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ABSTRACT

Vision-language models (VLMs) serve as general-purpose end-to-end models in
autonomous driving, performing subtasks such as prediction, planning, and per-
ception through question-and-answer interactions. However, most existing meth-
ods rely on computationally expensive visual encoders and large language models
(LLMs), making them difficult to deploy in real-world scenarios and real-time
applications. Meanwhile, most existing VLMs lack the ability to process multi-
ple images, making it difficult to adapt to multi-camera perception in autonomous
driving. To address these issues, we propose a novel framework called MiniDrive,
which incorporates our proposed Feature Engineering Mixture of Experts (FE-
MoE) module and Dynamic Instruction Adapter (DI-Adapter). The FE-MoE ef-
fectively maps 2D features into visual token embeddings before being input into
the language model. The DI-Adapter enables the visual token embeddings to
dynamically change with the instruction text embeddings, resolving the issue of
static visual token embeddings for the same image in previous approaches. The
DI-Adapter enables the FE-MoE to further extract and process 2D visual features
based on user instructions, focus on attention regions, and reduce redundancy.
Compared to previous works, MiniDrive achieves state-of-the-art performance in
terms of parameter size, floating point operations, and response efficiency, with
the smallest version containing only 83M parameters.

1 INTRODUCTION

As large-scale pretraining techniques develop, vision-language models (VLMs), due to their pow-
erful visual reasoning capabilities, become the primary choice for visual question answering tasks
across various domains. Similarly, in the field of autonomous driving, question-answering reason-
ing based on VLMs has the potential to become a new method of interaction between drivers and
vehicles. This natural language question-answering approach enhances the interpretability of au-
tonomous driving. VLMs integrate perception, prediction, and decision-making during driving into
a unified model within autonomous driving systems, functioning as an end-to-end general model
for solving various sub-tasks in autonomous driving. Numerous VLMs applications in autonomous
driving systems already exist, where these models begin to perform tasks such as closed-loop con-
trol, scene perception, and traffic agent behavior analysis in autonomous systems (Chen et al., 2023;
Mao et al., 2023; Sima et al., 2023; Xu et al., 2023).

VLMs primarily consist of two main modules, including a vision encoder and an LLM for text gener-
ation. This implies that deploying VLMs in a system requires high computational costs and hardware
resources. In autonomous driving systems, developing VLMs that consume fewer resources, have
lower computational costs, and respond faster becomes a key consideration for practical deploy-
ment. However, current research on multimodal large models in autonomous driving mainly focuses
on models with over a billion parameters, such as BLIP-2 (Li et al., 2023), LLaMA-7B (Touvron
et al., 2023), GPT-3.5, and GPT-4 (Achiam et al., 2023), with the vision encoders relying on pre-
trained models based on the Transformer architecture, like CLIP (Radford et al., 2021). This con-
sumes substantial computational resources and hardware costs, and requires longer response times,
making them challenging to apply and deploy in practice. Recently, EM-VLM4AD(Gopalkrishnan
et al., 2024) introduces a lightweight architecture, attempting for the first time to apply lightweight
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models in the field of autonomous driving and achieving excellent results. However, there remains
a certain gap in response performance compared to billion-parameter models like DriveLM-Agent
(Sima et al., 2023). Additionally, autonomous driving typically involves multiple images from dif-
ferent angles, such as front, front-right, front-left, rear, rear-right, and rear-left. Most existing VLMs
are trained on single images, making them unsuitable for inputting multiple driving scene images.
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Figure 1: (a) shows the input format of MiniDrive
and the tasks it can perform. (b) compares the aver-
age evaluation of multiple-image inputs on the Drive-
LM evaluation system with related models. (c) com-
pares the average evaluation of single-image inputs on
the CODA-LM evaluation system with related mod-
els. Minidrive outperforms open-source models larger
than 7B and approaches the performance of commer-
cial models.

