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Abstract

Images, captured by a camera, play a critical role in training Deep Neural Net-
works (DNNs). Usually, we assume the images acquired by cameras are consistent
with the ones perceived by human eyes. However, due to the different physical
mechanisms between human-vision and computer-vision systems, the final per-
ceived images could be very different in some cases, for example shooting on
digital monitors. In this paper, we find a special phenomenon in digital image
processing, the moiré effect, that could cause unnoticed security threats to DNNs.
Based on it, we propose a Moiré Attack (MA) that generates the physical-world
moiré pattern adding to the images by mimicking the shooting process of digi-
tal devices. Extensive experiments demonstrate that our proposed digital Moiré
Attack (MA) is a perfect camouflage for attackers to tamper with DNNs with a
high success rate (100.0% for untargeted and 97.0% for targeted attack with the
noise budget ε = 4), high transferability rate across different models, and high
robustness under various defenses. Furthermore, MA owns great stealthiness be-
cause the moiré effect is unavoidable due to the camera’s inner physical structure,
which therefore hardly attracts the awareness of humans. Our code is available at
https://github.com/Dantong88/Moire_Attack.

1 Introduction

Deep Neural Networks (DNNs) present huge potential in solving varies of vision tasks such as image
classification [19], instance segmentation [18], and object detection [32]. While such algorithms
bring huge productivity and greatly facilitate the daily life of humans, security risks also arise. It was
first revealed by Szegedy et al. [38] that small and imperceptible to human eyes perturbation on the
inputs can totally fool a DNN model and dramatically alter the results [14]. Since then, large amounts
of studies [14, 24, 22, 23, 10, 29, 11] have focused on crafting adversarial examples to mislead DNNs
to make wrong predictions which is called adversarial attack.

In the application of DNNs, an assumption are usually assumed that image samples used in the test
phase should follow the same distribution of the training data. However, in real-world applications, the
image samples are usually captured by various sensors (cameras, scanners, etc.) in different conditions
(light, angles, etc.). Such differences are reasonable to human eyes while may confuse a seemed
robust DNN. Especially, under some situations, the strange distortions beyond the commonly used
data augmentation methods may severely decrease its accuracy. One of such non-typical distortion we
focus on in this paper is moiré pattern, an artifact caused by interference of overlapping lines, grids
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and patterns. Moiré effect commonly occurs in the image when the frequency of the details in a scene
exceeds the sensors’ resolution [36]. Despite both human observers and image-capture sensors view
the same image, the human perceives a normal image while colorful strange waves (moiré effect) are
generated as a by-product by the sensors when the camera interacts with the frequent details of the
objects (as shown in Figure 1 (a)). The moiré effect is a typical example showing such a difference
between the human eyes and camera sensors. To be specific, in terms of human eyes, three different
types of cone cells respond differently to light of different wavelengths, the received different color
signals of the cone cells allow the brain to perceive a continuous range of colors. However, the color
vision perceived by the digital sensor called color filter array (CFA) receives color discretely. The
CFA is composed of many tiny color filters arranged periodically, thus the camera samples the color
signals at either discrete intervals or locations. Moreover, the human observer does not even know
the existence of moiré patterns for robotic observers.

Figure 1: (a) Moiré pattern in the physical life; (b) Potential security risk brought by moiré pattern.
Moiré pattern disturbs the normal shooting of images and has drawn the attention of many photog-
raphers and electronic screen manufacturers. Especially, The NTIRE challenge on example-based
demoiréing is organized every year to remove moiré pattern in images3. Simultaneously, we are
wondering: 1) whether the above-mentioned difference between human eyes and image-capture
sensors can be a potential physical risk to DNNs? 2) if it can be maliciously utilized by attackers to
compromise the DNN-based applications? For example, objects with frequent stripes or lines (Figure
1 (a)) may produce moiré when recorded by camera and then lead to a wrong classification. Another
more common real-world scenario is illustrated in Figure 1 (b): an autonomous car is required to make
real-time predictions of camera-captured images. Since the LCD monitors are now broadly existing
on the streets (traffic signs, advertisements, etc.), the image captured by the sensors is highly possible
to include a moiré pattern, which may trigger the subsequent false predictions of the detection and
recognition system of the self-driving car, incurring a catastrophe.

