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Abstract

Recent advances in large language models (LMs)
have facilitated their ability to synthesize pro-
gramming code. However, they have also raised
concerns about intellectual property (IP) rights
violations. Despite the significance of this is-
sue, it has been relatively less explored. In this
paper, we aim to bridge the gap by presenting
CODEIPPROMPT, a platform for automatic evalu-
ation of the extent to which code language models
may reproduce licensed programs. It comprises
two key components: prompts constructed from
a licensed code database to elicit LMs to gener-
ate IP-violating code, and a measurement tool to
evaluate the extent of IP violation of code LMs.
We conducted an extensive evaluation of existing
open-source code LMs and commercial products,
and revealed the prevalence of IP violations in all
these models. We further identified that the root
cause is the substantial proportion of training cor-
pus subject to restrictive licenses, resulting from
both intentional inclusion and inconsistent license
practice in the real world. To address this issue,
we also explored potential mitigation strategies,
including fine-tuning and dynamic token filtering.
Our study provides a testbed for evaluating the
IP violation issues of the existing code genera-
tion platforms and stresses the need for a better
mitigation strategy.

1. Introduction

The recent advancements in large language models such as
GPT-4 have brought about revolutionary changes in the field
of artificial intelligence and natural language processing.
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def load_tf_weights_in_bert(model, config, tf_checkpoint_path):

tf_path = os.path.abspath(tf_checkpoint_path)
logger. info("Converting TensorFlow checkpoint from {}".format(tf_path))
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info("Loading TF weight {} with shape {}".format(name, shape))
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# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. ALl rights reserved...
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):

tf_path = os.path.abspath(tf_checkpoint_path)
logger. info("Converting TensorFlow checkpoint from {}".format(tf_path))
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info("Loading TF weight {} with shape {}".format(name, shape))

Figure 1. Code language models can reproduce existing code used
to train the model. Since many of them are licensed with restrictive
terms, it can cause IP infringement without proper measures to
ensure compliance. The example shown is generated by Copilot,
with the full example and original code presented in the appendix.

These models have demonstrated the ability to generate con-
tent that closely resembles human-created materials, leading
to the emergence of a new form of content known as Artifi-
cial Intelligence Generated Content (AIGC). An important
application of AIGC is code generation, which has already
been commercialized (e.g., Copilot (GitHub, 2022)) and
used by many developers and researchers to improve the
efficiency of programming in the real world (Spencer, 2022).
Recently, Microsoft has made its code LM API available for
enterprise services in production (Microsoft, 2023).

However, the use of Al-generated code also raises legal and
ethical concerns. A key issue is the potential violation of
IP rights, as shown in Figure 1. As code generative models
are trained on open-source repositories, people found that
they can produce programs that are similar or even identi-
cal to existing ones without compliance with associated li-
censes (Davis, 2022; Karpinski, 2021). Recently, Microsoft,

Project website: https://sites.google.com/view/codeipprompt/.
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GitHub, and OpenAl are being sued in a class action lawsuit
of copyright infringement for allowing Copilot to reproduce
licensed code without following license terms (Butterick,
2022). As such, it raises widespread concerns that users of
such models may be at risk of inadvertently violating the IP
rights of original works without being aware or notified.

In this work, we introduce CODEIPPROMPT, the first au-
tomated testing framework to evaluate the extent to which
code language models generate IP-violating code. It is
enabled by two key functionalities: extracting function sig-
nature and accompanying comments from licensed code to
construct prompts, and measuring the extent of IP violation
with code plagiarism similarity scores.

To conduct a comprehensive evaluation, we collected over
4M real-world licensed repositories to evaluate 10 mod-
els across 5 programming languages, including both state-
of-the-art open-source models (CodeRL (Le et al., 2022),
CodeGen (Nijkamp et al., 2022), CodeParrot (Tunstall et al.,
2022)), and commercial products (Codex (Chen et al., 2021),
Copilot, ChatGPT, and GPT-4). The results showed that the
issue is prevalent across all of these models, as most of
them are capable of generating code strongly resembling
portions of licensed software within 50 prompted code gen-
erations. With further investigation into the root cause, we
found that their training datasets explicitly contain a sig-
nificant amount of source code under restrictive licenses,
and some of such copyrighted code is included in all of the
studied datasets. Additionally, we identified the implicit in-
clusion of restrictive code in permissive and public-domain
code repositories due to inconsistent licensing practices,
and those issues in the code supply chain make the removal
of restrictive data even more challenging in the real world.
To mitigate this issue, we explored both data-based and
decoding-based strategies, but found that they were either
ineffective or resulted in a significant drop in performance.
Lastly, we present insights on potential mitigation directions
and recommend measures to take.