To address these challenges, this pa-
per introduces a novel vision-language
model called MiniDrive. Unlike tradi-
tional mainstream visual-language mod-
els, MiniDrive is not a unified model
based on the Transformer architecture. We
use the efficient backbone network model
UniRepLKNet (Ding et al., 2024), which
is based on large convolutional kernels,
as the vision encoder. We propose the
Feature Engineering Mixture of Experts
(FE-MoE) and the Dynamic Instruction
Adapter (DI-Adapter) to sequentially pro-
cess visual features and obtain visual to-
kens before inputting them into the lan-
guage model. Specifically, UniRepLKNet
captures the 2D features of images, and
FE-MoE processes multiple 2D features,
mapping them into text tokens for input
into the language model without requir-
ing stage-wise training for cross-modal
fine-grained alignment. Additionally, the
DI-Adapter is introduced to enable the
mapped visual tokens (i.e., text tokens
used as input to the language model) to
dynamically adapt to user text instruc-
tions, effectively aiding cross-modal un-
derstanding between text and images. As
shown in Figure 1(a), MiniDrive processes
multiple input images along with user in-
structions to generate natural language re-
sponses. It encompasses the most criti-
cal capabilities in autonomous driving, including perception, planning, and prediction question-
answering abilities. In Figure 1(b), we illustrate that MiniDrive is a lightweight visual-language
model with a minimal parameter size, memory footprint, and FLOP count. It can be fully
trained with multiple instances on a single RTX 4090 GPU with 24GB of memory. For instance,
MiniDrive224 has only 83M parameters and a FLOP count of merely 5.9B, which is significantly
lower than current visual-language models used in autonomous driving. In terms of response per-
formance, MiniDrive outperforms a series of previous models in question-answering capabilities.
Notably, its response quality exceeds that of models with billions of parameters. Additionally,
MiniDrive supports both single and multiple image inputs. In Figure 1(c), MiniDrive outperforms
open-source models with 7B parameters and above on the single-image evaluation system CODA-
LM (Li et al., 2024), approaching the performance of closed-source commercial models. Here are
our main contributions:

1. We develop autonomous driving VLMs—MiniDrive, which address the challenges of effi-
cient deployment and real-time response in VLMs for autonomous driving systems while
maintaining excellent performance. The training cost of the model is reduced, and multiple
MiniDrive models can be fully trained simultaneously on an RTX 4090 GPU with 24GB
of memory.

2. MinDrive is attempting for the first time to utilize a large convolutional kernel architecture
as the vision encoder backbone for autonomous driving vision-language models, enabling
more efficient and faster extraction of 2D features at different image levels. We propose
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Feature Engineering Mixture of Experts (FE-MoE), which addresses the challenge of effi-
ciently encoding 2D features from multiple perspectives into text token embeddings, effec-
tively reducing the number of visual feature tokens and minimizing feature redundancy.

3. This paper introduces the Dynamic Instruction Adapter through a residual structure, which
addresses the problem of fixed visual tokens for the same image before being input into the
language model. The DI-Adapter enables visual features to dynamically adapt to different
textual instructions, thereby enhancing cross-modal understanding.

4. We conduct extensive experiments on MiniDrive, achieving state-of-the-art performance
compared to autonomous driving VLMs with multi-view image inputs on Drive-LM. Fur-
ther, we outperform general open-source VLMs (7B) with single-image inputs on CODA-
LM by an average of 13.2 points. We open-source all our resources to foster community
development.

2 RELATED WORK

2.1 VISION-LANGUAGE MODELS

The success of the Transformer architecture (Vaswani, 2017) drives the development of LLMs. In
the field of computer vision, Dosovitskiy et al. (2020) propose the Vision Transformer (ViT), which
divides images into patches and processes them based on the Transformer architecture, adapting it
to computer vision tasks with success. Both images and natural language can be effectively learned
and represented by the Transformer architecture. A pioneering work is CLIP (Radford et al., 2021),
which uses contrastive learning for image-text alignment training, demonstrating superior zero-shot
capabilities in image classification tasks. Llava (Liu et al., 2024b) freezes CLIP’s vision encoder
(ViT) and adds a linear projection layer between the vision encoder and LLMs, aiming to map
visual output representations into textual space. Similarly, BLIP-2 (Li et al., 2023) aligns visual
and textual representations through a more complex Q-Former. InstructBLIP (Panagopoulou et al.,
2023) builds on BLIP-2 with instruction fine-tuning on public visual question-answering datasets.
MiniGPT-4 (Zhu et al., 2023) combines a frozen vision encoder and Q-Former with the similarly
frozen LLM Vicuna, aligning them with a single projection layer. Llava-1.5v (Liu et al., 2024a)
achieves state-of-the-art performance in 11 benchmarks by using CLIP-ViT-L-336px with a mul-
tilayer perceptron (MLP) projection layer and adding VQA data tailored for academic tasks with
simple response formatting prompts, significantly improving data efficiency. Phi-3-mini (Abdin
et al., 2024) features a default 4K context length and introduces a version extended to a 128K con-
text length using LongRope technology, while employing a block structure similar to Llama-2 and
the same tokenizer, enabling a lightweight multimodal model. Despite the powerful capabilities of
these multimodal large models and their trend toward lightweight design, their parameter counts
exceed one billion, making deployment and real-time use on many hardware platforms challenging.
Therefore, research and development of efficient vision-language models with smaller parameter
sizes and lower computational costs are necessary.

