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ABSTRACT

Despite recent progress in federated learning (FL), the fundamental challenge of
training a global model across multiple clients having heterogeneous and class im-
balanced (CIB) data has not been fully resolved. Furthermore, most of the existing
works for FL with heterogeneous data assume that the clients have fully labeled
data, which might not be practical in real-world scenarios due to the challenges of
labeling, especially at the clients. In this paper, we provide a solution for the real-
istic FL setting in which the clients have unlabeled, heterogeneous, and CIB data.
To address the issue of biased gradients in training on heterogeneous and CIB
data, we develop a new FL framework, called the Modular Federated Contrastive
Learning (MFCL). Instead of federally training a whole deep network across the
clients, we propose to train two separate and different network modules at the
clients and the server. One is a sensor module that is federally trained across the
clients to extract the data representations from the clients’ unlabeled data, which
are sent to the server. The other is a discriminator module at the server, which is
trained with contrastive loss on the data representations received from the clients.
We also propose a new normalization technique, Peer Normalization (PN), which
is customized for the contrastive FL to reduce the biases of the gradients resulting
from training on the heterogeneous and CIB data across the clients. Our experi-
ments show that the proposed MFCL with PN provides high and stable accuracy,
achieving state-of-the-art performance when the clients have (severe) heteroge-
neous and CIB data.

1 INTRODUCTION

Federated Learning (FL) has been introduced as a framework to make it possible to learn from
the data located at multiple clients without any need to bring the raw data from the clients to one
central location, called the server (McMahan et al., 2016; 2017; Konečnỳ et al., 2016a;b). FL starts
with broadcasting the initial model parameters to the (selected) clients. Each client’s local model
is trained on its own local data set for some iterations and the locally trained model parameters are
sent to the server. The server averages the local models into a global model, which is broadcast
back to the (selected) clients. This completes one FL round and the training process continues until
convergence or achieving an accuracy threshold.

For real-world scenarios of FL, it is reasonable to assume that the clients collect their own data indi-
vidually, which leads to non-identical data distributions, namely heterogeneous data sets. Besides,
even for each individual client’s data set, the numbers of data samples are not necessarily the same
for all classes in practice. This means that each client’ data might be often class-imbalanced (CIB),
rather than class-balanced (CB). For these challenges, the actual training of FL might be suboptimal,
might slowly converge, or even might diverge. Figure 4 in Appendix C.2 shows the four different
scenarios of data distribution of clients in FL: heterogeneous/homogeneous and CIB/CB data.

Over the past several years, the FL research community has paid a lot of attention to addressing the
issue of data heterogeneity of clients, mostly based on supervised learning, by applying different
tricks such as regularization techniques in local objectives of the clients as in Luo et al. (2021);
Dieuleveut et al. (2021); Mu et al. (2021); Li et al. (2020b; 2021); Durmus et al. (2021); Yu et al.
(2020b), adaptive aggregation in the server as in Wang et al. (2020), data sharing on the clients or
server as in Zhao et al. (2018); Hao et al. (2021), and data augmentation as in Shin et al. (2020) to
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reduce the divergence between the local and global model. Apart from addressing the issue of data
heterogeneity, some efforts have been devoted to addressing the issue of CIB data in the clients by
regularization techniques as in Wang et al. (2021), data level approaches such as data augmentation
in Duan et al. (2020), or data distribution estimation in Yang et al. (2021). In the literature, most of
the existing FL methods including all algorithms mentioned above are based on supervised learning,
which implies that all clients must have fully labeled data. However, labeling data is costly and
requires expert knowledge, which is challenging especially for the end users, such as the clients in
FL (Oord et al., 2018; Chen et al., 2020; He et al., 2020).

Addressing the challenges of labeling in FL, some self-supervised methods have recently been pro-
posed considering data heterogeneous clients (Lubana et al., 2022; Lu et al., 2022; Makhija et al.,
2022; Huang et al., 2022; Zhang et al., 2020b; Miao & Koyuncu, 2022; Yu et al., 2020a). In par-
ticular, contrastive learning Chen et al. (2020), which is one of the most successful self-supervised
learning algorithms, has been applied to the framework of FL. In those works, contrastive learning is
used for training the local models of the clients to ensure that clients can collaboratively learn from
the unlabeled data (Zhang et al., 2020b; Shi et al., 2021; Miao & Koyuncu, 2022; Yu et al., 2020a).

In real-world scenarios of FL, however, it is often difficult or ineffective to apply contrastive learning
directly across those multiple clients as in the existing works in the literature. First, contrastive
learning relies on a large amount of data because a contrastive loss needs a large number of similar
(positive) and dissimilar (negative) samples to achieve good performance. Furthermore, training
with a contrastive loss typically demands large models (i.e., deep and wide neural networks) with
large batch sizes, which means that high computing power and large memory footprints are needed.
This might not be possible on the side of clients in FL. This motivated our work.

In this paper, based on contrastive learning, we propose a new FL method considering the practical
setting in which the clients have unlabeled, heterogeneous, and CIB data. In particular, considering
the restrictions of computing power and memory on the side of clients, we propose to train two
separate network modules for FL, which is called the modular FL: one across the clients and the
other at the server. On the side of the clients, a sensor module, which is an autoencoder, is first
trained federally across the clients to extract the data representations from the clients’ local unlabeled
data. When this training is done, the data representations are extracted by the sensor module and
then sent to the server in which a discriminator module, which is a convolutional neural network
(CNN), is trained with a contrastive loss.

As another major contribution, we propose a new normalization method, namely Peer Normalization
(PN). The widely adopted method of Batch Normalization (BN) fails when there exist (strong)
biases of the model gradients resulting from the heterogeneous and CIB data of the clients. To
address the issue, our proposed PN leverages the rich and diverse features extracted from different
augmentations for each data sample, which can be considered as a normalization scheme customized
for the contrastive learning in FL. Our contributions are summarized as follows:

• Considering the computing and memory limitations of the clients, we propose the modular
federated contrastive learning (MFCL), which performs contrastive learning at the server
using the data representations extracted by the clients. The proposed scheme is the first self-
supervised learning framework in FL that trains two separate modules: one for extracting
data representations at the clients and the other for discriminating the data at the server.

• We propose a new normalization technique, PN, specifically for contrastive training in FL.
PN is similar to Group Normalization (GN) (Wu & He, 2018) in that channels are divided
into groups, but different from GN in that PN normalizes a group of channels of two positive
examples together, rather than one.

• Through experiments, we demonstrate the effectiveness of the proposed MFCL, especially
with PN, which achieves the state-of-the-art performance. The proposed scheme provides
robust and stable performance on (severe) heterogeneous and CIB data whilst only a small
size sensor module is trained federally across the clients, which results in much smaller
communication burden for training than the existing FL methods.
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2 PROPOSED MODULAR FEDERATED CONTRASTIVE LEARNING

We aim to develop an effective FL mechanism, namely the modular federated contrastive learning
(MFCL), to learn from the distributed clients having CIB and heterogeneous data, which are unla-
beled. To this end, we propose to use two different types of network modules: (i) sensor modules at
the clients, which are trained federally across clients to learn the representations of unlabelled data,
and (ii) a discriminator module at the server, which is trained on the representation vectors received
from the clients with a contrastive loss.

