Architectural and Inferential Inductive Biases for
Exchangeable Sequence Modeling

Daksh Mittal; Ang Li; Thomson Yen; Daniel Guetta, Hongseok Namkoong
Columbia University
{dm3766, al4263, ty2531, crg2133, hn2369}@columbia.edu

Abstract

Autoregressive models have emerged as a powerful framework for modeling
exchangeable sequences—i.i.d. observations when conditioned on some latent
factor—enabling direct modeling of uncertainty from missing data (rather than
a latent). Motivated by the critical role posterior inference plays as a subroutine
in decision-making (e.g., active learning, bandits), we study the inferential and
architectural inductive biases that are most effective for exchangeable sequence
modeling. For the inference stage, we highlight a fundamental limitation of the
prevalent single-step generation approach: its inability to distinguish between
epistemic and aleatoric uncertainty. Instead, a long line of works in Bayesian
statistics advocates for multi-step autoregressive generation; we demonstrate this
"correct approach" enables superior uncertainty quantification that translates into
better performance on downstream decision-making tasks. This naturally leads
to the next question: which architectures are best suited for multi-step inference?
We identify a subtle yet important gap between recently proposed Transformer
architectures for exchangeable sequences Miiller et al. [22]], Nguyen and Grover
[23], Ye and Namkoong [30], and prove that they in fact cannot guarantee exchange-
ability despite introducing significant computational overhead. Through empirical
evaluation, we find that these custom architectures can significantly underperform
compared to standard causal masking, highlighting the need for new architectural
innovations in Transformer-based modeling of exchangeable sequences.

1 Introduction

Intelligent agents must be able to articulate their own uncertainty about the underlying environment,
and sharpen its beliefs as it gathers more information. However, uncertainty quantification can be
difficult in general without a complete characterization of the nature of the data and sources of
uncertainties. Exchangeable sequences represent an important class of data structures on which one
can quantify both the nature and degree of uncertainty principally, thereby enabling more robust
decision-making algorithms. To characterize this concretely, consider a sequence of observations
Y1.00 gathered from an unseen environment 6, e.g., noisy answers in a math quiz, generated by a
student’s current proficiency level 8. When marginalized over the latent 6, the joint distribution of
the sequence Y7.., is permutation invariant. This property defines what are known as exchangeable
sequences, which serve as a fundamental unit of study in uncertainty quantification of latent variables
that govern data generation.

Autoregressive sequence modeling has recently gained significant attention as a powerful approach
for modeling exchangeable sequences Y7.., [22} 23] 31} [30} 20]. Unlike conventional Bayesian
modeling—which requires specifying a prior over an unobserved latent variable # and a likelihood for
the observed data, often a challenging task—autoregressive sequence modeling builds on De Finneti’s

*Equal contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



predictive view of Bayesian inference [6}[7, 18, 9]. This view directly models the observables Y7..: for
an exchangeable sequence, epistemic uncertainty in the latent variable 6 stems from the unobserved
future data [2] [4.[12]. Viewing future observations as the sole source of epistemic uncertainty in
for exchangeable sequences [2,4,[12], autoregressive sequence modeling enables direct prediction
of the observables Y7..,, offering a conceptually elegant and practical alternative to conventional
Bayesian approaches.

Transformers have emerged as the dominant architecture for autoregressive sequence modeling [20} 22}
17,1181 [150 129]], owing to their remarkable performance in natural language and vision applications [5]
10]. As Transformers are increasingly employed to meta-learn probabilistic models for large-scale
tabular datasets [32} 20], they offer a unique opportunity to move beyond traditional prediction tasks
or merely replicating supervised algorithms—an area that has been the primary focus so far. Instead,
following De Finetti’s perspective, when meta-trained on tabular datasets, these models can effectively
quantify epistemic uncertainty, which powers decision-making and active exploration across diverse
domains, including recommendation systems, adaptive experimentation, and active learning [31]. For
instance, we can train sequence models on a collection of tables, each representing a different disease
diagnosis setting—akin to applying meta-learning in the context of disease diagnosis. These models
can then be leveraged to actively gather additional data in a previously unseen disease diagnosis
setting to enhance model’s predictive performance (see Figure|l|for illustration).

However, using Transformers to model exchangeable sequences for decision-making presents its
own challenges. Since the existing literature has primarily focused on traditional prediction tasks
or the replication of supervised algorithms rather than decision-making, it has overlooked the
perspective that epistemic (reducible) uncertainty stems from missing data. Accurately distinguishing
between epistemic (reducible) and aleatoric (irreducible) uncertainty is crucial for decision-oriented
applications. A significant limitation in the current literature is its predominant focus on one-step
predictive uncertainty [22| 23]] or one-step predictions [[18], which fails to differentiate between
epistemic and aleatoric uncertainty. In contrast, a long line of work in Bayesian statistics [28], [24]
advocates multistep inference, offering a more robust framework for differentiating between epistemic
and aleatoric uncertainty.

Our first key contribution is to empir-
ically and theoretically demonstrate
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This brings us to the next key question:

What kind of architectures should we use for modeling exchangeable sequences, particularly when
performing multi-step inference? Architectural choice is a crucial source of inductive bias, and
existing approaches have attempted to incorporate exchangeability as an inductive bias through
specialized masking strategies [22} 23| 30]. However, a critical gap in the literature remains: these
prior works conflate exchangeability with the invariance properties enforced by their masking schemes
that don’t necessarily guarantee valid probabilistic inference.

Another key contribution of our work is in articulating this gap. We introduce conditional per-
mutation invariance (Property[I) as a way to formalize the invariance enforced by these masking



strategies. Correcting previous works [22| 23] 130] that implicitly assume their architectures achieve
exchangeability, we show that enforcing conditional permutation invariance alone is insufficient to
guarantee full exchangeability. Specifically, existing masking-based approaches do not ensure the
conditionally identically distributed (c.i.d.) property (Property [2), which is essential for the validity
of probabilistic inference in exchangeable sequence models. As a result, despite their intended design,
such models may still violate exchangeability when used in practice (see Section ). By clearly
distinguishing between exchangeability and the weaker notion of conditional permutation invariance,
our work not only clarifies existing misconceptions in the literature but also establishes more rigorous
foundation for exchangeable sequence models.

Moreover, a significant drawback of this masking scheme, as discussed in Section [Z_f], is that it
introduces computational overhead without yielding any tangible improvements in model performance.
To evaluate its impact, we empirically assess the effectiveness of enforcing conditional-permutation
invariance (Property [I)) within the model architecture, comparing it to standard causal masking, which
does not enforce permutation invariance. Surprisingly, our results show that enforcing Property [I|
not only fails to provide any performance benefits but actually performs worse than causal masking
(Figure[3). These findings underscore the need for new research directions to develop more effective
inductive biases for Transformers in exchangeable sequence modeling.

2 Conceptual background

In this section, we first review De Finetti’s predictive view of Bayesian inference [6,[7, 18, 9] and how
autoregressive sequence modeling of exchangeable sequences can power it. For most of our discussion,
we focus on the setting where observations are given by Y7.... However, this framework can be easily
extended to contextual settings where observations are (X1.o, Y1.00), With X serving as the context
(Section[C). We start by reviewing the conventional Bayesian modeling paradigm, where the modeler
posits a latent parameter 6, along with a prior (), and likelihood P(Y7.o. | 8) = Ps(Y1.00)- The joint
probability of observations Y;. is then expressed as P(Y1.00 = y1:00) = [ [[oq Po(Ys = yi)pu(d9).