In this work, we find that DNNs are vulnerable to the moiré pattern and can be easily fooled to make
the false prediction (the corresponding experiments are shown in Section 3.1). This demonstrates
the effectiveness of the moiré pattern as a potential physical-world attack. Then we propose a Moiré
Attack (MA) by mimicking the shooting process of the camera when taking images on the LCD
monitor. From the perspective of attackers, the moiré pattern can be a perfect camouflage of the
adversarial perturbations. Especially, the proposed Moiré Attack is more controllable and enables
the attackers to deliver the targeted attack. While from the perspective of humans or supervisors,
few of them pay attention to the moiré pattern because of its unavoidability in the physical world. In
summary, the contributions of our work are listed as follows:

• We first discover and analyze the potential security threat of the moiré artifacts to DNNs.
Due to the mechanism of the camera’s inner property to generate images, moiré pattern is
unavoidable, which make the attack stealthy.

• We propose a Moiré Attack (MA) by mimicking the shooting process of the camera sensors,
which gives the attackers more freedom and controllability to tamper with DNNs.

• We perform comprehensive experiments to evaluate the proposed MA, which has high attack
success rate and transferability across the different victim models. In addition, it possesses a
high robustness that is resistant to many extant image transformation methods.

3More information about the challenge is here: http://www.vision.ee.ethz.ch/ntire20/
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2 Related Work

2.1 Adversarial attacks

Adversarial attack is to generate adversarial examples by maximizing the classification error of the
victim model [38]. It can be applied either in a digital setting or in a physical-world setting.

Digital attacks. Based on the attacker’s purpose, it can be divided into the targeted attack and the
untargeted attack. Meanwhile, according to the information the attacker has owned, it can also be
divided into white-box, black-box and gray-box attack [24]. In a white-box attack, information about
the whole internal structure of the victim model is available and utilized by the attacker, most of them
are combined with the optimization strategy and solved as an optimization problem. For example,
represented as the basic gradient-based attack methods, FGSM and FGSM series (I-FGSM, BIM,
and etc.) [14, 22, 23, 10, 29] use the gradient of classification loss with respect to the inputs as
perturbations to disturb the classifiers. By contrast, in black-box attacks, attackers only know the
input and final output of the victim model. In such cases, they usually construct a substitute model to
simulate the victim model which is called transfer attack [38, 22, 33, 41, 40, 39] or query the victim
model to generate corresponding attacks [5, 26, 2].

Physical attacks. In terms of physical attack, Kurakin et al. [23] first showed that, by printing and
recapturing using a cell-phone camera, digital adversarial examples can still be effective. However,
follow-up works had found that such attacks are not easy to realize under physical-world conditions
due to viewpoint shifts, camera noise, and other natural transformations [1]. Strong physical-world
attacks require large perturbations and specific adaptations over the distribution of transformations,
including lighting, rotation, perspective projection, etc. Thus physical-world attacks need to generate
large perturbations to increase adversarial strength, and it is always challenging to produce both
effective and stealthy perturbations. Previous works proposed either controlling the perturbation into
a small area or camouflaging the perturbation into target stealthy styles [3, 13, 11, 21].

In this paper, corresponding to the scenario discussed in Figure 1, we propose to use moiré pattern
as adversarial perturbation intuitively. Different from previous physical attacks which achieve the
adversaries by manipulating the input, the implementation of the proposed Moiré Attack is achieved
by mimicking the physical shooting process of the camera. Thus unlike previous adversarial attacks
aiming to conduct stealthy adversarial examples, our proposed attack based on moiré patterns is even
totally unaware by human observers.