In the literature, there are few works on contrastive learning-based FL, and in those works, the
contrastive loss was optimized at each client. However, we believe it is more practical to optimize
the contrastive loss at the server. It is well-known that contrastive learning benefits more from larger
model, larger batch size, and longer training time (Chen et al., 2020). Considering the memory
and computing resource limitations of the clients, however, it might be difficult or, at times, even
impossible to perform such contrastive learning on (some) clients (Li et al., 2014). Besides, directly
optimizing the contrastive loss across clients as in the traditional FL (i.e., averaging all parameters
of clients’ local models trained with contrastive losses) may filter out the subtle differences between
the two positive examples (i.e., two augmented versions of the same data sample), which can be
important in determining the similarities of examples.

In our proposed MFCL scheme, the contrastive loss is minimized using the mini-batches of data
representation (not raw data) constructed at the server, which will be referred to as the contrastive
server representation mini-batches. In contrastive learning, each contrastive mini-batch must be
composed of two augmented versions of data samples. In FL, however, the augmented versions of
the data samples cannot be constructed directly at the server, because the raw data samples should
be kept private to the clients. To address this issue, in our proposed scheme, we introduce and train
sensor modules, which are autoencoders, as shown in Figure 1. For training of the sensor modules,
the mini-batches of the augmented versions of raw input data samples are first constructed at each
individual client, which are referred to as the contrastive client input mini-batches. The sensor
modules are federally trained across the clients by minimizing a loss function such as the cross
entropy or the mean squared error (MSE) between the contrastive inputs and their reconstructions
produced by the decoder part of the sensor module. Once the sensor modules are trained, each client
produces the representations of its own samples, called the contrastive client representation mini-
batches, which are the outputs of the trained (fixed) encoder of the client’s sensor module. Only
the representations of input data are transmitted (disclosed) to the server, not the raw data. It is
acknowledged that disclosing the representations is still not secure enough in terms of data privacy.
In practice, therefore, additional security measures should be used, such as homomorphic encryption
Zhang et al. (2020a), differential privacy Wei et al. (2020), secure multi-party FL Mugunthan et al.
(2019), etc. We note that additional security measures are also required anyway for most of the
existing FL methods (not only for our proposed method) because disclosing the model parameters
or the gradients is not secure either (Li et al., 2020a; Mothukuri et al., 2021; Bagdasaryan et al.,
2020).

Figure 1: The sensor module at each client.

In training of the sensor modules (the autoencoders) across the clients, it is essential to mitigate the
adverse effects of heterogeneous and CIB data of the clients. To address this issue, we propose a
new and effective normalization scheme, namely PN, for the autoencoders. With PN, the contrastive
client mini-batches do not have to be very large; besides, they are less biased toward the classes
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with more samples. Unlike each client’s contrastive input/representation mini-batches, the server’s
contrastive representation mini-batches can be constructed to be much larger, as needed, because a
larger amount of data (i.e., the representations of augmented data) can be collected from multiple
clients, and much more memory and computing resources are typically available at the server. At
the server, therefore, we can benefit from BN (Ioffe & Szegedy, 2015).

2.1 TRAINING THE PROPOSED MFCL

The proposed MFCL is trained in two phases as follows.

Training Phase 1: At the first stage of training, the sensor modules are collaboratively trained in
the FL system composed of a single server and M clients, where client m has a local data set, Dm.
As the sensor module, although any feature extractors can be potentially used, in this paper, we
use convolutional autoencoders, each of which is composed of encoder fθm

t
(·) and decoder gθm

t
(·),

where θmt denotes the set of parameters of the autoencoder at clientm at FL round t. For normalizing
the layers’ outputs of the autoencoder, one could simply use the widely adopted BN if the clients’
data were homogeneous and CB; unfortunately, however, this is not the case in many practical FL
scenarios. To mitigate the effects of heterogeneous and CIB data, in the next subsection, we will
design a new normalization technique, PN, considering the special structure of the contrastive mini-
batch at the clients. The PN layer is inserted right after each convolutional layer (Conv2D) and
each transposed convolution layer (Conv2DTranspose), except for the last layer of the decoder. The
architecture of the autoencoder is described in Table 5 in Appendix C.3.

To train the autoencoder, client m first creates two different augmented versions x̃mi,j , j = 1, 2 of
each data sample xmi ∈ Dm, where xmi denotes the ith data sample for client m. Combining the
augmented versions of K data samples, client m constructs contrastive client input mini-batches
of size 2K denoted by Bm =

(
x̃m1,1, . . . , x̃

m
K,1, x̃

m
1,2, . . . , x̃

m
K,2

)
. At the beginning of the first FL

round, the server sends the model and its initial parameters to a set of selected clients. The clients
then update the model parameters on their own data sets. Specifically, at the end of FL round t− 1,
the selected clients send the updated model parameters, θmt−1,m ∈ πt−1, to the server, and the server
updates the global parameters by aggregating parameters as follows:

θfed
t−1 =

1∑
m′∈πt−1

|Dm′ |
∑

m∈πt−1

|Dm|θmt−1. (1)

In FL round t, the server broadcasts the global parameters, θfed
t−1, to a set πt of the clients. Then,

each clientm ∈ πt locally updates the received parameters θfed
t−1 to θmt with the following objective:

min
θm
t

Ex∼Dm

[
Lθfed

t−1

(
A (x) , gθm

t

(
fθm

t
(A (x))

))]
, (2)

where A (·) denotes data augmentation and Lθfed
t−1

(·, ·) is the loss function to optimize θmt when
the initial parameters are given by θfed

t−1. For implementation, FedAvg, proposed by McMahan
et al. (2016), can be used to compute θmt by running stochastic gradient descent (SGD) on Dm for
multiple iterations using the binary cross entropy or MSE loss, with θfed

t−1 as the initial parameters.

Training Phase 2: The second stage begins when federated training of the sensor modules is fin-
ished, say at FL round T . Supplying two different augmented versions x̃mi,j , j = 1, 2, of each data
sample xmi ∈ Dm to the encoder of the trained autoencoder, client m produces representation vec-
tors, zmi,j = fθfed

T
(x̃mi,j), j = 1, 2, called the contrastive client representation mini-batches. Then the

contrastive client representation mini-batches are transmitted to the server. Combining the repre-
sentation mini-batches received from at least Q ≤ M clients, the server constructs the contrastive
server representation mini-batches, Bs, such that each mini-batch Bs is large enough for contrastive
learning. For Bs at the server, we can define the concept of CB or CIB representations (see Figure 5
in Appendix C.2). In general, the server representations can be (much) more CB, than the raw data
at each client. At the server, the discriminator module, Mχs , parameterized by χs, is trained by min-
imizing the contrastive loss of the contrastive server mini-batches, Bs. Figure 2 shows a schematic
view of these two training phases in our proposed method, MFCL.
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Figure 2: The proposed MFCL framework. (a) Phase 1: training the sensor modules federally across
the clients. (b) Phase 2: training the discriminator module at the server.