Given any observable data Y7.; the posterior over latent parameter is expressed as u(+|Y7.+). Note
that 1(-|Y7.;) represents the epistemic (reducible) uncertainty, which gets resolved as more data is
collected while the likelihood P(Y'|#) represents the aleatoric uncertainty and comes due to inherent
randomness in the data.

Predictive view of uncertainty. Instead of positing explicit priors and likelihoods over a proposed la-
tent parameter space, we consider a different probabilistic modeling approach where we directly model
the observable Y7.., without explicitly relying on any latent parameter. This view heavily relies on the
infinite exchangeability of the sequence Y., defined as: P(Y1,---,Y,) = P(Yr(1), -+, Ye(ny)),
for any n and permutation 7. De Finetti’s theorem states that if an infinite sequence is exchangeable
then the sequence can be represented as a mixture of i.i.d. random variables.

Theorem 1 (De Finetti’s theorem). If a sequence Y., is infinitely exchangeable then there exists a
latent parameter 0 and a unique measure i(-) over 0, such that, for any n
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In addition to justifying conventional Bayesian modeling, De Finetti’s theorem also establishes
that for infinitely exchangeable sequence Y., the epistemic uncertainty in the latent parameter
0 in Theorem arises solely from the unobserved Y7.oo [3} 114} 13, [16]. In other words, epistemic
uncertainty in 6 is the same as predictive uncertainty in Y7..,. De Finetti [8], Hewitt and Savage [19]
in fact show that the latent parameter 6 in Equation (1) is entirely a function of the Y7.., that is,
0 = f(Y1.00)- To illustrate, consider coin B from Figure and suppose it is tossed repeatedly. Let

Yt(B) denote the outcome of ¢-th toss of coin B where Y;(B) = 1 for heads, and Yt(B) = 0 for tails.

The sequence {Yl(B)7 SRR YO(CB)} is exchangeable, since its probability distribution depends only on
the outcomes of the tosses, not their order. In this case, De Finetti’s Theorem holds trivially, and the
latent parameter 0 represents the probability of obtaining ‘heads’ when the coin B is flipped. Further,

this parameter 6 can be estimated as § = lim;_, % 22:1 Yi(B).



By abusing notation and writing P(-|Y].o,) = P(+|#) where 6 = f(Y1.00), we can interpret P(+|Y7.o0)
itself as the latent parameter 6. Therefore, given some observation Y7, generating Y1 1.00 ~ P(:|Y1.¢)
is equivalent to sampling 6 ~ p(+|Y7.¢). This indicates we can do equivalent Bayesian inference [12]

using P(+|Y1.¢).

Differentiating epistemic and aleatoric uncertainty. Since epistemic uncertainty is equivalent
to the predictive uncertainty of future observations, it can be reduced with additional observations.
In contrast, aleatoric uncertainty refers to uncertainty that remains irreducible, even with more
observations. For example, in the coin toss scenario (Figure |ZD, the uncertainty in Coin A is aleatoric,
arising from inherent randomness of a fair coin toss. No matter how many times coin A is flipped,
there will always be uncertainty about the outcome of the next coin A toss. Coin B, on the other
hand, has epistemic uncertainty which can be eliminated by flipping the coin once.

To quantify epistemic
uncertainty and distinguish
from aleatoric uncertainty,
we must autoregressively
generate Y7..o ~ P(-). As
shown in Figure [2] consid-
ering the entire sequence
of future coin tosses is
crucial—examining only a

Decision problem

Which coin (A or B) should
we toss first if we want to
maximize the total number of

Wrong
answer

/Decision using one-step inference

Coin A: P(V; =H)=0.5
Coin B: P(Y; =H) = 0.5

H (heads) in M coin tosses

Coin A: Fair coin with one
side H and other side T

Select any coin (A or B) randomly for the first toss as
\both the coins have same predictive uncertainty.

Correct

6cision using multi-step inference

P(Yy = y1, -, Yoy = yu) = 0.5M

single toss results in iden-
tical predictive uncertainty

answer

. . Coin A: Aleatoric
for bOth ‘COIH_S? making forall (yy, -, yy) € (1,73 uncertainty
them indistinguishable. For-
mally, since P(Y|Y7.;) = coing: PHi=HY2=H Yy =H=05  gpremic

Both side T withp = 0.5 uncertainty

JP(Y|0)u(6]Y1.), one-
step prediction/generation
fails to distinguish between
epistemic and aleatoric
uncertainty. We explore

this further in Section 3

P(Y1=T,Y5=T,--,Y3y=T)=0.5
Choose coin B for the first toss, if it results in H keep
\ tossing it otherwise shift to the coin A /

Figure 2: [Impact of Multi-step inference v/s One-step inference in deci-
sion making] Coins A and B are considered identical by single-step inference
because both have the same level of predictive uncertainty in their rewards.
However, multi-step inference highlights a key difference: for Coin B, the
uncertainty can be reduced (epistemic) by performing a single toss, whereas
for Coin A, all the uncertainty is irreducible (aleatoric) and arises from the
inherent randomness of a fair coin toss. Consequently, multi-step inference
prioritizes tossing Coin B first to reduce epistemic uncertainty. (Illustration is
adapted from [24]).

Coin B: Biased coin but we
don’t know whether it is both
sides H or both sides T

Learning a probabilistic
model from data. We
now shift our focus to di-
rectly learning P(Y1.p =
y1.7). We represent the
transformer-based autore-
gressive sequence model,
parametrized by ¢, as Pjy.
Rewrite ]%(YLT = y1.7)
as an autoregressive product: HiT;OI ﬁ¢(ﬁ+1 = Yit1 | Vi, = Y1.i), where ]3(Yi+1 | YM) rep-
resents a one-step predictive distribution, often referred to as posterior predictive in conventional
Bayesian terminology. The transformer is trained to minimize the KL-divergence between the true
data generating process P and the model P
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Given a dataset of sequences {y{ 1 < j < N} generated from the true data generating process
P(-), we train the autoregressive sequence model (transformer) on this data using the following
objective: — 1 E;\Ll Z;TF:_Ol log Py(Y? , = vyl | Y{,; = yi.;)- For simplicity, denote Py(Y; 1 =
y|Y1.) as ﬁd(fﬂ) (y). This training procedure enables the model to learn the single-step predictive

distributions that collectively define the full sequence likelihood. Once trained, given any observed
data y;.¢, the transformer sequence model can be used to generate future samples using one-step
inference or multi-step inference. We now formally define one-step inference and multi-step inference.

Suppose we want to predict Y;4 1.7 given y;.:



Definition 1 (One-step inference) Given Y1:1, we generate each SA/ ~ ﬁd;( |y t) iid from the
sequence model. That is, the probablhty of Y}H T = Y4117 18 equal to Hl 41 P¢( = Yily1:t)-
We denote this distribution by P¢ (Ytr1.7)-

Definition 2 (Multi-step 1nference) Given y;.;, we generate Yt+1 T autoregresswely from the sequence
model. That is the probability of Yt+1,T = yry1.7 is equal to Hz —er1 P¢( = yi|y1..—1). We denote
this distribution by P (yy41.7).

