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Abstract

Estimating the Generalization Error (GE) of Deep Neural Networks (DNNs) is an important
task that often relies on availability of held-out data. The ability to better predict GE based
on a single training set may yield overarching DNN design principles to reduce a reliance on
trial-and-error, along with other performance assessment advantages. In search of a quantity
relevant to GE, we investigate the Mutual Information (MI) between the input and final
layer representations, using the infinite-width DNN limit to bound MI. An existing input
compression-based GE bound is used to link MI and GE. To the best of our knowledge, this
represents the first empirical study of this bound. In our attempt to empirically stress test
the theoretical bound, we find that it is often tight for best-performing models. Furthermore,
it detects randomization of training labels in many cases, reflects test-time perturbation
robustness, and works well given only few training samples. These results are promising given
that input compression is broadly applicable where MI can be estimated with confidence.

1 Introduction

Generalization Error (GE) is the central quantity for the performance assessment of Deep Neural Networks
(DNNs), which we operationalize as the difference between the train-set accuracy and the test-set accuracy!.
Bounding a DNN’s GE based on a training set is a longstanding goal (Jiang et al., 2021) for various reasons:
i) Labeled data is often scarce, making it at times impractical to set aside a representative test set. ii) The
ability to predict generalization is expected to yield overarching design principles that may be used for Neural
Architecture Search (NAS), reducing a reliance on trial-and-error. iii) Bounding the error rate is helpful for
model comparison and essential for establishing performance guarantees for safety-critical applications. In
contrast, the test accuracy is merely a single performance estimate based on an arbitrary and finite set of
examples. Furthermore, the adversarial examples phenomenon has revealed the striking inability of DNNs to
generalize in the presence of human-imperceptible perturbations (Szegedy et al., 2014; Biggio & Roli, 2018),
highlighting the need for a more specific measure of robust generalization.

Various proxies for DNN complexity which are assumed to be relevant to GE—such as network depth, width,
¢p-norm bounds (Neyshabur et al., 2015), or number of parameters—do not consistently predict generalization
in practice (Zhang et al., 2021). In search of an effective measure to capture the GE across a range of tasks,
we investigate the Mutual Information (MI) between the input and final layer representations, evaluated
solely on the training set. In particular, we empirically study the Input Compression Bound (ICB) introduced
by (Tishby, 2017; Shwartz-Ziv et al., 2019), linking MI and several GE metrics. An emphasis on input is an
important distinction from many previously proposed GE bounds (e.g., Zhou et al. (2019)), which tend to be
model-centric rather than data-centric.

We use infinite ensembles of infinite-width networks (Lee et al., 2019), as the MI quantity we examine
is ill-defined in deterministic DNNs (Goldfeld et al., 2019). Infinite-width networks correspond to kernel
regression and are simpler to analyze than finite-width DNNs, yet they exhibit double-descent and overfitting
phenomena observed in deep learning (Belkin et al., 2019). For these reasons, Belkin et al. (2018) suggested
that understanding kernel learning should be the first step taken towards understanding generalization in

1GE is also referred to as generalization gap. Note that some use “generalization error” as a synonym for “test error”.
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deep learning. To this end, we evaluate the ICB proposed by Tishby (2017); Shwartz-Ziv et al. (2019) with
respect to three axes of performance:

1. First, we verify whether the bound holds in practice by evaluating the GE of a variety of models,
composed by drawing random metaparameters of the neural architecture and training procedure.
We then compare the empirical GE to the theoretical GE bound given by ICB. We show that ICB
contains the GE at the expected 95% confidence level for three of five datasets, or all five for the
best-performing models. In addition, we suggest the training-label randomization test (Zhang et al.,
2017) as a means to determine when ICB may perform well a priori without relying on a test set.

2. Next, we analyze whether the ICB is sufficiently small for useful model comparisons. If a theoretical GE
bound exceeds 100% in practice, it is said to be vacuous. As we study binary classification tasks
we additionally require that the bound be less than 50% for models with non-trivial GE. We show
that ICB is often sufficiently close to the empirical GE, and thus presents a non-vacuous bound,
obtained from less than 2000 training samples.

3. Last, we assess the correlation between ICB and GE. Ranking GE is less consistent when several
metaparameters vary, with ICB sometimes outperforming, and at times under-performing a simpler
baseline. Increasing the Neural Tangent Kernel (NTK) diagonal regularization coefficient is most
correlated with reducing ICB.

Beyond these three main desiderata for generalization bounds, we show advantages in reducing ICB even
when the GE is small. Reducing ICB on natural training labels prevents models from fitting random labels,
and conversely, ICB increases when models are trained on random versus natural training labels (Zhang
et al., 2017; 2021). Finally, we show that ICB is predictive of test-time perturbation robustness (Goodfellow
et al., 2015; Gilmer et al., 2019), without assuming access to a differentiable model.

2 Background

We make use of an information-theoretically motivated generalization bound, the ICB, to establish an
overlooked link between MI and GE. The bound seems to have first appeared in a lecture series (see, e.g., Tishby
(2017)), later in a pre-print (Shwartz-Ziv et al., 2019)[Thm. 1] and more recently in a thesis (Shwartz-Ziv,
2022)[Ch. 3]. To the best of our knowledge the bound has not yet been studied empirically.

2.1 Mutual information in infinite-width networks

The MI between two random variables X and Z is defined as

I(X;2)= Zp(x, z)log m =Epz,2) {log p](?'zg)} , (1)

where we used Bayes’ rule to obtain the expression on the right and introduced E,, .)[-] to denote the
average over p(x, z). In our case, X denotes the input, and Z the input representation which is taken as
the Neural Network (NN) output. Since the marginal p(z) is unknown, we use an unnormalized multi-sample
“noise contrastive estimation” (InfoNCE) variational bound. The InfoNCE procedure was originally proposed
for unsupervised representation learning (van den Oord et al., 2018), which also serves as a lower bound
on MI (Poole et al., 2019). In van den Oord et al. (2018), the density ratio p(z|x)/p(z) was learned by a NN.
Instead, following Shwartz-Ziv & Alemi (2020), we use infinite ensembles of infinitely-wide NN, which have
a conditional Gaussian predictive distribution: p(z|z) ~ N (u(z,7),E(x, 7)) with p, X given by the NTK
and Neural Network Gaussian Process (NNGP) kernel (Jacot et al., 2018). The predictive distribution also
remains Gaussian following 7 steps of Gradient Descent (GD) on the Mean-Squared Error (MSE) loss. The
conditional Gaussian structure given by NTK may be supplied in the InfoNCE procedure, yielding MI bounds
free from variational parameters. Specifically, we use the “leave one out” upper bound (Poole et al., 2019)
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on MI to conservatively bound MI:

N

1 p(zi|7;)

I(X;2)<E|—= g log = Iyg. (2)
N i—1 Nl—l Zj;éip(zi|zj)

A lower bound on MI, I, of a similar form as equation 2 is also available (equation 5, Appendix A.2), and
we verified that both bounds yield similar results for the training regime in which we apply them (Fig. A5).
See van den Oord et al. (2018) and Poole et al. (2019) for formal derivations of equation 2 and equation 5.
These MI bounds must be computed on the training set only to evaluate a generalization bound.

2.2 Input compression bound

Here, we provide an intuitive explanation of the ICB building on existing results and using information
theory fundamentals (Cover & Thomas, 1991). A more formal derivation including a proof can be found
in Shwartz-Ziv et al. (2019)[Appendix A]. We begin with the conventional GE bound developed in the Probably
Approximately Correct (PAC) framework, which plays a central role in the early mathematical descriptions
of machine learning. It is assumed that a model receives a sequence of examples x, each labeled with the
value f(x) of a particular target function, and has to select a hypothesis that approximates f well from a
certain class of possible functions. By relating the hypothesis-class cardinality ||, the confidence parameter
0, and the number of training examples Ny, one obtains the following bound on the GE:

log(|#]) +log(1/6)

GE < \/ N . (3)
The key term in this bound is the hypothesis-class cardinality, the expressive power of the chosen ansatz.
For a finite H, it is simply the number of possible functions in this class; when H is infinite, a discretization
procedure is applied in order to obtain a finite set of functions. For NNs, |H| is usually assumed to increase
with the number of trainable parameters. The bound (3) states that generalization is only possible when the
expressivity is outweighed by the size of the training set, in line with the well-known bias-variance trade-off
of statistical learning theory. Empirical evidence, however, demonstrates that this trade-off is qualitatively
different in deep learning, where generalization tends to improve as the NN size increases even when the size
of the training set is held constant.