Figure 3: Different normalization techniques for the sensor module (the autoencoder) of each client.
The x-axis, denoted by 2K, represents the elements of each contrastive client mini-batch, composed
of two augmented views of the same image. The y-axis, denoted by C, represents the channels and
the z-axis, denoted by (X,Y ), represents the spatial axes of images’ pixels. The misaligned blocks
with black tops are simultaneously normalized together with the same mean and variance.

2.2 NORMALIZATION OF THE SENSOR MODULES

In training neural networks, the distribution of each layer’s output changes whenever the parameters
of the layer change. Thus, properly normalizing the input to each layer of the network is essential
in training. In the following, we first briefly discuss no-normalization (NoN), BN, and GN. We then
explain the proposed PN in detail. Figure 3 shows the differences among BN, GN, and PN.

No-Normalization (NoN): Without any normalization, CIB data in the mini-batch can increase the
variance of the mini-batch gradients. Therefore, the output distribution of the layers may diverge,
which leads to lower accuracy (Wu & He, 2018).

Batch Normalization (BN) (Ioffe & Szegedy, 2015): The strong point of BN is that each channel is
normalized over the entire mini-batch. BN works well in contrastive learning when each contrastive
client mini-batch is large and CB (this is the case for the contrastive mini-batch at the server).
However, when the mini-batch size becomes smaller and/or the data of each mini-batch is CIB, the
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batch statistics estimated by BN are biased and inaccurate. For this reason, using BN for training the
sensor modules on the heterogeneous and CIB data in FL leads to biased models, which are unable
to accurately learn the features of those classes having fewer data samples.

Group Normalization (GN) (Wu & He, 2018): The dependence of the batch-normalized outputs
of each layer on the entire mini-batch makes BN powerful; however, it is also the source of BN
drawbacks. GN, proposed for distributed training, normalizes a group of channels of one batch
element together without relying on the mini-batch size. Specifically, GN randomly chooses a group
of Λ ≤ C channels that do not necessarily have the same scale and then those Λ channels are
normalized together. Recently, GN has been applied to FL to address the issue of heterogeneous
data across the clients (Zhang et al., 2021; Yu et al., 2021; 2020b). In FL, when the mini-batch
size is small or CIB, GN generally works better than BN. The reason is that in FL, the model
parameters (e.g., the filters’ parameters in convolutional neural networks) are averaged over multiple
clients. Averaging can somehow make the scales of filters smoother. Applying smoother filters on
channels leads to smoother features and normalizing a sample over a group of its channels becomes
meaningful. One issue with GN is the amount of information GN uses to normalize one sample over
a group of Λ channels. For contrastive client mini-batches, our experiments show that a group of
Λ channels do not provide accurate estimations of the mean and variance of each sample. In other
words, GN compromises the precision in estimating the mean and variance of each sample over a
group of its features in order to make the estimation independent of mini-batch size.

Peer Normalization (PN): For training phase 1 using the contrastive client mini-batches, we pro-
pose PN to address the lack of enough information in GN for calculating the mean and variance of
a sample over a group of its features. Benefiting from the advantages of GN in addressing the issue
of the clients having heterogeneous and CIB data, PN provides more accurate mean and variance
for each sample than GN. PN normalizes the positive example pairs together, making the positive
examples more similar and differentiating them from negative examples.

For mathematical formulation, we let wc,l
i,j , i = 1, . . . ,K; j = 1, 2; c = 1, . . . , Cl denote the at-

tributes of channel c at layer l for the jth augmented version, x̃mi,j , j = 1, 2, of the ith input data
sample, x̃mi , in the client’s mini-batch. We first determine the mean µΦl,l

i and variance (σΦl,l
i )2 of

Λ channels corresponding to augmented versions of each input in the lth layer:

µΦl,l
i =

1

2Λ

2∑
j=1

∑
c∈Φl

wc,l
i,j and (σΦl,l

i )2 =
1

2Λ

2∑
j=1

∑
c∈Φl

‖wc,l
i,j − µ

Φl,l
i ‖2 (3)

where ‖ · ‖ denotes the l2 norm and Φl ⊆ {1, . . . , Cl} denotes the set composed of Λ channels at
layer l. Then, we perform the normalization as follows:

w̄c,l
i,j = ε1

wc,l
i,j − µ

Φl,l
i√

(σΦl,l
i )2

+ ε2, for c ∈ Φl, (4)

where w̄c,l
i,j is the normalized version of wc,l

i,j for c ∈ Φl. Also, ε1 and ε2 are trainable scaling factor
and shift, respectively. Note that PN ensures that the attributes of two augmented versions of each
data sample are normalized independently of the other samples in the contrastive mini-batches at the
clients. This way, the statistics used for normalizing the layers’ outputs of the autoencoders (i) are
independent of mini-batch size (this means that each mini-batch is not necessarily large, which is
very advantageous for clients) and (ii) are less biased toward the classes having more samples (this
mitigates the adverse effects of heterogeneous and CIB data).

In training phase 2, at the server, constructing the contrastive server representation mini-batches, we
train the discriminative module using BN with a contrastive loss. We use BN in the server because
the contrastive server mini-batches are better class-balanced and large enough for BN to work well.

3 EXPERIMENTS

Setup: We define Ω as the universal data set, which is the union of local data sets of all clients,
Ω =

⋃
m=1,...,M Dm. Assuming that the universal data set Ω consists of n classes, we use V =

{1, . . . , n} to denote the set of indices of those n classes. Let Vm =
{
vm1 , . . . , v

m
nm

}
⊆ V denote
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Table 1: The universal data set Ω is CIFAR-10. The number M of clients is 10. To cover various
degrees of data heterogeneity and class imbalance, ten different scenarios of clients’ data sets are
considered. For each scenario of each client, the set of indices of classes that have non-zero data
samples is shown, where {a : b} = {a, a + 1, a + 2, . . . , b} if a < b and {a : b} = {a, a +
1, . . . , 10, 1, 2, . . . , b} if a > b. For each scenario for each client, the number of samples of all
classes having non-zero samples are the same. Scenario 1 is the extreme case of heterogeneous and
CIB data distribution. Scenario 10 is the case of homogeneous and CB data distribution.

Scenario (Sc) V1 , Client 1 V2 , Client 2 · · · V9 , Client 9 V10 , Client 10 βCIB βhetero

1 {1} {2} · · · {9} {10} 3.32 17.94
2 {1:2} {3:4} · · · {8:9} {10:1} 2.32 15.14
3 {1:3} {4:6} · · · {5:7} {8:10} 1.73 12.84
4 {1:4} {5:8} · · · {4:7} {8:1} 1.32 10.82
5 {1:5} {6:10} · · · {1:5} {6:10} 1.00 8.81
6 {1:6} {7:2} · · · {9:4} {5:10} 0.74 6.97
7 {1:7} {8:4} · · · {7:3} {4:10} 0.51 5.14
8 {1:8} {9:6} · · · {5:2} {3:10} 0.32 3.38
9 {1:9} {10:8} · · · {3:1} {2:10} 0.15 1.67

10 {1:10} {1:10} · · · {1:10} {1:10} 0.00 0.00

the set of indices of the classes for client m’s data set Dm, where nm is the number of classes
with non-zero samples for client m. We perform our experiments for the two widely adopted data
sets, CIFAR-10 and CIFAR-100, as Ω (Krizhevsky, 2009). The sensor module is a convolutional
autoencoder that is trained federally across clients, of which structure is presented in Table 5 in
Appendix C.3. The discriminator module at the server is ResNet-18, adopted to be trained on the
received representation vectors with a contrastive loss. We implemented MFCL with TensorFlow
2.9 following the standard structure of FL in McMahan et al. (2017) for training the sensor modules
federally, and following the method in Chen et al. (2020) for training the discriminator module at the
server. We considered a wide range of heterogeneous and CIB data scenarios for our experiments,
which are listed in Table 1 for CIFAR-10 (and in Table 4 in Appendix C.1 for CIFAR-100).