We aim to shed light on the landscape of IP protection in
generated code by language models. Our findings highlight
the challenges in mitigating this prevalent issue and the
pressing need to reconsider the data used for training. We
release our code and datasets to encourage further progress
in improving IP protection and compliance.

2. Intellectual Property of Source Code

Characterizing Code IP via Licenses. Identifying IP vi-
olations in source code is crucial, yet it poses significant
challenges due to the diverse licenses that manage code IP
and the complex terms associated with them. In the realm of
software development, licenses are widely accepted as legal
instruments for regulating and managing IP, and they also

Licenses* Permissiveness
Unlicense, CC, WTFPL

MIT, ISC, Apache, BSD,

Category
Public Domain

No legal restrictions
Include a copy of the license

Permisive - . o
BSL, Artistic, Zlib, AFL and attribution to the authors.
Rele: art of cod
Weak Copyleft MPL, EPL, LGPL elease part of code
under the same license
Rel the enti
Strong Copyleft GPL, AGPL elease tie entire program

under the same license

*Some may represent a series of licenses with different versions.

Table 1. The mainstream open-source licenses can be categorized
based on the permissiveness required by license terms.

serve as a crucial foundation for courts to make informed
decisions in intellectual property litigations (Murray, 2020).
These licenses define the terms under which the code can
be used, modified, and distributed, and failure to comply
with these terms can result in IP infringement. However, the
vast number of licenses provide diverse levels of IP protec-
tion, each with intricate policies and conditions that can be
difficult to understand and operationalize.

To better understand the landscape of IP protection in re-
lation to source code, we conducted a survey of over 200
open-source licenses approved by the Open Source Initiative
(OSI). These licenses can be broadly categorized based on
their level of permissiveness, as shown in Table 1. For in-
stance, permissive licenses such as the MIT License and the
BSD License, impose minimal restrictions on the use and
modification of the source code, requiring only that proper
attribution be included in the distribution. In contrast, copy-
left licenses are more restrictive, requiring that any modified
versions of the code be distributed under the same license,
even if the code is incorporated into proprietary software.
Additional details can be found in Appendix A.

Scope of CODEIPPROMPT. In this work, we consider IP
infringement as violating license terms. Specifically, per-
missive and copyleft licenses impose certain obligations
that must be adhered to, such as requiring attribution or
requiring derivative works to be distributed under the same
license. However, the existing code LMs have not taken
measures to ensure compliance, and therefore reproducing
code under these licenses can bring the risks of IP viola-
tion. In contrast, public-domain licenses do not impose any
legal restrictions and the code is generally free to use and
distribute. Therefore, we consider code LMs’ reproducing
permissively and copyleft licensed code as IP infringement,
while reproducing public-domain licensed code is not.

It is noteworthy that this study does not involve reposito-
ries without explicit licensing statements. From a regula-
tory standpoint, such programs retain the copyright and
restrict third parties from utilizing, modifying, or distribut-
ing the software without explicit consent from the original
creators (GitHub, 2023). However, the lack of a licensing
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statement inadvertently introduces legal ambiguities and
complexities, for which reason they are excluded from the
scope of this study.

3. Related Work

The use of LMs in programming has motivated numerous
studies on performance benchmarking and evaluation, in-
cluding code-writing capabilities such as code syntax under-
standing (Shen et al., 2022) and the functional correctness
of generated code (Chen et al., 2021; Hendrycks et al., 2021;
Austin et al., 2021). Additionally, some research has focused
on evaluating the security level of generated code (Pearce
et al., 2022; Perry et al., 2022; Sandoval et al., 2022) and
the potential for privacy breaches through LM outputs (Pan
et al., 2020). Though closely related, IP violations of LM
outputs remain under-explored in these works.