3 The Proposed Moiré Attack

In this section, we first investigate the moiré effect and its threat to DNNs in the physical world.
Then, we formulate the problem and describe the implementation details of our proposed targeted
and untargeted Moiré Attack.

3.1 The investigation of moiré pattern

Moiré effect. Moiré pattern is a large-scale interference phenomenon. It is the perception of
a distinctly different third pattern caused by the inexact superimposition of two similar patterns.
A moiré pattern presents different shapes (ripples, waves, and wisps of intensity variations) and
frequencies when the two components move relative to each other. When the degree of their
misalignment increases, the frequency of the pattern may also increase (as shown in Figure 2 (a)).

Despite almost never being seen in nature, the occurrence of the moiré pattern is ubiquitous in
real photographing. When using the camera or other digital devices to capture a scene or object,
if the repetitive details (such as lines, dots, etc.) within the scene exceed sensor resolution, the
camera produces strange-look patterns. Moiré pattern can be easily found when photographing daily
objects around us such as all kinds of fabrics (jackets, towels, shirts, and curtains), stripe-decorated
architectures, various display screens and even straight hairs, as shown in Figure 1 (a). In other cases,
especially when taking photos on LCDs, the moiré pattern is unavoidable because the process of
displaying and capturing image is discrete in digital imaging. In detail, the digital display is composed
of many pixels. The pixel grid is further divided into single-color regions for either displaying or
sensing the color. As most displays and image-acquisition systems cannot display or sense the
different color channels at the same site, a color is typically represented by subpixel, including several
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component intensities such as red, green, and blue, in which the intensity of each pixel is a variable.
The pixel (composed of subpixels) appears as a single color to the human eyes because of blurring by
the optics and spatial integration by nerve cells in the eye. However, the subpixels are visible when
viewed by a high-resolution camera and sometimes appear with moiré patterns. Cameras perceive the
color information by CFA, which filters the light by wavelength range (as shown in Figure 2 (b)).
The image perceived by CFA is called a raw image, then demosaicing is used to recover the raw
image into a full-color image. In the process of image processing, the sample of color information is
discrete, resulting in moiré patterns overlaid on the final image. With the variations in position of
camera, types of cameras, the moiré patterns appear on the images are always diverse.

Figure 2: (a) Generation mechanism of moiré pattern. The upper line are two basic stripes, the
lower are five generated moiré patterns by overlapping them with different frequencies (the frequency
increases from left to right). (b) Bayer pattern used in single-chip cameras.

Threat to DNNs. We consider the unavoidable moiré pattern generated in the shooting may become
a physical threat to DNNs that leads to wrong predictions. For further exploration, we conduct the
following experiment. We adopt different LCD displays: Outdoor LCD display, Sony TV display,
large display and Dell computer monitor. In terms of the cameras, we use Google Pixle 4, Sony
Camera, and Huawei Pro20. For each type of digital display, we use all the cameras to take 20 photos
of each. The photos are taken from several angles: 30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 130◦, and 145◦.
The photos taken on the display by the camera and the original digital images are both feed into
DNNs to make predictions. Some of the results are shown in Figure 3. It indicates that moiré pattern
can be a potential security risk in real-world scenarios when we use digital devices to take images on
LCD monitors. The irregular pattern may trigger DNNs to make false predictions or be maliciously
utilized by attackers as a camouflage to deliver digital moiré attacks. In the next part, we try to use
the moiré pattern to further craft the digital attack by implementing its generation process.

Figure 3: The threat of moiré pattern to DNNs. Red frame represents a successful attack where moiré
pattern triggers DNN to make false prediction, while the green frame represents the failed one.
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3.2 The formulation of Moiré Attack

Preliminaries. Given a clean image x ∈ Rd with the ground truth ytruth, a DNN classifier f :
Rd → {1, · · · , k} which maps the image data to a discrete label set of k classes, and a target class
yadv 6= ytruth for the targeted attack. The goal is to find an adversarial example x∗ for the clean
image x that leads to f(x∗) 6= ytruth or f(x∗) = yadv. Typically, x∗ is restricted by Lp norm:
‖x∗ − x‖p ≤ ε, where ε denotes the perturbation budget.

