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ABSTRACT

Modeling the impact of amino acid mutations on antibody—antigen binding affinity
is critical for therapeutic antibody design. Existing structure-based deep learning
approaches can capture structural details of binding interfaces, but they often fail
to account for subtle physicochemical perturbations introduced by mutations, lim-
iting their ability to explain affinity shifts. To address this challenge, we present
ImageAM, a mutation-aware vision transformer framework that learns from un-
labeled protein-protein interaction ground-truth data. ImageAM projects multi-
ple structural and physicochemical interface features into two-dimensional (2D)
images and employs a multi-channel masked reconstruction pretraining task, en-
abling the model to learn mutation-induced patterns across heterogeneous con-
texts. This pretraining strategy equips the encoder with strong generalization
ability, which is further refined through fine-tuning for antibody affinity mat-
uration prediction. Extensive experiments on benchmark datasets demonstrate
that ImageAM consistently surpasses state-of-the-art methods across multiple
metrics, while exhibiting superior robustness and out-of-distribution generaliza-
tion in predicting binding affinity change between mutant and wild-type com-
plexes. Code is available at https://anonymous.4open.science/r/
ImageAM-ICLR.

1 INTRODUCTION

Biological functions are carried out through molecular interactions and chemical reactions, among
which protein—protein interactions represent one of the most fundamental molecular events in liv-
ing organisms. Many essential biological processes are mediated by protein interactions |Jones &
Thornton| (1996); Mendelsohn & Brent] (1999). A particularly important example is the interaction
between antibodies and antigens. Antibodies, as immune system proteins, play a central role in
human immunity by binding to target antigens and triggering immune responses |Lu et al| (2018).
The binding affinity of antibody—antigen interactions is a key indicator of the strength and effec-
tiveness of this immune recognition |Lu et al.| (2020b). Mutations of amino acids at the binding
interface frequently alter binding affinity, which may either enhance, weaken, or even disrupt the
antibody—antigen interaction |Gram et al.| (1992)). The process of affinity maturation refers to the
gradual improvement of antibody binding efficacy to antigens through somatic hypermutation in
vivo |Victora & Nussenzweig (2022)). In computational studies, affinity maturation is commonly de-
fined as the change in binding free energy ( AAG = AG .t — AGyt, Where mt and wt denote the
mutant and wild-type, respectively).

Traditional experimental approaches, such as constructing mutant libraries and screening with dis-
play technologies |Li et al.|(2014), are capable of characterizing antibody affinity maturation. How-
ever, the vast diversity of antibody—antigen interface sequences, combined with the combinatorial
explosion of possible mutation types and positions, makes exhaustive exploration of the mutational
landscape infeasible. Experimental strategies alone often struggle to balance comprehensiveness
and efficiency Alves| (2019). Moreover, these assays are resource-intensive and time-consuming,
making them difficult to scale for rapid iteration and large-scale applications. Consequently, there
is a pressing need for computational methods that can achieve both accuracy and efficiency, thereby
accelerating research on antibody affinity maturation.
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Recent advances in machine learning, particularly deep learning, have shown promising results
in this task. Early sequence-based models treated antibody and antigen amino acid sequences
as inputs, employing architectures such as convolutional neural networks (CNNs) [LeCun et al.
(1993), recurrent neural networks (RNNs)|Quang & Xie|(2016)), and Transformers [Vaswani (2017).
More recently, structure-based methods have demonstrated greater potential by representing anti-
body—-antigen binding interfaces as three-dimensional graphs and applying graph neural networks
(GNNs) [Scarselli et al.| (2008). While structure-based methods have shown promise in modeling
antibody—antigen interfaces under different mutations, they often struggle to capture subtle physic-
ochemical perturbations such as changes in hydropathy, hydrogen bonding, or electrostatics that
critically influence binding affinity. As illustrated in Figure[I] even minor point mutations can leave
the backbone structure largely intact (left) while inducing significant shifts in charge and hydropa-
thy distributions at the interface (right). Such effects are difficult to detect with purely geometric or
graph-based models |Yamashita et al.|(2019); Jin & Wells| (1994). In contrast, vision-based model-
ing provides a stronger perceptual capacity to represent fine-grained, spatially distributed changes
across multiple physicochemical channels.

