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ABSTRACT

In the complex landscape of networked data, understanding the causal effects
of interventions is a critical challenge with implications across various domains.
Graph Neural Networks (GNNs) have emerged as a powerful tool for capturing
complex dependencies, yet the potential of geometric deep learning for GNN-
based network causal inference remains underexplored. This work makes three
key contributions to bridge this gap. First, we establish a theoretical connection
between graph curvature and causal inference, revealing that negative curvatures
pose challenges in identifying causal effects. Second, based on this theoretical
insight, we present computational results using Ricci curvature to predict the reli-
ability of causal effect estimations, empirically demonstrating that positive curva-
ture regions yield more accurate estimations. Lastly, we propose a method using
Ricci flow to improve treatment effect estimation on networked data, showing su-
perior performance by reducing error through flattening the edges in the network.
Our findings open new avenues for leveraging geometry in causal effect estima-
tion, offering insights and tools that enhance the performance of GNNs in causal
inference tasks.

1 INTRODUCTION

Estimating the causal effect of an intervention on a unit based on observational data is a fundamen-
tal task in various domains with far-reaching implications for policy making. This includes fields
such as epidemiology, medicine, economics, and political science (Rothman & Greenland, 2005;
Yao et al., 2021; Varian, 2016; Keele, 2015). The advent of deep learning has revolutionized numer-
ous disciplines, and its techniques have begun to make inroads into the domain of causal inference
(Louizos et al., 2017; Pawlowski et al., 2020; Kallus, 2020; Luo et al., 2020). Causal treatment
effect estimation methods aim to estimate causal quantities by statistical ones (Pearl, 2009a). Due
to the endogeneity in the network structure, identifying causal effects is particularly challenging on
a network of units with non-trivial dependencies (van der Laan, 2012; Zheleva & Arbour, 2021).
Designed to learn from networked data, Graph Neural Networks (GNNs) have shown great promise
in a variety of applications, including social network analysis, recommendation systems, and biolog-
ical network analysis (Sperduti, 1993; Frasconi et al., 1998; Gori et al., 2005; Scarselli et al., 2008;
Kipf & Welling, 2016; Gilmer et al., 2017; Zhou et al., 2020; Wu et al., 2020; Zecevic et al., 2021).
Recently, the success of GNNs in learning from networked data has been extended to network causal
inference (Wein et al., 2021); GNN-based causal effect estimation has been proposed to account for
network-induced endogeneity in structured observational data (Jiang & Sun, 2022; Kaddour et al.,
2021; Cristali & Veitch, 2022; Ma & Tresp, 2021; Guo et al., 2020; Harada & Kashima, 2021).

Despite these advances, the power of GNNs is yet to be unleashed for causal inference on networked
data. In the realm of geometric deep learning, GNNs enable the leveraging of inherent geometry in
graph-structured data (Bruna et al., 2014; Bronstein et al., 2017; Monti et al., 2017; Cao et al., 2020;
Gong et al., 2020; Ye et al., 2020; Bronstein et al., 2021; Atz et al., 2021). For example, discrete cur-
vature on graphs has been used to alleviate issues with over-squashing and over-squeezing in GNNs
(Topping et al., 2021), or to devise a distance measure between graphs, with applications in gener-
ative GNNs (Southern et al., 2023). However, the relationship between the geometric properties of
the graph, such as its curvature, and the performance of the corresponding GNN in estimating causal
effects from networked data has not been thoroughly investigated. This omission is significant, as
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the geometry of the graph can have a profound impact on the behavior of processes taking place on
the graph, and hence on endogeneities rooted in the network.

This work aims to fill this gap by formally establishing the relationship between graph curvature
and causal inference on networked observational data. We explore this connection both through
theoretical results pointing to such a relationship, and through theoretically-informed experiments
illustrating this connection using a GNN-based causal effect estimation method. Drawing from the
theory of invariance of causal models and the distributional robustness formulation of causal invari-
ance (Peters et al., 2016; Meinshausen, 2018; Bühlmann, 2020; Weichwald & Peters, 2021), the
central premise of this paper is inspired by the proposition that curvature could serve as a practical
measure for robustness in networks (Demetrius & Manke, 2005; Tannenbaum et al., 2015). Recent
studies have established the connections between curvature, robustness, and entropy (Tannenbaum
et al., 2015; Sandhu et al., 2015; Pouryahya et al., 2017). Meanwhile, the relationship between
entropy and causal inference has been explored in the context of causal discovery (Compton et al.,
2022). Collectively, these works and the foundations here developed suggest that graph curvature
could offer a powerful tool for enhancing the performance of GNNs in causal inference tasks.

We present a theoretical layout of causal inference from a distributional robustness perspective,
entropic causal inference, and curvature as a robustness indicator, which prepares the ground for
establishing the connection between curvature and causal inference. This connection is formally
implied from our Theorem 2, which suggests that identification of causal effects becomes more
challenging where the curvature is negative. Applying this theoretical finding to causal inference
on empirical networks using GNNs, our experiments show that treatment effect estimation error is
lower in regions with non-negative curvature, firmly validating our theoretical foundations. Lastly,
we propose an adjustment using the Ricci flow to flatten the network, which leads to a remarkable
gain in estimating treatment effects on observational networked data.

MAIN CONTRIBUTIONS

Theoretical Foundations: We establish a theoretical connection between curvature and causal in-
ference on networks. Specifically, we show that identifying the causal effect is more challenging
in regions of the network with highly negative curvatures. This insight provides a foundational
understanding of how the geometric properties of a network can influence causal analysis.

Experimental Results: Guided by our theoretical findings, we present computational results that
use the Ricci curvature on graphs to predict where causal effect estimates are most reliable. In strong
concordance with our theoretical expectations, our empirical results show that the estimation of the
treatment effect tends to be most accurate in areas of the network with positive curvature. This
demonstrates the practical applicability of our theory in real-world scenarios.

Methodological Contribution: We propose a novel method using the Ricci flow for improving
the estimation of treatment effect on networked data. This method involves preprocessing the data
through a weight adjustment that flattens the network using the Ricci flow. Our proposed method
leads to superior performance in estimating treatment effects on observational networked data. This
offers a new tool for enhancing the accuracy and reliability of causal inference in complex networks.

