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Abstract

Protein language models (pLMs) are powerful pre-
dictors of protein structure and function, learning
through unsupervised training on millions of pro-
tein sequences. pLMs are thought to capture com-
mon motifs in protein sequences, but the specifics
of pLM features are not well understood. Identi-
fying these features would not only shed light on
how pLMs work, but potentially uncover novel
protein biology––studying the model to study the
biology. Motivated by this, we train sparse au-
toencoders (SAEs) on the residual stream of a
pLM, ESM-2. By characterizing SAE features,
we determine that pLMs use a combination of
generic features and family-specific features to
represent a protein. In addition, we demonstrate
how known sequence determinants of properties
such as thermostability and subcellular localiza-
tion can be identified by linear probing of SAE
features. For predictive features without known
functional associations, we hypothesize their role
in unknown mechanisms and provide visualiza-
tion tools to aid their interpretation. Our study
gives a better understanding of the limitations of
pLMs, and demonstrates how SAE features can
be used to help generate hypotheses for biological
mechanisms. We release our code, model weights
and feature visualizer.

1. Introduction
Protein language models (pLMs) are language models
trained on large datasets of protein sequences. In the pro-
cess of minimizing loss on their pre-training task–usually
masked token prediction–they learn representations of pro-
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teins useful for downstream tasks including protein structure
(Lin et al., 2023) and function (Rao et al., 2019; Notin et al.,
2022) prediction. For this reason, pLMs have become a
growing component of the protein biologist’s toolkit.

As these models are widely adopted, a number of studies
have investigated their inner workings to understand their
limitations. Previous work suggests pLMs do not learn the
biophysics of proteins, but rather store common sequence
motifs and contacts (Zhang et al., 2024). For many down-
stream tasks, pLM performance is driven by features learned
in early layers and does not scale well with pre-training (Li
et al., 2024). Yet exactly what pLMs have learned about
proteins remains unknown.

Recent work in mechanistic interpretability points to a path
forward. Sparse autoencoders (SAEs) have successfully
extracted interpretable features from large language models
(LLMs) like GPT-4 and Claude (Gao et al., 2024; Temple-
ton et al., 2024). SAEs decompose model activations into
a sparse, high-dimensional representation where individ-
ual latent dimensions often have interpretable activation
patterns. These features provide a window into the inner
workings of these complex models. Training SAEs on pLMs
can serve an additional purpose. Unlike natural languages,
which we intuitively understand, the language of proteins
is more cryptic. SAE features from pLMs could potentially
unveil patterns in protein sequences that we have not yet
discovered.

In this work, we train SAEs on the residual stream of ESM-
2, a widely used pLM (Lin et al., 2022) (Figure 1a). To
interpret the SAE latents, we develop InterProt, a tool that
visualizes latent activations on protein sequences and struc-
tures. We find that some features are highly interpretable,
corresponding to a range of concepts from secondary struc-
ture elements to entire domains, as reported contempora-
neously by Simon & Zou (2024). We conduct a human
evaluation study and find that SAE latents are consistently
rated as interpretable, in contrast to the ESM baseline. Fur-
thermore, we find that many features activate highly only
on specific protein families, suggesting that pLMs rely on
internal representations of protein families to perform their
pre-training task. We introduce a method to categorize SAE
latents based on their family specificity and activation pat-
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Figure 1. Overview of our paper. a. We train SAEs on the output of ESM intermediate layers. b. We interpret SAE latents using our latent
visualizer InterProt and categorize features based on their activation pattern and family specificity. c. By interpreting the weights of linear
models trained on SAE latents, we show how features which correspond to known sequence determinants can be identified.

tern (Figure 1b).

Having developed a framework for understanding features,
we explore the impact of SAE hyperparameters and ESM
layers. We find that increasing the sparsity imposed on
SAE latents increases the number of features that are family-
specific as does increasing the expansion factor. The number
of family-specific features also varies substantially by ESM
layer, with middle layers containing the most family-specific
features.

With the goal of mapping SAE features to important protein
properties, we train linear probes on SAE features and an-
alyze the most predictive features. Our method identifies
features corresponding to known sequence determinants for
properties such as thermostability and subcellular localiza-
tion. These results demonstrate that SAEs can help us not
only understand pLMs, but also the data on which they are
trained. By making pLM representations interpretable, we
envision that SAE features may help generate hypotheses
for unknown biological mechanisms (Figure 1c).

2. Related Works
2.1. Interpreting protein language models

Previous evaluations of pLM representations on downstream
tasks provide evidence of features that pLMs may be learn-
ing (Rao et al., 2019; Dallago et al., 2021; Detlefsen et al.,
2022; Li et al., 2024). In particular, Li et al. 2024 performs
a comprehensive analysis of ESM performance on a range
of downstream tasks across different model sizes and layers.
Of the tasks they tested, they find that only structure-related
prediction tasks scales with model size, and that most tasks
use “low-level features” learned early in pre-training. A key
limitation of using downstream tasks to understand the fea-
tures learned by pLMs is that features cannot be discovered
without supervision. In contrast, SAEs can uncover features
in a more unsupervised manner.

pLMs seem to use a notion of sequence homology and
recurring protein motifs. Using influence functions, Gordon
et al. (2024) finds that pLM-derived sequence likelihoods
are driven by homologous protein training data. Zhang et al.
(2024) propose that pLMs store common motifs in proteins
and the pairwise contacts between them. They arrive at this
proposition by analyzing what residue segments must be
unmasked to recover a sequence contact (via the “categorical
Jacobian”).