Motivated by this, we propose ImageAM, a
mutation-aware unsupervised framework that
learns robust visual representations of inter-
face perturbations. Specifically, we describe
antibody—antigen binding interfaces as surface
molecular fingerprints that integrate both ge-
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(2023), enabling the use of high-capacity vi-
sion transformer (ViT) architectures in this do-
main. To effectively capture mutation-aware
representations, we introduce a multi-channel
masked image modeling pretraining task in-
spired by masked autoencoders (MAE)/He et al.
(2022). This design enables the model to recon-
struct masked patches across different feature
channels, leveraging cross-channel correlations
and learning the impact of local perturbations on global interface context. The pretrained encoder is
then partially frozen and fine-tuned on labeled data to predict changes in binding free energy (AAG)
for antibody—antigen mutations.

Figure 1: Impact of Subtle Mutations on Hydropa-
thy and Charge at the Contact Interface of Protein
SUFE. The green dashed circles in the figure high-
light the changes exhibited by the mutation.

In summary, our work makes the following contributions: (1) A novel representation. We in-
troduce the first framework that encodes antibody—antigen binding interfaces as surface molecular
fingerprint images, which naturally integrate structural and physicochemical features and open the
door to applying powerful vision-based architectures in this domain. (2) A pretrainable architec-
ture. We propose ImageAM, a vision transformer with MAE-style multi-channel masked image
modeling, enabling effective pretraining under limited data and enhancing generalization from local
mutations to global binding interface properties. (3) Strong empirical performance. Extensive
experiments demonstrate that ImageAM consistently outperforms strong baselines across multiple
benchmarks for AAG prediction.

2 RELATED WORK

2.1 MUTATIONAL EFFECT PREDICTION

Traditional computational approaches for affinity prediction are primarily based on empirical energy
functions. These methods estimate binding affinity by sampling conformations of protein—ligand
complexes and applying energy functions derived from classical mechanics or statistical poten-
tials [Schymkowitz et al.| (2005); [DeBartolo et al.| (2014); Steinbrecher et al.|(2017).
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With the rise of machine learning, increasingly more ML-based methods have emerged. Conven-
tional machine learning approaches typically integrate geometric, physical, and evolutionary fea-
tures of complexes to fit experimental data Steinbrecher et al.|(2017);|Zhang et al.| (2022). However,
these traditional computational strategies often struggle to balance efficiency and accuracy. In recent
years, the rapid development of deep learning has led to significant progress in this field. Broadly,
deep learning models can be categorized into sequence-based and structure-based approaches.

Sequence-based models leverage architectures such as CNNs|LeCun et al.|(1995), RNNs|Quang &
Xi1e[(2016), and Transformers [Vaswani| (2017)) to extract predictive features from antibody and anti-
gen amino acid sequences. More recently, large-scale protein language models such as ESM |Rives
et al.| (2021) and Saprot [Su et al.| (2023)) have demonstrated strong performance, benefiting from
pretraining on massive protein sequence corpora that enable them to capture rich contextual infor-
mation.

In contrast, structure-based methods typically represent the three-dimensional geometry of the bind-
ing interface as graphs, allowing models to exploit more detailed and fine-grained structural infor-
mation than sequence alone. For instance, Bind-ddG|Cao et al.|(2019) predicts binding changes by
separately encoding residue-pair information at the antibody—antigen interface. RDE-Network |[Luo
et al.| (2023) extracts both single-residue and residue-pair representations and predicts mutational
effects by modeling conformational flexibility at the interface. GearBind |Cai et al.| (2024)) employs
a multi-level geometric GNN to encode interface structures and achieve accurate predictions.

2.2  PRETRAINING ON PROTEINS

To address the scarcity of labeled protein data, a growing body of work has focused on self-
supervised and unsupervised pretraining strategies to extract transferable protein representations
and enhance downstream task performance. These approaches can also be broadly divided into
sequence-based and structure-based paradigms.

Sequence-based pretraining treats amino acids as tokens in a sequence and adapts paradigms such
as Masked Language Modeling Rives et al.|(2021); |Su et al.| (2023)), Contrastive Learning |Lu et al.
(2020a), and Next-Token Prediction |Alley et al.| (2019). While sequence pretraining has achieved
remarkable success, structure-aware pretraining is attracting increasing interest, as protein function
is largely dictated by three-dimensional conformation.