We use Kullback-Leibler (KL) divergence to quantify how much heterogeneity exists in the data
sets over the clients and how much CIB the data distribution of each client is. Let N (v) > 0
denote the number of samples in class v ∈ V. Also, Pm = (pm(1), . . . , pm(n)) denotes the vector
presenting the distribution of the mth client’s data set Dm, where pm(v) = N(v)

|Dm| if v ∈ Vm and

pm(v) = 0 if v /∈ Vm. We propose to use βCIB = 1
M

∑M
m=1 β

m to denote the average degree
of class imbalance of each client’s data set, where βm = KL(Pm,U) = log2(n) − H(Pm). In
this equation, U denotes a uniform distribution of length n, given by U = ( 1

n , . . . ,
1
n ). We also use

βhetero = 1
M(M−1)

∑M
m=1

∑
z∈[1:M ],z 6=m β

m,z to denote the average degree of data heterogeneity
across the clients. In this equation, βm,z = KL (Pm, P z) = H (Pm, P z) −H (Pm) denotes how
much the data distribution of client m differs from that of client z. More details of βCIB and βhetero

are given in Appendix B.

Performance metric: We evaluated the classification accuracy of the proposed MFCL based on
the evaluation method widely adopted for self-supervised learning (Chen et al., 2020). Specifically,
we used non-linear projection layers on top of the discriminator module. The structure of the non-
linear projection layers are presented in Table 6 in Appendix C.3. Also, we used one linear Dense
layer on top of the projection layers for linear evaluation. In training phase 2, the discriminator
module, the projection layers, and the linear (classifier) layer can be jointly trained as long as the
gradients are not backpropagated from the linear (classifier) layers to the discriminator module and
the projection layers. For downstream tasks, the linear (classifier) layer is discarded. Alternatively,
in training phase 2, it is possible to first train the discriminator module and the projection layers with
representation vectors in the unsupervised manner, and then, the Dense layer connected on top of
the frozen (trained) discriminator module/projection layers is trained with labeled data.

Baselines: For performance comparison, we consider the state-of-the-art works in self-supervised
FL and supervised FL that were proposed to address data heterogeneity. In the field of self-
supervised FL, we combined SwAV, in Caron et al. (2020), and SimCLR, in Chen et al. (2020),
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Table 2: Accuracy comparison of the proposed MFCL (with BN, GN, and PN in the sensor mod-
ule) and the baseline methods (in self-supervised FL and supervised FL) on CIFAR-10 for the 10
scenarios defined in Table 1 with M = 10 clients. The best performance is highlighted in boldface.
For self-supervised methods, the top-1 accuracy with linear evaluation is reported. In all simulation
scenarios for MFCL, BN is used at the server.

supervised FL self-supervised FL

Sc
FedAvg

McMahan et al. (2016)
FedProx

Li et al. (2020b)
MOON

Li et al. (2021)
FedSwAV

Luo et al. (2021)
FedSimCLR

Luo et al. (2021)
Orchestra

Lubana et al. (2022)
MFCL(BN)

proposed
MFCL(GN)

proposed
MFCL(PN)

proposed

1 0.57(±0.05) 0.57(±0.03) 0.58(±0.03) 0.75(±0.05) 0.71(±0.02) 0.73(±0.02) 0.10(±0.03) 0.79(±0.02) 0.83(±0.02)

2 0.64(±0.04) 0.64(±0.02) 0.64(±0.03) 0.75(±0.03) 0.73(±0.03) 0.78(±0.03) 0.17(±0.05) 0.79(±0.03) 0.84(±0.02)

3 0.67(±0.04) 0.68(±0.02) 0.69(±0.04) 0.77(±0.04) 0.74(±0.01) 0.78(±0.01) 0.29(±0.11) 0.79(±0.01) 0.84(±0.02)

4 0.73(±0.02) 0.73(±0.03) 0.74(±0.01) 0.78(±0.02) 0.75(±0.04) 0.79(±0.04) 0.39(±0.02) 0.80(±0.01) 0.84(±0.01)

5 0.77(±0.03) 0.78(±0.04) 0.78(±0.01) 0.79(±0.04) 0.75(±0.03) 0.79(±0.02) 0.47(±0.06) 0.80(±0.01) 0.84(±0.01)

6 0.82(±0.04) 0.82(±0.03) 0.84(±0.04) 0.79(±0.01) 0.76(±0.04) 0.80(±0.04) 0.58(±0.05) 0.81(±0.03) 0.84(±0.02)

7 0.86(±0.03) 0.88(±0.04) 0.88(±0.01) 0.80(±0.03) 0.77(±0.02) 0.80(±0.01) 0.67(±0.08) 0.81(±0.03) 0.84(±0.01)

8 0.90(±0.04) 0.91(±0.03) 0.91(±0.01) 0.81(±0.01) 0.79(±0.04) 0.81(±0.03) 0.77(±0.02) 0.81(±0.01) 0.85(±0.03)

9 0.92(±0.04) 0.92(±0.04) 0.93(±0.04) 0.82(±0.04) 0.81(±0.03) 0.82(±0.04) 0.85(±0.03) 0.82(±0.03) 0.85(±0.03)

10 0.92(±0.02) 0.93(±0.02) 0.94(±0.02) 0.83(±0.02) 0.83(±0.03) 0.82(±0.01) 0.88(±0.02) 0.82(±0.01) 0.85(±0.01)

Table 3: Accuracy comparison on CIFAR-100 for one hundred clients (M = 100) in 8 different
scenarios given in Table 4 in Appendix C.1. Other settings are the same as in Table 2.

supervised FL self-supervised FL

Sc
FedAvg

McMahan et al. (2016)
FedProx

Li et al. (2020b)
MOON

Li et al. (2021)
FedSwAV

Luo et al. (2021)
FedSimCLR

Luo et al. (2021)
Orchestra

Lubana et al. (2022)
MFCL(BN)

proposed
MFCL(GN)

proposed
MFCL(PN)

proposed

11 0.18(±0.02) 0.18(±0.02) 0.20(±0.01) 0.31(±0.03) 0.31(±0.03) 0.37(±0.02) 0.02(±0.02) 0.40(±0.02) 0.43(±0.02)

12 0.20(±0.03) 0.21(±0.01) 0.22(±0.03) 0.34(±0.02) 0.34(±0.03) 0.40(±0.03) 0.04(±0.04) 0.43(±0.03) 0.45(±0.02)