The key idea behind the ICB is to shift the focus from the hypothesis to the input space. For instance,
consider binary classification where each of the |X'| inputs belongs to one of two classes. The approach that
leads to bound (3) reasons that there are 21%1 possible label assignments, only one of which is true, and
hence a hypothesis space with 2/*! Boolean functions is required to guarantee that the correct labeling can
be learned. The implicit assumptions made here are that all inputs are fully distinct and that all possible
label assignments are equiprobable. These assumptions do not hold true in general, since classification
fundamentally relies on similarity between inputs. However, the notion of similarity is data-specific and a
priori unknown; thus, the uniformity assumption is required when deriving a general statement.

The approach behind ICB circumvents these difficulties altogether by applying information theory to the
process of NN learning. First, note that solving a classification task involves finding a suitable partition of the
input space by class membership. DNNs perform classification by creating a representation Z for each input
X and progressively coarsening it towards the class label, which is commonly represented as an indicator
vector. The coarsening procedure is an inherent property of the NN function, which is implicitly contained in
Z. By construction, the NN implements a partitioning of the input space, which is adjusted in the course of
training to reflect the true class membership. In this sense, the cardinality of the hypothesis space reduces to
|H| ~ 2!7!, where |T| is the number of class-homogeneous clusters that the NN distinguishes. To estimate
|7, the notion of typicality is employed: Typical inputs have a Shannon entropy H(X) that is roughly equal
to the average entropy of the source distribution and consequently a probability close to 2=#(X). Since the
typical set has a probability of nearly 1, we can estimate the size of the input space to be approximately
equal to the size of the typical set, namely 27(X)_ Similarly, the average size of each partition is given by
2H(X12) " An estimate for the number of clusters can then be obtained by |T| ~ 2H(X) /oH(X|Z) — oI(X32)
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yielding a hypothesis class cardinality |H| ~ 22" " With this, the final expression for the ICB is:

21(X:2) +1og(1/6)
GEICB < \/ 2 Nern s (4)

where it is assumed that X is a d-dimensional random variable that obeys an ergodic Markov Random Field
(MRF) probability distribution, asymptotically in d (common for signal and image data, see e.g., Murphy
(2012)[Ch. 19]). Unfortunately, it is impossible to check this assumption directly because it assumes something
about the data-generation process, which we can not access from finite samples (e.g. from CIFAR-10). We
therefore treat ICB as a tool, and empirically test how useful this tool is in practice. We comment on the
ergodic MRF assumption in Appendix A.1. We only evaluate ICB when we can obtain a confident estimate of
I(X; Z). For this we require a tight sandwich bound on I(X; Z) with Iyg ~ Ir5. We discard samples where
Iys(X; Z) > log(Niwm), since Ip(X; Z) cannot exceed log(Ny,y). See Fig. A5 for typical Iyg, Irp values
during training and samples to discard. Note that the units for I(X; Z) in ICB are bits.

3 Experiments

Our experiments are structured around three key questions: 1) To what extent do the ICB assumptions
hold in practice? Can we find models with GE that exceeds the theoretical bound (§4.1), or with small
predicted GE even when trained on random labels where generalization is impossible (§4.2)7 2) Is the ICB
close enough to the empirical GE for useful model comparisons (§4.3)7 3) To what extent does ICB correlate
with GE evaluated on standard and robust test sets (§4.4)7 Here, we describe the two main experimental
procedures, Exp. A (§3.1) and Exp. B (§3.2), in which we draw a population of models for comparison of GEs
to the theoretical ICB. We focus on binary classification like much of the generalization literature, which also
enables us to more efficiently evaluate MI bounds by processing kernel matrices that scale by N2, rather
than (k X Nim)? for k-classes. Aside from this computational advantage, our methodology extends to the
multi-class setting.

3.1 Evaluating generalization throughout training (Experiment A)

We conduct experiments with five standard benchmark datasets: MNIST (LeCun & Cortes,
1998), FashionMNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky, 2009),
and EuroSAT (Helber et al., 2018; 2019). These datasets are intended to be representative of low to moderate
complexity tasks and make it tractable to train thousands of models (Jiang* et al., 2019). Experiments
with EuroSAT further demonstrate how the method scales to 64-by-64 pixel images. For each of the image
datasets, we devise nine binary classification tasks corresponding to labels “i versus ¢ + 1” for i € {0,...,8}.
Note that this sequential class ordering is an arbitrary choice. We use metaparameters that are common to
deep learning, with the exception of “diagonal regularization”, which is specific to the NTK, K. It is defined
as: Kreg = K+ )\%I , where X is a coefficient that controls the amount of regularization. This is analogous
to {5 regularization of finite-width DNNs, only we penalize the parameters’ distance w.r.t. their initial values
instead of w.r.t. the origin (Lee et al., 2020).

We initialize a variety of models by sampling uniformly at random from the following metaparame-
ters: the number of fully-connected layers, L ~ U(1,5), the diagonal regularization coefficient A ~
U{10°,1071,1072,1073,107*}, the activation function ¢(-) ~ U{ReLU(-),Er£f(-)}, and the number of training
samples, Ny, ~ U(250,2000). Test sets have a constant size of Nig, = 2000. We do not randomly sample a
learning rate or mini-batch size, as the infinite-width networks are trained by full-batch GD, for which the
training dynamics do not depend on the learning rate once below a critical stable value (Lee et al., 2019). A
nominal learning rate of 1.0 was used in all cases and found to be sufficient.? We use 100 different random
seeds to draw metaparameters for each of the nine tasks, yielding 900 models for each dataset. Each of
these 900 models was evaluated at five different time steps throughout training at ¢ = {102,103, 104, 10°, 10%}
yielding 4500 tuples (ICB, GE) to analyze. The end points ¢ = 10?2 and ¢t = 105 were selected as most of the
variation in GE was contained within this range. Training for less than ¢t = 102 steps typically resulted in a

2This was the default setting in neural_tangents software library (Novak et al., 2020).
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Figure 1: The ICB may be sensitive to robust GE when it is loose w.r.t. standard GE. The ICB is
plotted as a grey shaded band underneath the training accuracy indicating the range of test accuracy compatible
with the theoretical bound. Performance metrics are evaluated for a EuroSAT Pasture versus Sea-Lake
binary classification task using 500 training samples and 2000 test samples and different regularization levels
in (a)—(c). At low regularization A = 0.1 (a), the ICB is vacuous with respect to standard generalization
beyond 10* training steps, but reflects the poor robust generalization for the “Noisy” test set with Additive
White Gaussian Noise (AWGN). Increasing the regularization to A = 0.5 (b) and A = 1.0 (¢) reduces ICB
and the AWGN GE. Arrows indicate the steady-state AWGN GE (black), and ICB (grey) along with their
respective values. See Fig. A5 for the corresponding upper and lower I(X; Z) bounds for this experiment.

small GE, as both training and test accuracy were near random chance or increasing in lockstep. In terms of
steady-state behaviour, GE was often stable beyond ¢ = 10°. Furthermore, ¢ = 10% was found to be a critical
time beyond which Iyp(X; Z) sometimes exceeded its upper confidence limit of log(Nim), particularly for
small A values where memorization (lack of compression) is possible.