2 CAUSALITY, INVARIANCE, AND ROBUSTNESS

2.1 PRELIMINARIES

Consider an outcome of interest Y for a unit with features X . We are interested in evaluating the
causal effect of a treatment T on Y , which can be measured for each individual unit i by the indi-
vidual treatment effect (ITE), or the expected treatment effect conditioned on the features, known
as the conditional average treatment effect (CATE). Given features xi of an individual, the CATE is
given by τi(xi) := E [Yi|do(ti = t)− Yi|do(ti = t′)|xi] , where Yi|do(ti) is the potential outcome
of the unit upon intervention by treatment ti, represented by the do(.) operation (Pearl, 2009b). Fol-
lowing Shalit et al. (2017) and Jiang & Sun (2022), we adopt a conditional formulation of the ITE as
the CATE for the features of an individual unit, and throughout our experiments, we refer to τi(xi)
as ITE. Since the data is missing the counterfactual outcome, τi(xi) is only a causal quantity and
cannot be directly computed as a statistical quantity. This is referred to as the fundamental prob-
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lem of causal inference (Holland, 1986). Hence, causal effect estimation is essentially to estimate
causal quantities from statistical quantities. Whether this estimation is possible —the identification
problem— is the central question of causal inference (Pearl, 2003).

Identification of the causal effect from the data is contingent on the assumptions we make; common
ones are positivity, consistency, ignorability, and stable unit treatment value assumption (SUTVA)
(Rubin, 1980; Rosenbaum & Rubin, 1983; Imbens & Rubin, 2015; Forastiere et al., 2021; Jiang
& Sun, 2022), which are formally defined in Appendix A. When estimating causal quantities on a
network of units, relaxing ignorability and SUTVA is likely essential due to peer effects on each unit
from its neighbors’ features and treatments (Jiang & Sun, 2022).

2.2 CAUSAL INFERENCE AS RISK MINIMIZATION

Following Bühlmann (2020), we formalize the derivation of causal quantities from statistical quan-
tities as a worst-case risk minimization problem. We combine treatment and covariates (features)
in one variable, denoted X, and the outcome is denoted by Y. Adopting the notation in Bühlmann
(2020), let Y e and Xe denote the random variable and random vector corresponding to an observed
environment e ∈ E , and let F ⊇ E denote the union of observed and unobserved environments
encompassing the joint distribution of X and Y. The causal relationship of X and Y is trivially
revealed when F = E , hence, without loss of generality, we assume E ⊂ F .

Learning the relationship between X and Y can be described as predicting Y e from Xe based on
observations e ∈ E , such that the prediction is robust under the choice of e ∈ F . To this end,
consider a linear model as an example; we can formulate a causal inference parameter, θcausal, as the
worst case regression estimand below, with the constraint that e does not directly impact the joint
distribution of Xe and Y e (Bühlmann, 2020), hereafter referred to by C,

θcausal = argmin
b

max
e∈F

E
[(
Y e − (Xe)T b

)2]
. (1)

2.3 INVARIANCE OF CAUSAL MODELS

Invariance of this worst-case risk minimization is a core component behind inferring causality from
data. Given a set of environments G ⊆ F , invariance can be formalized as the existence of a subset
of covariate indices S ⊂ {1, . . . , nX} satisfying AS (G), defined below,
Definition 1 (Bühlmann, 2020). AS (G) is defined as the property that {L (Y e|Xe

S) |e ∈ G} is a
singleton, where Xe

S denotes the subset of covariates induced by indices in S, and L (Y e|Xe
S)

denotes the loss function E
[(
Y e − (Xe

S)
T b

)2]
.

If AS (G) holds, the causal parameter in Equation 1 remains the same under variations in e ∈ G. For
causal inference, we are particularly interested in the invariance assumption AS (G) when G = E
for estimating θcausal from the data, or when G = F for the more general case of determining causal
parameters over the population. Assuming there exists an S for which AS (F) holds, the problem
of causal inference is then to find such S = pa(Y ) ⊂ {1, . . . , nX}, where {Xi}i∈pa(Y ) is the set of
direct causal parents of Y . Taking a step towards computation, this problem can be formulated in
terms of structural equation models (SEMs) between X and Y , as finding the set pa(Y ) such that C
is satisfied (Bühlmann, 2020). This can be formalized as satisfying B (F), where B (G) is,
Definition 2 (Bühlmann, 2020). B (G) is defined as the property that{
pϵe |e ∈ G ∧ Y e = f

(
Xe

pa(Y ), ϵ
e
)}

is a singleton, where f determines the SEM, ϵe is in-
dependent of Xe

pa(Y ), and pϵe is the distribution of ϵe.

The assumption B (F) in fact completes the formulation of causal inference problems from the
perspective of invariance, with Proposition 1 in Bühlmann (2020), which states that under B (F),
pa(Y ) satisfies Apa(Y ) (F). It follows that an identification strategy, when computing θcausal over
the observed environments, is taking the intersection of all sets S satisfying AS(E). The main issue,
however, is that such an identification mechanism relies on assumption B(F) and condition C. We
next discuss the robustness of an estimator in a regression problem which allows for relaxing these
constraints.
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2.4 DISTRIBUTIONAL ROBUSTNESS AND CAUSAL INFERENCE

Figure 1: Causal graph
for the anchor regres-
sion model. A, H ,
X , and Y denote the
anchor, hidden con-
founders, covariates,
and outcome.

One common situation where C fails is the presence of hidden con-
founders. We can use anchor regression (Rothenhäusler et al., 2021) to
relax C and allow for hidden confounders. In anchor regression, we con-
sider an anchor variable A with pa(A) = ∅. We allow A to be a causal
parent of the covariates X , outcome Y , and hidden confounders H , as
described in Figure 1. The anchor variable could be considered as an en-
vironment that is not constrained by C. The corresponding linear SEM is
then XY

H

 = B

XY
H

+ ϵ+MA, (2)

where B and M are unknown constant real matrices and ϵ is the noise
vector which satisfies ϵ ⊥⊥ A. This yields the following anchor regression
problem for regressing Y on X ,

Y = XTβ +HTα+AT ξ + ϵY . (3)

Since the anchor variable is a source in the graphical model, the anchor regression estimator mini-
mizes a risk in the column space of A. Let ΠA be the projection matrix onto the column space of
A for the sample, and let PA denote the corresponding projection operator for the population case.
The anchor regression estimand βA(γ) and estimator β̂A(γ) for regressing an n× 1 outcome Y on
an n×m matrix of covariates X, corresponding to Y and X in Equation 3, are given by

βA(γ) = argmin
b

{
E
[(
(I − PA) (Y −XT b)

)2]
+ γE

[(
PA(Y −XT b)

)2]}
, (4)

β̂A(γ) = argmin
b

{
1

n
∥(I −ΠA) (Y −Xb)∥22 +

γ

n
∥ΠA(Y −Xb)∥22

}
, (5)

where the second term in the objective functions encourages the residuals to be orthogonal to A

(Bühlmann, 2020). We can compute β̂A(γ) through the Ordinary Least Square estimator for re-
gressing a transformed outcome variable WγY on the corresponding transformed covariate WγX ,
where Wγ := I −

(
1−√

γ
)
ΠA. Recall that A captures the influence of what we previously re-

ferred to as the environment, thus encouraging independence of residuals from the environment and
leading to further invariance with respect to the environment.