From the perspective of intellectual property, the existing
work primarily focuses on protecting the IP of generative
models (Zhang et al., 2018; Xue et al., 2021; He et al.,
2022), as the training of such models can often be resource-
intensive (Dale, 2021). Besides, recent findings have high-
lighted instances where the output of LMs is copied verba-
tim from the training English text, and such characteristics
can be leveraged for malicious membership inference at-
tacks (Carlini et al., 2021; Lee et al., 2022). However, the
potential for LMs to generate copyrighted programs and
related issues of IP violation have received little research so
far. In this study, we aim to address this gap by examining
such characteristics of LMs, and also exploring potential
mitigation strategies to inspire future research.

4. Design of CODEIPPROMPT

The core design of CODEIPPROMPT includes a three-step
process to enable automatic evaluation, as depicted in Fig-
ure 2. To create a comprehensive dataset for evaluation, we
compiled a collection of licensed code repositories from
GitHub, totaling 4,075,553 across 34 different licenses.
From the sampled licensed code, we extracted function sig-
natures and accompanying comments to serve as prompts,
and the resulting generated code is subsequently compared
to the original program to calculate similarity scores. More
details of the framework are described below.

4.1. Construct Prompts from Licensed Code

Real-world Data as Foundation of Prompts. To effec-
tively measure the real-world risks of IP infringement, it is
desirable for the prompts to possess several characteristics.
Firstly, they should be natural in code context, including
appropriate function name construction and the inclusion of
comments that summarize the functionality of defined func-
tions. Secondly, they should be representative of real-world

(Qsimilarity Analysis

I

—

<> —’[

.’—0 &> |—>|ftoat orsar
{
SourceCodA‘
Database —
<> _,{»m load_tf_weights_in_be
model, config, tf_ch

<>

'~
B A
Similarity

~

Results

<>

Licensed Source Prompt Files

Files Models Program Files

Figure 2. CODEIPPROMPT constructs prompts from a collection
of source code database, and the generated programs are analyzed
against source files for similarity scores.

licensed code. And thirdly, they should be comprehen-
sive to cover diverse licenses and programming languages.
To achieve this, we employed the data collection process
involving three key steps. First, the GitHub REST API
was used to gather repository information across varying
licenses and programming languages in parallel. Second, a
parser was implemented to examine the collected metadata,
download target repositories with scheduling to handle the
API rate limit, and categorize the entries in a database on
the metadata. Lastly, the resources were opportunistically
compressed and uploaded to cloud storage, followed by
post-processing to filter and extract target programs.

Construct Prompts from Data. Most existing models are
trained on both natural language and programming code
to understand prompts in terms of program functionality
(described in comments) and syntax (in function signatures).
We follow this nature and construct prompts to constitute
these two components that can be generalized to a variety of
programming languages and code LMs. An example prompt
consisting of a function signature is shown in Figure 1. As
we focused on functions or classes as units of evaluation,
each prompt is limited to a single function signature and its
accompanying comment, as the inclusion of other unrelated
content may inadvertently affect evaluation results. To han-
dle the diverse syntactic structures in various programming
languages and avoid disruption from irrelevant components
(e.g., variable names or comments containing keywords), we
compiled various regular expressions to identify elements
such as comments, functions, and classes. With individual
lines of code as units, these regular expressions were used
to match and extract target code snippets while preserving
the original code context. We sampled source files repre-
senting copyleft and permissively licensed code and derived
prompts across five programming languages (i.e. Python, C,
C++, C#, Java) with varying lengths.