2.2 AUTONOMOUS DRIVING BASED ON LLMS

LLMs effectively enhance both the explainability of autonomous driving systems and their interac-
tion with humans (Greer & Trivedi, 2024). These advantages lead researchers to incorporate multi-
modal data from autonomous driving into LLMs’ training, aiming to build multi-modal large models
for autonomous driving. Chen et al. (2023) aligned vectorized modal information with LLaMA-7B
(Touvron et al., 2023) to train a question-answering model for autonomous driving. The training
process follows a two-stage approach: in the first stage, vector representations are aligned with a
frozen LLaMA, while in the second stage, LoRA (Hu et al., 2021) is used to fine-tune the language
model. DriveGPT4 (Xu et al., 2024) also employs LLaMA as its large language model, using CLIP
as the visual encoder. It generates corresponding answers by inputting both visual and textual in-
formation. DriveGPT4 leverages ChatGPT/GPT-4 to generate an instruction dataset and trains on
this dataset. However, DriveGPT4 only uses single-perspective images, limiting its ability to handle
more comprehensive understanding in autonomous driving scenarios. Wang et al. (2023) developed
DriveMLM , which uses LLaMA-7B as the foundational language model and ViT-g/14 as the image
encoder. This model processes multi-view images, LiDAR point clouds, traffic rules, and user com-
mands to achieve closed-loop driving. Inspired by the chain-of-thought approach in large language
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Vision encoder based on Transformer

(a) Representation learning in mainstream VLMs
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image?

Text embedding

……

(b) Representation learning in Ours
Image
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……

2D Features selection & learning
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image?

Text embedding
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……
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Dynamic changes

Figure 2: Comparison of the MiniDrive architecture with mainstream architectures. (a) Exist-
ing vision-language models primarily use a Transformer-based visual encoder to learn image patches
as visual tokens. These visual tokens remain unchanged regardless of the user’s questions. (b) Our
architecture employs a more efficient large convolutional kernel as the visual encoder, learning 2D
features of the image as visual tokens. These visual tokens change in response to different user
questions.

models (Wei et al., 2022), Sha et al. (2023) proposed a chain-of-thought framework for driving
scenarios, using ChatGPT-3.5 to provide interpretable logical reasoning for autonomous driving.
Mao et al. (2023) introduced GPT-Driver, which uses ChatGPT-3.5 to create a motion planner for
autonomous vehicles, and GPT-Driver reframes motion planning as a language modeling task by
representing the planner’s inputs and outputs as language tokens. Sima et al. (2023) released the
DriveLM dataset, a graphic visual question-answering dataset with question-answer pairs related to
perception, behavior, and ego-vehicle planning, based on multi-view image data from the NuScenes
dataset (Caesar et al., 2020). To establish baselines, Li et al. (2023) fine-tuned BLIP-2 on this new
dataset. EM-VLM4AD (Gopalkrishnan et al., 2024) introduced Gated Pooling Attention (GPA),
which aggregates multiple images into a unified embedding and connects it with text embeddings as
input to LLMs, achieving promising results on the DriveLM dataset.

While existing work provides significant value and demonstrates strong capabilities for autonomous
driving, most models have over a billion parameters. They are largely based on large-scale language
models such as GPT-3.5 and LLaMA, and rely on vision encoders built on the ViT architecture, such
as CLIP, ViT-g/14, and ViT-B/32. This results in high computational costs, making these models
unsuitable for online scenarios. Although there is a trend towards developing lightweight models
for autonomous driving, their performance still falls short compared to larger models. In Figure
2, we summarize the architectures of the current mainstream vision-language models and compare
them with the architecture of MiniDrive. Existing vision-language models primarily divide images
into several patches using a Transformer-based visual encoder, learning each patch as tokens for
the input language model. Additionally, during inference, the visual tokens remain fixed regardless
of how the user’s query changes. Our architecture extracts multi-level 2D features from the image
using a vision encoder based on large convolutional kernels (LKNet), further extracting and learning
these features to map them as tokens for the input language model. CNNs with large convolutional
kernels are more efficient and lightweight (Ding et al., 2022; 2024). Meanwhile, changes in the
user’s query dynamically alter the visual tokens.