3 Inferential inductive biases for decision making

Much of the literature on autoregressive sequence modeling focuses on one-step inference or predic-
tion. For example, recent work by Hegselmann et al. [[18]] empirically demonstrates the scalability
of sequence models for training on tabular data, but their study emphasizes one-step prediction.
Similarly, while Miiller et al. [22], Nguyen and Grover [23]], Hollmann et al. [20] discuss predic-
tive uncertainty, their focus remains exclusively on one-step predictive uncertainty. As mentioned
earlier in Section [2] and elaborated on later, one-step inference does not adequately differentiate
between epistemic and aleatoric uncertainty. In contrast, multi-step inference provide a more ef-
fective means of quantifying epistemic uncertainty, which is crucial for sequential decision making
applications [28| 24]. This distinction was illustrated informally in the coin toss example in Figure 2]
To clarify this further, we present a more formal example in Section [D.T]

3.1 Theoretical characterization of impact on decision-making

We emphasize the significance of the gap between single-step and multi-step inference by examining
its impact on decision-making. Recall Figure 2] where we needed to decide whether to flip coin A
or B first to maximize the total number of heads over M coin tosses. One-step inference fails to
distinguish between the two coins, leading to a suboptimal decision of selecting a coin randomly. In
contrast, multi-step inference addresses this issue, enabling optimal decision-making.

Characterizing information loss in one-step inference v/s multi-step inference: We analyze
how our uncertainty quantification—and inference in general—deteriorates when relying solely on
one-step inference instead of multl—step inference. Let Yey1T P(-|y1.t) be some data from the data

generating process Further, let P (Yyt41.7) = HZ 41 P¢(Y = yi|y1.+) be the one-step inference
model and letAPd) (Yt41.7) = Hi:t 41 }3¢(}7 = y;|y1.:—1) be the multi-step inference model, where
we generate Y; autoregressively. Then the expected difference between the log-likelihood of the
multi-step inference model and single-step inference model is given by the following result.

Theorem 2. Assuming ﬁ¢ = P, then the difference ]E(log[ﬁéw (Yt+1.7)] — log[ﬁf(ytﬂ:T)]) is

equal to Z?:tﬂ I(yi; Yer1:i—1|y1:), where I(A; B|C) is the mutual information between A and B
conditional on C and expectation is w.r.t. y1.7 ~ P(-).

This demonstrates that relying solely on one-step inference results in the loss of mutual information
among y;+1.7. Consequently, the expected likelihood under the multi-step inference model is higher
than that under the one-step inference model and single- step inference is inherently less effective than

multi-step inference. We further analyze expression El a1 1(Yis ye41:-1y1:¢) in a specific setting
(Example [1)) and show that as o2 (epistemic uncertainty) increases, the performance gap between
one-step and multi-step inference widens, with one-step inference becoming increasingly suboptimal.
Example 1. Assuming Y = 0 + e where € ~ N(0,72) and 6 ~ N (p1,02). Let yi 1.7 ~ P(+|y1.4)
and (0/)? = (& + %)71, then expression (ZiT:tH I(yi; Yes1:—1]y1:¢)) is equal to 3 log((1 +
23)77") = Slog(1+ (T — 1) %5).

Characterizing impact on decision making: We now examine how one-step inference affects
downstream decision-making tasks. Specifically, we consider a one-armed bandit problem where the
reward of the first arm is given by Y1) ~ N (6, 72) with @ ~ N(u, o%). While the second arm has a
constant reward Y (2) = 0. It is well known that Thompson sampling suffers O(+/T) Bayesian regret
in multi armed bandits [25]. We now consider the performance of Thompson sampling implemented
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Figure 3: Comparing one-step inference and multi-step inference (lower is better): (a) Uncer-
tainty Quantification: Comparing multi-step log-loss for one-step and multi-step inference (Train
horizon: 100, Target Length: 50) (b) Multi-armed Bandits: Comparing Bayesian regret under Thomp-
son sampling algorithm using one-step and multi-step inference. (¢) Active Learning: Comparing
log-loss under uncertainty sampling algorithm using one-step and multi-step inference.

based on just the one-step inference or one-step inference (predictive uncertainty), with proof in
Section D

Theorem 3. There exists one-armed bandit scenarios in which Thompson sampling incurs O(T)
Bayesian regret if it relies solely on one-step predictions from autoregressive sequence models.

Generalizing to the contextual setting: We extend our analysis to the contextual setting in Section
D] where the context X ~j;q Px. Additionally, we characterize the information loss associated with
one-step inference in Bayesian linear regression and Gaussian processes in the same section.

3.2 Empirical investigation

In this section, we empirically evaluate the impact of single-step and multi-step inference on uncer-
tainty quantification, as well as on downstream optimization tasks such as multi-armed bandits and
active learning. We find that multi-step inference significantly outperforms one-step inference, being
up to 60% more efficient in bandit settings and requiring up to 10 times less data in active learning to
achieve the same predictive performance.

3.2.1 Uncertainty quantification (UQ)

We evaluate one-step and multi-step inference by generating datasets using Gaussian Processes
(GP), a common choice in prior works [22} 23]. Specifically, we employ a GP with an RBF kernel:
f ~ GP(m,K), where K(X,X") = JJ% exp (—[|X — X'|[3/2¢?). Additionally, Gaussian noise
N (0, 0?) is added to the outputs. The input X is drawn i.i.d. from Px. To compare the performance
of the two inference strategies, we use the multi-step log-loss metric. Further details on the metrics
and experimental setup can be found in Section[B] Figure[3[a) illustrates the comparison of multi-step
log-loss performance between one-step and multi-step inference. Consistent with our theoretical
results (Theorems [2] and [)), the results demonstrate that one-step inference performs worse than
multi-step inference.

3.2.2 Multi-armed Bandits

Problem: We consider a two-armed Bayesian bandit setting with arms {C, D} and T rounds
during which the arms are pulled. In each round ¢, based on the information collected so far,
{(A;, YA) 11 < i < t—1}, an arm A, is selected, and a reward Y;** is observed. For each
arm a € {C, D}, the rewards are distributed as Yl(:aT) YN (), (T(a))2), where the mean reward
6@ follows a prior distribution #(*) ~ N (u(a), (a(a))Q). The objective is to determine which
arm A; € {C, D} to pull in each round ¢ in order to minimize the Bayesian regret, defined as:

2Our code repository is available at: https://github.com/namkoong-1lab/
Inductive-biases-exchangeable-sequence!
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E(max,e(c,py {70} — Zle Yt(At))7 where expectation is taken over the randomness in the
rewards (Y"), the actions/policy (A;), and the means ().

Training and Evaluation: We train two transformers, one for each arm (C and D). To compare
the two inference strategies, we first sample 6* ~ p for each arm. We then implement Thompson
Sampling (using the respective inference strategy) with the trained transformers to acquire rewards

over a horizon T'. The regret is evaluated as [max,¢(c, py {70} — ZiT:1 Yt(At)]. Finally, we
average the regret over 1000 different samples of 8%, with each run consisting of 7' = 100 steps, to
compute the Bayesian regret. Additional details about training and algorithm are in Section [B]

Results: Our results are summarized in Figure[3(b). As expected, cumulative regret increases with the
number of pulls for both inference strategies. The figure also demonstrates that multi-step inference
significantly outperforms one-step inference having upto 60% less regret.

3.2.3 Active Learning

Problem: In active learning, the goal is to adaptively collect labels Y for inputs X to maximize
the performance of a model ¢(-). We focus on a pool-based setting, where a pool of data points
Xrool is given, and the objective is to sequentially query labels Y for X € AP°°!, We consider a

. L L iid .
regression setting in which inputs X ~ Py, and outcomes are generated from an unknown function
f*,such that Y = f*(X) + ex, where the noise ex ~ N(0,7%) is heteroscedastic. Additionally,
the data-generating function f* drawn from a distribution p.