3.2 Evaluating generalization at steady state (Experiment B)

Binary classification tasks were devised from the same source datasets as in § 3.1. Instead of considering only
nine tasks, we enumerated all (120) = 45 binary label combinations. For example, for MNIST, the classification
task of distinguishing digit “0” versus “17”, “0” versus “2”, and so forth. Here, we used a fixed Ny, = 1000
for MNIST, FashionMNIST, and EuroSAT; and N;., = 2000 for SVHN and CIFAR-10. We perform a uniform
random search over: the number of fully-connected layers, L ~ U(1,5), diagonal regularization coefficient,
A~ U(0,2), and activation function, ¢(-) ~ U{ReLU(-),Er£(:)}. We use 100 different random seeds to draw
metaparameters for each of the 45 tasks, yielding 4500 trials for each source dataset. Each of the trials was

evaluated at ¢ = co yielding 4500 tuples (ICB, GE).

4 Results

Illustrative example Before presenting the main results, we examine ICB for a EuroSAT classification task
using only 500 training samples (Fig. 1). This is a challenging task, as tight MI and GE bounds are difficult
to obtain for high-dimensional DNNs, particularly with few samples. For example, in (Dziugaite & Roy,
2017) 55000 samples were used to obtain a ~ 20% GE bound for finite-width DNNs evaluated on MNIST.

We evaluate ICB throughout training from the first training step (¢ = 10°) until steady state when all
accuracies stabilize (t = 10%). Shortly after model initialization (t = 10° to ¢t = 10!) the ICB is < 7%
(indicated by the height of the shaded region in Fig. 1) and the training and test accuracy are both at 50%
(GE= 0). Here, ICB is non-vacuous, but also not necessarily interesting for this random-guessing phase. ICB
increases as training is prolonged.® At low regularization (Fig. 1 a), the ICB ultimately becomes vacuous
(ICB =~ 50%) around 10* steps. However, although ICB is vacuous with respect to standard generalization in
a), it reflects well the poor robust generalization when tested with AWGN (Gilmer et al., 2019). Increasing

31t may not be obvious that ICB increases monotonically with training steps as the training accuracy also increases.
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Figure 2: The ICB (“Theoretical GE Bound”) is plotted versus GE for FashionMNIST, SVHN, CIFAR, and
EuroSAT datasets for Exp. A (§3.1). We refer to the percentage of models with GE < ICB as the ICB
satisfaction rate, which is annotated in the top left corner of each plot with format “Sat. % (N)”, where
N denotes the number of valid experiments. Each binary classification task is assigned a unique colour to
highlight inter-task differences in ICB satisfaction rate.

Table 1: Overall ICB satisfaction rate (Sat. %) with number of valid experiments N in brackets. Results for
Exp. A are also plotted in Figure 2; a more detailed breakdown of these results can be found in Table A6-10.

‘ MNIST Fashion SVHN CIFAR EuroSAT

Exp. A | 100% (2237) 100% (4466) 44.5% (3923) 59.3% (4344) 93.6% (3974)
Exp. B | 100% (2250) 100% (4500) 27.0% (4500) 68.0% (4500) 95.0% (2221)

the regularization coefficient A reduces ICB from 50% (a) to 23% (b) and 15% (c), and the robust GE from
38% (a) to 19% (b) and 10% (c).

Both standard and robust GE are bounded at all times by ICB. The latter is, however, a coincidence, as the
robust GE is subject to the arbitrary AWGN noise variance (02 = 1/16). The additive noise variance could be
increased to increase the robust GE beyond the range bounded by ICB. More important than bounding the
robust GE absolute percentage is that ICB captures the trend of robust generalization. Evaluating robustness
effectively is error-prone and often assumes access to test data and a differentiable model (Athalye et al.,
2018; Carlini et al., 2019). We make no such assumptions here. The lack of robustness in Fig. 1 a) would have
likely gone unnoticed. Either early stopping or increasing A reduce the ICB and robust GE as a potential
solution—or a better trade-off between accuracy versus robustness (Tsipras et al., 2019). A caveat to this
example is that only two metaparameters varied: the number of training steps ¢ and regularization A. Next,
we assess the ability of ICB to bound and rank GE for a broader range of metaparameters and datasets.

4.1 Bounding generalization error

We refer to the percentage of tuples (ICB, GE) for which GE < ICB as the “ICB satisfaction rate”, or “Sat.”
in plots. We expect ~ 95% of samples to satisfy this property as the bound is evaluated with § = 0.05 or
95% confidence. The overall ICB satisfaction rate with the respective number of valid experiments N is
listed in Table 1. Exp. B yielded greater N than Exp. A primarily because it uses a different range for the
regularization coefficient A, resulting in larger A values. Since larger \ is associated with more compression,
Exp. B had fewer samples being discarded than in Exp. A due to Iyp exceeding log(Niy,). Otherwise, ICB
satisfaction rates are similar, with SVHN performing slightly worse and CIFAR-10 slightly better for Exp. B
versus Exp. A. These results also suggest that exploring nine binary classification tasks (Exp. A) serves
as a useful approximation for the full set of all 45 possible tasks (Exp. B). Next, we analyze how model
performance influences the ICB satisfaction rate.
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When we restrict our scope to the best-performing models based on their test accuracy, the ICB satisfaction
rate improves considerably. For example, models with test accuracy > 80% attain ICB satisfaction rates of
94% (N = 682) for SVHN in Exp. B, and 99% (IV = 2812) for EuroSAT in Exp. A (Fig. Allc). For CIFAR-10
in Exp. B, we obtain 96% (N = 591) by restricting to test accuracy > 87%. The specific test accuracy
thresholds were chosen to balance a trade-off between satisfying the ICB at ~ 95% and maximizing N.
Although best-performing models are more likely to be deployed in practice, theoretical GE bounds generally
prohibit access to a test set. Therefore, we next select models based on their training accuracy.

We refer to models that achieve 100% accuracy on the training set as “overfitted”, consistent with prior use of
this term by Belkin et al. (2018). Interestingly, restricting our analysis to overfitted models either improves or
does not change ICB satisfaction rate for Exp. A. For MNIST, FashionMNIST, SVHN, and EuroSAT, overfitted
models attain an ICB satisfaction rate of 100% with N = 1970, 1820, 20, 353 respectively, while for CIFAR-10,
the satisfaction rate remained below 95%, albeit it improved from 59.3% (N = 4344) to 72.6% (N = 876).
Similar results were observed for Exp. B. (See Figures A7, A8, A9, A10, A1l in the Appendix). The mostly
excellent ICB satisfaction rates of the overfitted models are not due to trivially constant GE or ICB values
(Figure 3); these models still have considerable variance w.r.t. both metrics despite their identical training
accuracies.

Inter-task differences were observed in terms of the ability of ICB
to bound GE. For example, for Exp. A, six of nine EuroSAT binary
classification tasks always satisfied ICB (N = 2534), whereas two
tasks reduced the overall average. The satisfaction rate was only
68% (N = 468) for the “2 vs. 3” task and 72% (N = 475) for
the “6 vs. 7”7 task (see Fig. A2 and Table A10). These tasks were
unusual in that there was a strong inverse relationship between
training error and GE, such that reducing the training error resulted
in a steady increase in test error, with 7 ~ —0.9 for both tasks,
compared to 7 = —0.58 for the “0 vs. 1”7 task. The negative
correlation between training and test performance for the “2 vs. 3” ==
task also resulted in a lower mean test accuracy (70.2 £2.2% (N = o Sat. 100.0% (N=353)
467)) compared to other tasks, e.g., “0 vs. 17 (93.5 £5.3% (N = 5 50 10 60
415)), consistent with our previous observation that best-performin . 0
mO()i)els generally satisfy ICB. We further investigated inter—taslgi Theoretical GE Bound (A))
differences for EuroSAT Exp. B, for which all (120) = 45 binary Figure 3: Theoretical GE bound (ICB)
classification tasks were evaluated for 50 seeds each. For the two versus GFE for EuroSAT (Exp. A). Over-
poorly performing tasks “2 vs. 3” and “6 vs. 77, the ICB satisfaction fitted models indicated by stars.