13 0.21(±0.04) 0.22(±0.02) 0.23(±0.01) 0.36(±0.05) 0.35(±0.02) 0.40(±0.02) 0.07(±0.05) 0.44(±0.01) 0.45(±0.01)

20 0.27(±0.03) 0.27(±0.01) 0.28(±0.02) 0.37(±0.02) 0.36(±0.02) 0.40(±0.01) 0.14(±0.01) 0.44(±0.01) 0.45(±0.01)

30 0.31(±0.02) 0.31(±0.01) 0.33(±0.03) 0.37(±0.03) 0.38(±0.01) 0.41(±0.01) 0.18(±0.02) 0.45(±0.02) 0.46(±0.01)

70 0.47(±0.04) 0.47(±0.01) 0.48(±0.02) 0.40(±0.02) 0.40(±0.02) 0.42(±0.01) 0.45(±0.01) 0.45(±0.01) 0.47(±0.01)

109 0.57(±0.01) 0.57(±0.01) 0.57(±0.03) 0.44(±0.01) 0.46(±0.01) 0.49(±0.01) 0.50(±0.02) 0.48(±0.02) 0.49(±0.02)

110 0.57(±0.02) 0.57(±0.01) 0.58(±0.04) 0.45(±0.02) 0.46(±0.01) 0.49(±0.01) 0.51(±0.02) 0.49(±0.01) 0.49(±0.02)

with FedAvg, which are respectively denoted as FedSwAV and FedSimCLR. We then applied the
regularization techniques of Luo et al. (2021) to FedSwAV and FedSimCLR. FedAvg in McMahan
et al. (2016), FedProx in Li et al. (2020b), and MOON in Li et al. (2021) are fully supervised FL.

Results: Table 2 shows the experimental results of our method and baselines on CIFAR-10 with ten
clients (M = 10) under different heterogeneous and CIB settings (Sc1 to Sc9) and homogeneous
and CB setting (Sc10). In each scenario, the top-1 accuracy on a uniform test set is reported. Each
scenario is run 3 times, and the mean and standard deviations are reported. Table 3 shows the
experimental results of our method and baselines on CIFAR-100 with 100 clients (M = 100). The
simulation scenarios for CIFAR-100 are presented in Table 4 in Appendix C.1.

From the numerical results, we see that, in the extreme case of heterogeneous and CIB data sets (e.g.,
Sc1 and Sc2), the proposed MFCL scheme significantly outperforms the other methods, whether
based on supervised FL or unsupervised FL. Furthermore, in those scenarios, the proposed MFCL
scheme with PN outperforms that with GN or BN. The reasons why the proposed MFCL works well
in heterogeneous and CIB scenarios in the FL setting are as follows. First, MFCL benefits from
self-supervised learning technique, which has been mathematically and experimentally proved to be
more robust to CIB data (Liu et al., 2021). In supervised learning, the expected values of the squares
of the lengths of the gradient vectors corresponding to different classes are approximately related to
the square of the number of samples in those classes (Anand et al., 1993). This means that when the
data set is CIB, the gradients of the classes with more samples are larger than those of the classes
with fewer samples, which leads to the gradients biased toward the class with more samples. In
contrast to this, contrastive loss does not rely on the labels to calculate the loss values, and thus, the
gradients are less biased and the model can better learn about those classes having fewer samples.
Therefore, with self-supervised learning techniques, we can mitigate the bias of labels.
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Second, MFCL benefits from modular training. Although we can suppress the bias of labels, we
still have the bias of clusters. In training with a contrastive loss, the model learns to put the positive
examples in the same clusters and gradually increase the distance between the positive and nega-
tive examples. However, when the mini-batch is CIB, there is not enough diversity of samples for
constructing clusters correctly. Therefore, we end up having larger clusters for classes with more
samples and having smaller clusters for classes with fewer samples. Again, biased clusters lead to
biased gradients. With modular training, we do not have to backpropagate the gradients from the
last layers of discriminator at the server (i.e., ResNet-18), which are responsible for determining the
clusters, to the layers extracting the representations from the input data in the sensor module at the
clients (i.e., the autoencoders). This helps the sensor modules learn less biased representations from
the data. Therefore, with modular training we can mitigate the bias of clusters.

Third, MFCL benefits from PN. In severe heterogeneous and CIB scenarios, in addition to the bias
of labels and bias of clusters, we face the bias of features. The bias of labels and clusters can be
mitigated by new designs of the network (e.g., our proposed modular training instead of the end-to-
end (E2E) training, as discussed in Appendix A). However, the bias of features is the natural result of
having clients with heterogeneous and CIB data. One effective way to moderate the bias of features
is to use properly designed normalization techniques. PN adopted in the sensor modules moderates
the effect of bias of features when data is severely heterogeneous and CIB. The advantage of PN
can also be demonstrated by t-SNE visualizing the learned clusters. For more details, see Appendix
D.1 and Figure 6. The benefit of PN also extends to other semi-supervised FL setting. For example,
when PN is applied to FedSimCLR Luo et al. (2021), the performance is consistently improved. For
more details, see Appendix D.3 and Table 7.

The proposed MFCL scheme works (very) well when data sets are severely heterogeneous and CIB.
In (closely) homogeneous and CB scenarios (e.g., Sc7 to Sc10), however, supervised FL methods
outperform MFCL. The reasons can be as follows. First, when the clients have homogeneous and CB
data, the gradients are not biased. In this case, the labels are homogenous, and there is nothing like
the bias of labels. In these scenarios, supervised learning works better than self-supervised learning,
including the centralized setting (Wu & He, 2018). Second, when the clients have homogeneous and
CB data, the clusters and the gradients are not biased. In this case, backpropagating the unbiased
gradients from the last layers of the discriminator to the first layers of the sensor module as in the
E2E training in the FL setting helps the network to learn the data more accurately. Third, sample-
based normalization techniques (e.g., GN, which normalizes Λ channels of one example together,
or PN, which normalizes Λ channels of two positive examples together) work better than BN when
the mini-batch is CIB or small. However, when the mini-batch is CB and large enough, normalizing
the data over the entire mini-batch (i.e., BN) works better. The reason is that the batch statistics
estimated from a large and CB mini-batch is more accurate, yielding smaller variations of statistics
from one mini-batch to another, and thus, it leads to better generalization performance.

Another issue that needs to be taken into account for practical FL implementation is that not all the
clients who participated in training phase 1 necessarily participate in training phase 2. This issue and
the performance results are presented in Appendix D.2 and Figure 7, which show that our proposed
MFCL scheme is robustly working even in that situation. Last but not least, it is worth checking the
amount of communication burden between the clients and the server, which is the major bottleneck
for the actual implementation of FL. Thanks to the modular structure, our proposed MFCL involves
a much lower communication burden, which is discussed in detail in Appendix D.4 and Table 8.