Many studies have explored how pLMs work mechanisti-
cally as well. Analyses of attention matrices in pLMs have
been shown to resemble pairwise contact maps (Vig et al.,
2021; Rao et al., 2021; Lin et al., 2023), and contain infor-
mation such as binding sites (Vig et al., 2021) and allosteric
sites (Kannan et al., 2024; Dong et al., 2024). They have
been comprehensively mapped to Gene Ontology terms
(Chen et al., 2025).

Concurrent to our work, Simon & Zou (2024) trained SAEs
on ESM-2 and presented methods to analyze their latents:
visualizing them, evaluating them against Swiss-Prot anno-
tations, and interpreting them with a language model. Our
work builds on this foundation with a different SAE archi-
tecture and evaluation methods that focus on coevolution,
human preference, and downstream tasks (subsection A.3).

2.2. Dictionary learning for feature extraction from
models trained on biological data

Following the success of extracting interpretable features
from LLMs, a number of works have applied sparse dic-
tionary learning techniques to models trained on scientific
data. Donhauser et al. (2024) evaluates the possibility of
extracting features from models trained on microscopy data.
Interpretable features have also been uncovered from sin-
gle cell foundation models (Schuster, 2024; Adam Green,
2024). Associating the extracted features with functional
labels via probing, however, has not yet been explored in
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Figure 2. Examples of SAE features. We find features related to secondary structure (a), conserved motifs and domains (b), and
biochemical patterns in specific structural contexts (c). The structures are colored according to activation (red: activation, blue: no
activation).

this context.

3. Background and Methods
3.1. Sparse autoencoders (SAEs)

An SAE is an autoencoder designed to learn efficient and
meaningful representations by enforcing sparsity constraints
on encoder output. We use SAEs with TopK activation to en-
force sparsity, as introduced in Gao et al. (2024). This activa-
tion function only allows the k largest latents to be non-zero.
We choose TopK SAEs due to their improved reconstruction
at a given level of sparsity compared to other techniques,
and because it allows us to directly set the L0-norm of the en-
coding using k. We note that improved reconstruction may
come at the cost of increased feature absorption (Karvonen
et al., 2024).

The encoder and decoder are defined as:

z = TopK (Wenc (x− bpre))

x̂ = Wdecz + bpre

where Wenc projects the residual stream into the SAE latent
space and Wdec the reverse. TopK zeros all latents that are
not in the top k. The loss is simply the reconstruction mean
squared error L = ∥x − x̂∥22. We train our TopK SAEs
on 1 million random sequences under 1022 residues from
UniRef50 (Suzek et al., 2007).

Following Lieberum et al. (2024), we refer to the hidden
dimensions of the SAE as “latents” to clearly distinguish

them from the underlying conceptual features of the model.
This is in contrast to previous works which use the word
feature to refer to both (Bricken et al., 2024).

3.2. Downstream tasks

Secondary structure. The secondary structure dataset from
TAPE (Rao et al., 2019) contains residue-level labels in 3
classes: alpha helix, beta strand, or other. To prevent data
leakage, sequences are divided into training and test sets
based on a threshold of 25% sequence identity.

Subcellular localization. Subcellular localization is a
protein-level label for where a protein is localized within
a cell. The dataset from Almagro Armenteros et al. (2017)
consists of UniProt-sourced eukaryotic proteins, with strin-
gent homology-based train-test splits.

Thermostability. The thermostability dataset from the
Melteome Atlas (Jarzab et al., 2020) measures the melt-
ing temperature of 48,000 proteins across 13 species. We
use the train-test split from FLIP (Dallago et al., 2021) con-
taining all sequences clustered at 25% sequence identity.

Mammalian cell expression. The dataset curated by Mas-
son et al. (2022) contains expression data of 2,165 proteins
from the human secretome in Chinese hamster ovary (CHO)
cells, commonly used mammalian hosts for therapeutic pro-
tein production. We use this dataset as a binary classification
task to determine whether a protein can be successfully ex-
pressed in CHO cells. We split proteins into training and
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Figure 3. a. Example of a family specific feature, the central helix of a beta lactamase. The histogram shows the distribution of maximum
activations in the sequences which activate the latent. b. Example of a non-family specific feature, corresponding to disordered sequences.
c. Latents classified by activation pattern across layers. d. Number of family-specific latents across layers. The SAEs used in c and d have
a hidden dimension of 4096 and k=64.

test sets based on a threshold of 40% sequence identity.

3.3. Linear probes

For each task and for varying ESM layers, we train linear
probes on both ESM and SAE embeddings. We mean-pool
embeddings over the length of the sequence for tasks with
protein-level labels: subcellular localization, thermostabil-
ity, and mammalian cell expression. For all linear regression
and logistic regression tasks, we perform grid search over
a range of regularization strengths and pick the best model
using a validation set. See Table 1 for a summary of the
probe implementation for each task.