In this work, we generate the adversarial examples by mimicking the shooting process of a camera to
take photos on LCD. The process can be seen as a differentiable transformation that we denote as
g(x, δ, κ), where δ is the sensor noise, κ denotes the other parameters. The goal of our digital Moiré
Attack is to optimize the sensor noise δ to craft the adversarial images that leads f(g(x, δ, κ)) 6=
ytruth (untargeted attack) or f(g(x, δ, κ)) = yadv (targeted attack), where x∗ = g(x, δ, κ). It should
be noted that different from most of the digital adversarial attack methods, the moiré pattern is an
unavoidable physical phenomenon, which means people tend to consider it reasonable even the moiré
distortion is relatively large. Based on this, the Lp norm restriction is unnecessary for the generated
examples with the moiré pattern. However, for comparison, we still use L∞ norm in our attack
process and finally find that the proposed Moiré Attack is budget-free, which is a great property of
the Moiré Attack.

As mentioned above, the aim of Moiré Attack is to find a sensor noise δ during the shooting process
so that induces the classifier to make the wrong predictions. To solve the problem, we reformulate it
as an optimization problem, and our objective is:

min
δ
Ladv(x∗, ytruth), where x∗ = g(x, δ, κ)

s.t. ‖δ‖∞ ≤ ε,
(1)

where g(x, δ, κ) denotes the differentiable process of simulating the generation of moiré pattern, δ is
the sensor noise of the digital image-capture device. We calculate the gradients during the backward
propagation to find the suitable δ to craft the adversarial examples. The pipeline of the proposed
Moiré Attack is shown in Figure 4.

Figure 4: The pipeline of the proposed Moiré Attack (MA). To generate the moiré pattern, the input
image is first fed into the yellow module which mimics the shooting process of taking photos on LCD
monitors in which an iterative sensor noise δ is added in the step of Bayer CFA. The output image
with moiré pattern is then fed into a CNN to make a prediction where backpropagation is conducted
to iterate the sensor noise δ that misleads the CNN to make wrong predictions.

Adversarial loss. We use cross-entropy loss as the adversarial loss Ladv(·) for Moiré Attack, it is
defined as:

Ladv =
{
log(py(x

∗)), for untargeted attack,
− log(pyadv

(x∗)), for targeted attack
(2)
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where p(·) is the probability output (softmax on logits) of the target model f with respect to class
yadv or ytruth. By minimizing loss Ladv, Moiré Attack finds an optimal sensor noise δ to simulate
the image capturing process on the LCD of digital devices.

3.3 The implementation of Moiré Attack.

In our Moiré Attack, we strictly follow the process of the image display on a LCD and the pipeline of
optical image capture and digital processing of the camera or smart phone. The pipeline is similar to
[27, 44] and can be summarized in the following steps. The complete pseudo-code for Morié Attack
is shown in Appendix A.

1) Resize the image to the size of the LCD monitor. Before an image is displayed on an LCD
monitor, it should be resized to a suitable size to cater to the resolution of the LCD device. In our
paper, we denote the size transformation parameter as α. In Section 4.5, we further explore the
relationship of the generated moiré pattern and the parameter α.

2) Resample the input RGB image into a mosaic RGB subpixels. Image displayed on the LCD is
spatially resampled to subpixels. In our experiment, we model the RGB pixels as 9 subpixels [R, G,
B; R, G, B; R, G, B]. It is shown that this step causes the final images to be darker.

3) Apply random projective transformation on the image. In order to simulate the different
relative positions and orientations when capturing an image on the LCD, we rotate the image
displayed on the LCD with a random angle γ, in our experiment, γ is in the range from −45◦ to 45◦.
In addition, the radial distortion function is used to simulate the lens distortion.

