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I. MOTIVATION

Deploying personal home robots is challenging because
of a generalization bottleneck. Current machine learning ap-
proaches for embodied reasoning and robot control often
fail to adapt to new tasks, objects, or environments beyond
their training data. My research focuses on overcoming this
limitation by integrating Large Pre-Trained Models (LPTMs)
of language and vision with embodied reasoning frameworks,
aiming to enable more effective adaptation and generalization
of robot behaviors. For robots to be widely useful, they must
handle both: 1) high-level reasoning, such as performing
semantically logical sequences of actions, predicting object
affordances, and assessing the environment state to make
plans; and 2) low-level control, where, for example, the robot
should be capable of turning a stove knob, regardless of knob
size, the kitchen’s backdrop, the counter’s texture, or under a
dim evening light.

Generalization is difficult because large-scale robotics data
to train machine learning models is limited. My research tack-
les this limited availability of data by leveraging pre-trained
language [5] and vision [16] models, which implicitly store
vast human knowledge. Models like ChatGPT for complex
language reasoning and Diffusion [2, 15] or Segmentation [19]
models for fine-grained visual understanding, demonstrate the
generalization potential of these LPTMs. They learn a broad
latent representation space that can encode practically any
text or image. However, simply integrating these models into
robots does not automatically result in intelligent behavior.
The challenge lies in aligning the expansive latent space
of these models with the robot’s constrained action space,
which is shaped by its physical embodiment, current state,
and environment. The following sections discuss contributed
research and proposed solutions for achieving both high-level
and low-level generalization in robots through the use of
LPTMs.

II. RESEARCH CONTRIBUTION

A. General high-level reasoning

High-level task planning can require defining myriad do-
main knowledge about the world in which a robot needs to
act. To ameliorate that effort, large language models (LLMs)
can be used to score potential next actions during task plan-
ning, and even generate action sequences directly, given an
instruction in natural language with no additional domain in-
formation. However, such methods either require enumerating
all possible next steps for scoring, or generate free-form text

that may contain actions not possible on a given robot in its
current context [1, 10, 11]. We developed a programmatic
LLM prompt structure that enables plan generation functional
across situated environments, objects, robot capabilities, and
tasks [23, 22]. The key insight was to prompt the LLM with
program-like specifications of the available robot actions and
objects in an environment, as well as with example programs
that can be executed. We made concrete recommendations
about prompt structure and generation constraints through ab-
lation experiments, demonstrate state-of-the-art success rates
in VirtualHome [17] household tasks, and zero-shot deploy our
method on a physical robot arm for tabletop tasks. Our method
has been well-received by the robotics as well as vision-
language communities, and has become a standard approach
for open-domain task planning, with over 700 citations from
ICRA conference and AuRo journal articles and 100 GitHub
stars within two years of publication.

While LLMs can use commonsense reasoning to assemble
action sequences, relying on them to infer plan steps doesn’t
guarantee execution success, especially in complex multiagent
scenarios. In contrast, classical planning methods like Plan-
ning Domain Definition Language (PDDL) generate action
sequences that achieve a goal if possible, given an initial state.
However, vanilla PDDL lacks temporal reasoning, such as
coordinating simultaneous tasks. For example, cutting a tomato
and toasting bread can occur in parallel, but assembling a
sandwich requires both to be completed first. A human can de-
compose goals into parallelizable subgoals while maintaining
necessary dependencies. Our work combined symbolic plan-
ning with LLMs to approximate human-like two-agent goal
decomposition [25], enabling faster planning than multi-agent
PDDL while requiring fewer execution steps than single-agent
planning—all while preserving execution success. However,
symbolic planning requires predefined domain formulations,
introducing overhead in new environments. Future work will
explore how LPTMs can mitigate this by autonomously defin-
ing new domains.

These works have also been featured in the Scientific
American and Communications of the ACM discussing putting
LLMs into embodied robot bodies in a broader context. The
articles point out that concerns about LLM-powered robots
are premature, because challenges persist in low-level control
and robust execution of actions predicted by LLMs, such as
picking up an object or opening a cabinet under diverse visual
scenarios. My next works directly addresses this bottleneck by
introducing a comprehensive benchmark to evaluate general-
ization of low-level robot action models as well as developing
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such action models.