3.4. Manual feature interpretability study

Following Rajamanoharan et al. (2024), we conducted a
blinded study in which seven participants (graduate students
and undergraduates familiar with protein biology) rated
the interpretability of SAE and ESM latents from layer 24.
Embeddings were computed on sequences from Swiss-Prot
clustered at 30% sequence identity (see subsection A.6).
Using our InterProt visualizer, each participant viewed 100
randomly selected features (drawn uniformly from both
models) and rated their interpretability as yes, no, or maybe.

4. Feature Analysis
4.1. SAEs uncover interpretable features

We train TopK SAEs on the residual stream of different lay-
ers of ESM-2 (650M) to explore its learned representations.

To interpret a given SAE latent dimension (i.e., a latent), we
examine the top activating protein sequences, i.e., those that
produce the largest activation for that dimension. We devel-
oped a latent visualizer, InterProt, to streamline the process
of identifying features. InterProt allows users to align the
most-activating sequences and highlight their corresponding
protein structure by activation strength. It is open source
and can be accessed at https://interprot.com.

Through these visualizations, we gain insight into how ESM
internally represents protein sequences (Figure 2). Many
discovered features correspond to recognizable biological
concepts, such as secondary structure elements (e.g., alpha
helices and beta strands), short conserved motifs, or entire
functional domains. Some features capture biochemical
concepts like cysteine-cysteine bonds or the orientation of
residue side chains. In many ways, latents capture charac-
teristics of a protein that a biologist might notice.

Notably, while many latents are intuitive (e.g., focused on
conserved motifs), others are unexpectedly specific. For
instance, rather than a single, generic “alpha helix” latent,
we observe multiple helix-related latents that activate under
more context-dependent conditions (e.g., at the beginning
of a helix, only when the helix is buried, or when the helix
meets a certain length criterion). Other examples include
highly context specific amino acids, such as asparagine
residues in disordered regions.

To systematically evaluate interpretability, we conducted a
blinded human study to rate SAE and ESM latents (subsec-
tion 3.4). SAE latents were rated as interpretable far more
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Figure 4. Human rater scores of SAE or ESM latents from layer
24. The error bars indicate the 95% confidence interval, assuming
a binomial 1-vs-all distribution.

often than those from ESM (Figure 4). Approximately 80%
of SAE features received a “yes” rating for interpretability,
broadly consistent with previous findings on SAEs trained
on language model activations (Rajamanoharan et al., 2024).

4.2. SAE latents reveal a learned notion of protein
families

Intriguingly, a large subset of latents appear to be protein
family-specific. These latents activate weakly on most se-
quences but strongly on proteins belonging to a particular
family. For example, the latent shown in Figure 3a ap-
pears to highly activates only for the central helix in beta-
lactamases, but only exhibits marginal activations when
a similar structural motif appears in proteins outside the
beta-lactamase family.

By contrast, a non-family-specific latent such as the “dis-
ordered” latent in Figure 3b, responds broadly to intrin-
sically disordered regions in proteins across many fami-
lies. These observations collectively suggest that pLMs
learn internal representations that, in part, mirror known
sequence-homology based groupings of proteins, akin to a
model-internal notion of protein families.

To better understand the relationship between a family-
specific latent and its associated protein family, we investi-
gate what happens when we “steer” ESM using the latent.
Specifically, we set the activation of a family-specific latent
to a multiple of its maximum activation, and continue the
model’s forward pass using the reconstructed activation. We
find that, compared to steering random latents which acti-
vate on a sequence, steering family specific latents causes
fewer residues to change (Figure 7). Investigating how to
steer the model in useful ways remains an open direction
for future work.

4.3. Classifying latents

Motivated by these observations, we propose two classifica-
tion schemes for the SAE latents.

Activation Pattern. Latents exhibit distinct activation pat-
terns across their top sequences (Figure 1b). To capture
these differences, we use a rule-based scheme that classifies
features into categories such as: point (activates on single
residues at a time), periodic (activates in a regular inter-
val, repeating every n residues), motif (activates in short,
medium, or long contiguous intervals), and domain (acti-
vates over nearly the entire sequence). Refer to Table 2 for
precise definitions.

Family Specificity. To quantify family specificity, we use
each latent for binary classification: given a protein, can
this latent’s activations be used to predict membership in a
particular family? We label a latent “family-specific” if it
achieves an F1 score > 0.7 at a certain activation threshold.
We use all protein sequences from Swiss-Prot (Boeckmann
et al., 2003) (clustered as 30% sequence identity) and cate-
gorized into InterPro protein families (Paysan-Lafosse et al.,
2023) for our evaluation. Refer to subsection A.6 for details.

These classifications allow us to systematically group SAE
features and draw broader conclusions about their roles in
representing protein structure and function.