Consider the system under perturbation by a vector v = Mδ for some δ replacing the anchor term
in Equation 2. The SEM under perturbation can be written asXv

Y v

Hv

 = B

Xv

Y v

Hv

+ ϵ+ v. (6)

Let us impose δ ⊥⊥ ϵ and constrain the norm of the expected perturbation by the order of a con-
stant γ. That is, we consider a class of shift perturbations Cγ where the perturbation is generated
in the column space of M by a vector δ independent of the noise, and where the typical size of the
perturbation is O(γ) as γ → ∞. Also assume, without loss of generality, that X and Y are cen-
tered at 0. Under these conditions, if E

[
AAT

]
is positive definite, the following proposition holds

(Rothenhäusler et al., 2021; Bühlmann, 2020).
Proposition 1. Given any b ∈ Rm, if A and Y − XT b are uncorrelated, Y v − (Xv)T b in the
perturbed system has the same distribution for all v ∈ span(M).

Proposition 1 points to what leads to the distributional robustness of the anchor regression estimand.
This is due to an equality between a worst-case residual in the perturbed system and the objective
function for the estimand in Equation 4 (Rothenhäusler et al., 2021; Bühlmann, 2020),
Theorem 1. For any b ∈ Rm

sup
v∈Cγ

E
[(

Y v − (Xv)
T
b
)2

]
= E

[(
(I − PA) (Y −XT b)

)2]
+ γE

[(
PA(Y −XT b)

)2]
.
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Corollary 1, which states that βA(γ) minimizes a worst case risk over the class of shift perturbations
Cγ , follows trivially considering Equation 4:

Corollary 1. βA(γ) = argminb∈Rm supv∈Cγ
E
[(

Y v − (Xv)
T
b
)2

]
.

Recall that the second term in the objective function of the anchor regression estimand in Equation
4 is essentially a causal regularization term that encourages the invariance of the residuals with re-
spect to the environment. Theorem 1 and Corollary 1 establish that the anchor regression estimand
corresponds to a worst-case risk minimization in a perturbed system, and simultaneously encour-
ages conditions which bring us closer to a scenario where the assumptions for causal identification
hold. In other words, an estimator that satisfies the criteria for a causal parameter is also a distri-
butionally robust optimizer. This concludes our discussion of causal inference as a worst-case risk
optimization, establishing the connection between causal inference and distributional robustness.

3 CURVATURE, ROBUSTNESS, AND ENTROPY

We now detail why we expect the Ricci curvature to be related to causal inference. Curvature con-
trols how volume balls and geodesics on a Riemannian manifold behave in their local neighborhood
(Do Carmo & Flaherty Francis, 1992). The Ricci curvature indicates how much the local geom-
etry induced by a Riemannian metric deviates from that of a Euclidean space (Pouryahya et al.,
2017). In particular, the lower bounds of the Ricci curvature provide an estimate on the tendency of
the volumes to differ locally from the Euclidean volume (Bauer et al., 2017). Extended to discrete
structures such as graphs, the graph Ricci curvature characterizes deviation of the neighborhood of
an edge from a grid, capturing the dispersion through the edge in its neighborhood. Ricci curvatures
on graphs have been proven powerful for performing various computational tasks on graph neural
networks (Topping et al., 2021; Southern et al., 2023; Di Giovanni et al., 2023; Liu et al., 2023).
For the experiments in this paper, we use the Ollivier-Ricci curvature (Ollivier, 2009) —a graph
curvature notion rooted in optimal transport. A formal definition of Ollivier-Ricci curvature as well
as an alternative Ricc-type curvature are included in Appendix B.

3.1 CURVATURE AND ENTROPY

The following result from optimal transport Lott & Villani (2009), offers bounds on the Boltzmann
entropy in terms of a lower bound on the Ricci curvature,

S(µλ) ≥ (1− λ)S(µ0) + λS(µ1) +
¯
k
λ(1− λ)

2
W2 (µ0, µ1)

2
, (7)

where S(.) denotes the Boltzmann entropy (Adkins, 1983),
¯
k is a lower bound on the Ricci cur-

vature, W2 (µ0, µ1) is the Wasserstein distance of order 2 between µ0 and µ1 in the metric space
(P (X ),W2) of probability measures on X , and µλ for λ ∈ [0, 1] gives the geodesic between them
(Pouryahya et al., 2017). This inequality indicates a positive correlation between Ricci curvature kR
and entropy (Pouryahya et al., 2017), i.e.,

∆S ×∆kR ≥ 0. (8)

3.2 CURVATURE AND ROBUSTNESS

There is a correlation between system robustness and entropy, through the fluctuation theorem
(Pouryahya et al., 2017). Characterized by the fluctuation decay rate (Demetrius & Manke, 2005),
system robustness refers to the ability of the system to rapidly return to its stationary state after a per-
turbation. Therefore, by the Fluctuation Theorem (Evans et al., 1993), there is a positive correlation
between system robustness and entropy, which in turn implies that system robustness is positively
correlated with curvature (Pouryahya et al., 2017), considering Equation 8. This points to a con-
nection between Ricci curvature and causal inference, in light of the discussion on distributional
robustness and causal inference in Section 2. However, claiming such a connection is premature at
this stage, due to the fact that distributional robustness and system robustness are two fundamentally
different notions of robustness. Thus, we utilize the correlation between Boltzmann entropy and
Ricci curvature to formally establish this anticipated connection. To do so, we use the results from
entropic causal inference (Compton et al., 2020), which we briefly review in the following section.
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4 ENTROPIC CAUSAL INFERENCE

Entropic causal inference is a framework that aims to learn the causal graph between variables from
observational data, using an Occam’s razor-type principle Kocaoglu et al. (2017). This approach
seeks the information-theoretically simplest structural explanation of the data to infer causality
(Compton et al., 2020). The central claim is that the true causal structural model is one that yields
the minimum entropy (Compton et al., 2022). Under a set of assumptions, this principle is shown
to facilitate correct orientation of the edges in the causal graph in a two-variable setting (Compton
et al., 2020); and is addressed in the more general case of multi-variable causal graphs in Compton
et al. (2022), by finding the minimum entropy coupling between each pair of connected variables.