Structure-based pretraining methods leverage tasks such as Masked Structure Modeling Wu et al.
(2024), Structure Contrastive Learning [Zhang et al.| (2022), and Inter-residue Geometry Predic-
tion (Chen et al.|(2023)) to capture structural representations that generalize effectively across down-
stream applications.

3 METHOD

3.1 PROBLEM STATEMENT

Given the structures of an antibody-antigen mutant and its corresponding wild-type, our goal is
to predict the affinity maturation of the mutant relative to the wild-type. This is quantified as the
binding free energy change AAG. The antibody-antigen interface is represented by a set of multi-
channel projection images that encode complementary physicochemical features, including shape
complementarity, relative accessible surface area (RASA), hydrogen bonds, charge distribution, and
hydropathy.

Formally, the interface structure is represented as a tensor input X € R¢*L*L where C' denotes

the number of feature channels and L is the width of the projection patch at the interface. The inputs
include the wild-type tensor X* and the mutant tensor X™". The task is to learn a function:

f(XYXT) =y,

where y € R denotes the experimentally measured binding affinity change (AAG) associated with
the mutation. Our objective is to design a pretraining and fine-tuning strategy that enables the model
to extract discriminative and robust interface representations from (X, X™), ultimately improving
the prediction accuracy of binding affinity changes.
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Figure 2: (A) Multi-channel Masked Reconstruction Pretraining. The masked multi-channel
images are first encoded by a ViT to extract channel-wise features. A Transformer encoder then
integrates features across channels to obtain the global representation. Finally, each channel is
reconstructed based on its own features and the fused representation. (B) AAG Prediction. We
extract the encoder from the pretrained model, freeze part of its structure, and fine-tune the remaining
components on an antibody—antigen affinity dataset to predict the AAG values.

3.2 OVERVIEW

An overview of the proposed pretraining frame-

work and affinity maturation prediction model Input PDB Triangulate  Compute  |solate Patch Pairs
is shown in Figure[2] In this section, we first in- the surface  Features
troduce the Data Preparation procedure. Un-
like other structure-based methods, we repre-
sent the antibody-antigen interface as multi-
channel feature images. We then describe the
proposed pretraining method: Multi-Channel ~  rroeamenaceia
Vision Transformer Encoding extracts repre- | shapeindex
sentations from each channel, Cross-Channel : ‘,,‘:f:,
Feature Aggregation fuses them into global .{
features, and Masked Token Reconstruction
reconstructs masked patches for self-supervised
learning.  Finally, in the AAG Prediction
stage, we show how the pretrained encoder is
fine-tuned for predicting binding affinity matu-
ration.

Figure 3: Data preparation process for binding in-
terface representation.
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3.3 DATA PREPARATION

Unlike conventional structure-based approaches that model antibody-antigen interfaces as graphs,
our input modality is a set of multi-attribute projection images of the interface surface. Preprocessing
of the structural data is required before model input.

As shown in Figure [3| to reduce computational cost, we first crop the input structures within a
radius of 20 A from the antibody-antigen interaction center. Atoms from antibody and antigen
with interatomic distances less than 5 A are defined as interaction sites. The cropped structures
are triangulated into solvent-excluded surfaces at 1 A resolution using MaSIF |Gainza et al.| (2020).
We then compute vertex-level features including shape index, curvature, hydrogen-bond potential,
charge, and hydropathy via the MaSIF data preparation module. In addition, relative accessible
surface area (RASA) is obtained using DSSP v2.3 [Kabsch & Sander|(1983)); Touw et al.| (2015).

Finally, we extract a 20 A radius patch centered at the interaction site. The structural and physic-
ochemical features of the surface within the patch are projected into 2D images |Stebliankin et al.
(2023), where pixel intensity is proportional to the corresponding feature values.

3.4 MULTI-CHANNEL MASK RECONSTRUCTION PRETRAINING

To address the scarcity of labeled protein data, an increasing number of self-supervised or unsuper-
vised models have been developed to extract transferable protein representations, thereby enhancing
performance on specific downstream tasks. Inspired by Masked Autoencoders (MAE) He et al.
(2022), we design a multi-channel masked reconstruction pretraining task to capture the distribu-
tional characteristics of protein—protein interaction interfaces. By partially masking and reconstruct-
ing different interface features, the model learns how local variations influence global representa-
tions, enabling it to capture the impact of subtle mutations on the overall interface. During decoding,
each channel is reconstructed while considering fused information from all channels, which equips
the model with the ability to account for cross-channel interactions. This design allows the model to
better integrate diverse features when handling mutations in downstream tasks, thereby enhancing
its representational power.