rate was 78% (N = 50) and 86% (N = 50), respectively. For 34 of

45 tasks (IV = 1913), ICB was satisfied for all seeds.
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4.2 The randomization test

Zhang et al. (2017; 2021) proposed the “randomization test” after observing that DNNs easily fit random
labels. They argue that useful generalization bounds ought to be able to distinguish models trained on natural
versus randomized training labels, since generalization is by construction made impossible in the latter
case. However, we cannot necessarily expect a theoretical GE bound to exactly hold for models trained
on random labels, since the training and test sets are no longer drawn from the same distribution. We
therefore pose the following questions: Q1l: To what extent does the ICB correlate with the ability to fit
random labels? Q2: Can ICB distinguish training sets with natural versus random labels? To address Q1, we
aim to find metaparameters that reduce ICB and prevent models from fitting random training labels, while
still permitting them to fit the natural training labels. This, however, introduces a potential for confounding
if the metaparameter choice alone prevents the model from fitting random labels rather than ICB. For
Q2, we hold all metaparameters constant and observe whether ICB changes for randomized training labels.
For simplicity, we consider a two-layer fully-connected ReLU network. We train the model to ¢t = co on
the natural training set (N, = 1000) with 20 different regularization values X in the range 10~ to 10!.
We measure Kendall’s 7 ranking between the ICB evaluated on these models and their training accuracies
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Figure 4: ICB often distinguishes between natural and randomized training sets. The accuracy
w.r.t. the “Natural” and “Random” training labels is plotted versus the theoretical GE bound (ICB), which
is evaluated on the natural training labels. Fach data point corresponds to a unique regularization value A,
which influences the ICB value. The top row corresponds to the “0 vs. 1” task and bottom row the “6 vs. 7”
task. Considerable separation between natural and random labels for MNIST, FashionMNIST, and EuroSAT
is observed. Differences are harder to distinguish for SVHN and CIFAR-10, but still apparent. ICB is highly
correlated with ability to fit random labels in all cases. The broken vertical line for EuroSAT indicates the
ICB value for which there is at least a 10% accuracy difference between natural versus random sets.

when re-trained with random labels. We find that the ICB value obtained after training on natural labels
is strongly correlated with the ability to fit random labels for all five datasets. Furthermore, competitive
accuracy for natural training labels is preserved for three of five datasets in doing so (see Fig. 4).

Surprisingly, ICByp approximates the GE
well even when the model is trained on ran-
dom labels (Table 2). For A = 0.1, ICByp =
15.5% compared to a GE of 21.3%. Next,
for A = 0.01, ICByg = 38.5% and GE is
39.7%. Last, for A = 0.001, Iyg = 8.96,
which is greater than log(Niaimm) = 6.91
nats, therefore the corresponding ICBygp of
197.6% should be discarded. In this case,
substituting the “optimistic” lower estimate
ICBLB = 54.1% ~ GE = 50%

Intuitively, we expect I(X; Z) to be smaller
after training on natural labels, since train-
ing on random labels requires memorization
of random data, i.e., the opposite of com-
pression. However, note that to isolate the
effect of the training label type on ICB, the
training accuracy must also be controlled,
as higher accuracy generally requires greater
complexity and thus larger I(X;Z). This
intuition is consistent with our results, as
both It and Iyp increase monotonically

Table 2: ICB increases after training on random labels.
Randomization test results for EuroSAT. The lower and up-
per MI bounds, Itg and Iyg, are included for comparison
against log(Nim) = 6.91 nats. Columns ICBrp and ICByp
refer to whether I or Iyp is taken as I(X; Z) estimate, re-
spectively. Columns “Train” and “Test” show the respective
accuracy in %. ICB values are larger for random labels when
comparing rows with “Train”= 100.0.

Natural Training Labels
A ILB IUB ICBLB ICBUB Train Test GE

10°1 4.87 5.37 26.0 33.1 97.9 98.7 -0.8
1072 5.40 6.58 33.7 60.2 995 986 0.9
1072 5.78 7.40 40.5 90.4 100.0 975 25

Random Training Labels

10-Y 3.68 3.75 15.0 15.5 71.3 50.0 21.3
1072 5.28 5.67 31.7 38.5 89.7 50.0 39.7
1072 6.37 8.96 54.1 197.6  100.0 50.0 50.0

with the training accuracy for both training label types (see Table 2).

Training with A = 0.001 allows models to perfectly fit both natural and randomized training sets (Table 2
column “Train” = 100%), which presents a suitable setting for evaluating whether ICB is sensitive to whether
training labels are natural or random. Indeed, Iy is greater for random labels (6.37 vs. 5.78 nats), resulting in
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Table 3: Ability of ICB to separate natural versus random training labels is a good predictor
of ICB satisfaction rate by task. The row “ICB,,,q@X %" indicates the minimum ICB value for which
a X% accuracy difference between natural and random labels is observed. The “Sat. (%)” column showing
the ICB satisfaction rate is taken from §4.1, Exp. A. The column 7 indicates the rank correlation between
ICBana@X % and Sat. (%) over the nine tasks. Columns sorted by ascending order of ICB,,nq@X %.

Task 2/3 6/7 3/4 T7/8 4/5 5/6 0/1 1/2 8/9
EuroSAT Sat. % 68 72 97 100 100 100 100 100 100 _ _ .
ICBranq@10% 7.5 100 11.2 134 19.3 225 519 595 669 =
Task 2/3 5/6 4/5 0/1 3/4 6/7 1/2 8/9 17/8
CIFAR-10 Sat. % 20 41 39 T4 35 68 79 T4 9T .

ICB;ana@5% 6.8 8.1 9.3 9.8 104 109 11.2 11.3 132

Table 4: ICB is non-vacuous for best-performing models on five datasets. The GE (%) of a best-
performing model is compared to ICB for each dataset. The column Ny, indicates the number of training
samples, which was a metaparameter for the first experiment (§3.1, Exp. A), and a constant for the second
experiment (§3.2, Exp. B).

Exp. A, t = {10%,...,10%} Exp. B, t =
Dataset Train Test GE ICB Ny ‘ Train Test GE ICB Ny
MNIST 100.0 100.0 0.0 11.2 931 99.9 99.9 0.0 12.1 1000
Fashion 99.9 100.0 -0.1 7.2 1112 99.9 100.0 -0.1 8.1 1000
SVHN 98.8 74.2 24.6 28.0 1564 | 100.0 90.8 9.3 21.1 2000

CIFAR 94.8 89.2 56 7.6 1966 99.2 938 54 11.3 2000
EuroSAT 97.8 98.7 -09 25.6 1979 | 100.0 100.0 0.0 22.6 1000

an increase of the optimistic theoretical GE bound, ICB1 g, from 40.5% to 54.1%. The more pessimistic ICByg
increases even more dramatically from 90.4% to 197.6%, which is beyond the valid range of GE (0 — 100%).

The randomization test identifies tasks with low ICB satisfaction rate

Recall from §4.1 that three binary classification tasks were responsible for reducing the ICB satisfaction rate
below 100% for EuroSAT: “2 vs. 3”7 (Sat. 68%), “6 vs. 7”7 (Sat. 72%), and “3 vs. 4”7 (Sat. 97%) for Exp. A.
We observed that these were the same tasks for which ICB performed poorly on the randomization test.
Specifically, we measured the minimum ICB value for which a 10% or greater percentage difference was
detected between the natural and random training-sets (vertical broken line in Fig. 4). The “2 vs. 3” task
required the smallest ICB (7.5%) before the difference in label type became apparent. The “6 vs. 7”7 task
had the next highest ICB of 10.0%, followed by “3 vs. 4” with 11.2%. The other six tasks—that have 100%
satisfaction rate—have strictly greater ICB (Table 3). Similar results are observed for CIFAR-10 using a
smaller 5% threshold as accuracies for natural and random labels were closer than for EuroSAT. The tasks
with minimum (“2 vs. 3”) and maximum (“7 vs. 8”) satisfaction rate are the same tasks with the minimum
and maximum ICB,,,q@5%. Therefore, the training-set based randomization test—which only required
training a single model here—may be used to help identify when ICB performs well as a GE bound for a
variety of models. Our adaptation of the well-known randomization test complements the list of factors
already identified in §4.1 as affecting ICB satisfaction rate.