These results further point to the relationship between Shannon entropy and distributional robust-
ness. Fitting the wrong model to the data requires a higher entropy than the correct model (Compton
et al., 2020; 2022). More precisely, let Y = f(X,E) be the structural causal model, where E ⊥⊥ X
denotes exogenous variables. If the entropy H(E) is sufficiently small, for the data to fit an alter-
native structural model X = g(Y, Ẽ), with high probability, the Shannon entropy of the alternative
exogenous variables Ẽ ⊥⊥ Y is bounded from below,

H(X) +H(E)−H(Y ) < H(Ẽ). (9)

Considering the correlation between curvature and entropy, this further points to a connection be-
tween curvature and causal inference. We present this connection next.

5 CURVATURE AND CAUSAL INFERENCE

The results discussed in Section 3.1 indicate a positive correlation between Boltzmann entropy and
Ricci curvature, and in Section 4 we stated a bound on the Shannon entropy of the exogenous
variables in an alternative structural causal model, different from the true model. We now show a
connection between Ricci curvature and causal inference. This connection will, in turn, inform a
methodological remedy utilizing the Ricci flow to improve treatment effect estimates.

Consider the problem of identifying the causal relationship between Xi and Yi for i ∈ {1, 2},
corresponding to two sets of data with the true causal models given by Yi = fi(Xi, Ei). Suppose an
alternative model Xi = g(Yi, Ẽi), with alternative exogenous variables Ẽi fits the data, and assume
that the conditions described in Section 4 leading to Equation 9 are satisfied. Assume that the Ricci
curvature corresponding to Xi is bounded below by

¯
ki, for i ∈ {1, 2}. Then, under the assumptions

stated in Appendix C, where we provide the proof, the following holds:

Theorem 2. If
¯
k1 < 0 ≤

¯
k2, there exists a value η, for which P

[
H(Ẽ2) > η

]
≥ P

[
H(Ẽ1) > η

]
,

i.e., the probability that the Shannon entropy of Ẽ2 is lower bounded by η is at least as high as the
probability that η is a lower bound for the Shannon entropy of Ẽ1.

Theorem 2 states that if the lower bound on the Ricci curvature is negative for X1 and non-negative
for X2, then the alternative exogenous variables in the wrong causal model are more likely to need
a larger entropy when fitting (X2, Y2) than (X1, Y1). In other words, this theorem implies that for
the wrong model to fit the data, we expect a higher entropy of the exogenous variables when the
curvature is larger, and in particular non-negative, as opposed to negative.

Theorem 2 helps us establish the connection between Ricci curvature and causal inference, from the
perspective of distributional robustness. Specifically, the theorem implies that when the curvature is
positive, a smaller class of exogenous variables could make the wrong model fit the observations.
This means that a positive curvature leads to higher distributional robustness, making the worst-case
risk minimization in a system under perturbation a less challenging problem. In other words, when
the Ricci curvature corresponding to the covariates is positive, the regression estimator is identified
for a larger class of perturbations. This ultimately suggests that more positive Ricci curvatures are
expected to correspond to lower errors in estimating the causal effect, concluding the main goal
of our theory, which establishes for the first time a formal connection between the geometry of
networks and causal inference. We next show how to use this foundational result to improve causal
estimation, and in Section 7, we illustrate this with experiments.
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5.1 RICCI FLOW ADJUSTMENT FOR IMPROVING CAUSAL EFFECT ESTIMATES

Informed by the theoretical connection between Ricci curvature and causal inference, we propose
to improve treatment effect estimates on network data using the discrete Ricci flow (Jin et al., 2008;
Ni et al., 2019). Given a Riemannian metric g, under the Ricci flow, at time t, g evolves as ∂gij(t)

∂t =
−2Rij , where Rij is the Ricci curvature. This is, in fact, equivalent to the heat equation, considering
the formulation of the Ricci flow as a scaling of the Laplacian of the metric tensor (Chow & Knopf,
2004). As a result, just as the temperature evolves towards a more uniform distribution under heat
diffusion, the Ricci flow evolves to a uniform distribution of curvature (Jin et al., 2008; Hamilton,
1988). Similarly, the discrete analog of the Ricci flow on a graph leads to a flatter network, with the
majority of edges having near-zero Ricci curvature. This discrete analogue of the flow is defined as

wi+1
vu = (1− κvu) d(v, u)

i, (10)

where wvu is the weight on the edge (v, u) ∈ E, κvu is the discrete Ricci curvature, d(v, u) is the
geodesic distance, and i is the iteration index.

In order to improve estimations of treatment effects, we propose modifying the edge weights via
the discrete Ricci flow to obtain an adjusted shift operator for the graph convolution, which is the
weighted adjacency matrix. This is, in essence, preprocessing the training data through computing
a weight matrix by which we multiply the adjacency matrix, and hence, a cost-efficient one-time
computation. Since real-world networks are predominantly sparse, this flattening increases the Ricci
curvature of the majority of the edges in the network and, therefore, based on our theory, is expected
to reduce the error in estimating causal treatment effects.

6 RELATED WORK

We showed the connection between curvature and causal inference, bridging for the first time the
works on invariance and robustness of causal models, geometric deep learning, and deep learning for
causal inference. While the related work has been cited in each section as needed, in Appendix D we
mention the most relevant works in each aspect and point to other works in the literature. Although
these works provide critical foundations and motivations for the theory in this work, none of them
makes the explicit connections we developed in this paper and, in particular, the close connection
between geometry/curvature, robustness, and causal inference.

7 EXPERIMENTS

Building upon these theoretical foundations, we now turn our attention to empirical validation. We
employ numerical experiments on real-world data to demonstrate the practical utility of Ricci cur-
vature for causal effect estimation on networked data. Considering the success of neural networks in
estimating causal treatment effect in nonlinear systems, we use a GNN-based framework to obtain
causal effect estimates of the treatment on the nodes in networked data.