Training and Evaluation: We consider a meta learning setup where we train the sequence model
(transformer) on data {(X 1(] 1)\/7 Yl(J]\),) : j € [1, M]} generated from the original data generating
process. To evaluate the two inference strategies, we first sample f* ~ p and generate a dataset
X x Y = D, which contains both pool dataset (DPo°l) and test dataset (Dtest). Using the trained
transformer and the respective inference strategy for uncertainty sampling, we sequentially select

X € &r°° for which labels are queried. At each time step ¢, given the collected data D! C DPo°!,
we evaluate the transformer model’s performance as [— Z( X,Y)eDtest Py(Y]X,D")].

Results: The results are summarized in Figure[3[c). For both inference strategies, prediction accuracy
improves, and loss decreases as more data points are acquired. However, multi-step inference
significantly outperforms single-step inference, achieving the same performance level with nearly 10
times fewer samples.

Now that we have established the importance of multi-step inference, the next key question arises:
What architectures are best suited for modeling exchangeable sequences, especially when performing
multi-step inference?

4 Architectural inductive biases

Ensuring that the sequence model Py is infinitely ex-

changeable enables robust performance and reliable statis- (o 31) () 75) (2,0)
tical inference [30]. Several prior works have proposed ar- Y )
chitectural approaches to enforce exchangeability. Miiller @y 1)\ ‘ oy ‘
et al. [22] introduced a masking scheme designed to en- /‘\ =Y Y YoR
force exchangeability (Figure[). In this scheme, all con- ot || ) gJ o | J ‘7‘
text points attend to one another, allowing the model for ot oo
to condition on the entire context set without any pre- — © ) (e G0 (xa.ys)j 3 3 ‘g‘
defined ordering constraints. This design ensures that (1,0) r Yo ‘ﬁ‘
the model’s predictions remain invariant to the order of ' J e J -
context points, aligning with the principle that exchange-

able sequences should not depend on the specific order Figure 4: A representative attention
in which observations are presented. Figure [dillustrates mechanism and masking scheme widely
the masking scheme corresponding to this architecture, used in prior literature to enforce ex-
where (z1,%1), -, (x3,y3) denote the context points, changeability. However, it only en-
and (x4, 0) represents the target point for which ¢4 is to sures the conditionally permutation-
be predicted. Nguyen and Grover [23] proposed a similar invariant property.

architecture with modifications to improve training effi-
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ciency; however, their design contained an error where the target point did not attend to itself. This
issue was later corrected by Ye and Namkoong [30].

Despite these efforts, the exchangeability guarantees of these architectures remain uncertain. Previous
works implicitly assume that their masking schemes enforce exchangeability but fail to provide a
formal characterization of what is actually achieved. To address this gap, we introduce a precise
definition that explicitly captures the invariance imposed by these architectures. Our analysis reveals
that all transformer-based architectures in the literature [22), 23, 30] aim to enforce a “conditional
permutation invariance property,” which we formally define below.

Property 1. 13¢ is conditionally permutation invariant if ﬁ¢(ﬁ+1|§>ﬂ(1),--- ,Yﬂ(t)) =
Py (YY1, -+, Yy).

This property ensures that the predictive uncertainty in y;, remains the same under any permutation
of the context ... We refer the reader to Section [C|for the corresponding definitions in contextual
settings. Additionally, in Section[4.1] we provide a detailed discussion of the transformer architecture
with the conditional permutation invariance property, including its efficient training procedure and
the computational requirements for inference.

However, while conditional permutation invariance is a necessary characteristic of exchangeability, it
is not sufficient. Enforcing this property alone does not guarantee full exchangeability—a critical
oversight in prior work. For example, all exchangeable sequence models must also satisfy another
crucial property called the conditionally identically distributed (c.i.d.) property, also known as the
martingale property:

Property 2. Recalling ?é(y) = Z3¢(§>t =y Yl:t_l), ]3¢ is conditionally Identically Distributed
(c.id) ifE[PS (y) | Yia—1] = Pi(y).

This property ensures that the expected predictive distribution at time ¢ 4 1, given past observations
(Y1.¢—1), is consistent with the predictive distribution at time ¢. The importance of c.i.d. property
in exchangeable sequence models is what powers their ability to quantify epistemic uncertainty,
as emphasized by previous work in Bayesian statistics [2, 4} [12} 11]]. However, an autoregressive
sequence model that satisfies Property [I|does not necessarily satisfy Property 2] We demonstrate this
with a concrete example provided in Appendix[D.2]

Although we have established that C-permutation invariant architectures do not achieve full exchange-
ability, it is still important to assess whether incorporating Property [T]into transformer architectures
offers any advantages. To investigate this, we compare it to the standard causal transformer architec-
ture (Section4.2)), which does not exhibit this property. Specifically, we analyze two architectures: (1)
the conditionally permutation-invariant architecture and (2) the standard causal masking architecture.
We describe their respective masking schemes, efficient training procedures, and computational
requirements for inference.

4.1 Conditionally permutation invariant architecture

As we have established, achieving conditional permutation invariance requires ensuring that all
context points can attend to one another. We adopt the same masking scheme shown in Figure {4}
which, as previously discussed, has also been utilized in prior works such as [22} [20]].

An efficient training procedure: Training directly in a naive manner can be inefficient, as it would
require processing T separate sequences, each of length i € {1,2,--- , T}, for an sequence data
of length T'. A more efficient approach is to fix a context length ¢ and train the transformer on
multiple target points simultaneously. This process is then repeated for all possible context lengths
i. The corresponding masking scheme is shown in Figure[7] Importantly, this method is equivalent
to training for P(y|z1.4, 1.4, ) across multiple values of « in parallel, solely to optimize training
efficiency. However, during inference, a multi-step (autoregressive) prediction approach should be
adopted, as described in Section [’3'}

Inference compute: Predicting a sequence of length 7 requires approximately O(T*3) computational
effort. A major drawback of this masking scheme is that, even with KV caching, the compute cannot
be reduced to O(TQ). This limitation arises because, at each inference step, all outputs from the
attention heads must be recomputed as every point attends to the newly added context point (see
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Figure 0] for details). This behavior contrasts with the typical causal masking approach, where such
recomputation is avoided.

4.2 Standard causal architecture

In this scheme, each context point attends only to the previous context points and not to any future
points. Specifically, the i*" context point attends only to the context points within [1 : 7 — 1]. In the
interest of space, the masking scheme for this architecture is illustrated in Figure [6|(Section[A).

An efficient training procedure: As before, an efficient training procedure involves fixing a context
length ¢ and training the transformer on multiple target points simultaneously. The corresponding
masking scheme is shown in Figure

Inference compute: Predicting a sequence of length T requires approx. O(7) computational effort.
However, with KV caching, this can be reduced to O(Tz) (see Figure .

4.3 Empirical investigation

In this section, we compare the contextual permutation invariance architecture and standard causal
architectures. As is common in the literature [22} 23| [24]], we use the standard log-loss metric to
compare these architectures and defer the analysis of downstream performance to Section [E] Our
findings indicate that the in-training horizon performance of the C-permutation-invariant architecture
is comparable to that of the standard causal architecture. However, the standard causal architecture
outperforms the C-permutation-invariant model on the out-of-training horizon by approximately 10%
and demonstrates greater training and data efficiency by up to 20%. Furthermore, as noted earlier in
Section[4] the standard causal architecture requires significantly less inference computation due to
benefits from KV caching. To evaluate these architectures we use same data generating process as in

Section[3.2.11

Evaluation Metric: To compare these two architectures, we use two metrics - one-step log-loss and
multi-step log-loss. These metrics are described in detail in Section [B]

Both masking schemes are trained on data generated from Gaussian Processes. Additional details
about the architectures and training process are provided in Section[B] For brevity, we present only
the results based on multi-step log-loss in the main body, while results for one-step log-loss are
deferred to Section[El

Results: We evaluate these architectures across three dimensions - performance on sequence lengths
within the training horizon, and beyond the training horizon, training/data efficiency.