4.3 Vacuous or non-vacuous?

Models with high test accuracy are the more likely to be deployed in practice. To evaluate whether ICB is
non-vacuous and close enough to GE to aid model comparison, for each dataset we selected the model with
the smallest ICB value among the top-three most accurate models. The ICB values are considerably less
than 50% in all cases, satisfying the basic definition of non-vacuous for a binary classification task (Table 4).
For Exp. A, the smallest difference between ICB and GE occurred for the CIFAR dataset, with a GE of 5.6%
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compared to an ICB value of 7.6% for 1966 training samples (Table 4, Exp. A). The greatest ICB value
occurred for SVHN (28.0%), however the GE was also large in this case (24.6%).

For Exp. B, both ICB and GE decrease for SVHN (Table 4, Exp. B)) relative to Exp. A. For CIFAR, a similar GE
of ~ 5% is attained as in Exp. A, but with a greater ICB by 3.7%. This may be due to the training accuracy
increasing by 4.4% from 94.8% (Exp. A) to 99.2% (Exp. B). In summary, not only is ICB non-vacuous, it is
close enough to GE to perform model comparisons.

4.4 Relationship between theoretical bound and generalization error

Here, we evaluate the ability of ICB to rank GEs in terms of Kendall’s rank correlation coefficient, 7. Our
analysis of correlation between a complexity metric and empirical GE is inspired by previous work (Jiang*
et al., 2019; Jiang et al., 2021). Figure A13 helps motivate the use of the ICB for ranking GE rather than
using its constituent complexity metric I(X; Z), based on a subset of Exp. B metaparameters. An issue with
correlation analysis is that the training-set classification error or proxy loss can serve as a good predictor
of GE, therefore Jiang* et al. (2019) train models to a fixed training loss to control for confounding effects.
However, fixing the training loss limits the extent of metaparameter exploration. For example, a complexity
metric or GE bound may rank GEs of overfitted models well, but perform poorly for early-stopping. To
maintain a broad scope, we follow both Exp. A & B procedures and treat the train-set accuracy as a baseline
for comparison against ICB, then evaluate overfitted models separately.

Two perturbed test sets help measure correlations
between ICB and robust GE; as perturbations we
use AWGN (Gilmer et al., 2019) and FGSM (Goodfellow
et al., 2015). These perturbations are appropriate for evalu-
ating the robustness of infinite-width networks trained by GD,
which behave as linear functions of their parameters (Lee
et al., 2019). It can be shown that a classifier’s error rate for
a test set corrupted by AWGN determines the distance to

Table 5: Kendall’s 7 ranking for three GE
types: Clean, AWGN and Fast Gradient-Sign
Method (FGSM) for models that obtain zero
training error. The number of models is indi-
cated by the N column. NB: The “~” entries
for SVHN had p > 0.05 when computing 7 and
were therefore discarded.

the decision boundary for linear models (Fawzi et al., 2016)
and serves as a useful guide for DNNs (Gilmer et al., 2019).  Dataset N Clean AWGN FGSM

For AWGN, we use a Gaussian variance o = 1/16 for EuroSAT MNIST 9329 0927 0.30 0.29
and o® = 1/1 for the other datasets. For FGSM, we use a .. 1820 0.39 0.42 041
{ss-norm perturbation of size 4/255 for inputs « € [-1,+1]. gy 20 0'32 B B

In terms of ranking (Clean, AWGN, FGSM) GEs by aggre- CIFAR 876  0.19 0.20 0.12
gating all nine tasks for Exp. A, ICB performs better than ~ EuroSAT 353  0.33 0.38 0.29

the training accuracy baseline for MNIST (Table A6) and
FashionMNIST (Table A7); slightly worse than the baseline
for SVHN (Table A8) and EuroSAT (Table A10); roughly on par with the baseline for CIFAR (Table A8). All
overfitted models from the Exp. A procedure have a positive T-ranking between ICB and the three GE
types for all datasets (Table 5). Thus, ICB outperforms the training accuracy baseline (7 = 0) here. For
Exp. B, there was considerable variance in 7-rankings among the 45 binary classification tasks for each
dataset. Although the median ranking was positive for all datasets, the baseline achieves a higher median
ranking than ICB for all three error types (Clean, AWGN, FGSM) (Fig. A12). An ablation study to identify
which metaparameters influence the correlation between ICB and GE is in Appendix B.

5 Discussion

Our results show that the ICB serves as a non-vacuous generalization bound, which we verified in the case of
infinite-width networks. Furthermore, we performed a broader evaluation than is typically considered for
theoretical GE bounds: i) We searched for ICB violations by evaluating ICB throughout training, rather
than at a specific number of epochs or training loss value. ii) We varied the number of training samples
and classification labels, compared to a static train/test split. iii) We considered robust GE in addition to
standard GE. iv) Experiments were performed on five datasets. ICB was consistently satisfied at the expected
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95% rate for models with at least 70 — 80% test accuracy, which is encouraging since accurate models are
more likely to be deployed in practice. It is, however, more helpful to threshold by training accuracy to
establish a regime in which ICB always works well, since one does not assume access to held-out data when
evaluating generalization bounds. The relationship between training accuracy and the percentage of models
satisfying ICB was unfortunately weaker, despite being nearly 100% for overfitted models. Nonetheless, ICB
was satisfied at a high rate of at least 92% of the time for three of five datasets (MNIST, FashionMNIST,
and EuroSAT) without excluding any models by accuracy, and the training label randomization test was
sensitive to tasks where ICB wasn’t satisfied.

Compared to a simple training accuracy baseline, ICB performed well at ranking GE when the classification
task was allowed to vary (e.g., grouping errors for 1 vs. 2 classification with those for a 2 vs. 3 task), or when
the training accuracy was fixed at 100%. ICB, however, did not always outperform the training accuracy
baseline for specific tasks and when GEs took a large range. However, a limited error ranking ability is not
necessarily disqualifying for a generalization bound. It is unclear to what extent a generalization bound ought
to be able to rank GEs, given that it is by definition merely an upper bound on the error. For example, GEs
of 1% and 29% are both compatible with a bound of 30%, which would contribute to a poor ranking in
terms of Kendall’s 7. When varying one metaparameter at a time—in particular the diagonal regularization
coeflicient—a strong monotonic relationship is observed between ICB and robust errors AWGN and FGSM.

Relevance to deep learning One should use caution before extrapolating our conclusions based on infinite-
width networks to finite-width DNNs. The ability of infinite-width networks to approximate their finite-width
counterparts is reduced with increasing training samples (Lee et al., 2019), regularization (Lee et al., 2020),
and depth (Li et al., 2021). Nevertheless, the infinite-width framework has allowed us to demonstrate the
practical relevance of the ICB for an exciting family of models as a first step. It has been argued that
understanding generalization for shallow kernel learning models is essential to understanding generalization
behaviour of deep networks. Kernel learning and deep learning share the ability to exactly fit their training
sets yet still generalize well, a phenomenon that other bounds fail to explain (Belkin et al., 2018). We leave
the study of ICB in the context of finite-width DNNs to future work, which may require alternative MI
estimation techniques.