7.1 MODEL AND DATA

A causal model determines a relationship between treatments, features, and outcomes, while a sta-
tistical model that estimates such a causal model uses the observed outcomes. When treatments are
applied to a network with non-trivial connections, traditional causal effect estimation methods fail
due to violation of ignorability or STUVA (Kaddour et al., 2021; Jiang & Sun, 2022; Chu et al.,
2023). Jiang & Sun (2022) proposed NetEst, a GNN-based model we use here, which yields identi-
fiable estimates of the treatment effect on networked data in settings where SUTVA is violated due
to peer exposure effect. Details of the NetEst model, the ITE formulation, the training loss, and im-
plementation are included in Appendix E and Appendix F. Our experiments are primarily aimed at
demonstrating our theoretical results in practice, and evaluating the performance of NetEst and our
proposed enhancement of it. Additionally, in Section 7.3 we compare our results with several base-
line causal effect estimation methods. These baselines include CFR (Shalit et al., 2017), TARNet
(Shalit et al., 2017), NetDeconf (Guo et al., 2020), T-Learner and X-Learner Künzel et al. (2019)
with random forest (RF) regressors, and T-Learner and X-Learner implemented using a GNN en-
coder followed by a multilayer perceptron. To evaluate the performance in estimating the treatment
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effects, we use the ITE error εITE(v) := |τv − τ̂v| and the Precision in Estimation of Heterogeneous

Effect (PEHE) ϵPEHE :=
√

1
N

∑
v∈V (τv − τ̂v)2, where τv and τ̂v denote the true and estimated

ITEs for node v.

Consistent with standard practice in causal representation learning, we use semi-synthetic datasets,
namely an empirically observed network structure and features with simulated treatments and po-
tential outcomes (Hill, 2011; Shalit et al., 2017; Veitch et al., 2019; Guo et al., 2020; Ma et al.,
2021; Jiang & Sun, 2022). Following the original experiments on NetEst, we use the BlogCatalog
(BC) and Flickr datasets (Guo et al., 2020; Ma et al., 2021). We supplement our experiments with
numerous other empirical networks. All datasets are described in Appendix G.

7.2 RICCI CURVATURE AND TREATMENT EFFECT ESTIMATION ERROR

We demonstrate the implications of Theorem 2 by inspecting the joint distribution of εITE and the
Ricci curvature. Ollivier-Ricci curvature is inherently an edge-based measure (see Appendix B). To
quantify the curvature of the region surrounding a node, we aggregate the curvature of its incident
edges by taking their sum. We then compute the empirical joint distribution of the sum of edge
curvatures and εITE for each node. The joint distributions in Figure 2 show a negative correlation
between Ricci curvature and εITE , indicating that treatment effect estimations are more reliable
in regions with non-negative curvature. Additional experiments in Appendix H show that these
results are consistent not only across different datasets but also different notions of Ricci curvature,
confirming our theoretical results.

Figure 2: Joint distributions of the sum of Ollivier-Ricci curvatures in the neighborhood of each
node and the estimation error of ITE for that node. The distributions for nine different networks
are shown (all datasets are described in Appendix G). The regression lines with the corresponding
95% confidence intervals are marked on the plots.

7.3 RICCI FLOW ADJUSTMENT FOR TREATMENT EFFECT ESTIMATION

The theory and experiments alike speak to the adverse effect of highly negative curvatures on esti-
mating treatment effects. In line with this observation, in Section 5.1 we proposed a simple method
to improve the estimation of treatment effects on networked data by flattening the network via the
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discrete Ricci flow. To evaluate this method, we apply this adjustment to the input graph of NetEst.
We refer to the modified method as f-NetEst. The ϵPEHE values obtained from our experiments,
Table 1, show that f-NetEst achieves the best performance on all datasets with relative gains of up
to 52%. Comparing the distributions of the ITE estimation errors (Appendix H.2) further confirms
that the Ricci flow adjustment leads to more accurate ITE estimations. Table 1 also reports the
performances of several baseline models. While our experiments primarily focus on NetEst, which
outperforms all the baselines, we also explore the impact of the Ricci flow adjustment on the per-
formance of three baseline models featuring GNN encoders: T-Learner+GNN, X-Learner+GNN,
and NetDeconf. These additional experiments confirm that our proposed modification results in a
reduction in the treatment effect estimation error in most cases across other GNN-based models as
well.

Table 1: ϵPEHE for nine datasets, comparing the proposed f-NetEst against NetEst and baseline
models. The baselines include three models implemented with GNN encoders. The experiment
with the Ricci flow adjustment for these models is marked with ”f-”. Boldface and underline mark
the best and second best performances. Green and yellow mark relative gains greater than 5% and
less than −5% from the Ricci flow adjustment.

BC Flickr Cornell Texas Wisconsin chameleon Cora CiteSeer Actor

T-Learner+RF 0.328 0.462 0.192 0.414 0.463 0.372 0.232 0.386 0.238
X-Learner+RF 5.612 5.745 5.928 3.827 3.815 3.709 8.626 5.606 5.231
TARNet 0.969 1.024 0.705 1.028 0.711 1.212 0.679 0.638 0.796
CFR 0.895 0.960 0.806 1.038 0.849 0.926 0.570 0.620 0.735

T-Learner+GNN 4.178 9.630 5.125 4.437 0.559 16.715 0.285 0.529 7.912
X-Learner+GNN 4.627 3.933 20.461 1.995 16.244 329.959 3.165 4.428 4.296
NetDeconf 1.092 1.251 0.900 1.137 0.952 1.207 0.791 0.752 0.895

f-TLearner+GNN 3.268 2.762 4.370 3.106 0.466 7.764 0.263 0.494 3.896
f-XLearner+GNN 4.222 3.859 17.395 2.020 20.815 251.290 3.053 3.919 3.967
f-NetDeconf 1.088 1.245 0.900 1.143 0.954 1.200 0.810 0.767 0.898

NetEst 0.069 0.213 0.165 0.330 0.147 0.247 0.082 0.176 0.094
f-NetEst 0.033 0.208 0.127 0.308 0.142 0.230 0.078 0.165 0.088

8 CONCLUSIONS, LIMITATIONS, AND ETHICAL CONSIDERATIONS

We delved into the unexplored territory of leveraging geometry for causal inference on networked
data via GNNs. We established a theoretical connection between curvature and causal inference,
uncovering the challenges posed by negative curvatures in identifying causal effects. We presented
numerical results using graph Ricci curvature to predict the reliability of causal effect estimations
on networked data, empirically validating that positive curvature regions lead to more accurate re-
sults. We then proposed using the Ricci flow to enhance treatment effect estimation on networked
data, achieving superior performance through flattening the edges in the network. To the best of
our knowledge, this work is the first to formally establish the connection between graph curvature
and network causal inference; opening new avenues for applications of graph geometry in causal
inference, as well as neighboring tasks such as transfer learning, out-of-distribution generalization,
and domain adaptation.