4.4. Influence of SAE training choices on latent
classification

Prior literature on LLMs suggests that SAE-learned features
depend on multiple factors, including model hyperparame-
ters (e.g., the sparsity level and latent dimension size) and
training data (e.g., which layer’s activations are used). We
therefore examine how these factors impact the types of
features that emerge in pLMs.

Effect of k. In TopK SAEs, the k hyperparameter controls
how many latents can be active for a given input, effectively
setting the sparsity level. We find that, for a fixed hidden
dimension, lower k (i.e., higher sparsity) yields more family-
specific features (Figure 8a). One plausible explanation
is that family-specific features constitute the most salient
signals used in reconstruction.

Effect of expansion factor. We also experiment with in-
creasing the latent dimension, called the expansion factor.
While we initially hypothesized that a larger latent dimen-
sion might shift the distribution of feature activation patterns,
we observed that activation pattern classifications (point, mo-
tif, domain, etc.) remain largely consistent, while increasing
the number of family specific features (Figure 8b).

Comparison across layers. Finally, we investigate layer-
wise differences in the learned features. Previous studies
have shown that downstream performance can vary substan-
tially depending on which layer representations are used,
suggesting that different layers capture different degrees of
abstraction. In our experiments, family-specific features
tend to peak in certain early-to-mid layers of ESM, then
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Figure 5. Linear probe performance on ESM vs. SAE embeddings
across ESM layers. In all 4 downstream tasks, SAE performs
competitively with ESM. For secondary structure prediction, SAE
consistently outperforms ESM in most layers. All classifications
tasks are measured using accuracy; thermostability is measured
using Spearman’s rank correlation.

decline in later layers (Figure 3d). Similarly, features which
activate contiguously over long sections (motif/domain) are
more common in earlier layers, whereas later layers exhibit
features with shorter contiguous activations (Figure 3c).
Given that later layers are thought to specialize for final
logit computation (Gao et al., 2024), one possibility is that
shorter, more specific activations better serve this goal.

5. Interpretable Probing
Representations learned by pLMs can be used in down-
stream tasks. Often, this is as simple as training a linear
model on the pLM embeddings. Although this leads to a
predictive model, it does so at the expense of interpretability,
as the coefficients of the linear model do not correspond to
interpretable features. In this section, we explore the ability
of SAE representations to overcome this limitation. Since
SAE latents are often interpretable, those that contribute
significantly to prediction could reveal biological reasons
that explain the prediction.

5.1. SAE probes perform competitively with ESM
probes

In the context of LLMs, linear probes on SAE embeddings
can achieve performance similar to, or in some cases better
than, linear probes on their base model embeddings (Bricken
et al., 2024; Kantamneni et al., 2024). To explore this dy-
namic in pLMs, we train linear probes on ESM and SAE em-
beddings across different layers. Following Li et al. (2024),
we evaluate the probes on benchmarked downstream tasks:

secondary structure, subcellular localization, thermostabil-
ity, as well as a novel task, mammalian cell line expression
prediction.

We find that linear probes on SAEs achieve performance
similar to their ESM baselines across all layers (Figure 5).
For secondary structure prediction, the SAE probe consis-
tently outperforms the ESM probe, a result we discuss in the
next section and attribute to the abundance of SAE latents
that correspond to secondary structure.

5.2. SAE probes uncover interpretable latents
corresponding to known mechanisms

To assess the interpretability of linear probes trained on
SAE latents, we analyze the distribution of their coefficients
(Figure 10) and manually inspect the latents with the largest
coefficients in the InterProt visualizer 1. We find that those
latents often correspond to biological concepts with known
relevance to each task (Figure 6). 2

5.2.1. SECONDARY STRUCTURE

Secondary structure prediction is a task that is known to
utilize the features learned during pLM pre-training (Li
et al., 2024). Our analysis of the highest-weighted SAE
latents in our secondary structure probe confirms this and
provides an explanation for why early layers perform worse.

Our SAE probes reveal that most layers contain features
corresponding to secondary structure elements. The most
positive coefficients for the alpha helix class are typically
latents that activate exclusively on helices (Figure 6a). They
range from specific helix residues, to entire helices, to helix-
helix interactions. We observe similar results for the two
other classes: beta strand and other, where other tends to
correlate with features that activate on disordered regions.

Why is classification performance worse in early layers?
We find that early layers do not contain generic features
for secondary structure. For example, the top latent for
helix classification in layer 4 (L4/2624) detects proline (P)
residues, which often appear at helix boundaries due to their
disruptive effect on hydrogen bonding. This reliance on a
weak amino acid-level correlation highlights the absence of
a more generalized helix feature. Similarly, the top latent
for the disordered classifier activates on N-terminal residues,
reflecting the spurious correlation that many proteins have
disordered regions at their N-terminus, rather than capturing

1Linear probe coefficients are not comparable across tasks
because different tasks may apply different regularization strengths,
optimized via grid search.