6 Related Work

Kernel-regression generalization error Canatar et al. (2021b) derived an analytical expression for the
generalization MSE of kernel regression models using a replica method from statistical mechanics. Their
predictions show excellent agreement with the empirical GE of NTK models on MNIST and CIFAR datasets
as a function of the training sample size. Furthermore, their method is sensitive to differences in difficulty
between similar classification tasks, e.g., showing that MNIST “0 vs. 1” digit classification is easier to learn
than “8 vs. 9”. (Canatar et al., 2021a) extend the method to predict out-of-distribution GE. An alternative
method is the Leave-One-Out (LOO) error estimator (Lachenbruch, 1967). LOO is generally impractical
for Deep Learning (DL) due to the computational requirement of training N DNNs on N different training
sets. However, Bachmann et al. (2021) proposed a closed-form LOO estimator based on a kernel regression
model trained on the complete training set once. Their estimator shows excellent agreement with test MSE
and accuracy for a five-layer ReLU NTK model trained on MNIST and CIFAR. While Bachmann et al. averaged
results over five training sets of size 500 — 20000, we only draw a single training set of 250 — 2000 samples for
each set of metaparameters. Our choice was made to reflect a practical “small data” scenario, where GE has
to be bounded using a modest set of labeled data. As a result, however, our GE and ICB estimates have
greater variance than those of Bachmann et al. We used the infinite-width DNN limit for convenience and as
a first step to assess the efficacy of ICB; we did not set out to find optimal generalization bounds for kernel
regression. An advantage of ICB is that it only requires access to I(X; Z)—a black-box statistic applicable to
a wide variety of models beyond kernel regression. Therefore, ICB may become increasingly relevant for DLs
using MI estimators with different strengths and assumptions, e.g., with distributional constraints on weight
matrices (Gabrié et al., 2018) or infinite-depth corrections (Li et al., 2021).

Generalization bounds for deep learning Dziugaite & Roy (2017) develop a PAC-Bayes GE bound
and evaluated it on a MNIST binary classification task using the complete training set (Nypain = 55k) and a
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fully-connected NN with 2-3 layers and ReLU activations. Although their bound was non-vacuous (=~ 20%),
it was several times larger than the error estimated on held-out data (< 1%). A comparison with our work is
difficult, as we did not use finite-width DNNs. We showed that the ICB yields a smaller (~ 10%) bound from
less than 2000 samples for several classification tasks. Zhou et al. (2019) proposed a PAC-Bayes generalization
bound based on the compressed size of a DNN after pruning and quantization. They obtain a GE bound
of 46% for MNIST and 96 — 98% for ImageNet. The measure of compression used by Zhou et al. (2019) is
distinct from input compression in terms of MI here. The bounds of Dziugaite & Roy and Zhou et al. concern
model complexity, whereas ICB is based on data compression by the hidden layers. Both Dziugaite & Roy
and Zhou et al. optimized their bounds for best results, whereas we used standard training procedures.

Generalization bounds from unlabeled data GE bounds or estimates may be obtained without directly
estimating model complexity. Garg et al. (2021) leverage the so-called “early learning” phenomenon,
whereby DNNs fit true labels before noisy labels, to develop a post-hoc GE bound. They validate their bound
on NTK-based wide DNNs, CNNs, and LSTMs. In contrast to our work, the Garg et al. bound requires
additional unlabeled data, that in practice, can be carved out from the training set. They assign random
labels to the carved-out set, and augment the training set with this random data. Their bound is based on
the empirical error computed on both the clean and random set. Empirically, Garg et al. (2021) show that it
may be possible to maintain model accuracy when training on partially randomized labels in some settings
by using weight decay or early stopping. Unfortunately, random labels reduce the task signal-to-noise ratio,
I(X;Y), and may be challenging to apply with unregularized models that nonetheless generalize well (Zhang
et al., 2017). Jiang et al. (2022) observed that the disagreement of separately trained DNNs on unlabeled
held-out datasets is similar to the disagreement of those models on a labeled held-out set. Their claim follows
an empirical observation that deep ensembles are often well-calibrated, however, this calibration property
may not always hold in important settings (Kirsch & Gal, 2022).

Information compression and generalization The MI I(S;w) between the training data S = (z,y)
supplied as input to a stochastic learning algorithm and the weights w it outputs can also serve to bound GE (Xu
& Raginsky, 2017; Achille & Soatto, 2018). Decomposing I(.S;w) into I(w;x) + I(w;y|x), Harutyunyan et al.
(2020) show that reducing the second term—the information w contain about the labels y beyond what can
be inferred from xz—is key to avoid unintended memorization. As a result, these works optimize MI bounds,
whereas we seek to measure MI to evaluate a GE bound. Furthermore, Shwartz-Ziv & Alemi (2020)[Appendix
C.7] evaluated I(S;w) for infinite-width networks and found that it tends to infinity as the training time goes
to infinity. Thus, a GE bound based on I(S;w) is vacuous for these networks which nevertheless generalize
well. Saxe et al. (2018) observed a lack of compression in ReLU networks and argued that compression must
be unrelated to generalization in DNNs, since it is known that ReLLU networks generalize well. However,
their binning procedure based on Paninski (2003) involves metaparameters that influence entropy and MI
estimation. Other works have studied input compression in linear regression (Chechik et al., 2005) and
finite-width ReLU DNNs using adaptive binning estimators (Chelombiev et al., 2019). We use MI bounds
free from such metaparameters and observe input compression regardless of the nonlinearity type, consistent
with Shwartz-Ziv & Alemi (2020). We are excited about future work on input compression phenomena and
the challenging case of finite-width DNNs.

7 Conclusion

We assessed the ICB along three performance axes: tightness, percentage of trials satisfying the bound,
and correlation with GE. Empirical results show that input compression serves as a simple and effective
generalization bound, complementing previous theory. Additionally, ICB can help pinpoint interesting failures
of robust generalization that go undetected by standard generalization metrics. An important consequence
of the ICB with respect to NAS is that bigger is not necessarily better, at least in terms of the information
complexity of infinite-width networks. Equally important as the architecture are the metaparameters and
training duration, all of which affect input compression. Consistent with Occam’s razor, less information
complexity—or more input compression—yields more performant models, reducing the upper bound on
generalization error. We conclude that input compression, which is data-centric, is a more effective complexity
metric than model-centric proxies like the number of parameters or depth.
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Figure 5: We plot I(X; Z) upper (2) and lower (5) bounds corresponding to the illustrative EuroSAT example
(Figure 1). Increasing the regularization to A = 0.5 in b) and A = 1.0 in ¢) reduces MI below log(Niyy ).
Samples to the right of the vertical line in a) where Iy g crosses log(Ny,) are discarded for the main analyses.
NB: We use natural units (“Nats” or “Shannons”) for I(X; Z) here, but we convert to bits when evaluating
the ICB.

A Appendix

A.1 Assumptions of input compression bound

It is assumed in the construction of the ICB that X is a d-dimensional random variable that obeys an
ergodic MRF probability distribution, asymptotically in d. A MRF is an undirected graphical model, used to
model data distributions with a particular conditional independency structure, which is commonly used for
spatial data, including images (see Murphy (2012)[Chapter 19] for an excellent introduction). Mathematically,
this means that p(z) factorizes into a product of terms which represent the potentials for each clique on the
underlying graph. In terms of correlations, this means that each pixel is strongly correlated with its immediate
neighbors, but not with pixels that are further away. The “ergodic” part is essential for the derivation of
the ICB: An ergodic MRF does not “get stuck” in any part of the state space; in other words, there is a
nonzero probability for every possible state to be reached. Ultimately, this is the necessary assumption to
invoke the Asymptotic Equipartition Property (AEP), which in turn allows us invoke typicality. Defining the
typical set is the crux of the ICB derivation, because it enables us to quantify the hypothesis space cardinality
in terms of entropy. From here, the rest follows from information-theory fundamentals.

A.2 Lower bound on Ml

We may lower bound I(X; Z) using a bound of similar form as equation 2 based on a batch of N samples:

1 p(zilzi)
I(X;Z)>E NZlog

T— | =B, (5)

where the expectation is taken over N independent samples from the joint distribution [] j p(xj,z;). The
main difference between this bound and equation 5 is the inclusion of p(z;|z;) in the denominator.

A.3 lllustrative example and filtering Ml

We empirically verified that equation 5 and equation 2 yield similar results when Iyp < log(Nim) (Fig. A5).
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Figure 6: ICB is plotted versus GE for FashionMNIST, SVHN, CIFAR-10, and EuroSAT datasets. The ICB

satisfaction rate is annotated in the top left corner of each plot with format “ICB % (N)”. Each binary

classification task is assigned a unique colour to highlight inter-task differences in ICB satisfaction rate. See

Figure 2 of §4.1 for the corresponding Figure with GE expressed in terms of classification error rather than

MSE. NB: Results for MNIST omitted from Figure as they were similar to FashionMNIST.