4) Resample the image using bayer CFA to simulate the raw reading of the camera sensor. In
digital imaging, a color filter array (CFA) or color filter mosaic (CFM) is a mosaic of tiny color
filters placed over the pixel sensors of an image sensor to capture color information [30]. The most
commonly used CFA is Bayer CFA (as shown in Figure 4). The Bayer pattern (also called RGGB
filter) is in a size of 2 × 2 and measures the green image on a quincunx grid (half of the image
resolution) and the red and blue images on rectangular grids (quarter of the image resolution) [25].

5) Add the perturbation to simulate the senor noise. To simulate the sensor noise, Gaussian noise
is used in previous work [27, 44]. Here we denote the sensor noise as δ with a L∞ budget ε and
optimize it through the back propagation of the DNNs.

6) Apply demosaicing and denoising. Demosacing is the inverse processing of mosaicing. It is
used to reconstruct a full-color image from the incomplete color sample output from an image sensor
overlaid with a color filter array (CFA). To reconstruct the image from the data collected by the CFA,
we use bilinear interpolation in this work. Finally, we denoise the image with the standard denoising
function provided by OpenCV. Until now, an image with the moiré pattern is generated.

4 Experiments and Evaluation

4.1 Experiment setup

The proposed Moiré Attack is implemented by Pytorch on the NVIDIA Tesla V100 GPU.

Dataset. Since ImageNet is a large and comprehensive dataset, we conduct experiment on ImageNet
[9] validation dataset and randomly select 5000 images which can be correctly classified by the victim
model as the clean examples.

Victim model. We use Inception-V3 [37] as the victim model for all the experiments. To analyze the
transferability of Moiré Attack, we use Resnet34 [19], Resnet50 [19], Densenet121 [20], VGG16
[35] and VGG19 [35] to evaluate the generated adversarial examples.

Baselines. To evaluate the robustness of Moiré Attack, different defense methods (Image Transfor-
mation (IT) [15], JPEG compression [34], Pixel Deflection [31], Feature Squeezing [42]) are adopted.
For comparison, we compare our proposed Moiré Attack with: PGD [28], BIM [23], and MI-FGSM
[10] under the L∞ setting, and C&W [4] under the L2 setting.

Metrics. We use the success rate (Succ (%)) to evaluate the attack ability of our method, which is
the proportion of the successful attacks among the total number of test images.
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4.2 The effectiveness of Moiré Attack

To evaluate the effectiveness of the proposed Moiré Attack, we conduct the targeted and untargeted
Moiré Attack. To exclude the effect of rotation and dim light, we also test the rotated and dim
images under the same setting. The generated examples and details are shown in Figure 5 and the
attack sucessful rate is shown in Table 1. From the results, we can see the processing of rotation
and dimming hardly change the predictions of the victim model, which means DNNs are relatively
robust against such common transformations. For targeted attack. the generated adversarial examples
are shown in Figure 5 (a) (the ε shown in the figure is set to 4). The targeted attack class is set to
"hen". From the results, the success rate can reach 97.0% when ε = 4. With the increase of ε, the
success rate of attack increases. For untargeted attack, the generated adversarial examples are shown
in Figure 5 (b) (the ε shown in the figure is set to 2), the success rate can reach 100% with a small
noise budget. In the following ablation study (Section 4.5), we further explore the influence of the
noise budget ε in the perspective of perception to human eyes, which presents another great property
of the proposed Moiré Attack - the budget-free sensor noise can be a perfect camouflage of the attack.
From Figure 5, we can see that the generated adversarial example is visually natural in the sense
of an physical attack, its visual rationality can be confirmed by the comparison with other physical
attacks in Appendix B.

Table 1: Success rate of Moiré Attack.

Attack Rotate Rotate + Dim Targeted MA Untargeted MA
2 4 6 8 2 4 6 8

Succ 0.122 0.163 0.876 0.970 0.990 0.995 1.000 1.000 1.000 1.000

Figure 5: Adversarial examples generated by targeted (a) and untargeted (b) Moiré Attack.