Limitations and future directions. Our proposed method cannot target specific neighborhoods of
the network for improving causal effect estimation. Moreover, using Ricci flow to reduce treat-
ment effect estimation error is a static adjustment on the graph that is not efficiently updated during
training. Our proposed improvement effectively alters the graph by weighting the edges, requiring
careful consideration regarding conceptual consistency of the edge weights with the context of the
problem in hand. In future work, our aim is to incorporate these additional dimensions, enhancing
the robustness and applicability of curvature-based techniques in causal inference.

Ethics statement. While all used data are standard in the community, they have the risk of being
biased, this affecting the experimental results but not the theoretical work. Properly detecting causal
factors and their uncertainty, as here introduced, can help with the development of fair ML.
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Ronan Perry, Julius Von Kügelgen, and Bernhard Schölkopf. Causal discovery in heterogeneous
environments under the sparse mechanism shift hypothesis. In Advances in Neural Information
Processing Systems, volume 35, pp. 10904–10917. Curran Associates, Inc., 2022.
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A CAUSAL IDENTIFICATION ASSUMPTIONS

A set of assumptions, often referred to as identification strategy, are commonly considered for iden-
tifying the causal effect. In Section 2.1 we named four common assumptions. Here we include a
description of these assumptions for completeness (Rubin, 1980; Rosenbaum & Rubin, 1983; Im-
bens & Rubin, 2015; Forastiere et al., 2021):

• Positivity: For every unit i, P [ti = 1|xi] ∈ (0, 1), i.e., each unit may or may not receive
the treatment.

• Consistency: If the treatment and covariates of unit i are ti and xi, then Yi = Yi|do(ti, xi).
In other words, the potential outcome of the observed treatment and covariates is the same
as the observed outcome.

• Strong Ignorability: Also referred to as unconfoundedness, this assumption is formally
defined as {Y |do(T = 1), Y |do(T = 0)} ⊥⊥ T |X . In other words, conditional on all the
measured covariates, the potential outcome does not depend on the treatment assignment.

• Stable Unit Treatment Values Assumption (SUTVA): The potential outcome of a unit is
unaffected by treatment assignment of all other units.

These assumptions, although not always sufficient or necessary, could lead to identification of the
treatment effect in various settings where there is no network effect, but fail to do so in the presence
of network effect (Jiang & Sun, 2022). However, Jiang & Sun (2022) show the identifiability of
the treatment effect estimated by NetEst, under a set of modified assumptions that account for the
covariates of neighbors and the peer effect. For a graph G = (V,E) with treatments {tv}v∈V ,
features {xv}v∈V , peer exposures {zv}v∈V , and potential outcomes {Yv}v∈V , these assumptions
are as follows (Jiang & Sun, 2022):

• Positivity: For every node v ∈ V , P [tv = 1|xv, {xu}u∈Nv
] ∈ (0, 1).

• Consistency: For every node v ∈ V , Yv = Yv|do(tv = t, zv = z).

• Strong Ignorability: For every node v ∈ V , Yv|do(tv, zv) ⊥⊥ tv, zv|xv, {xu}u∈Nv
.

• Markov: For any two sets of treatments {tv}v∈V and {t′v}v∈V , given any node w ∈ V , if
tw = t′w and Z({tu}u∈Nw) = Z({t′u}u∈Nw), then Yw|do({tv}v∈V ) = Yw|do({t′v}v∈V ),
where Z(.) is the exposure function, and we use do({tv}v∈V ) to denote enforcing all treat-
ments in {tv}v∈V . That is, the potential outcome of any node is only affected by its treat-
ment and the treatments of its immediate neighbors.

B RICCI CURVATURE NOTIONS ON GRAPHS

The Ricci curvature indicates deviation from the Euclidean space (Do Carmo & Flaherty Francis,
1992; Pouryahya et al., 2017; Bauer et al., 2017). On graphs, this translates to measuring how
much the neighborhood of an edge differs from a grid. We used the Ollivier-Ricci curvature (Ol-
livier, 2009) for the experiments reported in the main text of the paper. Forman-Ricci curvature
(Forman, 2003) is an alternative notion of Ricci curvature on graphs, which we use, in addition to
Ollivier-Ricci curvature, in supplementary experiments included in Appendix H.1. In this section,
we formally define these two Ricci-type graph curvatures.

The Ollivier-Ricci curvature is an optimal transport formulation of the Ricci curvature on graphs.
Given a graph G = (V,E), for an edge (v, u) ∈ E, with µv and µu probability measure on the
nodes anchoring (v, u), the Ollivier-Ricci curvature is defined as

κOR(v, u) := 1− W1(µv, µu)

dG(v, u)
, (11)

where dG(.) is a distance metric on V and W1 denotes the 1-Wasserstein distance (Lin et al., 2011;
Jost & Liu, 2014). Given the flexibility with respect to the choice of µv and µu, the Ollivier-Ricci
curvature is a versatile tool for capturing the local geometry of edges in a graph.
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The Forman-Ricci curvature is a combinatorial curvature notion. The Forman-Ricci curvature of an
edge (v, u) ∈ E in an undirected graph is given by

κFR(v, u) := wvu

 wv

wvu
+

wu

wvu
−

∑
(v′,u′)∈Nv×Nu

(
wv√

wvuwvv′
+

wu√
wvuwuu′

) , (12)

where wv is the weight of the node v, wvu is the weight of the edge (v, u), and Nv ist the set of
neighbors of the node v (Sreejith et al., 2016; Weber et al., 2017). By convention, all weights are set
to 1 in an unweighted graph, in which case the Forman curvature becomes κFR(v, u) = 4−dv−du,
where dv denotes the node degree.

C THEOREM DETAILS

In this appendix we provide the proof of Theorem 2, which states the following under the assump-
tions listed in the appendix Section C.1: Given Xi and Yi for i ∈ {1, 2}, corresponding to two sets
of data with causal models Yi = fi(Xi, Ei), if an alternative model Xi = g(Yi, Ẽi) fits the data,
having non-negative and negative lower bounds on the Ricci curvatures corresponding to X2 and
X1 implies that for some constant η, the probability that the Shannon entropy of Ẽ2 is greater than
η is greater than or equal to the probability that the entropy of Ẽ1 is lower bounded by η.