1. In-training horizon performance: Figure [5(a) shows that the performance of both masking
schemes is comparable, with no evident advantage of enforcing conditional-permutation invariance.
Furthermore, additional ablation studies (see Section[E)) indicate that standard-causal masking may
outperform conditional-permutation invariance masking.



2. Data/Training efficiency: To evaluate the data/training efficiency of these architectures, we compare
their performance across various training epochs. Figure [5[b) indicates that standard causal masking
exhibits superior training efficiency. Similar findings were consistently observed in the ablation
studies (Section [E).

3. Out-of-training horizon performance: To assess this performance, we train both architectures up to
a horizon m = 15 and evaluate their performance on horizons beyond m = 15. Figure[5|c), along
with additional experiments (see Section [E)), suggests that the standard causal masking may achieve
better performance on out-of-training horizons.

5 Conclusion and future work

We empirically and theoretically demonstrate that one-step inference using sequence models, which
has been the primary focus of the literature thus far, is insufficient for distinguishing between epistemic
and aleatoric uncertainty, ultimately leading to suboptimal decision-making. In contrast, multi-step
autoregressive generation effectively overcomes this limitation, as evidenced by empirical results in
multi-armed bandit and active learning settings. On the architectural side, much of the existing work
has focused on enforcing a masking scheme that, as we identify, only ensures conditional permutation
invariance in transformers rather than full exchangeability. Empirically, we find that this approach
performs worse than standard causal masking and significantly increases the computational cost of
multi-step inference, as it cannot leverage KV caching. A limitation of our work is that we were
unable to identify a transformer architecture that achieves both full exchangeability and computational
efficiency for decision-making and active exploration. Developing such an architecture remains an
important direction for future research.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Main results in Section 3 and @]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in Section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Section
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Section[B]
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Please refer to the supplementary materials for the link.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: All the graphs include error bars.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Section[B]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes we conform with NeurIPS Code of Ethics and there is no potential harmful
effect of this research.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: here appear to be no direct pathways to harmful or negative applications arising
from this work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the creators or original owners of assets (e.g., code, data, models) are
credited.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Thee are no new assests created using this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Demonstrations
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Figure 6: Standard causal transformer architecture: attention mechanism and masking scheme
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Figure 10: Standard causal architecture - masking scheme at inference stage
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B Experiments Details
In this section, we present the experimental details from Sections[3.2]and .3}

B.1 Details for experiments in Section[3.2.1 and 4.3]

Data generating process: As previously mentioned, we generate data synthetically using Gaus-
sian processes. Specifically, we employ a Gaussian Process (GP) with a Radial Basis Function
(RBF) kernel: f ~ GP(m,K), where m(X) represents the mean function, and (X, X’') =

7112
‘7]2” exp (_ \\X;g ll2
added to the outputs. The input X is drawn i.i.d. from Px. Unless stated otherwise, the parameters
are set as follows: m(X) =0, X ~ U[-2.0,2.0|,0f =1.0,/=1.0,0 = 0.1.

) represents the covariance function. Additionally, Gaussian noise N (0, o2) is

Evaluation Metric: To compare these two architectures, we employ two metrics: one-step log-loss
and multi-step log-loss. A detailed description of these metrics is provided below.

1. One-step log-loss: Given (Z1.m,Y1.m, Tm+1), W€ generate y,,,+1 from the true data gener-
ating process, i.e., Ym+1 ~ P(:|€m+1, T1:m, Y1.m ). The one-step log-loss for the sequence

model is then calculated as: — log |:ﬁ¢(ym+1 |€is ©1.m, Y1:m )| - This value is further aver-
aged over multiple instances of (1., Y1.m, Tm+1)-

2. Multi-step log-loss: Given (Z1.m,Y1:m, Tm+1.T), W€ generate y,,+1.7 from the true data-
generating process, i.€., Ym+1.7 ~ P(:|Zm+1.75 T1:m, Y1.m)- The multi-step log-loss for

the sequence model is computed as: — log {]3¢(ym+1;T|:cm+1;T, T1m, y1:7n):| , which can

be expressed as: — ZZT::SI log [ﬁ¢(yi+1 | Tt 100k 15 T1ommy Y1ims ym:i)] . This value is then
averaged over multiple instances of (Z1.1m, Y1.m, Tm+1.7)-

We refer to t as the context-length and (T — t) as the rarget length.

Transfromer architecture and training details: To compare the conditionally permutation-
invariant architecture with the standard causal architecture, we use a decoder-only transformer
with the following parameters. Both architectures share the same parameters, differing only in their
masking schemes. The model parameters are as follows:

* Model dimension: 64

* Feedforward dimension: 256

* Number of attention heads: 4

e Number of transformer layers: 4

* Dropout: 0.1
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¢ Activation function: GELU

For embedding (z,y), we use a neural network with two layers of sizes [256, 64]. Additionally, a
final linear layer is used to predict the mean y and standard deviation o of the output distribution,
modeled as Y ~ N (u,0?). For training the transformers, we use the Adam optimizer with default
parameters, and the learning rate is adjusted using a cosine scheduler. The training parameters are
as follows: Warmup ratio is 0.03, minimium learning rate is 3.0e >, learning rate is 0.0003, weight
decay to 0.01 and batch size is 64. For all the experiments we train the transformer for 400 epochs.

Computational resources: We use NVIDIA A100-SXM4-80GB for training our models. For the
standard-causal architecture it takes 4hr, while for C-permutation variant architecture it takes 17hr to
train the model.

Evaluation: We evaluate the trained transformers, corresponding to each architecture, using one-
step log-loss and multi-step log-loss. For each experiment, we use 8192 test samples and conduct
evaluations across five different random seeds. This process includes retraining the models on
different training datasets and evaluating them on distinct test datasets.

B.2 Experimental details for Section [3.2]- Bayesian Bandits

Data generating process: Recall that, for each arm a € {C, D}, the rewards are distributed
as Yl(:aT) N (9(“), (T(a))2>, where the mean reward #(*) follows a prior distribution §(*) ~

N (u(“), (a(“))Q). Where for Arm C, we set 1(©) = 0, 0(©) = 0.5 and 7(¢) = 0.5. While for Arm
D, weset uP?) =0, 0P) = 0.9 and 7(P) = 0.1.

Exploration Algorithm: Numerous algorithms have been proposed in the literature to address this
trade-off, such as Thompson Sampling [25]], Bayes-UCB [21]] and Gittin’s index [27]. However, to
compare the two inference strategies, we fix the algorithm to Thompson Sampling and implement it
using the respective strategy.

Transformer Architecture and Training: As specified earlier for each arm a € {C, D}, we train
a separate transformer (decoder-only). The model parameters and training details are specified below:

* Model dimension: 64

* Feedforward dimension: 256

¢ Number of attention heads: 4

* Number of transformer layers: 4
* Dropout: 0.1

¢ Activation function: GELU

For embedding (z, y), we use a neural network with two layers of sizes [256, 64]. Note that, as in this
case there is no context, we set = as 0. Additionally, a final linear layer is used to predict the mean
u and standard deviation o of the output distribution, modeled as Y ~ N (yu, o2). For training the
transformers, we use the Adam optimizer with default parameters, and the learning rate is adjusted
using a cosine scheduler. The training parameters are as follows: Warmup ratio is 0.03, minimium
learning rate is 3.0e~®, learning rate is 0.0003, weight decay to 0.01 and batch size is 64. For all the
experiments we train the transformer for 400 epochs.