4 CONCLUSIONS

We have provided a new perspective for FL by changing the training framework from E2E to mod-
ular in order to address the statistical challenges of FL when the clients have unlabeled, heteroge-
neous, and CIB data. In particular, we have proposed a new normalization scheme, PN, to facilitate
contrastive learning in the FL setting. Our extensive simulations show that the proposed MFCL with
PN has better and stable accuracy in various scenarios of heterogeneous and CIB data. The proposed
MFCL also works well with GN, which means that modular training does not have to be limited to
contrastive learning and can also be used with the non-contrastive methods in the server. We release
our codes to encourage developments in designing new modular architectures for FL.
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Appendix
A RELATED WORKS

E2E Training vs Modular Training: End-to-end (E2E) training means training a differentiable
learning using a single overall loss (objective) function. Although the E2E training performs well
on many tasks, in some cases (e.g., ill-conditioned problems), it may converge slowly, converge
into possibly local optima, and face vanishing gradients (Shalev-Shwartz et al., 2017). By contrast,
in modular training, different tasks are learned by separate network modules with different loss
functions, and the gradients of each network module are not back propagated to the other modules.
In our proposed scheme, we adopt the approach of modular training: the sensor module is used
to federally extract the representations of clients’ data, and the discriminator module at the server
performs the classification task.

Supervised FL with clients’ heterogeneous data sets: There are plenty of works aiming to address
the issue of heterogeneous data of the clients in the supervised learning-based FL, which can be
classified as follows. The first approach is leveraging a shared public or synthesized data set in the
clients or server. These methods try to find a solution for the local models that under-represent the
patterns of minor classes having fewer samples at the clients (Zhao et al., 2018); (Hao et al., 2021).
The second approach is based on regularization. FedProx, studied in Li et al. (2020b), regularizes the
Euclidean distance between the local and global models. MOON, proposed by Li et al. (2021), uses
contrastive loss to maximize the agreement of the representations learned by the local and global
models. SCAFFOLD, introduced by Karimireddy et al. (2020), reduces the bias in the gradients by
introducing some control variates. FedDyn, proposed by Acar et al. (2021), dynamically changes
the local objectives at each FL round to ensure that the local optimum is consistent with the global
optimum. The third approach is based on aggregation on the server. The authors in Hsu et al.
(2019), leveraging the momentum update on the server, tried to alleviate the oscillations resulting
from averaging the biased gradients. Wang et al. (2020) proposed to match the local updates while
aggregating to reduce the effect of heterogeneous data.

Supervised FL with clients’ CIB data: In the FL setting, the issue of CIB data for each client has
been studied only in very limited works. Astraea, proposed by Duan et al. (2020), tries to alleviate
the CIB issue by data augmentation and multi-client rescheduling based on the KL divergence of the
clients’ data distribution. Recently, Wang et al. (2021) proposed a regularization-based method to
monitor the composition of data according to the current global model in each FL round to mitigate
the impact of CIB data.

Contrastive learning and self-supervised FL: The contrastive loss, used in Oord et al. (2018), is
defined between two augmented views (i, j) of the same data sample in a mini-batch of the size of
2K, as follows:

L = − 1

2K

∑
i,j∈B

log
exp

(
sim(hi,hj)

τ

)
∑2K
k=1 1[k 6=i]exp

(
sim(hi,hk)

τ

) , (5)

wherehi andhj are hidden representations of two positive examples1, 1[k 6=i] is an indicator function
that is equal to 1 if k 6= i, sim (hi,hj) is the cosine similarity between two vectors of hidden
representations, τ is a temperature scalar, and B is a randomly sampled mini-batch consisting of
augmented pairs of images. Only few works have studied contrastive learning for unsupervised
FL (Zhang et al., 2020b); (Miao & Koyuncu, 2022); (Shi et al., 2021); (Yu et al., 2020a). For
representation learning without a contrastive loss, Lu et al. (2022) proposed to use prior information
about the clients’ data set, instead of labels, to apply supervised learning methods to unlabeled data.
Recently, Lubana et al. (2022) proposed Orchestra as an unsupervised FL scheme to partition the
client’s data into discriminable clusters. The topic of unsupervised FL or self-supervised FL has
been very underexplored in the literature.

1By means of examples, we mean augmented data samples. Positive examples are two differently aug-
mented versions of the same image, and negative examples are the augmented versions of other images.
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B METRICS QUANTIFYING DATA HETEROGENEITY AND CLASS-IMBALANCE

For two probability distributions, A and B, defined on the probability space, X , the KL divergence
from B to A is defined as KL (A,B) = −

∑
x∈X A(x) log2

(
B(x)
A(x)

)
(MacKay et al., 2003). The

KL divergence is defined only if for all x, B(x) = 0 implies A(x) = 0. When A(x) = 0, since
limx→0+ x log(x) = 0, the contribution of the term corresponding to A(x) would be zero. The KL
divergence, βm, between the distribution, Pm, of the mth client’s data and the uniform distribution,
U, is given by:

βm = KL (Pm,U) =
∑

v∈{1,...,n}

pm(v) log2

(
pm(v)

U(v)

)
= log2(n) +

∑
v∈{1,...,n}

pm(v) log2 (pm(v))

= log2(n) +

nm∑
e=1

pm(vme ) log2 (pm(vme )) = log2(n)−H (Pm)

(6)

where H (Pm) is the entropy of Pm. In order to numerically compute the KL divergence in our
setting, when some classes do not have any samples, we set pm(v) = ς for v /∈ Vm, where ς is a
small value, such that N × ς � 1, where N is the total number of samples in the universal data set,
V. This means that there is not even one sample in the particular class v. In our simulation, we set,
ς = 10−6. The average of βm is βCIB. The smaller βCIB means the data set in each client is closer
to the CB data.

The KL divergence between the mth client’s distribution, Pm, and the zth client’s distribution, P z ,
z 6= m, is defined as follows:

βm,z = KL (Pm, P z) =
∑

v∈{1,...,n}

pm(v) log2

(
pm(v)

pz(v)

)
=

∑
v∈{1,...,n}

pm(v) log2 (pm(v))−
∑

v∈{1,...,n}

pm(v) log2 (pz(v))

= H (Pm, P z)−H (Pm)

(7)

where H (Pm, P z) is the cross entropy between Pm and P z . The average of βm,z over m and z is
βhetero. The smaller βhetero means the clients are more close to be homogeneous.

C EXPERIMENTAL DETAILS

In this section, we illustrate the details of the model architectures and some additional simulation
scenarios.

C.1 SIMULATION SCENARIOS FOR CIFAR-100

The simulation scenarios for CIFAR-100 with 100 clients are presented in Table 4.

C.2 HETEROGENEOUS AND CIB DATA

In this paper, we use the terminologies of homogeneous/heterogeneous and CB/CIB data in the
following sense. The concept of CB or CIB data is defined for a single (or each individual) data set
at each client (and possibly at the server as well): we say a data set is CB when the data set contains
the same number of samples over all possible classes of the universal data set Ω that is defined as the
union of the data sets of all clients. Meanwhile, the concept of homogeneous or heterogeneous data
is defined over multiple data sets in multiple clients: we say the clients’ data is heterogeneous when
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Table 4: The universal data set Ω is CIFAR-100. The number M of clients is 100. In principle, 100
different scenarios can be defined based on our notation; however, for simplicity, only some limited
number of scenarios are shown in this table. For each scenario of each client, the set of indices of
classes that have non-zero data samples is shown, where {a : b} = {a, a+ 1, a+ 2, . . . , b} if a < b
and {a : b} = {a, a+1, . . . , 100, 1, 2, . . . , b} if a > b. For each scenario for each client, the number
of samples of all classes having non-zero samples are the same. Scenario 11 is the extreme case for
heterogeneous clients with CIB data set for each client. Scenario 110 is the case for homogeneous
clients with CB data set for each client.