4.3 Robustness analysis

Under simple median value normalization. During the real shooting process, the shoot image with
moiré pattern is darker than the original digital images (the rationality of the darkness is discussed in
Appendix C). In our experiment, we perform mean value normalization to brighten the generated
adversarial example and then re-test the success rate of the Moiré Attack. We set the mean value of
the final adversarial examples the same as the clean image by subtracting their difference. We set
the noise budget as 2, 4, 6, and 8. The attack success rate is shown in Table 2 , we can see MA is
relatively robust to such a mean value processing.

Table 2: The success rate of untargeted MA after mean value normalizing.

Attack Untargeted MA

Noise budget ε 2 4 6 8
Success rate (mean value normalized) 0.960 0.987 0.994 0.998
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Resistant to JPEG compression. JPEG compression has been revealed by many studies to be an
effective defense against the adversarial attack [12, 7, 8, 34], as the added small perturbation can be
removed in the process of compression. In JPEG compression, the quantifiable quality qf decides
the degree of the compression (smaller qf means more information are reduced). In our experiment,
we test the success rate of Moiré Attack under JPEG compression with different qf and make a
comparison with the baselines. The success rate is shown in Table 3. From the results, we can see
that Moiré Attack is very robust against JPEG compression. Even the quantifiable quality qf is 20
that is a relatively low value, the attack success rate can still remain a high value 93.8% while other
baselines are subject to such compression.

Table 3: Success rate of Moiré Attack under the JPEG compression. The second left column is the
attack success rate on Inception-V3 model, the right 4 columns are the corresponding attack success
rate under the JPEG compression with different qf .

Inception-V3 qf = 20 qf = 40 qf = 60 qf = 80

MA 1.000 0.938 0.949 0.956 0.9881
BIM (L∞) 0.989 0.286 0.431 0.606 0.853
PGD (L∞) 0.99 0.276 0.379 0.522 0.797
CW (L∞) 0.762 0.205 0.207 0.226 0.354

MI-FGSM (L2) 0.991 0.491 0.776 0.892 0.964

Under other image transformation methods. In this part, we evaluate Moiré Attack under several
other transformations and denoise methods: pixel deflection (PD) [31], feature squeezing [42], and
total variance minimization (tvm) and image quilting (image transformation (IT) methods) [15]. All
the parameters are set following their original papers. We set noise budget ε = 4. All the attacks
are untargeted attacks. The results are shown in Table 4, we can see the proposed Moiré Attack is
relatively stable compared with other baselines and can still retain high success rate under varies
image transformation methods.

Table 4: Attack success rate under different transformation methods. The second left column shows
the attack success rate on victim model Inception-V3 without transformations.

Attacks Inception-V3 PD
Feature Squeezing IT

bit depth median smoothing tvm quilting4 5 2 * 2 3 * 3

MA 1.000 0.988 0.998 1.000 0.848 0.880 0.985 0.978
BIM 0.989 0.714 0.930 0.984 0.918 0.850 0.810 0.530
PGD 0.990 0.661 0.945 0.984 0.890 0.796 0.812 0.522
CW 0.762 0.109 0.062 0.182 0.074 0.121 0.804 0.516

MI-FGSM 0.991 0.931 0.976 0.988 0.962 0.945 0.820 0.557

Under demoiréing methods. We further explore whether Moiré Attack will be affected by the extant
demoiréing methods. We search for the challenge of demoiréing [43, 44] in recent years and choose
four SOTA methods MopNet [16], MDDN [6], FHde2Net [17], and AMNet [45] to test MA (the
settings are the same as the ones in their papers). We show the success rate of untargeted MA (ε = 4)
under demoiréing methods in Table 5 and the visualization of demoiréing results in Appendix D.

Table 5: The success rate of untargeted MA under demoiréing methods.