Evaluation Details: The results presented in Figure 3[b) are averaged over 1000 different experi-
ments, with each experiment run for 100 steps.

One-step / Multi-step inference (Thompson sampling): In Algorithm|[I] we outline the imple-
mentation of a Thompson sampling algorithm for one-step and multi-step inference using a trained
transformer. In Algorithm I|setting J = 1 corresponds to one-step inference, while choosing J > 1
enables multi-step inference. In our experiments, we set J = 100 for multi-step inference. For refer-
ence, we also provide the standard Thompson sampling algorithm for Gaussian-Gaussian multi-armed
bandits (see Algorithm[2). In our experiments, we set J = 100 for multi-step inference.
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Algorithm 1 One-step and Multi-step inference (Thompson sampling) using sequence models
(transformers) in multi armed bandits setting

Require: Trained transformer (ﬁ;a)) for each of the Arm a € [1, K], horizon T, Number of
autoregressive generations in each iteration (.JJ) : In one-step inference J = 1, while for multi-
step inference J > 1.

1: Initialization:
2: fora=1— Kdo
3 Y@ {} // Observed rewards for each arm a
4: nl 0 // number of pulls for arm a
5: end for
6: fort=1—Tdo
7:  Autoregressively generate J rewards for each arm, conditioned on observed rewards
8: forj=1— Jdo
9:
Yt(,z)ww ~ P¢('|y(a)’ thi)wuv o ’}/16(,2“)-1-]'—1)
// In }A’t(z)(a) .1» ¢ indicates time-step and n(® + j indicates conditioning on | V(@ | = n(®)
observations and j — 1 generations.

10:  end for
LS o)
. _ - a
11:  Select arm A; = arg 1%‘?}( 7 z; Yt,n<a)+j'
=

12:  Pull arm A; and observe reward Yt(At).

13:  Update the collection of observations for arm A;:
n(As) (A +1, y(At) «— y(At) U {Yt(At)}.
14: end for

B.3 Experimental details for Section [3.2]- Active Learning

Data generating process: Recall that our data generating process is as follows - features X i Px,
and outcomes are generated from an unknown function f*, such that Y = f*(X) + ex, with noise
ex ~ N(0,7%) being heteroscedastic and the data-generating function f* drawn from a distribution
. Our Px consists of 100 non-overlapping clusters. Further, within each cluster f*(X) is highly
correlated, while across clusters, the correlation is low. Further on some clusters the noise €x is
high, while on others it is low. This setting introduces a setting where it is necessary to differentiate
between aleatoric and epistemic noise for efficiently querying the labels for model improvement.

Exploration Algorithm: There are various active learning query strategies, such as uncertainty sam-
pling techniques (e.g., margin-sampling or entropy) and Bayesian Active Learning by Disagreement
(BALD) [26! [1]. For this study, we focus on Uncertainty Sampling adapted to the regression setting.

Transformer Architecture and Training: We train a decoder-only transformer on sequential-

data {(X 1(] ])V, Yl(]]\),) : j € [1, M]} generated from the original data generating process. The model
parameters and training details are specified below.

* Model dimension: 64

* Feedforward dimension: 256

¢ Number of attention heads: 4

* Number of transformer layers: 4
* Dropout: 0.1

* Activation function: GELU

For embedding (z,y), we use a neural network with two layers of sizes [256, 64]. Additionally, a
final linear layer is used to predict the mean p and standard deviation o of the output distribution,
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Algorithm 2 Thompson Sampling for Multi Armed Bandits (Gaussian-Gaussian setting)

Require: Number of arms K, prior mean u(a), prior variance (U(“))z, known reward variance
(T(a))z, horizon 7.
1: Initialization:
2: fora=1— K do

32 nl@0 // number of pulls for arm a
4: S@ g // sum of rewards for arm a
500 4@ plo // posterior mean for arm a
6: (&(“))2 — (a(“))2 // posterior variance for arm a
7: end for

8 fort=1—Tdo

9:  Sample a mean from each arm’s posterior:

2
ﬁga) NN (‘[Aj,(a)7 (6(“)) > fora = 1, . .’K_

10: | A = e
0:  Selectarm A; = arg . g}zagXK iy

11:  Pull arm A, and observe reward Yt(At).
12:  Update the sufficient statistics for arm Ay:

n(At) — n(At) + 1’ S(At) — S(At) + }/t(At)'

13:  Update posterior for arm A;.

1 (Ay) Ss(AL)

- . )T G
Posterior mean: ji°t/ < 1 —aD
(oA0)? T2

2 1 (an\ !
Posterior variance: (&(At)> — 5 + n .
(O'(At)) 72

14: end for

modeled as Y ~ N (u, o?). For training the transformers, we use the Adam optimizer with default
parameters, and the learning rate is adjusted using a cosine scheduler. The training parameters are
as follows: Warmup ratio is 0.03, minimium learning rate is 3.0e >, learning rate is 0.0003, weight
decay to 0.01 and batch size is 64. For all the experiments we train the transformer for 400 epochs.

Evaluation Details: Results shown in Figure[3|c) are averaged over 50000 experiments with each
experiment run for 50 steps.

One-step / Multi-step inference (Uncertainty sampling): In Algorithm [3|we describe the imple-
mentation of one-step and multi-step inference based uncertainty sampling using trained transformers.
In our multi-step inference experiments, we set = J = 20 and I = 20.

C Contextual setting definitions

. . iid
Consider a contextual setting, where the context X ~ Px.

Exchangeability definition: An infinite sequence (X1.00, Y1.00) is exchangeable if .for any n and
permutation 7

P((X1, Y1), -+, (X0, Yn)) = P((Xz1), Ye()s - s (Xn(n)s Ya(n)))-
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Algorithm 3 One-step and Multi-step inference (Uncertainty sampling) using sequence models
(transformers) in active learning setting

Require: Trained transformer (ﬁ¢) Horizon T, Initial data available D°, Pool to choose from X'Po°!,
Number of autoregressive generations in each iteration (J) : In one-step inference J = 1, while
for multi-step inference JJ > 1; Number of generation paths over which variance is taken I.
1: fort =1— T do
2:  for X € xP°°l do

3: Generate [ trajectories for each sample X and collect the mean output on each trajectory in
list lt,X~
4: Initialize I, x = {}
5: fori=1— Ido
6: Autoregressively generate J sample outputs for X for each arm, conditioned on the
available data.
7: forj=1— Jdo
8:
Vi~ B0 (V) L (Y5, X)
9: end for 7 olx)
10: le,x) < lex) V{5 Y=Y}
11: end for A ~
12: Estimate variance of the mean output across I trajectories V(; x) = Variancey ¢ (5 Y)
13:  end for .
14:  Select X* = arg max V, x.

X eXxpool
15 Query X* and get the true label/output Y*.
16: Update D! + D=1 U (X*, V™)
17: end for

Transformer training:

N T-1
. 1 s S o
m¢1n N Z Z log Py (Yzj-u =yl | Y], = y{:ﬂle:i?azg-i-l)

j=1 i=0

Conditional permutation invariance property:

Py(Yep1[(X1, Y1), (X4, Y2), K1) = Po (Ve (K1) Vo) > (Xeeys Vary)s Xeg1)-

Conditionally identically distributed property: In the presence of covariates, where X ~ Py
independently, the c.i.d. property extends to the sequence model as follows:

E(PLH (y o) | Va1, Xremr ) = Phly | o).

where 13¢ ()A/t =yl X; = 2, Y141, Xl:t—l) =: P;)(y x) and

13¢> (Yt+1 =y | Xep1 = l’,Yu,Xu) = 13;;“(1/ | ).