Context-aware Preprocessing. The prompts constructed
from real-world sources inadvertently include sensitive data
such as tokens. To manage such information while preserv-
ing the semantic meaning, we employed a recognizer with
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Total Permissive Weak Copyleft Strong Copyleft
52.0K 77.1K 50.0K
# Prompts
179.1K C C++ C# Python Java
' 62K 62K 37.6K 30.IK  99.0K
Avg Permissive Weak Copyleft Strong Copyleft
# Tokens 13.27.3 13275 13.36.2
132 C C++ C# Python Java
TT1829 5 183115 14679 11.66.0 12.66.1

Table 2. Data statistics of the constructed prompts using CODEIP-
PROMPT. The number of tokens is measured by tokenizers from
the multi-lingual CodeGen model, and is presented with its mean
and the standard deviation (in subscripts).

regular expressions and NLP module. Specifically, we built
on Presidio (Microsoft, 2022) and spaCy (Vasiliev, 2020) to
customize context-aware anonymization logic, which trans-
formed identifiable information into generic placeholders.
To further improve the quality of the prompt set, we also
implemented a filter to remove empty prompts and those
containing special characters. As a result, we obtained over
179K prompts® with the statistics summarized in Table 2.

4.2. Benckmarking IP Violation with Similarity Score

Under copyright law, a key requirement for proving copy-
right infringement is demonstrating that the suspicious in-
fringing work is substantially similar to the copyrighted
material (U.S.C, 2022). This case-by-case assessment is
typically conducted by jurors and judges based on empiri-
cal judgment, as there is no universal standard to provide
a definitive percentage or number of lines of code for in-
fringement (USCourts, 2022; Balganesh et al., 2014). For
instance, in a well-known software infringement case be-
tween Google and Oracle, nine lines of matched code were
deemed substantially similar by the court (Court, 2014).
Therefore, instead of calculating the exact number of lines
of matched code, we approximate this approach by quanti-
fying similarity with scores and setting a threshold based on
human empirical analysis.

Calculating Similarity Scores with Adapted Plagiarism
Detection. The key technique for identifying IP violations
in generated code involves comparing its similarity to orig-
inal sources. In order to generalize our framework to the
rapidly growing number of licensed programs, we choose
not to supervise-train DNN-based similarity scoring mod-
els on existing code. Instead, we adapt and incorporate
JPlag (Prechelt et al., 2002) and Dolos (Maertens et al.,
2022), two of the most widely recognized code plagiarism
detection tools that have been utilized as expert witness evi-
dence in lawsuits. Both tools take as input a set of programs
and compare them pairwise, producing a similarity score
ranging from O to 1 for each pair. The main difference is

?Additional prompt sets are available on the project website.

the method by which they calculate similarity. JPlag uses
lexical analysis and string tiling to compare programs, while
Dolos converts them into abstract syntax trees (ASTs) and
calculates similarity based on the coverage of unique AST
fingerprints. Therefore, the similarity scores generated by
these two tools cover different types of code plagiarism, and
we take the maximum between the two as the result.

However, the calculation is based on file-wise comparisons,
which could be misleading when language models only re-
produce a portion of the source code. In such cases, the
score could be extremely low due to the length of the files,
even if the produced code is a direct copy of part of the orig-
inal program file. To address this, we adapt the comparison
process by first matching and extracting the most similar
code snippets in the source programs, on which the simi-
larity score is calculated. The prompts are subtracted from
the generated code before the scores are calculated. This
enables a more accurate assessment even in cases where
only a portion of the code has been copied. In this study,
we consider a similarity score > 0.5 as potential plagiarism,
which was selected based on human studies as described
below. While this threshold is not a definitive measure, it
serves as a quantitative indicator within the framework.

Validating Similarity Scores and Selecting Threshold. To
validate the use of similarity scores and come up with an
appropriate threshold, we conducted IRB-approved human
studies involving nine participants with over five years of
programming experience. Each participant independently
assessed 200 pairs of programs (with scores ranging from
0 to 1 in 0.05 increments and 10 pairs at each step) for
the presence of plagiarism. To validate the effectiveness of
similarity scores, a Pearson correlation test was performed
between the number of participants who considered the pro-
grams substantially similar and the corresponding similarity
scores. We found a Pearson correlation coefficient p = 0.84,
indicating a strong alignment between similarity scores and
human perception of plagiarism extent. The threshold of 0.5
was selected via this process. We compared human labels
against those derived from similarity scores using various
thresholds, and found that the threshold at approximately
0.5 achieves a good balance of precision and recall, with
both values higher than 0.9 as shown in Figure 3.

Precision and Recall for Different Thresholds

1.0

True Positive (TP) | False Positive (FP) .