3.4.1 MULTI-CHANNEL VISION TRANSFORMER ENCODING

Let the input interface image be X € REXCXEXL where B is the batch size, C' the number of
feature channels, and L x L the spatial resolution of each channel.

For each channel ¢, we extract the subset X, € REXCexLxL Each channel image is divided into
N non-overlapping patches, flattened, and projected into token embeddings:

0 BXxX(N+1)xD
TC:[i, g,...,tf\,,tg]s}GR X(NHL)x )

where tg; is a learnable [CLS] token and D is the embedding dimension. The tokens are then passed
through a Vision Transformer fy with self-attention layers:

T. = fo(TY).
3.4.2 CROSS-CHANNEL FEATURE AGGREGATION

We concatenate all channel-specific [CLS] tokens with a global classification token thls3
ZO = [tilsv tgls’ ce atgs’ tgs] € RBX(C+1)XD'
This sequence is processed by a Transformer encoder with L layers:
Z = TransformerEncoder (Z°),

where multi-head self-attention captures dependencies across channels, and tccfs serves as the fused
global representation.

3.4.3 MASKED TOKEN RECONSTRUCTION

For masked pretraining, let M. C {1,..., N} denote the indices of masked patches in channel c.
The masked token sequence is defined as:

Xmask — tf i ¢ Mm
c tmask (RS Mc7
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where t,5k 1S a learnable mask token. The masked tokens are decoded using a Transformer decoder

conditioned on the fused global representation t5.:

XMk — TransformerDecoder(X™*k, G ).

The reconstruction loss for channel c¢ is defined as:
1 . 2
fe= T gﬂ; i — )2

The total pretraining loss averages across all channels:

1 C
Lye = 5 > L
c=1

3.5 AAG PREDICTION

In the antibody affinity maturation prediction task, we employ the multi-channel Vision Transformer
and the Transformer Encoder for multi-channel information fusion from the pretrained model. We
freeze the Transformer Encoder, while fine-tuning the Vision Transformer and training the predictor
on an antibody—antigen affinity dataset to fit the AAG values.

3.5.1 FEATURE EXTRACTION

Given a mutant complex X" and its wild-type X", we apply the pretrained encoder in prediction
mode to extract latent representations. Both X" and X* are divided into patches and projected into
embeddings T, T§. These are passed through the pretrained Vision Transformer:

T™ = ViT(T"), TY = ViT(TY).

We concatenate all channel [CLS] tokens with a global token for each input:

c 4G Bx(C D
Z?n = [tils’ s 7tcls7tcls] €eR (O F1)x )

70 = [tL, ... 15, t5] € REX(CHUxD,

The sequences are then processed by the Transformer encoder:

Z,, = TransformerEncodery (Z°)), Z,, = TransformerEncodery (Z2).

The outputs Z,,,, Z,, € REX (C+1)xD gre flattened into fixed-length feature vectors:

H,, = Flatten(Z,,,), H,, = Flatten(Z,,).

3.5.2 TRAINING
The mutant-wild pair representation is formed by concatenation:
H = [H,, | H,] € RF*2P,

H is passed into a multi-layer perceptron (MLP) with nonlinear activation, followed by a linear
projection to produce the predicted affinity change:

§ = MLP(H).

The prediction is optimized using mean squared error (MSE) between predicted and experimental
AAG:
1B
- 2
Lattnity = 55 > (@ — i)

i=1
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Table 1: Performance comparison of different methods. Bold denotes the best results.

Methods \ MAE | RMSE | PearsonR{ SpearmanR 1
FoldX 1.364 2.027 0.491 0.526
Flex-ddG 1.236 1.849 0.497 0.484
Bind-ddG 1.255 1.759 0.581 0.443
RDE-network 1.189 1.665 0.508 0.592
GearBind 1.115 1.611 0.676 0.525
ImageAM 1.042 1.500 0.704 0.590
ImageAM +P | 1.017 1.460 0.718 0.604