3 METHOD

MiniDrive is a vision-language model in the field of autonomous driving, designed to perform visual
question answering tasks. It generates text responses by receiving an image and user instruction
text as input. In this section, we first provide a detailed introduction to the overall framework of
MiniDrive, followed by a specific explanation of the technical details and principles of each module,
including the Vision Encoder, Feature Engineering Mixture of Experts (FE-MoE) , and Dynamic
Instruction Adapter (DI-Adapter).
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Figure 3: MiniDrive Structural Details. In Figure (a), the overall architecture of MiniDrive is
presented. The image features from the vision encoder input are processed by the FE-MoE and
DI-Adapter with residual connections, resulting in visual token embeddings. These embeddings,
along with text embeddings, are then fed into the T5-Small language model, producing the output.
In Figure (b), the specific framework of FE-MoE is shown. The image is input into UniRepLKNet,
producing feature maps at different levels. These feature maps are then fed into the FE-MoE module,
where the Gate network generates weights. The 2D visual features are further assigned to different
experts for feature mapping and weighted summation.

3.1 MODEL ARCHITECTURE

Figure 3 (a) illustrates the overall structure of MiniDrive. In MiniDrive, there are primarily two
branches: vision and text. On the vision side, given n images from an autonomous vehicle as input
to the visual encoder, R3×H×W , each image receives a set of deep 2D feature representations V2D ∈
Rc×h×w. These features are then input into the FE-MoE, where multiple experts compress the
information along the channel dimension c and expand it along the height h and width w dimensions
to generate new 2D feature representations. In the FE-MoE, the Gate network determines which
experts are more suitable for processing each image, assigning different weight values to each expert.
Finally, the new 2D feature representations are combined through a weighted sum to produce the
new feature set Vmoe ∈ Rc′×h′×w′

. Flatten Vmoe to obtain V ∈ Rl1×dim1 , where the length l1
corresponds to the previous c′, and the dimension dim1 corresponds to the previous h′ × w′. Then,
the Projection layer maps dim1 to dim, resulting in V ∈ Rl1×dim.

On the text side, the user’s natural language instruction is processed through a Tokenizer and Em-
bedding layer to obtain the token embeddings of the text T ∈ Rl2×dim. The embedded sequence
of the text T is used as the key (k) and value (v), while the visual embedding sequence V at this
stage is used as the query (q). These are fed into the DI Adapter to compute a new visual embedding
sequence V1, which now incorporates the contextual information from the text embedding T , en-
abling better cross-modal understanding or decision-making. V1 is then combined with V through
a residual connection to form the sequence Vinput, while T is treated as Tinput. The concatena-
tion [Vinput, Tinput] is then used as input to the language model. The language model decodes to
generate a word sequence with the highest predicted probability. The entire framework efficiently
processes multi-image input information, dynamically responding to user queries.
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3.2 VISION ENCODER

As shown in Figure 3(b), the backbone network of the Vision Encoder is based on the large-kernel
neural network UniRepLKNet (Ding et al., 2024), which demonstrates excellent performance across
multiple modalities. It effectively leverages the characteristics of large-kernel convolutions, en-
abling a wide receptive field without the need to go deep into the network layers. While maintaining
efficient computation, it also achieves or surpasses the performance of current state-of-the-art tech-
niques across various tasks. This generality and efficiency make it a powerful model with potential
in a wide range of perception tasks. A brief review of the overall architecture of UniRepLKNet, as
shown in Figure 4, reveals that it primarily consists of multiple sequentially connected Stage layers.
Each Stage is mainly composed of a series of Lark Blocks and Smak Blocks. In MiniDrive, we use
UniRepLKNet as the backbone of the vision network, where an image is input and the output feature
map F1 ∈ Rc×h×w is obtained from the final Stage n.

3.3 FEATURE ENGINEERING MIXTURE OF EXPERTS

input

2 x

Stage 2

…

Stage n

LarK Block

SmaK Block

SmaK Block

LarK Block

…

SmaK Block

final feature 
map

…

C × H × W

Stage 3

4 x

Figure 4: UniRepLKNet generates
feature maps. We obtain the set of fea-
ture maps from each image propagated
to the final stage.

In Figure 3(b), we present the specific structure of the FE-
MoE, which is designed to handle 2D input features from
multiple images. Each input image corresponds to a fea-
ture map F1 ∈ Rc×h×w output by the Vision Encoder. To
further process the 2D feature representations of each im-
age efficiently, they are input into the FE-MoE. First, F1

is used by the Gate network to obtain the expert selection
weights corresponding to the sample. The Gate network
mainly consists of convolutional layers, max-pooling lay-
ers, and linear layers, as shown in the following equation:

Weights = Softmax(Gate(F1)). (1)

Then, F1 passes through each expert network, resulting in
a new feature representation F2 ∈ Rc′×h′×w′

. Each ex-
pert network mainly consists of a deconvolutional layer,
a ReLU layer, and a convolutional layer. The deconvolu-
tional layer first performs an initial upsampling mapping, increasing the dimensions of the feature
map’s width and height to expand the amount of information, facilitating subsequent mapping learn-
ing. At the same time, it reduces the number of channels in the original feature map to minimize
data redundancy and select the most important 2D feature representation information, significantly
simplifying the number of subsequent visual tokens. The convolutional layer further transforms the
features to enhance the learning capacity of the experts. The formula is shown as follows:

F2 = Conv(ReLu(Deconv(F1))), (2)

F1 ∈ Rc×h×w → F2 ∈ Rc↓×h↑×w↑

= F2 ∈ Rc′×h′×w′
,

(3)

where, c ↓ denotes a decrease in the number of channels, while h ↑ and w ↑ indicate an increase
in the height and width of the feature map, respectively. In this context, F2 represents the output of
an individual expert. Given that the weight for the i-th expert for an image is Wi, and the output
from this expert is Fi, with the total number of experts being N , the feature Vmoe of the image after
processing by the FE-MoE model is expressed by the following formula:

Fi = Experti(V isionEncoder(Image)), (4)

Vmoe =

N∑
i=1

Wi · Fi. (5)

6
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3.4 DYNAMIC INSTRUCTION ADAPTER

In previous vision-language models, image representations are fixed before being input into the
language model, and they correspond to various text representations before entering the language
model for computation. To enable image representations to dynamically transform according to
different text representations before being input into the language model, thereby improving cross-
modal understanding, we introduce the Dynamic Instruction mechanism and design the Dynamic
Instruction Adapter. We use the text input sequence T as the key (k) and value (v), and the image
input sequence V as the query (q). Through cross-attention, we compute the fused sequence V ′ that
incorporates textual contextual information. The formula is shown as follows:

V ′ = CrossAtt.(q = V, k = T, v = T ). (6)

The sequence in the residual channel is connected via a residual connection with the output sequence
of the projection layer, serving as the visual representation prior to the input into the language model.
The training of additional language model outputs can be found in the appendix.

4 EXPERIMENTS

In this section, we conduct extensive experiments on MiniDrive and analyze the experimental re-
sults, including the analysis of quantitative results, computational efficiency, and examples. Finally,
ablation experiments are performed to verify the effectiveness of the module.

4.1 EXPERIMENTAL SETTINGS

Datasets We conduct experiments on the DriveLM dataset. To ensure the fairness of the experi-
ments, we use the same training and evaluation protocol as EM-VLM4AD on the DriveLM dataset,
which includes the same training, validation, and test sets. The training set contains approximately
340,184 different multi-view/QA pairs, while the test set and validation set each contain 18,899 dif-
ferent multi-view/QA pairs.
Models We construct different versions of MiniDrive based on various UniRepLKNet models
as the vision backbone, with the main difference being their ability to learn visual token embed-
dings. We use UniRepLKNet-A as the vision backbone for processing images with a resolution of
224×224, and UniRepLKNet-S for processing images with a resolution of 384×384. We use the
T5-small language model as the foundation.
Evaluation metrics To ensure the fairness and reproducibility of the evaluation, we use the same
evaluation method as EM-VLM4AD on the DriveLM dataset, assessing the model from four differ-
ent perspectives: BLEU-4 (Papineni et al., 2002), ROUGE-L (Lin, 2004), METEOR (Banerjee &
Lavie, 2005), and CIDEr (Vedantam et al., 2015).
Implementation details Each model is trained on a single RTX 4090 GPU. The vision encoder is
frozen, while the other parameters are trained with an initial learning rate of 1e-4 and a weight decay
of 0.05. Each model is trained for 6 epochs on the training set. Note that in subsequent experiments,
MiniDrive refers to the MiniDrive224 version by default, with the number of tokens per image set to
16 and the number of experts set to 4.

4.2 QUANTITATIVE RESULTS

In Table 1, we compare the evaluation results of MiniDrive with previous works on the test set,
including EM-VLM4AD (Gopalkrishnan et al., 2024) and Drive-Agent (Sima et al., 2023). In terms
of overall performance on the metrics, both MiniDrive224 and MiniDrive384 outperform previous
methods, although DriveLM-Agent surpasses us in BLEU-4, its parameter count is significantly
larger than ours, reaching 3.96B.

4.3 COMPUTATIONAL ANALYSIS

In this section, we primarily compare the differences between MiniDrive and a range of existing
vision-language models in terms of parameter count, Floating Point Operations (FLOPs), and mem-
ory usage (GB). The results are shown in Table 2. Using an input image resolution of 224 as an
example, MiniDrive demonstrates superior performance in all three aspects.
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Table 1: Performance on DriveLM. We compare the response performance of different models on
the same test set. Bold indicates the highest value, while an underline indicates the second-highest
value.