Human Similar
Score > Threshold | Score > Threshold oe
True Negative (TN)(False Negative (FN) 0

0.2 1 —e— Precision
—— Recall

Human Not-Similar

Human Not-Similar| Human Similar

Score < Threshold | Score < Threshold o

°

0.0 0.2 0.4 06 0.8 1.0
Thresholds

Table 4. Confusion matrix for Figure 3. Recall and precision
precision and recall calculation. for different thresholds.

Benchmark Metrics for IP Infringement. With a given
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GPT-4 ChatGPT Copilot Codex CodeT5-large CodeTS-ntp-py CodeGen-350M CodeGen-2.7B CodeParrot-110M CodeParrot-1.5B
Permissive M 0.600_14 0.560_17 0.560_22 0.680_13 0.080,19 0-940_11 0-940.08 0-750.26 0.980.04 0.980,05
Pl 050 0.45 0.48 0.71 0.06 0.99 0.99 0.74 0.99 0.99
EM|[0.700.18 0.770.16 0.660.20 0.600.16  0.14¢.22 0.960.08 0.920.09 0.720.15 0.580.25 0.990.01
Weak Copyleft
EP| 0.84 0.90 0.57 0.64 0.07 0.99 0.99 0.93 0.56 0.99
. EM|[0.560.15 0.61p.19 0.680.14 0.71p.15  0.100.20 0.92¢.17 0.800.26 0.980.04 0.999.02 0.990.01
Strong Copyleft
EP| 0.61 0.64 0.75 0.78 0.05 0.94 0.81 0.99 0.99 0.99
All EM |0.640.20 0.679.18 0.62¢g.25 0.64¢.20 0.119.21 0.920.12 0.930.09 0.76¢ .27 0.980.04 0.990.01
EP| 0.61 0.65 0.64 0.75 0.04 0.99 0.99 0.76 0.99 0.99
Table 3. Evaluation results with prompts sourced from GitHub.
. 1.0 r 1.0
code language model, it was employed for ten code genera- ~ Copilot EP /./ =
. . — Codex_| >
tions® for each sampled prompt. The maximum score was 08| Soplot EM ,'// // 08
subsequently utilized as the similarity score for the respec- ) / A

tive prompt. We then performed bootstrapping by sampling
n = 50 code generations 1K times. Two metrics were used
to characterize the models (Wang et al., 2022): (1) the Ex-
pected Maximum (EM) similarity calculated by the mean of
the maximum scores from 1K bootstrapped samples; and (2)
the Empirical Probability (EP) measured as the mean prob-
ability of generating code with score > 0.5 at least once in
the samples. In the present context, the EM score measures
the worst-case scenario in which generated code is highly
similar to existing code, while the EP reflects the frequency
at which the model generates potentially IP-violating code.

5. Evaluating Code Language Models

Using CODEIPPROMPT, we evaluated 10 code genera-
tion language models, comprising 6 open-source models
and 4 commercial products. They cover a wide range of
architectures including GPT-4, GPT-3.5 (i.e., ChatGPT),
GPT-3 (i.e., Copilot and Codex), GPT-2 (i.e., CodeParrot),
encoder-decoder (i.e., CodeRL), autoregressive transformer
(i.e., CodeGen), etc. The names of the models under these
frameworks are GPT-4, ChatGPT, Copilot, code-davinci-
002, CodeParrot-110M and CodeParrot-1.5B, CodeT5-large
and CodeT5-large-ntp-py, CodeGen-350M and CodeGen-
2.7B. More details can be found in Appendix B. In the study,
we followed the original settings of code language models
and employed nucleus sampling (Holtzman et al., 2020)
with top-p where p = 0.95. The following experiments
were carried out with the Hugging Face Transformers Li-
brary. Examples of plagiarized code generated by these
models are provided in the Appendix.

IP-violating Generations with Prompts in the Wild. Us-
ing our framework, we began by evaluating the real-world
risks of generating IP-violating code on above code LMs.
The evaluation strategies followed Section 4, and the results
are presented in Table 3. We observed that most of the
models can generate potential IP-violating code within 50
generations with a relatively high probability. Interestingly,

3For Copilot, the top ten suggestions were saved individually.