A.4 Bounding generalization throughout training

Loss function We considered GE in terms of MSE in addition to classification error (Fig. A6). This change
results in no difference in the overall ICB Sat. for FashionMNIST, an improvement for SVHN from 44.5% to
72.6%, and a small decrease for CIFAR-10 from to 59.3% to 48.7% as well as for EuroSAT from 93.6% to
88.1%.

Activation function Overall, ReLU networks satisfied ICB more frequently than Erf networks (Table A11).
The following caption applies to Tables A6-10.

Kendall’s 7 ranking for three generalization error types: Clean, AWGN and FGSM by training accuracy
“Train (baseline)” and ICB are presented. One hundred random seeds are used to draw different
metaparameters uniform random for each task, for which models are evaluated five (5) times each during
training resulting in a maximum of 500 samples per task. The number of valid samples out of 500, i.e.,
those with Typ(X; Z) < 1og(Nirain) is indicated in the Nyajq column. ICB % indicates the percentage of
samples that satisfy the ICB, i.e., Clean generalization error < ICB. Entries in the “Row average”
row are obtained by simply averaging across the nine (9) tasks. Kendall’s 7 values for the “Overall” row
may differ substantially from “Row average” as this corresponds to aggregating all raw data points and
considering them as one task before calculating 7. Bold is used to denote whether the baseline or ICB
achieve a better ranking of generalization errors.

A.5 Bounding generalization at steady state

Results for bounding the generalization error at steady state are summarized in Table A11.

A.6 Advantage of ICB versus Ml

To gain further insight into ICB, we examine GEs for a specific CIFAR-10 binary classification task (classes
2 and 5) using three different training set sizes. Plotting GEs with respect to I(X; Z) alone yields a poor
overall ranking, whereas ICB effectively aligns trials with different training set sizes (Figure 13).
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Table 6: Kendall’s 7 ranking for MNIST. See complete caption in §A.4.

Details Train (baseline) ICB
Task  Nya ICB% Clean AWGN FGSM  Clean AWGN FGSM
0vs. 1 499 100% 0.36 0.37 0.35 0.10 0.09 0.10
1vs. 2 498 100% 0.39 0.65 0.33 0.34 0.52 0.32
2vs. 3 497 100% 0.42 0.57 0.46 0.42 0.55 0.46
3vs. 4 500 100% 0.27 0.32 0.24 0.22 0.29 0.23
4vs. b 493 100% 0.19 0.31 0.14 0.19 0.32 0.17
5vs. 6 497 100% 0.49 0.59 0.51 0.44 0.53 0.46
6vs. 7 498 100% 0.29 0.27 0.23 0.17 0.23 0.17
7vs. 8 498 100% 0.35 0.44 0.32 0.38 0.46 0.38
8vs. 9 494 100% 0.42 0.56 0.44 0.38 0.52 0.42
Row average 100% 0.35 0.45 0.34 0.29 0.39 0.30
Overall 009 012 003 027 031 0.24
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Figure 8: FashionMNIST models evaluated a) throughout training and b) at steady state t = co.

Table 7: Kendall’s 7 ranking for FashionMNIST. See complete caption in §A.4.

Details Train (baseline) ICB
Task Nya ICB% Clean AWGN FGSM  Clean AWGN FGSM
0vs. 1 250 100% 0.59 0.67 0.66 0.46 0.57 0.54
1vs. 2 248 100% 0.48 0.59 0.55 0.42 0.50 0.46
2vs. 3 247 100% 0.76 0.80 0.80 0.57 0.60 0.61
3vs. 4 243 100% 0.78 0.82 0.84 0.67 0.66 0.66
4vs. 5 250 100% 0.04 -0.02 -0.11 0.08 -0.02 0.00
5vs. 6 249 100% 0.18 0.15 0.04 0.13 0.17 0.06
6vs. 7 250 100% 0.35 0.26 0.23 0.17 0.16 0.12
7vs. 8 250 100% 0.37 0.52 0.31 0.35 0.46 0.35
8vs. 9 250 100% 0.40 0.29 0.38 0.20 0.11 0.20

Row average 100% 0.44 0.45 0.41 0.34 0.35 0.34
Overall -0.02 -003 -009 033 033 0.31
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Table 8: Kendall’s 7 ranking for SVHN. See complete caption in §A.4.

Details Train (baseline) ICB
Task  Nyaig ICB % Clean AWGN FGSM Clean AWGN FGSM
Ovs. 1 443 1% 0.75 0.85 0.80 0.70 0.74 0.63
1vs. 2 432 33% 0.81 0.90 0.84 0.74 0.73 0.66
2vs. 3 440 34% 0.82 0.89 0.83 0.74 0.73 0.64
3vs. 4 438 44% 0.82 0.90 0.83 0.73 0.75 0.67
4vs. 5 441 60% 0.81 0.90 0.83 0.76 0.75 0.65
Svs. 6 442 25% 0.86 0.92 0.86 0.73 0.72 0.65
6vs. 7 429 49% 0.79 0.90 0.83 0.72 0.71 0.63
7vs. 8 440 48% 0.78 0.88 0.83 0.73 0.73 0.65
8vs. 9 438 32% 0.84 0.91 0.82 0.74 0.73 0.63
Row average 449, 0.81 0.89 0.83 0.73 0.73 0.65
Overall ¢ 0.75 0.85 0.80 0.71 0.72 0.64
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Table 9: Kendall’s 7 ranking for CIFAR-10. See complete caption in §A.4.

Details Train (baseline) ICB

Task  Nyaia ICB % Clean AWGN FGSM Clean AWGN FGSM

Ovs. 1 482 74% 0.85 0.88 0.87 0.72 0.73 0.69
1vs. 2 489 79% 0.84 0.87 0.87 0.75 0.75 0.70
2vs. 3 487 29% 0.88 0.90 0.86 0.77 0.76 0.68
3vs. 4 480 35% 0.86 0.88 0.85 0.76 0.76 0.69
4vs. b 472 39% 0.89 0.90 0.87 0.76 0.75 0.68
5vs. 6 481 41% 0.86 0.89 0.86 0.76 0.75 0.67
6 vs. 7 487 63% 0.82 0.85 0.84 0.78 0.77 0.70
7vs. 8 488 97% 0.82 0.86 0.84 0.71 0.71 0.66
8vs. 9 486 74% 0.85 0.88 0.87 0.75 0.74 0.71
Row average 59% 0.85 0.88 0.86 0.75 0.75 0.69
Overall 0.61 0.65 0.64 0.62 0.65 0.62

Table 10: Kendall’s 7 ranking for EuroSAT. See complete caption in §A.4.

Details Train (baseline) ICB

Task  Nyaia ICB % Clean AWGN FGSM Clean AWGN FGSM

Ovs. 1 414 100% 0.26 0.40 0.37 0.25 0.43 0.38
lvs. 2 389 100% 0.30 0.59 0.50 0.24 0.54 0.37
2vs. 3 468 68% 0.86 0.91 0.76 0.77 0.78 0.60
3vs. 4 490 97% 0.86 0.86 0.83 0.72 0.72 0.65
4vs. b 485 100% 0.62 0.61 0.77 0.70 0.70 0.68
5vs. 6 444 100% 0.78 0.79 0.80 0.68 0.67 0.62
6vs. 7 475 72% 0.89 0.88 0.80 0.74 0.74 0.62
7vs. 8 467 100% 0.80 0.83 0.82 0.77 0.77 0.67
8vs. 9 335 100% 0.47 0.74 0.63 0.40 0.61 0.51
Row average 93% 0.65 0.73 0.70 0.59 0.66 0.57
Overall 0.34 0.36 0.33 0.26 0.28 0.28
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Figure 11: a) EuroSAT model evaluated throughout training, b) models evaluated at steady state ¢ = oo, ¢)
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select models from a) with > 80% test accuracy.
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Table 11: Results for bounding generalization error across five (5) datasets with Input Compres-
sion Bound (ICB). For each dataset, all (120) = 45 binary label combinations are evaluated for S = 25 — 50
meta-parameter combinations drawn uniform random. The ICB % column indicates the percentage of Ny jals
that satisfy the ICB, where Niyja1s = (120) x S. The mean and maximum Clean generalization error is indicated
by “Mean Err” and “Max Err” respectively. The training set sample size is indicated by Nipain. A test
set with Niest = 2000 is used in all cases except for EuroSAT (Niest = 1000). Results are broken down by

nonlinearity type as Erf resulted in ICB being satisfied less often.