2In this section and in Figure 6, we discuss latents from a range
of layers. The choice of layers is qualitative––primarily based on
latents we find particularly interpretable or notable––and does not
imply the lack of interesting latents in undiscussed layers.
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Figure 6. Linear probes identify predictive SAE latents for downstream tasks. a. The top 5 alpha helix latents from the secondary structure
prediction task. These latents activate mostly exclusively on alpha helices (SAE trained on ESM layer 16). b. The latents corresponding to
the 3 most positive and 3 most negative coefficients from the linear probe on thermostability. The most positive latent activates on residues
in the hydrophobic core, which is structurally important for thermostability; the most negative latent activates on glutamine (Q) amino
acids, whose absence is correlated with increased thermostability (SAE trained on ESM layer 8). c-d. Top 5 nucleus and extracellular
latents from the subcellular localization prediction task. The top nucleus latents activate on bipartite nuclear localization signals (NLS),
which contain a variable-length linker and generally follow the pattern R/K(X)10−12KRXK. The top extracellular latent activates on
signal peptide cleavage sites, while another top latent activates on the extracellular regions adjacent to the membrane (SAE trained on
ESM layer 28).

fundamental structural properties.

5.2.2. SUBCELLULAR LOCALIZATION

Transport mechanisms involving sequence motifs such as
transit peptides and localization signals determine the loca-
tion of proteins within the cell. We find that linear probes
trained on SAE latents can uncover some of these known
mechanisms.

Nuclear localization. The most highly weighted latents
for nuclear localization often correspond to nuclear local-
ization signals (NLS). For example, the top latents in the
probe for layer 28 probe activates on K/R rich sequence
motifs (Figure 6c) and on bipartite nuclear localization
signals (L28/2375), which generally follow the pattern
R/K(X)10−12KRXK (Lu et al., 2021). The latent activates
strongly on the R/K motifs at each end and can flexibly
recognize the variable-length linker sequence that connects
them. These sequence motifs engage cellular mechanisms
that enable the protein to enter the nucleus. As many NLS

variants still remain unknown, our SAE-based approach has
the potential to become a novel method to aid their discovery
and characterization.

Extracellular localization. The most positive coefficients
for the extracellular class relate to signal peptides (Fig-
ure 6d). Signal peptides are short sequences at the N-
terminus that trigger the secretory pathway to transport
proteins outside the cell. L28/1541 activates on the signal
peptide cleavage site while L28/1470 and L28/1555 activate
across the peptide. The top latents also include a latent that
activates on the extracellular portion of membrane-bound
proteins (L28/2111), demonstrating precise recognition of
transmembrane regions, as well as a latent (L28/2472) that
only activates on cuticle proteins, extracellular proteins that
support the exoskeleton of insects.

For the other localization classes, we also find a variety of
interpretable latents, including mitochondrial transit pep-
tides (L28/3277) and transmembrane regions (L28/2818,
L28/1298) (Figure 9c). Overall, this task uncovered many
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latents related to signal peptides, consistent with the obser-
vations from (Almagro Armenteros et al., 2017) that the
attention maps of their transformer model trained on this
task focus on sequence termini.

5.2.3. THERMOSTABILITY

Thermostability prediction is a task that does not scale with
increased pre-training and larger models (Li et al., 2024).
Our SAE probes reveal why—thermostability prediction
relies most on simple amino acid statistics (Figure 6b).

Unlike the other tasks, the middle layers perform worse than
early or late layers. We find that in middle layers the most
significant latents tend to recognize specific amino acids.
For example, layer 24’s most positive latents correspond
to Arginine (R), Tyrosine (Y), and Leucine (L); its most
negative latents recognize Glutamine (Q), Aspartic acid (D),
and Threonine (T). The absence of Glutamine is known to
correlate with increased thermostability (Farias & Bonato,
2003).

In contrast, earlier layers seem to contain more relevant
features. For instance, the most positive coefficient in layer
8 (L8/2064) corresponds to a latent that activates primarily
on hydrophobic residues, which are important for stability
(Figure 6b).

5.2.4. MAMMALIAN CELL EXPRESSION

We were interested to see if our SAE probing method could
be used to help interpret a novel task with relevance to drug
development: binary human protein expression in CHO
cells. The two latents most predictive of expression ac-
tivate on terminus-specific long motifs (Figure 9b). The
latent most predictive of failed expression recognizes an
ATP binding site, suggesting that its interactions with ATP
may disrupt essential metabolic processes in the host cell.

While we found many latents hard to interpret, this task
demonstrates the potential of our method in a practical set-
ting. If SAEs can help discover biological mechanisms
that affect expression in CHO cells, then can guide us in
designing protein therapeutics with better developability
profiles.

6. Discussion
In this work, we train sparse autoencoders (SAEs) to extract
interpretable features from a protein language model (pLM).
We categorize SAE latents based on their activation patterns
and specialization across protein families, systematically
analyzing how SAE sparsity, width, and layer choice affect
feature extraction. Our work offers a new perspective on
previous efforts to understand pLMs, confirming known
results such as the central role of sequence homology (Lin

et al., 2022; Gordon et al., 2024), the use of motifs (Zhang
et al., 2024), and the unexpected effectiveness of early layers
on some downstream tasks (Li et al., 2024). To facilitate
further exploration, we introduce InterProt, an open-source
visualizer for interpreting SAE latents.