0.6 0.6

0.4 ’, 0.4
A/
0.2 /‘/' 0.2

@'
I

EM
EP

0.0 0.0

10 100 1000
Number of generations

Figure 4. Results of Codex and Copilot in terms of EM and EP,
with the variance of EM shown as shade.

the two commercial products achieved relatively lower EM
and EP among the models. We speculate the potential rea-
son is that they were trained on a significantly larger corpus.
As our method conducts a pair-wise similarity comparison,
it becomes less probable for the generated code to match
the exact source code from which the prompt is derived. On
the other hand, however, scanning through all existing li-
cense programs is computationally prohibitive and therefore
not adopted in this study. This issue is further discussed in
Section 9. The CodeT5-large model exhibits the lowest sim-
ilarity scores. Manual qualitative analysis revealed that this
was because many of the generated code snippets were not
meaningful. In contrast, the CodeT5-large-ntp-py model,
which was fine-tuned on Python programs with additional
data, demonstrated significantly higher EM and EP that are
at similar levels of other models.

ChatGPT and GPT-4. Our evaluation extends to GPT-4
and ChatGPT. Although these models are optimized for
dialogue rather than code generation, they have exhibited
superior capabilities in coding (Kashefi & Mukerji, 2023).
Overall, the EM and EP measurements for these models
are similar to those of the other two commercial products,
Copilot and Codex. This suggests that a substantial amount
of (licensed) programs were involved in the training phase.
This observation aligns with expectations, since the initial
training data encompasses approximately eight million web
pages, and many of which can contain licensed code. This
can be particularly true for educational websites, blogs,
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and Wikipedia that contain existing programs. This issue
is further intensified by the mechanism that users’ inputs
are additionally incorporated for model training (OpenAl,
2023). Given the increasing number of users utilizing Chat-
GPT (and GPT-4) for coding tasks, it becomes imperative
to take measures to address potential IP infringement risks.

Impacts of Number of Generations. To measure the im-
pacts of the number of generation n, we varied n from 1 to
1000 and utilized Copilot and Codex for evaluation. The
results are presented in Figure 4. We observed that both
models can generate highly similar code within 100 genera-
tions with a probability of p > 0.9. Besides, both EM and
EP will increase as n becomes larger. This is because more
trials are likely to induce both more instances with the score
> 0.5 (EM) and highly similar code (EP). More importantly,
the behaviors of models become very similar when n is ex-
tremely small or large, since in such cases, it could be either
very difficult or easy to encounter instances of plagiarizing
existing code. Therefore, we kept n = 50 in the following
study to better distinguish model behaviors. This parameter
is also set to be configurable to enable customized usage.

Impacts of Programming Languages. Some code lan-
guage models are optimized for a specific programming lan-
guage such as Python, which raises the question of whether
this could be an impact factor in our study. As such, we
analyzed multi-lingual open-source models and two com-
mercial products and examined the impact of programming
languages on the models’ reproducibility of code (i.e., the
extent to reproduce licensed code). The results are presented
in Figure 5. While we did not observe significant differences
across various languages, we did find that the reproducibil-
ity of Python code was generally the highest in terms of
both expected maximum similarity and empirical probabil-
ity. This could be attributed to the fact that both commercial
products, Codex and Copilot, claim to be most capable in
Python, and the open-source models studied were trained
on datasets with a majority of Python programs. Besides,
the measurements are comparable for C and C++ languages,
potentially because their syntax is highly similar. Across
these languages, the two CodeGen models with different
sizes also exhibit similar reproducibility, since their model
architecture and training data are the same.