Untargeted MA Inception-V3 Demoiréing method
MopNet MDDM FHDe2Net AMNet

ε = 4 1.000 0.989 0.997 1.000 0.974
ε = 8 1.000 0.994 1.000 1.000 0.989

We find that moiré pattern is actually annoying and intractable to be greatly removed. Even moiré
pattern is partly mitigated under such demoiréing methods in perception, the image still remains
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adversarial to the victim CNN model (as shown in Table 5, the success rate is still high under
demoiréing methods). In this view, moiré pattern not only causes visual impediment but can really
be a threat to the safety of CNN, which should be aware and more exploration should be devoted to
remove or weaken its potential threat.

4.4 Transferability analysis

In this part, we study the transferability of the proposed Moiré Attack. We choose Inception-V3 [37]
as the source model to attack and Resnet34 [19], Resnet50 [19], Densenet121 [20], VGG16 [35], and
VGG19 [35] as the remote target models to test the generated adversarial examples. The noise budget
ε = 4. All the attacks are untargeted attack. Table 6 shows the proposed Moiré Attack (MA) has
high transferability across different DNNs (the success rates are all about 95%), while the baselines
behave poorly in the transferability.

Table 6: The attack success rate of different models. The second left column is the source model
Inception-V3 and the right 5 columns are the remote target models.

Attacks Inception-V3 Resnet50 Resnet34 Densenet121 VGG16 VGG-19

MA 1.000 0.967 0.927 0.959 0.982 0.973
BIM 0.989 0.176 0.202 0.173 0.233 0.202
PGD 0.990 0.166 0.202 0.167 0.224 0.201
CW 0.762 0.116 0.133 0.121 0.170 0.146

MI-FGSM 0.991 0.254 0.294 0.247 0.312 0.298

4.5 Ablation Study

Budget-free Moiré Attack. To explore the relationship between the sensor noise and the final
generated moiré pattern in perception, we set the sensor noise budget ε from 4 to 32. Te details of the
generated adversarial examples are shown in Figure 6.

Figure 6: Comparison of the details of the adversarial examples generated by Moiré Attack (MA)
and BIM.
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We can see that with the increase of the added sensor noise budget ε, the details of moiré in the
adversarial example hardly change, which means there is no obvious change perceptible to human
eyes. While for BIM, when the perturbation is up to a threshold (e.g. 32), the noise can be easily
noted by human eyes. In this aspect, our proposed Moiré Attack is a budget-free attack.

Factors affecting the synthesis moiré pattern. In this part, we further explore different factors that
will influence the generated moiré pattern including the shooting rotation angles γ and the size of the
LCD monitor (size scale factor α). The sensor noise budget is ε = 4. The results are shown in Figure
7. For rotation angles, the results show that moiré patterns with different rotation angles generated
by Moiré Attack are different. Another factor influencing the moiré pattern is the size scale degree
when displaying an image on the monitor. We can see that when the size of the monitor increases, the
generated moiré pattern becomes more obvious and the distortion is more evident. In addition, we
also discuss the position of the introduced fabricated noise’ position to MA in Appendix E.

Figure 7: Factors that influence the generated moiré pattern. The top row shows the different moiré
pattern with different rotation angles γ and the bottom row shows moiré pattern under different size
scale factor α.

5 Conclusion and Future work

In this paper, we revealed the threats of DNNs from a new perspective. We utilized the physical
property of the camera when shooting, i.e., the moiré effect, and demonstrated its potential security
risk for DNNs. Then we proposed Moiré Attack by mimicking the shooting process of a camera.
Extensive experiments have been conducted to present great properties of the proposed Moiré Attack,
e.g., high attack success rate, high transferability across different models, and high robustness under
various image transformation methods. However, the sensor noise is uncontrollable in a sense and it
may be difficult when delivering the targeted MA in practice. Our work is just a small step to open
up a new possibility to craft attacks against DNNs. We will continue to explore more general moiré
effect generation methods.
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