Mechanistic interpretability methods like SAEs hold
promise not only for understanding how complex models
function but also for advancing scientific discovery (Don-
hauser et al., 2024). However, existing approaches often
rely on matching features to concepts already known to the
scientific community, potentially overlooking novel features.
To address this gap, we developed a probing strategy that
associates latents with candidate functional roles by training
linear probes on SAE latents. Through this process, we
uncover features that align with known sequence determi-
nants, such as nuclear localization signals, which our probe
identified as strongly predictive of nuclear localization. Had
the role of these signals been unknown, our probing results
would have provided a strong hypothesis for subsequent
validation. More broadly, probing SAE latents offers a
means to explain how pLMs achieve their performance on
downstream tasks. Notably, we find that thermostability
prediction relies heavily on latents which provide simple
amino acid composition statistics.

In our probing experiments, we observe that not all predic-
tive latents are easily interpretable. For instance, a predictor
for membrane localization, latent L28/3154, predominantly
activates on poly-alanine sequences, whose functional rele-
vance remains unclear. Such hard-to-interpret but predictive
features could result from biases in training data, limitations
of our SAE, or ESM. However, another intriguing possibility
is that these features correspond to biological mechanisms
that have yet to be discovered.

Limitations. Our study has several limitations. First, we
focus exclusively on the 650M-parameter variant of ESM-2,
and extending our analysis to other model sizes, checkpoints,
and architectures could yield richer insights into how fea-
tures vary with pre-training scale and model architecture.
Second, the features uncovered by our SAEs are sensitive
to the training data distribution; although we use a diverse
set of sequences from UniRef50, different datasets may pro-
duce a distinct feature set. Third, our probing approach
relies on mean-pooling across the sequence for protein-level
tasks–a strategy known to have shortcomings (NaderiAl-
izadeh & Singh, 2024)–and exploring alternative pooling
methods may yield stronger associations between latents
and functional properties. Finally, our capacity to interpret
latents is inherently constrained by the current state of bio-
logical knowledge, leaving open the possibility that some of
our interpretations, particularly for latents showing complex
activation patterns, may be incomplete or misstated.

Future directions. The success of our SAE linear probes
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in uncovering known biological mechanisms suggests their
potential for discovering new ones. A key next step is to
formulate and experimentally test hypotheses around un-
explained predictive features. Since SAE-derived features
depend on the dataset (Kissane et al., 2024), investigat-
ing how data diversity influences feature emergence could
be valuable–training on task-relevant sequences may yield
more function-specific latents. Another promising direc-
tion is model steering via SAEs: while Simon & Zou 2024
provides a proof of concept, further research is needed to
determine whether SAEs can be used as a practical tool for
protein engineering.
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Steinegger, M. and Söding, J. Mmseqs2 enables sensi-
tive protein sequence searching for the analysis of mas-
sive data sets. Nature biotechnology, 35(11):1026–1028,
2017.

10

https://www.neuronpedia.org/sae-bench/info
https://www.neuronpedia.org/sae-bench/info
https://www.alignmentforum.org/posts/rtp6n7Z23uJpEH7od/saes-are-highly-dataset-dependent-a-case-study-on-the
https://www.alignmentforum.org/posts/rtp6n7Z23uJpEH7od/saes-are-highly-dataset-dependent-a-case-study-on-the
https://www.alignmentforum.org/posts/rtp6n7Z23uJpEH7od/saes-are-highly-dataset-dependent-a-case-study-on-the
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
https://openreview.net/forum?id=fylclEqgvgd
https://openreview.net/forum?id=fylclEqgvgd
https://www.pnas.org/doi/abs/10.1073/pnas.2016239118
https://www.pnas.org/doi/abs/10.1073/pnas.2016239118
https://arxiv.org/abs/2410.11468
https://arxiv.org/abs/2410.11468


Interpreting Features in Protein Language Models using Sparse Autoencoders

Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R., and
Wu, C. H. Uniref: comprehensive and non-redundant
uniprot reference clusters. Bioinformatics, 23(10):1282–
1288, 2007.

Templeton, A., Conerly, T., Marcus, J., Lindsey, J., Bricken,
T., Chen, B., Pearce, A., Citro, C., Ameisen, E., Jones,
A., Cunningham, H., Turner, N. L., McDougall, C.,
MacDiarmid, M., Freeman, C. D., Sumers, T. R.,
Rees, E., Batson, J., Jermyn, A., Carter, S., Olah,
C., and Henighan, T. Scaling monosemanticity: Ex-
tracting interpretable features from claude 3 sonnet.
Transformer Circuits Thread, 2024. URL https:
//transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Vig, J., Madani, A., Varshney, L. R., Xiong, C., Socher, R.,
and Rajani, N. F. Bertology meets biology: Interpreting
attention in protein language models, 2021. URL https:
//arxiv.org/abs/2006.15222.

Ye, J., McGinnis, S., and Madden, T. L. Blast: improve-
ments for better sequence analysis. Nucleic acids re-
search, 34(suppl 2):W6–W9, 2006.