Impacts of Prompt Length. Intuitively, one might expect
that longer prompts would increase the likelihood of the
model reproducing the original programs. To investigate
this potential relationship, we conducted both parametric
and non-parametric correlation tests with the null hypothesis
that the true correlation between the similarity score and
prompt length is zero. The Pearson test produced a correla-
tion coefficient of p = 0.0378 with a p-value of p = 0.1472,
while the Spearman and Kendall tests yielded p = —0.0034
and p = 0.8949, and p = —0.0023 and p = 0.8980, re-

= Copilot em Codex m= CodeGen-350M mm CodeGen-2.7B
L92is ] 2401 23,01
.83 80
71

1.0

Z08) 5 24
64

w
0.6

0.4
1.07 94,95

0.8 28 9

EP

0.671

04 Python Java C C++ C#

Programming language

Figure 5. Expected maximum (top) and empirical probability (bot-
tom) across five programming languages.

spectively. None of these analyses provided statistically
significant evidence (p < 0.1) to reject the null hypothesis.
Therefore, we concluded that there is no significant evidence
of a correlation between the similarity scores (indicating the
extent of reproducing code) and prompt lengths.

Prompts from Training Datasets. While the above studies
indicate the risk of generating IP-violating code, the results
were impacted by the imbalance in training data. Specif-
ically, some of the prompts can be derived from source
code included in training code, and the reproducibility of
such prompts is likely to be higher. To further investigate the
intrinsic characteristics, that is, the extent of a code LM to re-
produce its learned code, we constructed additional prompts
from individual training datasets of each open-source model.
Note that n = 5 is adopted during this evaluation due to
their high reproducibility of training data, and the results
are summarized in Table 5. Each model generally achieved
higher similarity scores and probabilities when the prompts
were derived from its training dataset. It is surprising that
prompts derived from other datasets also produced relatively
high scores, even though they were not used for training.
Further investigation revealed that these datasets shared a
significant amount of code data, which will be further de-
scribed in Section 6. To enable a more accurate assessment,
we preprocessed the data to exclude shared source code,
and the results are shown on the right side of Table 5. An-
other interesting finding is that the model scale alone did
not significantly impact the ability to reproduce code. For
example, the two models under the CodeGen and CodePar-
rot frameworks had a difference in model scale of ~10x,
but produced similar results.

6. Licensed Code in Training Datasets

In order to demystify the root causes, we analyzed the ex-
isting dataset used to train the language models. We eval-
uated four large-scale dataset* for training state-of-the-art

4Some of the included code repositories have been deprecated
or migrated and were therefore excluded from the analysis.



CODEIPPROMPT: Intellectual Property Infringement Assessment of Code Language Models

Dataset CodeRL CodeGen CodeParrot CodeRL-NO* CodeGen-NO CodeParrot-NO

Model EM EP EM EP EM EP EM EP EM EP EM EP
CodeT5-large 0.280.26 0.18 0.199.26 0.07 0.32¢ .26 0.22 0.310.14 0.19 | 0.229.16 0.13 0.260.19 0.17
CodeT5-large-ntp-py | 0.92¢.13 0.98 | 0.740.21 0.84 | 0.640.11 0.94 0910.15 0.98 | 0.38¢.21 0.24 | 0.400.06 0.14
CodeGen-350M 0.599.23 0.74 | 0.760.16 0.95 | 0.650.25 0.68 0.330.06 034 | 0.780.14 0.94 | 0.320.05 0.28
CodeGen-2.7B 0.549.12 0.80 | 0.78¢.15 0.96 | 0.660.24 0.66 0.280.04 0.33 0.750.11 0.98 | 0.360.08 0.26
CodeParrot-110M 0.500_20 0.20 0.550_17 0.63 0.660_17 0.76 0.310_04 0.22 0'230.06 0.30 0.710_23 0.80
CodeParrot-1.5B 0.58p.17  0.65 0.600.23 0.68 0.650.17 0.73 0.349.07 027 0.270.09 0.36 | 0.700.20 0.73

Table 5. Evaluation results of models with respect to prompts derived from individual training datasets. Left: prompts were derived from
direct sampling of training datasets. Right: prompts were derived from filtered datasets where overlapped corpus were not included (*NO

stands for non-overlap).

Dataset Total PUbh,c Permissive Weak Strong
Domain Copyleft Copyleft

GCPY 3063k | 2.18% 72.77% 3.18%  21.88%

CodeParrot-Clean | 437k | 1.67% 64.98% 341%  29.94%

CodeSearchNet 114k | 0.50% 91.88% 1.26% 6.37%

The Pile 191k | 40.52%  50.82% 1.58% 7.08%

Table 6. License composition for individual code corpus datasets.

code generation models. Specifically, we focused on The
Pile, CodeParrot-Clean, CodeSearchNet, and GitHub Code
(GCPY), which were widely used and adopted to train Code-
Gen, CodeParrot, and CodeRL models respectively. We
passed the repository names to GitHub API to obtain the
license information. More detailed information is presented
in Appendix D. As a result, we found that they explicitly or
implicitly include a significant amount of restrictive code.