Method Ref. DriveLM
BLEU-4 ↑ METEOR ↑ ROUGE-L ↑ CIDEr ↑

EM-VLM4ADBase CVPR’ 24 45.36 34.49 71.98 3.20
EM-VLM4ADQLarge CVPR’ 24 40.11 34.34 70.72 3.10

DriveLM-Agent ECCV’ 24 53.09 36.19 66.79 2.79
MiniDrive224 (Ours) - 49.70 36.30 73.30 3.28
MiniDrive384 (Ours) - 50.20 37.40 73.50 3.32

Table 2: The computational analysis of the model includes a comparison of the parameter size,
floating point operations (FLOPs), and GPU memory usage.

Model Parameters FLOPs Memory (GB)
DriveMLM 8.37B 535B 36
Drive-GPT4 7.3B 329B 29.2
LLM-Driver 7B 268B 28
DriveLM-Agent 3.96B 439B 14.43
EM-VLM4ADBase 345M 9.9B 1.97
MiniDrive224 (ours) 83M 5.9B 1.03

4.4 QUALITATIVE EXAMPLES

In Figure 5, we present the actual responses of MiniDrive on unseen samples across three differ-
ent tasks. To provide an interpretability analysis of MiniDrive’s perception of multi-view image
inputs, we analyze the activation maps of MiniDrive in various scenarios. In Figure 5 (a), MiniDrive
demonstrates perceptual question-answering for multiple image inputs, with the blue box indicat-
ing the image referenced by the user’s instruction for the position ”back left.” The red box cor-
responds to MiniDrive’s response, primarily focusing on that image, identifying ”many cars, one
truck, and one pedestrian” at the specified location. In Figure 5 (b), MiniDrive demonstrates plan-
ning question-answering for multiple image inputs. Based on the user’s instruction and the spatial
term ”CAM FRONT”, MiniDrive focuses on the red box on the left side of the corresponding front
image. This attention aligns with the elements that humans consider when making planning deci-
sions, including the traffic lane markings and vehicles on the left side of the ego car. In Figure 5
(c), MiniDrive demonstrates predictive question-answering for multiple image inputs. Based on the
user’s instruction to predict the movement of the pedestrian in the ”front left” position, MiniDrive
focuses on the pedestrian in the corresponding positional image, highlighted by the red box. Taken
together, the objects that MiniDrive focuses on in the activation map align with the reasoning fol-
lowed by human drivers during driving, indicating that MiniDrive possesses a certain level of relia-
bility and interpretability.

4.5 ABLATION STUDIES

To validate the effectiveness of each module, we design a series of ablation experiments. In Table 3,
we investigate the impact of FE-MoE and Dynamic Instruction Adapter (DI-Adapter) on MiniDrive.
When FE-MoE and Dynamic Instruction Adapter are introduced separately, the results of various
metrics improve, and when both modules are introduced simultaneously, a better effect is achieved.
This indicates the effectiveness of the mechanisms between the modules. The details of other abla-
tion experiments can be found in the appendix.

5 FURTHER ANALYSIS

Although MiniDrive is designed as an autonomous driving question-answering model for receiving
multi-image inputs, it extracts, compresses, and re-learns the information from multiple images as
Text Tokens for the language model. However, it can still be used for single-image input tasks. We
compare it with existing mainstream open-source and closed-source general models on CODA-LM,
as shown in Table 4. It is evident that despite MiniDrive having only 83M parameters, it demon-
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Front Left Front Front Right Back Left Back Back Right

User: What are objects to the
back left of the ego car?

MiniDrive: There are many cars, one truck, and
one pedestrian to the back left of the ego car.

(a) Perception

Front Left Front Front Right Back Left Back Back Right

User: What actions taken by the ego vehicle can lead to
a collision with <c6,CAM_FRONT,275.0,634.2>?

MiniDrive: slight left turn.
(b) Planning

Front Left Front Front Right Back Left Back Back Right

User: What is the status of the pedestrian that is to the
front left of the ego car?

MiniDrive: One pedestrian is moving.
(c) Prediction

Figure 5: Examples of MiniDrive’s Response. The color blue represents the user command querying
for multi-image input. The color red represents the activation response generated by MiniDrive
corresponding to the text.

Table 3: Ablation among modules. We compare the response performance of different models on
the same test set. Bold indicates the highest value, while an underline indicates the second-highest
value.

FE-MoE DI-Adapter DriveLM
BLEU-4 ↑ METEOR ↑ ROUGE-L ↑ CIDEr ↑

– – 45.70 34.09 69.74 3.07
✓ – 48.30 35.40 72.10 3.23
– ✓ 48.00 35.70 72.00 3.16
✓ ✓ 49.70 36.30 73.30 3.28

strates superior performance, outperforming open-source models and approaching the performance
of closed-source models. Due to the issue with the distribution of the training data, we believe that
this is the main factor contributing to MiniDrive’s strong ability to recognize ”Cone”. Further details
can be found in the appendix.