Scenario (Sc) V1 , Client 1 V2 , Client 2 · · · V99 , Client 99 V100 , Client 100 βCIB βhetero

11 {1} {2} · · · {9} {100} 6.64 19.73
12 {1:2} {3:4} · · · {8:9} {100:1} 5.63 18.54
13 {1:3} {4:6} · · · {5:7} {8:100} 5.06 17.79
...

...
... · · ·

...
...

...
...

20 {1:10} {11:20} · · · {81:90} {91:100} 3.32 14.99
...

...
... · · ·

...
...

...
...

30 {1:20} {21:40} · · · {61:80} {81:100} 2.32 13.81
...

...
... · · ·

...
...

...
...

70 {1:60} {61:20} · · · {81:40} {41:100} 0.74 5.60
...

...
... · · ·

...
...

...
...

109 {1:99} {100:98} · · · {3:1} {2:100} 0.00 0.00
110 {1:100} {1:100} · · · {1:100} {1:100} 0.00 0.00
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Figure 4: Different scenarios for the raw data in the clients. (a) The clients have homogeneous and
CB data, (b) the clients have homogeneous and CIB data, (c) the clients have heterogeneous and CB
data, and (d) the clients have heterogeneous and CIB data.

the data is not identically distributed across all clients. Figure 4 shows the four different scenarios
of data distribution of clients in FL having homogeneous/heterogeneous and CB/CIB data.

In our proposed MFCL scheme, the data representations sent from the clients are collected at the
server, and the contrastive server mini-batches are constructed with the received representation vec-
tors at the server. Therefore, we need to define the concept of CB or CIB representations at the
server. For clarification, we provide Figure 5, which consists of data distribution in the clients and
the distribution of the representations at the server. In Figure 5 (a), the clients have homogeneous and
CB data in each client; In Figure 5 (b), the clients have homogeneous and CIB data in each client; In
Figures 5 (c) and 5 (d), the clients have heterogeneous and CIB data in each client; In Figure 5 (e),

15



Under review as a conference paper at ICLR 2023

1 2 3
Class

0

20

40

Sa
m

pl
es

 p
er

 C
la

ss Client1

1 2 3
Class

0

20

40 Client2

1 2 3
Class

0

20

40 Client3

1 2 3
Class

0

20

40 Server

(a)

1 2 3
Class

0

20

40

Sa
m

pl
es

 p
er

 C
la

ss Client1

1 2 3
Class

0

20

40 Client2

1 2 3
Class

0

20

40 Client3

1 2 3
Class

0

20

40 Server

(b)

1 2 3
Class

0

20

40

Sa
m

pl
es

 p
er

 C
la

ss Client1

1 2 3
Class

0

20

40 Client2

1 2 3
Class

0

20

40 Client3

1 2 3
Class

0

20

40 Server

(c)

1 2 3
Class

0

20

40

Sa
m

pl
es

 p
er

 C
la

ss Client1

1 2 3
Class

0

20

40 Client2

1 2 3
Class

0

20

40 Client3

1 2 3
Class

0

20

40 Server

(d)

(e)

Figure 5: Different scenarios for the (raw) data in the clients and the representations in the server.
(a) The clients have homogeneous and CB data, and the representations are CB in the server, (b) the
clients have homogeneous and CIB data, and the representations are CIB in the server, (c) the clients
have heterogeneous and CIB data, and the representations are CB in the server, (d) the clients have
heterogeneous and CIB data, and the representations are CIB in the server, and (e) the clients have
heterogeneous and CB data, and the representations are CB in the server.

the clients have heterogeneous and CB data in each client. When the clients send their representa-
tion vectors of their own local raw data to the server, the server constructs mini-batches collecting
the received representation vectors from the clients. The server representation mini-batches (more
precisely, the contrastive server representation mini-batches) can be CB or CIB. If the data set is CB
in all clients, the server mini-batch is always CB, even if some clients are not successful in sending
their representation vectors (Figures 5 (a) and 5 (e)). Otherwise, the server mini-batch can be CB or
CIB: the server mini-batch is CIB in Figures 5 (b) and 5 (d), whereas it is CB in Figure 5 (c).

C.3 MODEL ARCHITECTURE

For our experiments, we use a convolutional autoencoder as the sensor module, which is trained
federally, with binary cross entropy loss, across M = 10 clients for CIFAR-10, where the training
mini-batch size is 64, the learning rate is 0.001, and the optimizer is ADAM. The sensor module
details are listed in Table 5.

The classification accuracy of the proposed MFCL is evaluated based on the evaluation method
widely adopted for self-supervised learning (Chen et al., 2020). Specifically, we use non-linear
projection layers on top of the discriminator module and the structure of the nonlinear projection
layers are presented in Table 6. Also, one linear Dense layer is used on top of the projection layers
for linear evaluation.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 VISUALIZATION OF LEARNED CLUSTERS BY MFCL

In this appendix, we visualize the features of the learned clusters to better understand the advantage
of the proposed normalization method, PN. We consider the case of data heterogeneous clients with
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Table 5: The architecture of the sensor module, which is a convolutional autoencoder. For convo-
lutional layer (Conv2D) and transposed convolution layer (Conv2DTranspose), we show the list of
the parameters in the sequence of input and output dimensions, kernel size, stride, and padding. For
max pooling layer (MaxPool2D), we show the list the kernel and stride.

Layer Details
1 Conv2D(3, 64, 3, 1, 1)
2 PN, ReLU, MaxPool2D(2, 2)
3 Conv2D(64, 64, 3, 1, 1)
4 PN, ReLU
5 Conv2DTranspose(64, 64, 3, 1, 1)
6 PN, ReLU
7 Conv2DTranspose(64, 3, 3, 1, 1)
8 PN, ReLU
9 Conv2D(3, 3, 3, 1, 1)

Table 6: The projection layer architecture.

Layer Details
1 Dense
2 BN, ReLU
3 Dense
4 BN, ReLU
5 Dense
6 BN

CIB data, Sc2, in which each client has only 2 classes when M = 10 on CIFAR-10. We aim to
check the quality of the learned clusters with MFCL, after the projection layers at the server, in the
sense of number of distinguishable clusters, when BN, GN, or PN are used at the sensor modules of
the clients.

In Sc2, each client only has two classes as defined in Table 1. Figure 6 (a) shows the t-SNE visu-
alization of raw input data at a single client, while Figures 6 (b), 6 (c), and 6 (d) show the t-SNE
visualizations of the clusters learned from the data representations (i.e., the combined representation
vectors from all clients) at the server of our proposed MFCL method. Figure 6 (b) shows the learned
clusters by MFCL when BN is used in the sensor module at the clients. The proposed MFCL with
BN only learns 3 distinguishable clusters for truck, ship, and frog. There are also wrong predictions
for some of the samples belonging to the ship’s cluster. In other words, MFCL with BN cannot
accurately separate the samples of airplanes from those of ships. Also, there is a small cluster of
automobiles, and the rest of the samples of automobiles are very close to the cluster of trucks. Fig-
ure 6 (c) shows the learned clusters by MFCL when GN is used in the sensor module at the clients.
The proposed MFCL with GN is able to learn 5 distinguishable clusters for truck, ship, frog, au-
tomobile, and airplane. Also, the clusters for airplanes and ships are more separated. Figure 6 (d)
shows the learned clusters by MFCL when PN is used in the sensor module at the clients. The
proposed MFCL with PN is able to learn 6 distinguishable clusters for truck, ship, frog, automobile,
airplane, and horse.