D Examples and Proofs

D.1 Example differentiating epistemic and aleatoric uncertainty

Example 2. Consider a setting where the observation Y ~ Py = N(f,72) follows a normal
distribution with mean § ~ u = N(a,0?). Given observations y;.;, the posterior distribution
w(0|y1.¢) = N(ay, 0?) represents the epistemic (reducible) uncertainty, while Y ~ N (6, 72) captures
the aleatoric (irreducible) uncertainty caused by inherent randomness in the data.
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One-step inference corresponds to P(Y|y;.), which is equivalent to [ Py(Y)u(6|y1..)d8 =

N(ay, 02 +77%). In this case, the predictive uncertainty for Y (characterized by \/o? + 72), combines

both epistemic (0?) and aleatoric (72) uncertainties. Importantly, this approach does not allow us to

separate the two components.

Multi step inference, on the other hand involves P(Y;41.00|Y1.¢), which is (by De Finneti’s) equivalent
to [TI;2, 41 Po(Yi)(0y1:¢)db. Furthermore, as T — oo, we have limp_, * ZiT:H_l Y, =6
where § ~ pu(-|y1.¢) = N(ay,0f). Hence, the variance of the long-term average + Z;Trztﬂ Y is
approximately o7 - isolates the epistemic uncertainty. Therefore, multi-step inference enables the
differentiation between epistemic (o2) and aleatoric (72) uncertainties.

D.2 Example demonstrating Property [I|does not lead to Property 2 and exchangeability

Example 3. Suppose ]3(;(0) = ]3¢(O) = 5. Further, conditioned on first observation, assume that
PL(1) := Py(1) = 2 P2(0) := P»(0|Y1) = %: P2(1) := P4(1|Y1) = 2. Observe that Y1 and Y»
are 1.i.d. Finally, conditioned on first two observations, assume that ﬁg(O) = ﬁ¢(0|)71, Ys) = %
and 132(1) = 13¢(1|}71,}72) = 1 — (Y1 + Y2)/2. Here, it is evident that ﬁ¢(y|Y7T(1),YW(2)) =
13¢(y\Y1, Y>) satisfying Property However, we observe that E(ﬁ;’(o) | V1) = E((Y1/2 + Ya/2) |
V1) = ¥1/2 + 1/3 is not equal to P2(0) = 1/3. Thus, E(P; (y) | Yi.4—1) # P! (y). indicating
that the sequence model is not exchangeable.

D.3 Proof of Theorem 2]

Recall that yi11.7 ~ P(-ly1.¢) is the data generating process. Further, ]35 (Yer1.7) =
HiT=t+1 ﬁ¢(? = yi|y1.¢) is the one-step inference model and }A)éw (Yt41.7) = Hf:t_H ]3¢(}A/ =

Yily1:i—1) is the multi-step inference model, where Y; is generated autoregressively.
Theorem Assuming ﬁ¢ = PP, then the difference E (log [ﬁqﬁw (yt“:T)D —

E <log [ﬁg(ytH:T)D is equal to

T

Z I(Ys41:-15 Yilyr:e)

i=t+1

where I(A; B|C) is the mutual information between A and B conditional on C' and expectation is
w.r.t. yi.10 ~ P()

Proof As data is generated from PP(-). Therefore, under the assumption that 13¢ = P, we have that

E (1og | P} (ve1.7)| ) — E (log | P (yesrr) | ) = E <log [ ] 7.7 - y|y>D

i=t+1

—E (log

T o~ A~
H P¢(Y = yi|y1:t)
T
ON ) <log l H P(Y = y;i|y1:i—1)

i=t+1
i—=t+1 >

T
_E <log [ H P(Y = yilyu)]

i=t+1

HzT:t+1 P(Y = yi|y1:i1)] )
=E|lo
< ’ [ HiT=t+1 P(Y = yz’\ylzt)
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_ a ]P(Y = yi|y1:i—1)
" (zz o8 [ P(Y = yily1:) }

=t+1
Y& (log P”(Yylyl—ﬂ])
i=t+1 B = wilure)
T
—(o) Z I(yi, yesrii-1lyr:e)
i=t+1

Here (a) follows from the definition of }3(;”, ﬁq? . (b) follows from the assumption ﬁ¢ =P. (¢)
follows from the following identity
PX,Y | Z) ] E[l P(XIKZ)} E[ P(YIX,Z)}
— n——— — n————=+
(X |2)P(Y | Z) P(X | Z) P(Y | Z)

1(X;Y|2) = Bl

Also note that it is equal to E, , ~p <Dk1 (P(ytﬂ;ﬂyl:t)ﬂnfztﬂ P(yi|y1:t)>)

O
D.4 Proof of Example]]
Proof
Recall that, Y; = 0 +¢;, & ~N(0,7%), 0~ N(u,0?).. We first estimate KL divergence

T
DKL(P(yt+1:T | Y1:e) H IT P | ylzt))~
i=t+1
Because Y; | 6 ~ N(0,72), therefore the posterior P(f | y1.;) is normal with mean pu; =
L L5 i . . -1 ..
%ﬁply’ and variance is 07 = (% + :—2) . Further conditional on 6, the future
P )

Yii1, -,y are iid. N(6,72). Therefore we get, yi1.7 | Y1t ~ J\/’(ut 1, 721 + o? llT)7
where 1 is the (T — t)-dimensional vector of all ones, and I the (T' — t) x (T — t) identity.

For the one-step inference HiT:t 41 P(yi | y1:¢), each y; has distribution y; | y1:e ~ N (pe, 724 07).
Denote this covariance by g = (72 + 07) I.

Now, we want the KL divergence between two (T'—t) dimensional Gaussians with P = N/ (utL by p)
with 8p = 72 + 07117, and Q = N(iul, Z¢) with g = (72 + ¢7) I. For two
K -dimensional Gaussians A (pg, o) and A (p1, 31 ), the KL divergence is

D, (N (10, 20) | N (11, %1)) = %[tf(zflzo) + (= po)" =7 (1 —po) — K + ln—]

Therefore we get -

Dir(P|Q) = %[Kln(l—i—:—tz) - 1n(1+Ki—tz)}.

As the expression is independent of y; ., taking expectation over ;.4 our final expression remains the
same.

O
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D.5 Generalization of Theorem 2] to the contextual setting

Loss of information in one-step v/s multi-step: Let ;1.7 ~ P(-|y1.¢, 1.7) be some data from true

data generating process. Further, let P (Ytt1.75 Tog1.7) = H?:t+1 Py(Yit1 = YilYrut, T1ee, T4)

and Pévl(yt—&-l:T»xt-&—l:T) = Hz t+1 P¢(Y = Yilyr:i—1, T1ii—1, T3).

Theorem 4. Assume P, = P. The difference E (log [ﬁgj(yt-‘-l:T, ZCt+1:T)] - 13¢O (ye+1:7, $t+1:T)) is
T

Z I(yi;yt+1:i71|y1:tax1:i) 2)
i=t+1

where expectation is yy.7 ~ P(-|x1.7) and x1.7 i Px.