6 CONCLUSION

In this paper, we present MiniDrive, a state-of-the-art lightweight vision-language model for au-
tonomous driving. We introduce the FE-MoE and DI-Adapter mechanisms, proposing a novel
approach that maps 2D convolutional features into text tokens for language models. Our model
achieves outstanding results on two datasets, DriveLM and CODA-LM. In the future, we aim to

9
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Table 4: Performance on CODA-LM. MiniDrive is compared with Multimodal Large Language
Models. Bold indicates the highest value, while an underline indicates the second-highest value.

Method Parameters General↑ Regional Perception ↑ Suggestion↑
Text-Score ALL Vehicle VRU Cone Barrier Other Text-Score

LLaVA1.5 (Liu et al., 2024a) 7B 22.60 34.78 40.00 28.00 32.22 24.00 10.00 14.20
Qwen-VL-Chat bai2023qwen 7B 26.00 53.33 57.76 60.00 48.89 44.29 35.71 35.40

Qwen-VL-Max (Bai et al., 2023) api-model 34.60 68.17 69.83 56.00 80.00 59.29 65.71 47.40
GPT-4o (OpenAI, 2024) api-model 45.00 73.76 75.69 66.00 75.56 69.29 70.00 55.50
MiniDrive224(Ours) 83M 21.60 62.15 62.93 36.00 86.67 59.29 48.57 45.40
MiniDrive384(Ours) 137M 24.60 66.34 67.41 36.00 84.44 62.86 62.85 45.44

develop a real-time response model with video input to further advance autonomous driving tech-
nology.

7 LIMITATIONS

MiniDrive builds VLMs specific to the autonomous driving domain and has achieved excellent re-
sults on current mainstream benchmarks. However, it still lacks a certain level of generalization,
which we believe is due to the limitations of the training samples. The existing autonomous driving
field requires more public datasets and efforts to develop them. Additionally, MiniDrive’s training is
primarily focused on instruction-based datasets, and it continues to experience hallucination issues.
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A TRAINING

Due to the effectiveness of each module in MiniDrive and the consumption of only a small amount of
computational resources, the training employs a straightforward full-parameter approach, meaning
all parameters in MiniDrive are included in the training process. Meanwhile, MiniDrive is freezed
the vision encoder. MiniDrive is supervised by label text, with loss calculated using cross-entropy,
which quantifies the difference between the text sequence generated by the model and the target text.
The formula is as follows:

Loss = −
n∑

i=1

yi log(pi), (3)

where n is the number of tokens, yi is the true label for token i, and pi is the predicted probability
for token i.

B MORE ABLATION STUDIES
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Figure 6: More Ablation Studies on Tokens and Ex-
perts.

We configure the number of tokens per im-
age in MiniDrive224 to 16 and set the num-
ber of experts to 2, 4, and 6 for testing
on DriveLM. Additionally, we configure
the number of experts in MiniDrive224 to
4 and set the number of tokens per im-
age to 8, 16, and 32 for testing on Driv-
eLM. The results are shown in Figure 6.
When the tokens become larger, the lan-
guage model’s ability to learn longer se-
quences decreases. As the number of ex-
perts increases, the training difficulty of
the FE-MoE network grows, leading to a
decline in learning performance.

C MORE EXAMPLES

In this section, we demonstrate more response instances of MiniDrive. In Figure 7, we showcase
question-answering instances on DriveLM. While in Figure 8, we present question-answering in-
stances on CODA-LM. We train on the official training set provided by CODA-LM and conduct
testing on the Mini set. The parameter settings are consistent with those described in the experimen-
tal section.
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Front Left Front Front Right Back Left Back Back Right

User: What actions taken by the ego
vehicle can lead to a collision with
<c3,CAM_FRONT,1365.8,567.5>?

MiniDrive: Moderate right turn.

Front Left Front Front Right Back Left Back Back Right

User: In this scenario, what are safe actions to take for
the ego vehicle?

MiniDrive: Keep going at the same speed,
decelerate gradually without braking.

Front Left Front Front Right Back Left Back Back Right

User: What is the status of the pedestrian that is to the
front left of the ego car?

MiniDrive: One pedestrian is moving.

1

Front Left Front Front Right Back Left Back Back Right

User: What is the status of the car that is
to the front of the ego car?

MiniDrive: One car is moving.

Front Left Front Front Right Back Left Back Back Right

User: Is <c4,CAM_BACK,888.3,535.8> an object that
the ego vehicle should consider in the current scene?