Zhang, Z., Wayment-Steele, H. K., Brixi, G., Wang, H.,
Kern, D., and Ovchinnikov, S. Protein language models
learn evolutionary statistics of interacting sequence mo-
tifs. Proceedings of the National Academy of Sciences,
121(45):e2406285121, 2024.

Author contributions
E.A. and L.B trained the SAE models, built the InterProt
visualizer, and interpreted SAE latents. E.A. led the feature
characterization experiments. L.B led the interpretable prob-
ing experiments. M.L. wrote the code for SAE steering and
performed the family-specific latent steering experiments.
Y.Y. contributed to the training code. E.A., L.B., M.A., pro-
vided feedback on all experiments. E.A. and L.B. wrote the
manuscript with feedback from M.L. and M.A. All authors
read and approved the manuscript.

Competing interests
M.A. is a member of the scientific advisory boards of Cyrus
Biotechnology, Deep Forest Sciences, Nabla Bio, and Ora-
cle Therapeutics.

11

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://arxiv.org/abs/2006.15222
https://arxiv.org/abs/2006.15222


Interpreting Features in Protein Language Models using Sparse Autoencoders

A. Appendix
A.1. Code availability and model weights

Our SAE training and evaluation code is publicly available at https://github.com/etowahadams/interprot.
The feature visualization tool, InterProt, can be accessed at https://interprot.com, and pre-trained SAE weights
are hosted at https://huggingface.co/liambai/InterProt-ESM2-SAEs.

A.2. Background on protein language models

Protein language models (pLMs) apply techniques from natural language processing to model biological sequences,
leveraging the ability of transformer architectures to learn patterns from large-scale data. Just as language models capture
structure in text, pLMs can learn meaningful representations of proteins from large protein sequence databases. The
ESM family of pLMs are BERT-style transformers trained with a masked language modeling objective to learn contextual
embeddings of amino acids (Rives et al., 2021; Lin et al., 2023). In this work, we focus on the 650M-parameter variant of
ESM-2 (Lin et al., 2023) which has 33 total layers.

A.3. Key differences from InterPLM

Concurrent to our work, Simon & Zou (2024) also trained SAEs on ESM-2 models. Some key differences from work are as
follows:

SAE Architecture. Simon & Zou (2024) used ReLU-based SAEs, we employ TopK SAEs, which allow explicit control
over L0 sparsity.

Evaluation. Simon & Zou (2024) proposed an automated evaluation framework based on Swiss-Prot annotations, establish-
ing that more SAE latents correspond to annotations compared to ESM neurons. We support this finding with a manual
evaluation where participants blindly rated SAE latents and ESM neurons based on their interpretability in our visualization
tool.

Analysis. Simon & Zou (2024) used an LLM to generate SAE feature descriptions based on activation examples and
annotations. They also explored the application of SAE features in identifying missing annotations. Our analyses focused
on classifying SAE latents based on activation patterns and family-specificity and using linear probes to uncover features
most predictive in downstream tasks.

Visualization. Both works provide an interactive visualizer for SAE latents. interplm.ai from Simon & Zou (2024) display
UMAP visualizations, results from Swiss-Prot concept mapping, and other statistics. Our visualizer, interprot.com, focus on
the top activating sequences of each latent, displaying activation patterns overlaid on structure, sequence alignments, and
information on shared protein family. We used this interface to conduct our human ratings experiment.

A.4. Probe details

Table 1 summarizes the linear probes used in each downstream task.

Table 1. Summary of downstream tasks for interpretable probing

DATASET TASK TYPE LABEL LEVEL EVALUATION METRIC PROBE IMPLEMENTATION

SECONDARY STRUCTURE CLASSIFICATION RESIDUE ACCURACY PYTORCH LINEAR CLASSIFIER
SUBCELLULAR LOCATION CLASSIFICATION PROTEIN ACCURACY SKLEARN LOGISTIC REGRESSION
THERMOSTABILITY REGRESSION PROTEIN SPEARMAN’S ρ SKLEARN RIDGE REGRESSION
CHO CELL EXPRESSION CLASSIFICATION PROTEIN ACCURACY SKLEARN LOGISTIC REGRESSION
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A.5. Steering family-specific latents

Figure 7. The fraction of residues that remains unchanged after steering, averaged for 2089 family specific features revealed using SAE.

We steer each family-specific latent and analyze the resulting sequence changes compared to steering random latents or
latents corresponding to amino acid features. Steering refers to clamping of the activation of a specific latent to a fixed
level–either increasing it to amplify the feature or decreasing it to suppress it. For each family-specific latent corresponding
to an InterPro family, we identify the top-activating sequences, conduct protein-protein BLAST (Ye et al., 2006), and
align sequences within the same InterPro family to obtain a multiple sequence alignment using Clustal Omega (Sievers
et al., 2011). Finally, we determine the maximum activation of a family-specific latent and clamp the activation of the
activating residues to 1×, 2×, 3×, and 4× the maximum value. As a baseline, we steer the residues which activated the
family-specific latent with two random latent dimensions (1 and 11) and two amino acid specific latent dimensions (3267 for
alanine and 3830 for glycine in the SAE with a hidden dimension of 4096 from layer 24). Because we choose two latents
as representative random and amino acid latents, we take the average of the unchanged ratio. The unchanged ratio is the
fraction of residues across the whole sequence that remains unchanged after steering.