B. General low-level control
To achieve effective large-scale, real-world robot applica-

tions, it is crucial to evaluate how well low-level control poli-
cies adapt to environmental changes. Many studies, however,
test robots in environments similar to or identical to their
training setups [20, 8, 9]. The lack of an agreed-upon, compre-
hensive evaluation benchmarks in robotics hampers progress in
developing robust action models. We introduce a novel simu-
lation benchmark [24] featuring 20 diverse manipulation tasks
and 14 axes of systematic environmental perturbations, such as
variations in color, texture, size, lighting, and camera pose. It
allows us to compare five state-of-the-art manipulation models,
revealing a 30-50% decrease in success rates across perturba-
tions compared to unperturbed conditions, with degradation
exceeding 75% when multiple perturbations are combined.
We empirically show that perturbations affecting the number
of distractor objects, target object color, or lighting have the
greatest impact on performance. Our simulation results, which
correlate with real-world experiment results (R̄2 = 0.614),
underscore the benchmark’s ecological validity. We have open-
sourced the dataset and code along with 3D printed object files
used in real-world tests. The robotics community has shown
excitement towards our benchmark, with new control model
preprints, demonstrating improved generalization on certain
perturbation factors, already available [21, 18] and over 80
GitHub stars within an year of publication. Ultimately, we
hope that this benchmark will serve as a platform to identify
modeling decisions that improve generalization for low-level
robot action models.

In the next work, we developed a control model that can
execute learned tasks across unseen objects and environments
without degradation. We address the challenge of mapping
natural language instructions and multi-view RGBD obser-
vations to quasistatic robot actions. 3D-aware robot policies
achieve state-of-the-art performance on precise robot ma-
nipulation tasks, but struggle with generalization to unseen
instructions, scenes, and object variations [12, 20, 8, 9, 6].
On the other hand, Vision Language Action (VLA) models,
built with LPTMs, excel in generalization across instructions
and scenes, but can be sensitive to camera and robot pose
variations [13, 14, 4, 3]. We explore how we can leverage prior
knowledge embedded in LPTMs to improve generalization
of 3D-aware keyframe policies [26]. We introduce a novel
architecture and learning framework that combines the gener-
alization strengths of VLAs with the robustness of 3D-aware
policies. We project input observations from diverse views into
a point cloud that is then rendered from canonical orthographic
views, ensuring input view invariance and consistency between
input and output spaces. These canonical views are processed
with a vision backbone, an LLM, and an image diffusion
model to generate images that encode the next position and
orientation of the end-effector on the input scene. We initialize
our model with pre-trained models and trained end-to-end
such that the LPTMs work together to solve the task. Our

system can perform challenging 3D reasoning tasks like ‘open
the drawer to 50%’ with changing scenes and objects. Eval-
uations on the ARNOLD benchmark [7] demonstrate state-
of-the-art multi-task generalization to unseen environments
while maintaining robust performance in seen settings. Our
results show the potential of combining LPTMs with 3D-
aware visual processing for achieving improved performance
and generalization on robotic manipulation tasks.

III. FUTURE DIRECTIONS

Systems for general high-level reasoning. Symbolic
planning relies on expert-annotated action semantics to gen-
erate action sequences that achieve a specified goal. These
annotations define the environment dynamics, with planners
systematically exploring the state space based on executable
actions. While such symbolic planning guarantees successful
plan execution if the goal is feasible, defining the domain
for every new environment is labor-intensive and requires
human expertise. I aim to develop systems that automatically
build logical domains and action abstractions in new environ-
ments, using LLM-predicted approximate plans like shown
in my prior work [23]. By observing successful and failed
interactions, environment changes, and incorporating human
feedback, these systems could extract the functioning of the
environment. In our preliminary work [27], we explore au-
tomatic domain building for symbolic environments. LPTMs,
including vision-language and segmentation models, can dy-
namically add symbols like new objects or robot capabilities
to adapt to changing domains in the real world.

Systems for general low-level control. To ensure ro-
bust and general low-level control, a robot action model
must be resilient to both variations in input observations
and differences in output action space. Given the limited
availability of robotics data, it is crucial to develop models
capable of leveraging learning controls across different robot
setups, tasks, and embodiments. Additionally, these action
models must exhibit strong 3D scene understanding and spatial
reasoning to enable reliable instruction following. To this end,
I propose developing a latent observation and action space
model with an LPTM backbone for enhanced generalization,
along with 3D learning objectives to strengthen object and
spatial reasoning. A latent space model can leverage diverse
datasets, learning the underlying mapping between language
instructions, visual observations, and the corresponding ma-
nipulative controls. Such a model would be applicable across
various robot embodiments, enabling tasks such as turning
a stove knob—regardless of the knob’s size, the kitchen’s
backdrop, the counter’s texture, or the presence of dim evening
lighting.

In conclusion, I aim to develop general full-stack robotic
systems that integrate LPTM’s structured generations and
encoded priors with suitable learning objectives for both high-
level reasoning and low-level control. I believe this research
direction will advance the deployment of general-purpose
robots in real-world home environments.
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