Error
Dataset  Nirain  Niriats  Arch  ICB % Mean Err  Max Err
Erf 100.0 0.8 24
MNIST 1000 1125 ReLU 100.0 0.8 2.8
, Erf 99.9 1.3 16.5
Fashion 1000 2250 ReLU 100.0 1.4 17.7
Erf 0.3 14.1 35.7
SVHN 2000 2250 S o 7.4 24.8
Erf 47.6 8.5 39.5
CIFAR-10 2000 2250  _ ‘o 86.5 5.4 36.3
Erf 90.0 2.1 22.9
EuroSAT 1000 1125 ReLU 99.5 5.1 43.0
Clean ] AWGN FGSM
a) . " o o - ) 47 4 57 63 66 c) 41 37 ) 71 56
o losg| | Lado %%%;;
B 051 = ] T T | T
S = = 2 =
+ 00 |
= <}
£ 051 : ° 8 3 1 g :
2 8 6 S
1.0 ' |
d) 62 69 8 o4 73 e) 58 54 79 89 80 f) 60 75 85 91 79
- R TOI L oe0 0% [
S 05 lTI \Tl I‘ S \T‘ 1 \Tl 8 \T‘ \% \T‘
e 3
=00
= s 8 °
T s g 2
S8 8 5 ° 8 i ° g

-1.0

N\N\ST oo N P\\"E“(Oslﬂ W\sf?as“\o“ N P\\"E“(os K \\l\“\g‘?as\"\o“ LA C\?Ik\’\@(oslﬂ

Figure 12: Boxplots show the Kendall 7 ranking between: a,d) Clean, b,e) AWGN, and c,f) FGSM GEs
and ICB (top row) compared to a training accuracy baseline (bottom row). We discard 7 values with
corresponding p > 0.05. The median 7 value is annotated above each box and multiplied by 100 for ease of
interpretation.
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Figure 13: ICB (bottom) ranks GEs better than I(X;Z) alone (top) for different training set
sizes. Shown are 750 fully-connected NTK ReLU models trained (¢t = 0o) on a CIFAR-10 binary classification
task (classes 2 and 5) using three different training set sizes of N = {500, 1000,2000} and a test set with
N = 2000. For each training set, 250 meta-parameter combinations are drawn from a uniform random
distribution (see §3.2 for details). Model depth is indicated by the colour intensity for each series, where
the darkest shade indicates the maximum depth of five (5) layers. Three GE types are evaluated: Clean
(standard), AWGN (adversarial), and FGSM (adversarial) are plotted with respect to I(X; Z) (top row) and
ICB (bottom row). Plotting GE versus the ICB better aligns results for different sized training sets (N)
compared to I(X; Z), and yields a better ranking in terms of Kendall-7.
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Figure 14: GE prediction sign-errors for five different metaparameter interventions on nine CIFAR-10 binary
classification tasks {0 vs. 1,1 vs. 2,...,8 vs. 9}. Plots a), b) discard samples where differences in GE are too
small to reliably measure (see text for details), whereas c) shows the unfiltered data for comparison. Plots a),
¢) report mean sign-error, whereas b reports the maximum or “robust” sign-error across all assignments of
each metaparameter. See Table 12 for a detailed worked example showing how a column is computed in these

plots.
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B Metaparameter study

We perform coupled-network experiments as per Dziugaite et al. (2020) to assess the ability of ICB to predict an
increase or decrease of GE for specific metaparameter interventions (Figure 14). For this experiment we select
metaparameters identically as in Exp. A, only instead of sampling the number of train set samples (250, 2000),
we chose five values: 1000, 1250, 1500, 1750, 2000. For each of nine binary classification tasks, we train models
with 1250 metaparameter settings consisting of five different: depths, diagonal regularization values, train
set samples, and train times; and the two activation functions. We subsequently assess Sign-Error (SE)
(equation 6) for all possible combinations of the numerical metaparameters (example shown in Table 12).

1

SE(P®,1CB) = 5./, [1 ~sgn (GE (w) _GE (w)) . sgn (ICB (w) _ICB (w))] . (6)

The SE is evaluated with respect to different assignments of the metaparameters, w and w/, which are said
to be drawn from an environment e and differ in only one metaparameter value. Note that in Dziugaite et al.
the expectation in equation 6 is taken over a random seed used to draw a set of finite-width DNN weights
and batches of training examples, whereas our model and training procedure are deterministic given a set of
metaparameters. Therefore, the expectation in equation 6 is with respect to the choice of metaparameters
only.

We include three metaparameters that were not present in (Dziugaite et al., 2020): explicit (diagonal)
regularization, training time, and activation function. We omit width, learning rate, and mini-batch size, as
these do not apply to our setting. We report the mean and maximum SE over all possible interventions to
each metaparameter. For example, for depth, which has a range of 1 to 5, we evaluate the SE arising from
changing the depth from 1 to 2, again for 1 to 3, and so on for all ten combinations. Mean and max SE are
then evaluated across the ten “before” and “after” configurations. The mean and max SE are identical for
the activation function which took one of two options: ReLU, Erf. We discard samples with a Hoeffding
weight less than 0.5 as per Dziugaite et al. but provide all data in Figure 14c.

Intervening on the amount of diagonal regularization and training time consistently yields zero mean
(Figure 14a) and maximum (Figure 14b) SE. Intervening on the number of train samples also yields
small mean SE, with the exception of the 0/1 task which had a small mean sample size of only N = 18.
Two tasks: 0/1 and 3/4 show unusually high max SE for train samples, while the rest have small SE
(Figure 14b). Therefore, these three metaparameters strongly influence the overall correlation between ICB
and GE. Conversely, manipulating the activation function and depth induced large SEs. Intriguingly ICB,
was almost perfectly anti-correlated with GE for interventions to the depth with SE =~ 1.0.

28



Under review as submission to TMLR

Table 12: Detailed GE prediction SE for all combinations of the train samples metaparameter for the
CIFAR 8 versus 9 task. The first two columns (“Raw”) comprise all SEs with only basic filtering for
Iup(X;Z) < log(train samples). The next set of (“Filtered”) columns additionally accounts for Monte
Carlo variance of empirical averages and discards samples with a small difference in GE relative to the
number of train and test samples (see text for details). Sample sizes “N” of under ten are replaced with “-”
and omitted from calculations. The final “filtered” mean SE of 13.6% (NN = 28) appears in Figure 14a, the
robust SE of 28.6% (NN = 62) appears in Figure 14b, and the final “raw” mean SE of 42.2% (N = 241) is
shown in Figure 14c (series 8/9).

Raw Filtered Metaparameter

N  Sign-error N  Sign-error Low value  High value

239 42.3% - - 1000 1250
239 39.3% 10 0.0% 1000 1500
238 39.5% 24 0.0% 1000 1750
239 40.6% 62 22.6% 1000 2000
243 25.1% - - 1250 1500
240 35.4% 14 28.6% 1250 1750
243 42.4% 41 19.5% 1250 2000
243 49.0% - - 1500 1750
244 57.4% 18 11.1% 1500 2000
243 51.0% - - 1750 2000

241 42.2% 28 13.6% Mean
244 57.4% 62 28.6% Maximum
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