D.2 EFFECT OF THE CLIENT DROP IN TRAINING PHASE 2

When training of phase 1 is finished, the clients send their data representations to the server. In real
world scenarios, however, not all the clients participated in training phase 1 are able to take part
in training phase 2. Specifically, in training phase 2, the server may not successfully receive the
representation vectors from some clients who participated in training phase 1, because the represen-
tation vectors might be corrupted or lost during transmissions or some clients might not be able to
transmit their representations. In this case, our assumption that the contrastive server mini-batches
are (closely) class-balanced might not be valid anymore. In this appendix, we investigate its im-
pact on the performance of our proposed MFCL scheme with BN, GN, and PN. To model that the
representations of some clients are not successfully received by the server in training phase 2, we
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(a) (b)

(c) (d)

Figure 6: t-SNE visualization of the raw input data at a single client and t-SNE visualization of the
clusters learned from the representation vectors at the server in the proposed MFCL scheme. CIFAR-
10 is trained in simulation scenario Sc2, where each client has only 2 classes with M = 10. (a) t-
SNE visualization of raw data in a single client. In the other three figures, t-SNE visualizations of the
clusters learned at the server by MFCL after the projection layer are shown when the normalization
technique used in the sensor module is (b) BN, (c) GN, and (d) PN.

introduce the concept of the percentage δ (%) of the clients who are dropped in training phase 2
(i.e., the clients whose representation vectors are not successfully received by the server in training
phase 2).

In Figure 7 (a), for the scenario of homogeneous and CB data (Sc10), we train our MCFL with
BN, GN, and PN on the CIFAR-10 data set when M = 10 clients have participated in training
phase 1. Then, in training phase 2, the representation vectors from δ (%) clients are not received
by the server. For a severe heterogeneous and CIB case (Sc2), we repeated the same experiments in
Figure 7 (b). From Figures 7 (a) and 7 (b), we can see that both PN and GN have similar behavior
when some clients are dropped in training phase 2. For the homogeneous and CB scenario (Sc10),
the gap between BN and our proposed PN decreases as more clients are dropped in training phase
2. Meanwhile, for the severe heterogeneous and CIB case (Sc2), our proposed PN continues to be
the best choice even when more and more clients are dropped in training phase 2.

D.3 PN IN OTHER SELF-SUPERVISED FL SCHEMES

In this appendix, we check if our proposed PN is still effective in other semi-supervised FL setting
(other than our proposed MFCL). To this end, we apply our proposed PN to FedSimCLR Luo et al.
(2021), which is a self-supervised training algorithm based on a contrastive loss in the FL setting.
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Figure 7: The classification accuracy of the proposed MFCL scheme with BN, GN, and PN, when
the client drop rate is δ % in training phase 2. The number of clients participating in training phase
1 is M = 10. (a) Sc10 is considered, which is the scenario of homogeneous and CB data. (b) Sc2 is
considered, which is a severe case of data heterogeneous clients with CIB data.

Table 7: Simulation results of applying PN in FedSimCLR in comparison with MFCL. In all sim-
ulation scenarios, the number of clients is M = 10 and the training data set is CIFAR-10. In all
simulation scenarios for MFCL, BN is used at the server.

BN GN PN

Sc FedSimCLR MFCL FedSimCLR MFCL FedSimCLR MFCL
2 0.73(±0.02) 0.17(±0.05) 0.74(±0.03) 0.79(±0.03) 0.75(±0.05) 0.84(±0.02)

10 0.82(±0.01) 0.88(±0.02) 0.82(±0.04) 0.83(±0.01) 0.84(±0.02) 0.85(±0.01)

The model is trained on CIFAR-10 withM = 10. After the first two Conv2D layers in FedSimCLR,
the PN is used in lieu of BN. The simulation results for Sc2 and Sc10 are presented in Table 7.
We can see that PN improves the performance even in the FedSimCLR framework as well as in
our proposed MFCL framework. Another observation is that our proposed MFCL with PN always
outperforms FedSimCLR whether the clients have homogeneous and CB data or heterogeneous and
CIB data.

D.4 COMMUNICATION BURDEN WITH MFCL

The proposed MFCL is the first modular self-supervised learning framework in FL. A major nov-
elty is that the clients only train a shallow sensor module federally to learn the low-level features
without the bias of labeling, clustering, or CIB data thanks to our proposed PN. This is in contrast
to the traditional E2E training of FL, in which a deep and wide model is federally trained across the
clients, which requires sending a huge amount of model parameters (or gradients) the server in each
FL round, In our MFCL, the number of FL rounds required to train such low-level features across
the clients is much less than the traditional E2E training in the FL setting. Therefore, the communi-
cation burden in training phase 1 is far lighter than in the E2E training in the FL setting. Although
our proposed MFCL involves two stage training (rather than one as in E2E training), the overall
communication overhead is much lower. Specifically, even including the burden of transmitting the
representation vectors from the clients to the server in training phase 2, our proposed MFCL still
has a ten times lighter total communication burden compared to the traditional E2E training with the
same number of clients (e.g., M = 10) and the same amount of training data (e.g., 50,000 training
samples in total).

In Table 8, as an example of traditional E2E self-supervised training in the FL setting, we compared
the communication burden of MFCL with FedSimCLR, which trains ResNet-18 federally across the
clients. FedSimCLR needs 800 FL rounds to achieve the reported accuracy in Table 2, while MFCL
with PN needs only 15 FL rounds for training phase 1. In Table 8, we use the single precision format
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Table 8: Simulation results of applying PN to FedSimCLR in comparison with MFCL.

Communication burden
Method

FedSimCLR MFCL

In training phase 1 Parameters per FL round per client 11× 106 10× 104

Transmitted bits per FL round per client 20× 108 20× 106

Total transmitted bits per client 16× 1011 30× 107

In training phase 2 Size of the representation vector per client 0 40× 105

Transmitted bits of representation vectors per client 0 30×1010

In total Phase 1 and 2 for M = 10 clients 16× 1012 30×1011

(32 bits) with channel code (i.e., error correction code) rate 1
3 to transmit the model parameters in

training phase 1 and representation vectors in training phase 2. The size of one representation vector
in the sixth row of Table 8 is equal to (number of data samples per client) × (size of each element in
the representation vector), where the number of data samples per client is 5000 and the size of each
element in the representation vector is 32×32×64. Clearly, with more data samples in the clients,
the communication burden of MFCL would increase linearly. However, with more data, we also
need larger models to train FedSimCLR, which again leads to higher communication burden for
FedSimCLR. Overall, the communication burden of the proposed MFCL is much lower than that of
the traditional E2E training of FL.
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