D.5.1 Proof of Theorem [

Recall that yry1.7 ~ P(:|ly1.e, x1.7) is generated from the true data generatmg process. Fur-
ther, P¢ (Yt41:7, Teg17) = HZT t+1P¢>(Y = Yi|y1:4, 1., ;) and P¢ (Y4175 Teg1.7) =
Hz t+1 P(i)(Y = yz‘yl:z—la T1:i—1, 1‘7,).

Theorem E|: Assuming }3¢ = P, then the difference E(log [134]5‘/1 (ytH:T,xtH:T)D —
E (ﬁg@tH:m 96t+1:T)) is equal to
T
Z I(Yi; Yes1ii—1|y1e, T1:4)
i=t+1

.. iid
where expectation is y1.7 ~ P(+|x1.7) and 1.7 ~ Px.

Proof We can follow exactly same procedure as in the proof of Theorem [2|for this proof.

D.6 Characterizing (Z) for Bayesian linear regression and Gaussian processes

Example 4. Bayesian Linear Regression - Assuming Y = 07X + ¢ where ¢ ~ N(0,72) and
0 ~ N(u,Y). Inputs X are drawn i.i.d. from Px. Let D; := (21.,y1.+) and the posterior
0|D; ~ N(i', '), then expression[2)is equal to

1 |diag(X ¥/ XT)]
“Fv s |log o\ > 1
9 X |08 XX
where X is the matrix of 11, X0+ , .

Example 5. Gaussian Processes - Assuming Y = f(X) + e where f ~ GP(m, K), where m(X)
is mean and KC(X, X') is the covariance. Additionally, Gaussian noise N (0, 0?) is added to the
outputs. The input X is drawn i.i.d. from Px. Let D; := (%1.t,%1.¢). Suppose, under multi-step
inference P(y¢t1.7 | ¥1.t, X1.7) = N(yt+1.7 | p, Kp). Further, under single-step inference

Q(Yig11) = H?:t-u N (i | pi,07) = N(yeq1:7 | pg, 2q)- Then, expressionis equal to

1 by _ _
§E2P72Q,,U«Q7MP [log <|K§i|> —(T—t)+tr (KP12Q> + (kg — HP)TKPl(/J’Q - NP)]

where d =T — t)
and the posterior §|D; ~ N (1/,¥'), then expression [2]is equal to

1 |diag(X ¥/ XT)]

“F s |log o3 > 1

9 X% { %8 TIXTXT]
where X is the matrix of 441, X442+ , 2.
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D.6.1 Proof of Example [ and

Proof

Recall that, under multi-step inference P(yi+ 1.7 | y1:t, X1.7) = N(yt+1.7 | p, Kp). Further,

under single-step inference Q(y;+1.7) = HiT:tHN(yi | 1i,07) = N(Yigrr | g, E¢). Now,
KL Divergence between two multivariate Gaussian distributions: N (y | pp, Kp) and Q = N (y |
kg, Xq) is give by

by
D (PIQ) = [log (|Kjf'|) — A (Kp'S0) + (g — i) K5 (g — upﬂ

where: d is the dimensionality of y (i.e., d = T — t); | - | denotes the determinant and tr(-) denotes
the trace of a matrix. Therefore, we get

Dy (P|Q) = 3 llog <Z|_I?P1|Z> —(T—t)+u (Kp'2q) + (g — 1p) ' Kp' (g — “P)‘|

In Bayesian linear regression the means remain the same, i.e., Bo = Kps further the expression
reduces to the following:

Dig (N (Xp', XX + DN (X, diag(XT'XT) + 7°T))
that is,

1 X2/ X7
D (P|Q) = = |log — =2 1
W (P|Q) =5 Jlog |diag(X2/XT)]

Final expressions follows from proof of Theorem2]in Section

D.7 Proof of Theorem[3|

Recall that our setting was such that the reward of first arm is generated as Y1) ~ N (6,72) with
6 ~ N(u,0?). While the second arm has a constant reward Y (?) = 0.

Theorem [3: There exists one-armed bandit scenarios in which Thompson sampling incurs O(7")
Bayesian regret if it relies solely on one-step predictions from autoregressive sequence models.

Proof Consider a bandit setting, where 0 = 0 and ¢ < 0. Implementing Thompson sam-
pling using the one-step inference, does not differentiate between aleatoric and epistemic un-
certainty. This means whenever we will sample ¥ > 0 we will choose the wrong arm to
pull as j(mean reward from arm 1) < O(mean reward from Arm 2). As Y ~ N(u,7?) therefore,
PY>0)=9® (’;‘) Hence, on an average we will suffer (T<I> (’;’)) regret over horizon 7T'.

Similarly, when o = 0 and p > 0, whenever we will sample Y < 0 we will choose the wrong arm to
pull. Therefore in this case, it suffers 7'® (‘T“) Bayesian regret over horizon T'. On the other hand,
the multi-step inference (assuming it is done till co) will have 0 regret in these two case.

O

E Additional Experiments

In this section, we present ablation studies to evaluate the performance of different architectures,
specifically comparing conditionally permutation-invariant and standard causal masking schemes. In
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Figure 11: One-step log-loss: Comparing the two architectures on one-step log-loss metric [Dimen-
sion: 1].

Section[E.I] we provide the corresponding results from Section 4.3 using one-step log-loss as the
evaluation metric. Section[E.2]explores the effect of varying the input dimension X, while Section
examines the impact of different noise levels in the observed output Y.

E.1 One-step log-loss figures corresponding to Section[4.3]

In Figures[TT|a) and[IT|b), we present the in-training horizon and out-of-training horizon performance
for the corresponding settings shown in Figures [5(a) and [5]c). The results exhibit similar trends,
where both masking schemes perform equally well in-distribution. However, beyond the training
horizon, the causal masking approach appears to outperform the conditionally permutation-invariant
masking.

E.2 Ablations on dimensions

In this section, we present the results of our ablation study on the dimension d of the context, where
X ~U[-2,2]4

In-training horizon performance: Figure [12] shows the in-training horizon performance for both
architectures across different dimensions. Our findings align with previous observations. Notably, for
d = 16, the provided context appears insufficient to improve prediction log-loss.

Training/Data efficiency: Figure [I3]illustrates the training and data efficiency across different
dimensions.

Out-of-training horizon performance: We only analyze out-of-training efficieny for the dimension
4 in addition to dimension 1. As shown in Figure[T4] the results remain consistent with our earlier
findings.

Multi-step v/s One-step inference: Figure[I5|present a comparison of multi-step and one-step inference
across different dimensions.

E.3 Ablations on noise

In-training horizon performance: Figures[I6]illustrates the in-training horizon performance for both
architectures under varying levels of observation noise. Our findings remain consistent with previous
observations.

Training/Data efficiency: Figures|17|shows the training and data efficiency across different levels of
observation noise. The results align with our earlier findings.

Multi-step v/s One-step inference: Figures [I8] present a comparison of multi-step and one-step
inference under different observation noise levels.
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E.4 Downstream performance of the two architectures

Figure [I9) compares the performance of the conditionally permutation-invariant architecture and the
standard causal architecture in an active learning setting. Our results indicate that the standard causal
architecture outperforms the conditionally permutation-invariant architecture.
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Figure 12: Ablation on dimension (In-training horizon performance): Comparing two architec-
tures [Training horizon: 100, Metric: Multi-step log-loss, Target length: 10].
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Figure 13: Ablation on dimension (Training/Data efficiency): Comparing two architectures
[Training horizon: 100, Metric: Multi-step log-loss, Target length: 10].
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Figure 14: Ablation on dimension (Out-of-training horizon performance): Comparing two
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