C.1 ASSUMPTIONS

Given the triplets (X1, Y1, E1) and (X2, Y2, E2), with structural causal models Yi = fi(Xi, Ei) for
i = 1, 2, we make the following assumptions:

(Ai) Considering probability measures µX1
and µX2

corresponding to X1 and X2, there exists
a pair of measures µ0 and µ1 such that µX1

and µX2
are on the geodesics between µ0 and

µ1 in a 2-Wassertein metric space.
(Aii) H(Y1) ≈ H(Y2) and H(E1) ≈ H(E2), where we use ≈ to denote sufficiently close, and

H(.) denotes the Shannon entropy.
(Aiii) The conditions for Conjecture 1 in Kocaoglu et al. (2017) and Compton et al. (2020):

X ∼ p(X) and E ∼ p(E), where p(X) is a uniform random sample from the n-
dimensional probability simplex, p(E) is sampled uniformly from the points in the m-
dimensional probability simplex satisfying H(E) ≤ log(n) + O(1), and f is sampled
according to pf satisfying

∥∥∥ pf

pU

∥∥∥
∞

≤ nc for some constant c, where pU is a uniform distri-
bution (Compton et al., 2022).

In assumption (Aii) above, we use the term sufficiently close to refer to the existence of a sufficiently
small upper bound on the distance between the two values.

Assumptions (Ai) and (Aiii) are primarily technical assumptions to ensure applicability of inequal-
ities 7 and 9 used in the proof. Assumption (Aii) on the other hand, while facilitating steps of the
proof, has a conceptual implication: (Aii) implies that the difference in the randomness of the two
datasets is primarily due to X1 and X2.

C.2 PROOF

The proof of Theorem 2, under the assumptions above, relies on Inequality 7 from Pouryahya et al.
(2017) and Lott & Villani (2009), and the results from Compton et al. (2020) and Compton et al.
(2022) leading to Inequality 9. Given alternative models Xi = g(Yi, Ẽi) for i = 1, 2 with exogenous
variables Ẽi, under (Aiii), Inequality 9 gives the following lower bound on the Shannon entropy of
Ẽi,

H(Xi)−H(Yi) +H(Ei) < H(Ẽi). (13)
Suppose

¯
ki < 0 ≤

¯
k2 where

¯
ki is a lower bound on the Ricci curvature corresponding to Xi. Then,

by Inequality 7, assuming (Ai), we have

¯
s2 >

¯
s1, (14)
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where
¯
si is a lower bound on the Boltzmann entropy corresponding to Xi. On the other hand, the

Boltzmann entropy can be written as a constant scaling of the Shannon entropy. Thus, given lower
bounds

¯
h1 and

¯
h2 on H(X1) and H(X2), Inequality 14 implies

¯
h2 >

¯
h1. Consider a constant h ∈

(
¯
h1,

¯
h2). Since

¯
h2 is a lower bound for H(X2), it holds that P [H(X2) ≥ h] = 1 ≥ P [H(X1) ≥ h],

where P(.) denotes the probability. Hence, under assumption (Aii), P [Λ2 > η] = 1 ≥ P [Λ1 > η],
where Λi := H(Xi)−H(Yi) +H(Ei) and η ∈ (

¯
h1 −H(Y1) +H(E1),

¯
h2 −H(Y2) +H(E2)) is

a constant. Using the lower bounds in 13, this implies

P
[
H(Ẽ2) > η

]
≥ P

[
H(Ẽ1) > η

]
,

completing the proof of the theorem connecting causal inference with curvature.

D RELATED WORK

We showed the connection between curvature and causal inference, bridging for the first time the
works on invariance and robustness of causal models, geometric deep learning, and deep learning
for causal inference. Although we have cited related works in each section as appropriate, we now
mention the most relevant works in each aspect and reference other contributions in the literature.
While these works provide essential foundations and motivations for the theory in this work, none of
them establishes the explicit links we developed in the paper and, in particular, the close connection
between geometry/curvature, robustness, and causal inference.

Invariance, Robustness, and Causal Inference. Learning representations that are invariant across
a set of environments is the primary goal of invariant causal prediction (ICP) (Bühlmann, 2020; Pe-
ters et al., 2016; Heinze-Deml et al., 2018; Shi et al., 2021) and invariant risk minimization (IRM)
(Bühlmann, 2020; Shi et al., 2021; Arjovsky et al., 2019; Lin et al., 2022). Bühlmann (2020) for-
mally describes how IRM can lead to a distributionally robust estimator while imposing causal
identification assumptions.

Geometric Deep Learning. Geometric tools have been instrumental to recent advances on GNNs
(Bruna et al., 2014; Bronstein et al., 2017; Gong et al., 2020; Bronstein et al., 2021). Discrete Ricci
curvatures on graphs, in particular, are well-established measures with roots in Riemannian geome-
try (Ollivier, 2009; Sandhu et al., 2015; Samal et al., 2018), with numerous applications for GNNs
(Topping et al., 2021; Southern et al., 2023). The connection between Ricci curvature and entropy
is known from the optimal transport literature (Lott & Villani, 2009), based on which, (Pouryahya
et al., 2017) uses Ricci curvature as a measure of system robustness. Moreover, curvature has been
used by Srinivas et al. (2022) to improve robustness in neural networks. However, the literature does
not establish a connection with distributional robustness, a gap that we fill with the help of results
from entropic causal inference (Kocaoglu et al., 2017; Compton et al., 2020; 2022).

Deep Learning for Causal Inference. Deep learning methods have had success in estimating treat-
ment effect (Shalit et al., 2017; Louizos et al., 2017), counterfactual inference (Johansson et al.,
2016; Pawlowski et al., 2020), and other problems in causal inference (Luo et al., 2020; Lu et al.,
2021; Perry et al., 2022; Frauen & Feuerriegel, 2022; Ke et al., 2022; Immer et al., 2023; Hägele
et al., 2023). Causal effect estimation on networked data on the other hand, is known to be no-
toriously challenging (van der Laan, 2012; Zheleva & Arbour, 2021). Various methods have been
proposed for estimating the causal effect in structured data which violate traditional identification
assumptions (Jiang & Sun, 2022; Kaddour et al., 2021; Cristali & Veitch, 2022; Ma & Tresp, 2021;
Guo et al., 2020; Harada & Kashima, 2021). For instance, Guo et al. (2020) uses a Network De-
confounder to learn a representation of hidden confounders from the data, Kaddour et al. (2021)
proposes an effect decomposition, and Veitch et al. (2019) and Cristali & Veitch (2022) use the em-
beddings to deal with unobserved confounders and the homophily effect. Another approach, taken
in Jiang & Sun (2022); Ma & Tresp (2021); Harada & Kashima (2021), is to account for the peer
treatment effects in the network using GNN-based causal estimation methods, which allows the vi-
olation of SUTVA. However, the literature lacks a practical indicator of the local reliability of the
estimates. We show that Ricci curvature can serve as such an indicator, and informed by this result,
we propose a preprocessing using the Ricci flow to improve the causal effect estimates obtained
from GNN-based methods.
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E THE NETEST MODEL

Given a graph G = (V,E) with the adjacency matrix A, features X , observed outcome Y , and
treatments T , the NetEst model (Jiang & Sun, 2022) uses a summary function Z : 2T → [0, 1] to
capture the peer effect on unit v ∈ V through v’s peer exposure, zv = Z({tu}u∈Nv ), where Nv

denotes the set of immediate neighbors of the node v. Assuming a Markov-type property that the
peer effect can be learned from the signals received from immediate neighbors, the peer exposure
function is set to be the average treatment of the neighbors, i.e., zv =

∑
u∈Nv

tu/|Nv|. The ITE,
τ(xv), for two treatments t′ and t′′ is then defined as

τ(xv) := E [Yv|do(tv = t′, zv = z′)− Yv|do(tv = t′′, zv = z′′) |xv, {xu}u∈Nv ] , (15)

which is identified under the assumptions described in Appendix A (Jiang & Sun, 2022).