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Datasets. To enable the model to learn the distribution of feature values characterizing real pro-
tein—protein interaction interfaces, we used the unlabeled MaSIF dataset (Gainza et al.| (2020) dur-
ing the pretraining stage. This dataset, curated from the Protein Data Bank (PDB) Bank| (1971)),
contains 5,801 real protein—protein interaction structures. For the downstream affinity maturation
task, we fine-tuned the pretrained model and evaluated it on the SKEMPI 2.0 dataset Jankauskaite
et al.[(2019). SKEMPI 2.0 is the largest antigen—antibody affinity dataset, consisting of 7,085 ex-
perimentally measured binding affinity data points across 348 complexes. Following the common
preprocessing steps used in previous works Rodrigues et al.| (2019); [Liu et al.| (2021), we removed
ambiguous entries, resulting in 5,625 samples for training and evaluation. In addition, we used
FoldX |Delgado et al.[(2019) to sample the mutant structures based on wild-type templates, thereby
obtaining structural information for all mutants as model inputs.

Experimental Settings. Consistent with prior work on this dataset |Cai et al.| (2024), we adopted
five-fold cross-validation to train and evaluate our model. This approach is widely used in small-
sample biological data modeling, as it enhances the stability and reliability of evaluation while
reducing bias from random factors. Specifically, the dataset was evenly partitioned into five non-
overlapping subsets. In each fold, four subsets (80% of the data) were used for training over 100
epochs, while the remaining subset (20%) served as the test set to assess the model’s generalization.
This process was repeated five times, ensuring each subset was used once as the test set. We report
the mean performance across all folds as the final evaluation. Additional details on the experimental
setup are provided in Appendix [C|

Evaluation Metrics. We employed four representative evaluation metrics: Pearson correlation co-
efficient (PearsonR), Spearman’s rank correlation coefficient (SpearmanR), Mean Absolute Error
(MAE), and Root Mean Squared Error (RMSE). Pearson and Spearman assess trend alignment and
ranking consistency, respectively, while MAE measures average deviation and RMSE emphasizes

large errors. Together, they provide a comprehensive evaluation of prediction accuracy and robust-
ness for AAG.

4.2 BENCHMARK COMPARISON

Since sequence-based models, including recent protein language models, perform significantly
worse than structure-based models on this task, we exclude them from comparison. We bench-
marked against five state-of-the-art structure-based methods. Among them, FoldX |Delgado et al.
(2019) and Flex-ddG Barlow et al.| (2018)) are energy-based methods, while Bind-ddG |Shan et al.
(2022), RDE-network [Luo et al.| (2023), and GearBind |Cai et al.| (2024) are deep learning-based.
Notably, RDE-network and GearBind also incorporate pretraining strategies tailored to mutations.

As shown in Table |1} deep learning approaches consistently outperform traditional energy-based
methods. RDE-network and GearBind achieve stronger results than Bind-ddG due to their mutation-
oriented pretraining. Our model achieves the best performance among all baselines, demonstrating
the effectiveness of modeling multiple interface surface features. By capturing how subtle mutations
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Figure 4: Left: Model performance on predicting multi-point mutations after training on single-
point mutations, measured by four metrics. Middle: Error between model predictions and ground
truth for varying numbers of mutations. Right: Linear correlation between model predictions and
ground truth for varying numbers of mutations.

impact global interface characteristics, our method enables more accurate predictions in antibody
affinity maturation.

4.3 GENERALIZATION ANALYSIS

Out-of-Distribution Analysis. To further evaluate generalization, we designed a more challenging
experiment. Each dataset entry involves either single or multi-point mutations. We trained and fine-
tuned the model only on single-point mutations, then tested it on multi-point cases. Single-point
mutations dominate the dataset (4,059 instances), while multi-point ones are fewer (1,566 instances),
making this setup particularly difficult for models trained solely on single-point effects. As shown
in Figure [] Left, Bind-ddG [Shan et al| (2022) suffered a large performance drop, even beyond
linear correlation evaluation, whereas our method showed much smaller degradation. Furthermore,
with pretraining, our model achieved clear improvements, demonstrating the effectiveness of our
preraining strategy for generalization.

Prediction Across Mutation Counts. Figure [d|Middle and Right illustrates the effect of increasing
mutated sites on model performance. On this task, all deep learning methods surpass the empirical
FoldX, likely because they learn partial information about multi-point mutations from training data.
Pretraining not only improves performance on single mutations but also enhances predictions for
more challenging classes. As the number of mutated sites grows, MAE rises markedly, consistent
with the larger effects of multi-point mutations, while the Pearson correlation also increases. This is
explained by the broader AAG distribution: although absolute errors grow, overall trends become
clearer, maintaining or even strengthening linear correlation.