MiniDrive: No..

Front Left Front Front Right Back Left Back Back Right

User: What is the observed status of object
<c2,CAM_BACK_RIGHT,750.0,426.7>?

MiniDrive: Stationary.

Figure 7: Examples of MiniDrive’s Response on DriveLM.
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There is an image of traffic captured from the perspective of the ego car. Focus on objects
influencing the ego car's driving behavior: vehicles (cars, trucks, buses, etc.), vulnerable road users
(pedestrians, cyclists, motorcyclists), traffic signs (no parking, warning, directional, etc.), traffic
lights (red, green, yellow), traffic cones, barriers, miscellaneous(debris, dustbin, animals, etc.). You
must not discuss any objects beyond the seven categories above. Please provide driving suggestions
for the ego car based on the current scene.

The ego car should maintain a safe following distance from the cement mixer truck, be prepared to
slow down or stop if the truck's brake lights indicate it is slowing down or stopping, and monitor the
white sedan on the left for any lane changes. Additionally, the ego car should be cautious of the
motorcyclist on the right and be ready to adjust its position if necessary. The ego car should also be
ready to react to the traffic light ahead and be ready to stop if it changes.

MiniDrive:

User:

Evaluator (gpt-4o-2024-05-13 ): The predicted text correctly emphasizes the importance of maintaining a safe following distance from the cement mixer truck and being prepared 
to stop or slow down. It also includes relevant observations about the white sedan and the motorcyclist. However, it fails to mention the red traffic light explicitly, which is a critical 
element of the given scenario indicating an imminent stop may be required. While the details about monitoring traffic are valuable, they slightly diverge from the core suggestions 
of the reference text. Overall, the response is actionable and rational, yet it lacks completeness concerning the traffic light condition. Rating: [[7]]

There is an image of traffic captured from the perspective of the ego car. Focus on objects influencing the
ego car's driving behavior: vehicles (cars, trucks, buses, etc.), vulnerable road users (pedestrians, cyclists,
motorcyclists), traffic signs (no parking, warning, directional, etc.), traffic lights (red, green, yellow),
traffic cones, barriers, miscellaneous(debris, dustbin, animals, etc.). You must not discuss any objects
beyond the seven categories above. Please describe each object's appearance, position, direction, and
explain why it affects the ego car's behavior.

In the traffic image, there is a large truck directly in front of the ego car, occupying the same lane. The
truck is characterized by its rear lights and reflective markings. The presence of this truck is significant as
it occupies the entire lane and may obstruct the view ahead for the ego car, necessitating a lane change or a
lane change to maintain a safe following distance. Additionally, there is a traffic light visible in the distance,
which is currently green. This indicates that the ego car has the right of way to proceed. However, the
driver should remain alert for any changes in the traffic light status. There are no vulnerable road users,
traffic signs, traffic cones, barriers, or other objects present in the image that affect the driving behavior of
the ego car.

MiniDrive:

User:

Evaluator (gpt-4o-2024-05-13 ): The prediction text accurately captures the key elements described in the reference text. It correctly identifies the presence of a large truck in front
of the ego car and emphasizes the impact this truck has on visibility and the need for a safe following distance. The description of the truck‘s safety lights and reflective markings
aligns well with the information provided in the reference text. The acknowledgment of the green traffic light ahead also matches the reference, along with the requirement for the
ego car to remain alert for any changes. Crucially, the prediction text does not include any hallucinated objects or details that were not mentioned in the reference text. Thus, it
maintains accuracy and relevance to the driving context described. Overall, the correlation between the objects mentioned and their impacts on driving behavior is consistent
between both texts. Therefore, I would rate this response as follows: Rating: [[10]].

Please describe the object inside the red rectangle in the image and explain why it affect ego car driving.

This object is a traffic cone, typically used to signal temporary changes in traffic patterns or to guide traffic
away from certain areas. Its bright color and reflective stripes make it highly visible to drivers. In this
scenario, the presence of the traffic cone suggests that there may be road work ahead or a temporary
obstruction. The ego car should reduce speed and proceed with caution, possibly preparing to change lanes
if the cone is indicating a closed lane or a hazard.

MiniDrive:

User:

Evaluator (gpt-4o-2024-05-13 ): The predicted text accurately describes the function and visibility of
a traffic cone, closely mirroring the reference text‘s content. Both texts explain that traffic cones are
used to signal road hazards and guide traffic, emphasizing the safety considerations for vehicles
approaching the cones. The language is similar, and the overall message about caution and potential
lane changes is consistent across both texts. Rating: [[9]]

Figure 8: Examples of MiniDrive’s Response on CODA-LM.
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