NetEst consists of four modules: an encoder, two regularizers, and an estimator. The encoder
module learns a representation for the nodes using a graph convolutional network, producing an
embedding sv = ϕ(xv, {xu}u∈Nv

) ∈ S for every unit v ∈ V . The estimator module is trained to
estimate the observed outcome from the embeddings {sv}v∈V by minimizing a mean squared error
(MSE) loss. This MSE loss Lm is the potential outcome loss, between m(sv, tv, zv) and the potential
outcome Yv|do(tv, zv), where m : S×{0, 1}× [0, 1] → Y denotes the estimator, assuming a binary
treatment, and Y is the outcome space. The p(t|x) and p(z|x, t) regularizer modules are used
in an adversarial training scheme to resemble randomized treatment assignment and uniform peer
exposure, respectively, minimizing two MSE losses Lt and Lz on the embeddings and treatments.
Hence, NetEst is trained by first training the discriminators in the regularizer modules, minimzing
their respective loss values, then updating the estimator to minimze Lm, and in the end, updating
the encoder to optimize a total loss L = Lm + αtLt + αzLz .

F IMPLEMENTATION PARAMETERS AND HARDWARE SPECIFICATIONS

Since the main purpose of our experiments was to inspect the joint distribution of estimation errors
and evaluate the impact of our proposed data preprocessing, we followed the parameters and setup
used by Jiang & Sun (2022) for all implementation and training purposes of NetEst, TARNet, CFR,
and NetDeconf. The encoder of NetEst contains 1 graph convolution layer, the estimator has 3
fully-connected hidden layers of size 32, and the two regularization terms in the total training loss
of the encoder both have weight 0.5. The learning rate is 0.001 for 300 epochs of full batch training
using an Adam optimizer (Kingma & Ba, 2015). The meta learner baselines with GNN encoders, T-
learner+GNN and X-Learner+GNN, are implemented using a graph convolutional network followed
by a three-layer multilayer perceptron. All meta learners were fine tuned with grid search. The
system specifications for the experiments are reported in Table 2.

Table 2: System specifications for the experiments.

CPU Intel(R) Xeon(R) CPU @ 2.20GHz
GPU Nvidia V100
OS Ubuntu 22.04.2 LTS
Architecture x86 64

G DATA

Validating causal inference methods and theories through experiments often requires data that con-
tain counterfactual outcomes. To this end, the standard practice in the literature is to use semi-
synthetic data, where the features are empirically observed, while the treatments and potential out-
comes are simulated (Hill, 2011; Shalit et al., 2017; Jiang & Sun, 2022; Veitch et al., 2019; Guo
et al., 2020; Ma et al., 2021). Jiang & Sun (2022) use the BlogCatalog (BC) and Flickr datasets
(Guo et al., 2020; Ma et al., 2021) to evaluate the performance of NetEst. In addition to these two
datasets, we supplement our experiments with additional network datasets used in the geometric
deep learning and GNN literature: Cornell, Texas, and Wisconsin networks from the WebKB dataset
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1; Chameleon network from the Wikipedia networks dataset (Rozemberczki et al., 2021); Cora and
CiteSeer networks (Yang et al., 2016); and Actor network (Pei et al., 2019). Table 3 includes de-
scriptive statistics on these networks. Note that we only use the largest connected component in
each network. Following Jiang & Sun (2022), we split each network data into training, validation
and test sets using METIS (Karypis & Kumar, 1998). The treatments and potential outcomes for all
network data are synthesized following the formulation in Jiang & Sun (2022).

Table 3: Descriptive statistics for the networks used in our experiments.

BC Flickr Cornell Texas Wisconsin Chameleon Cora CiteSeer Actor

Nodes 5196 7600 183 183 251 2277 2708 3327 7600
Edges 171743 30019 298 325 515 36101 10556 9104 30019
Features 8189 932 1703 1703 1703 2325 1433 3703 932

H FURTHER EXPERIMENTS

H.1 RICCI CURVATURE AND TREATMENT EFFECT ESTIMATION ERROR

In this section we include additional plots showing the joint distributions of the ITE estimation error
for each node v ∈ V , εITE(v), and the Ricci curvature in the neighborhood of the node, for both
Forman and Ollivier Ricci curvatures (this one repeated from Figure 2 for completeness and ease of
visualization/comparison). The distributions for the nine networks are shown in Figure 3, with two
plots (one per curvature) for each dataset. All ITE estimations in this figure have been obtained using
NetEst (Jiang & Sun, 2022). These distributions and the regression lines marked on the plots further
confirm our theoretical results, which imply that highly negative Ricci curvature makes causal effect
estimation more challenging.

H.2 ITE ERROR DISTRIBUTION

In order to obtain a better understanding of how the Ricci flow adjustment impacts ITE estimation
for each unit, we compare the empirical cumulative distribution functions (CDFs) of εITE obtained
from f-NetEst and NetEst, in the two datasets used by Jiang & Sun (2022), as well as seven other
networks described in Appendix G. As shown in Figure 4, the empirical CDF from f-NetEst is
uniformly above that from NetEst for low εITE values, which further confirms that flattening the
edges leads to a larger proportion of units with low ITE estimation error.

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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Figure 3: Joint distributions of the sum of Forman and Ollivier-Ricci curvatures in the neighbor-
hood of each node and the estimation error of ITE for that node. The distributions for the nine
networks are shown, with two plots (one per curvature) for each dataset. The regression lines with
the corresponding 95% confidence intervals are marked on the plots.
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Figure 4: Empirical CDF of the ITE error, εITE , obtained from NetEst (black) and f-NetEst (green).
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