4.4 CHANNEL ABLATION STUDY

Our multi-channel input encodes structural and physicochemical features, which collectively yield
strong performance. However, the contribution of individual features remains unclear. To investigate
this, we evaluated the effect of removing each feature channel.

The results, shown in Figure [5| Left, indicate that all features contribute positively to performance.
hydropathy, charge, and RASA have the largest impact, underscoring their importance in this
task [Srinivasulu et al.| (2015); Hebditch & Warwicker (2019). While shape complementarity and
hydrogen bonds contribute less, they still play a non-negligible role. For more ablation experiments,
please see Appendix [A]

4.5 SENSITIVITY ANALYSIS OF MASK PATCH SIZE

In this experiment, we studied the impact of patch size, the smallest unit for masking and feature
extraction in Vision Transformers, on model performance. Patch size also determines the granularity
of information the model can capture from interaction interfaces, which is crucial for performance.
As shown in Figure[5|Right, the model performs best with a patch size of 2. This is because smaller



Under review as a conference paper at ICLR 2026

® @ O?OQJ T MAE
® . @ ® o 0080.007 006 RMSE
-0.02 [001%,013 e o .00 10 1.6 070
00179019 od? —#— Pearson R
e®
04| O, @ o0 a8% 15 Speaman® o s
-0.0440.043 : <
-0.06 0055, w 065 £
[} 0,066 214 g
2-0.08 ® - &) 4 &
I 0.081,5) 0.081 ~ 062~
6 010 -0.085 w13 x
. © wloshape < 5
= 060 3
-0.12 ©® WwoRASA 1.2 3
© wlo hydrogen bonds 058
-0.14 py © wilocharge 11
016 0.148 ©  wlo hydrophobicity 0.55
1.0
MAE RMSE Pearson R Spearman R 2 4 16

8
Patch Size

Figure 5: Left: Impact of different channels on the overall performance of the model. Right: Impact
of varying mask patch sizes on model performance.

patches capture finer local features important for protein interfaces, simplify mask reconstruction
for more accurate representations, and increase the number of tokens, enhancing the Transformer’s
ability to model both local and global relationships. Overall, a patch size of 2 provides the best
trade-off between granularity, reconstruction difficulty, and modeling capacity.

4.6 VISUALIZATION

In this experiment, we visualized the interac-

tion interface of protein SUFE and its vari-

(A) Feature Attention (B) Spatial Attention

ants after the GA12D, QB25R, EB33G, and RAS“— mutant Charge map Attention map
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ple features. Unlike the wild type, the model’s wiid- | . i L)
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tures shifts significantly in the mutants, indi- Hydropathy .~

cating that these interface characteristics are (C) Attention to Structure !

notably altered after mutation. Figure [§(B)

presents the differences in the charge map

between the two types, along with the ViT- \ Ling - b ) - —
generated attention map for this feature, which I S o
highlights the regions of the image the model o %{ ) “?ﬁ

focuses on. As shown, multiple mutations at Mutant " Wild-type

the interface lead to a clear redistribution of the
model’s attention. Figure [§(C) further visual-
izes the interface residues corresponding to the
attention map. Interestingly, even for amino
acids without apparent structural changes, our
model is able to capture shifts in their physic-
ochemical properties. Protein structure visual-
ization was performed using PyMOL |DeLano

et al.[(2002).

Figure 6: Comparison of protein SUFE wild type
and mutants. (A) Encoder attention shows altered
focus on interface features, (B) charge maps with
ViT attention highlight redistributed regions, (C)
residue-level visualization reveals shifts in physic-
ochemical properties despite minimal structural
change.

4.7 CONCLUSION

In this work, we introduced ImageAM, a vision transformer—based framework for predicting how
amino acid mutations impact antibody—antigen binding affinity. By projecting multiple interface
features into 2D images and leveraging a multi-channel masked reconstruction pretraining strat-
egy, Image AM effectively captures correlations across heterogeneous features and mutation-induced
physicochemical changes. Fine-tuning the pretrained encoder for affinity prediction demonstrates
that our approach consistently outperforms state-of-the-art methods across various benchmarks and
exhibits superior generalization in out-of-distribution scenarios.
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