mean it is not intel-
ligent? There does not have to be one correct model through
which we understand a process. For example, bridges and
roads were built before calculus, and both classical and rela-
tivistic physics co-exist today. We cannot have it both ways.
If we are intelligent, so is Al. And if Al is just a tool, perhaps
we are equally unremarkable.

Creativity is deeply intertwined with intelligence. For a
machine to be creative, it must engage in some form of
thinking. But can computers think? Can they be creative?
These questions might seem absurd, much like asking if
trees can grow. But if computers do not think, what exactly
do they do? The answer lies in understanding that comput-
ers don’t think as humans do, just as trees do not grow as
humans grow. These entities are distinct, governed by dif-
ferent natural laws. Computers do not replicate human think-
ing—they orient it. Their unique ways of processing infor-
mation are precisely what we need them to be, why we need
them, and what we need for the future. This is what we must
aim to build.

We may not require consciousness in machines to achieve
machine creativity. What is essential is a learning ma-
chine—one that possesses the capability to integrate expe-
rience into its decision-making processes. This concept par-
allels how immune systems retain memory of past infec-
tions and how human brains store and utilise memories. In
other words, when AlphaGo was trained to play Go, did it
rely solely on predefined algorithms? No. Instead, it learnt
from extensive gameplay data, developed novel strategies,
and subsequently demonstrated creativity to the extent of
surprising and teaching expert players, such as Lee Sedol,
new approaches in their own game.

This capacity for learning is what we need to build in ma-
chines to enable them to transcend mere determinism, evolv-
ing into a system that is adaptive, complex, and inherently
creative.

Ethics

This potential future may make us think about human redun-
dancy and the ethical implications of such advanced intelli-
gence.

As machines become capable of being genuinely creative,
i.e. generating original work, the question of ownership be-
comes increasingly complex. Who owns the genuine cre-
ations of a machine—the developer, the user, or the machine
itself? This conundrum challenges our existing legal frame-
works and forces us to rethink our understanding of creativ-
ity and ownership in the age of Al. As we push the limits
of what machines can do, we must also extend our ethical
and legal considerations, ensuring that our pursuit of ma-
chine creativity does not outpace our ability to manage its
implications.

Conclusion

Ultimately the process of building creative machines is also
a journey of self-discovery. It is a journey where we learn
how to improve ourselves and reshape society to reward in-
novation more greatly than we do today.

However, it is also a journey where we may discover we
are not so special after all. Creativity and intelligence may
exist in different forms in machines and humans.

We may not want to face the fact that learning and creativ-
ity can happen easily in machines and humans given enough
time and data. We are only human after all!
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