Figure 7 compares the fraction of residues that remains unchanged after steering of family-specific (labeled “family”),
random (labeled “random”), and amino acid (labeled “aa”) latents, by the degree of conservation (decreasing order, left
to right). For any degree of conservation, steering a family-specific latent has the least effect in the decoded sequence for
the same steering strength, suggesting that family-specific latents capture underlying evolutionary constraints that resist
disruption. The difference in unchanged ratio between family-specific and random latents is larger in conserved residues,
implying steering family-specific latents tends to keep the residues with high consensus. Still, it is interesting that absolute
unchanged ratio is roughly in a similar range for any degree of conservation.

A.6. Classifying latents by family specificity

We evaluate the ability of a single SAE latent to classify a protein as belonging to a specific InterPro-defined protein family
(Paysan-Lafosse et al., 2023). To do this, we determine the optimal normalized activation threshold that maximizes the F1
score for binary classification of protein families. Specifically, we sweep threshold values from 0.1 to 0.9 in 0.1 increments
and select the threshold that results in the highest F1 score. Our final evaluation is conducted on a held-out test set.

For our evaluation, we use protein sequences from Swiss-Prot (Boeckmann et al., 2003). To reduce sequence re-
dundancy, we cluster all Swiss-Prot sequences with a length of 1022 residues or fewer at 30% sequence identity us-
ing MMseqs2 (mmseqs easy-cluster swissprot.fasta session tmp --min-seq-id 0.3 -c 0.9
-s 8 --max-seqs 1000000 --cluster-mode 1) (Steinegger & Söding, 2017). Given the low sequence identity
between clustered sequences, we perform a random train-test split for classification evaluation.

To determine which protein family to assess for each latent, we identify the InterPro family of the sequence that exhibits the
highest activation for that latent. The F1 score is then computed for this family using the thresholding approach described
above.
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A.7. Classifying latents by activation pattern

Table 2. Activation pattern classification criteria
Category Criteria
Dead Latent If the latent is never activated by any test sequences, it is classified a

dead latent.
Not Enough Data If less than 5 sequences activate the latent then we say there is not enough

data.
Periodic Features that exhibit consistent activation patterns at regular intervals.

These features must satisfy: (1) a high frequency of activation at specific
positions (over 50% of distances between activations are the same two
values), (2) a large number of activation regions (there are more than 10
activations per sequence), and (3) relatively short contiguous activation
spans (median length of the top activating contig is less than 10).

Point Features that activate in a highly localized manner, defined by a single,
prominent activation site (the median length of the highest activating
region is 1).

Motif (Short: 1-20) Features that activate in short contiguous regions (median length of the
highest activating region is > 1 and < 20) and have an overall mean
activation coverage of less than 80%.

Motif (Medium: 20-50) Features that activate in short contiguous regions (median length of the
highest activating region is ≥ 20 and < 50) and have an overall mean
activation coverage of less than 80%.

Motif (Long: 50-300) Features that activate in short contiguous regions (median length of the
highest activating region is ≥ 50 and < 300) and have an overall mean
activation coverage of less than 80%.

Whole Features that are active across nearly the entire sequence (overall mean
activation coverage of greater than 80%.).

Other Features that do not meet any of the above criteria are classified as
”other.”
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A.8. Testing SAE hyperparameters

Figure 8. Testing SAE hyperparameters. a. k parameter sweep (other hyperparameters held constant, layer=24, hidden size=8096)
showing the number of family specific features (left) and the features categorized by activation pattern (right). b. SAE hidden size
hyperparameter sweep (other hyperparameters held constant, layer=24, k=64) showing the number of family specific features (left) and
the features categorized by activation pattern (right).
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A.9. Additional latent visualizations from linear probes

Figure 9. Linear probes identify predictive SAE latents for downstream tasks. a. The top 5 beta sheet latents from the secondary structure
prediction task (SAE trained on ESM layer 16). b. The latents corresponding to the 3 most positive and 3 most negative coefficients
from the linear probe on CHO cell line expression. The most positive latent activates on an unidentified motif; the most negative latent
activates on an ATP binding site (SAE trained on ESM layer 8). c-d. Top 5 mitochondrion and cell membrane latents from the subcellular
localization prediction task. The top nucleus latents identify transit peptides. The top cell membrane latents correlate with signal peptides
and transmembrane regions (SAE trained on ESM layer 28).
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A.10. Distribution of linear probe coefficients

Figure 10. Example distribution of ESM vs. SAE linear probe coefficients. Shown here are coefficients for the alpha helix class from the
secondary structure prediction task, using layer 16. The SAE coefficients have higher variance (2.03e−3) than the ESM coefficients
(3.24e−4) because more latents are individually predictive of the label. The SAE coefficients also have a larger negative skew (−2.05e−1)
compared to ESM (−6.51e−2). This can be explained by the SAE latents being more monosemantic: they sort more distinctly into helix
vs. non-helix classes, and there are more non-helix examples than helix ones.
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