6.1. Licensed Code in Training Dataset

License Distribution. The proportions of each license cate-
gory in the studied datasets are shown in Table 6. The results
revealed that all of these datasets contain source code with
restrictive licenses, which are involved to train code lan-
guage models. The majority of the code in these datasets
is under permissive licenses, however, a notable portion is
copyleft licensed. Additionally, code with public-domain
licenses typically has the lowest proportion, likely due to
the fact that most high-quality repositories are not licensed
under this category.

Overlapped Restrictive Code Among Datasets. Our anal-
ysis also revealed a significant number of overlapped li-
censed code among multiple datasets, with many of these
being copyleft licensed. To further investigate this issue,
we grouped the overlapped code based on their occurrences
across the four datasets and analyzed the license compo-
sition for each group. The results are shown in Figure 6.
We identified a total of 499,837 code repositories shared
by two datasets, 28,655 shared by three datasets, and 2,804
included in all four datasets (i.e., the occurrence is four).
For code data that is included in two or more datasets, the
majority is permissively licensed, but a significant portion

90% = - 86.7
== Public Domain = Weak Copyleft g4 =1

80%./= Permissive == Strong Copyleft
o ; 7 .

70%{ l s
60% l

30%

20%1

10%1

Percentage of license categories

o
X

1 4

Occurrences among the four datasets

Figure 6. Percentage of each category of licensed code in the over-
lapped corpus among the four datasets, the occurrence indicates
the number of datasets that include the portion.

is copyleft licensed. For instance, 13.3% of the code shared
by all four datasets is copyleft licensed.

We also analyzed the overlapped code data for each indi-
vidual dataset. For each dataset, we identified the code
repositories that were also included in other datasets and
analyzed their licenses. The results are summarized in Ta-
ble 8. For instance, 33.43% of the overlapped data between
CodeParrot-Clean and other datasets is copyleft licensed,
and 28.75% of the overlapped data for GCPY is copyleft
licensed. These findings suggest that these datasets contain
a significant amount of restrictive code that is shared among
them. As a result, it is important to carefully consider the li-
cense composition of the data in order to ensure compliance
with the license and protect intellectual property rights.

Implicit Inclusion of Restrictive Code. Another real-world
problem that further complicates the issue lies in the implicit
inclusion of copylefted code in less restrictively licensed
(such as public-domain and permissive) repositories. As
a matter of fact, this has been a longstanding issue in the
code supply chain, as previously documented in the litera-
ture (Wolter et al., 2022). To investigate this problem, we
first developed a non-overlap set of repositories that are in-
cluded by the four datasets, totaling 3,240,755 repositories.
We sampled 345,222 repositories and used the GitHub API
to check if they were forked from more restrictive licensed
repositories. As a result, 353 violations were identified,
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Baseline

Model Fine-Tune Dynamic Filter

Model
EM EP Pass@] Pass@10 Pass@100| EM EP Pass@] Pass@10 Pass@100| EM  EP Pass@1 Pass@10 Pass@ 100
CodeParrot-110M  [0.980.04 0.99 341% 539%  7.02% |0.71p.13 0.70 3.56% 5.17%  7.44% |0.460.0s 0.00 1.17% 1.69%  3.28%
CodeParrot-1.5B  |0.999.01 0.99 3.84% 6.77% 10.02% |0.679.18 0.69 3.14% 5.84%  8.28% [0.400.10 0.00 1.46% 2.11% 2.78%

CodeT5-large 0.119.21 0.04 0.00 0.00 0.00

0.71¢.15 0.68 1.70e-03 7.78e-03  0.02

0.109.20 0.00 0.00 0.00 0.00

CodeT5-large-ntp-py|0.929.12 0.99 1.40e-05 1.30e-04 8.00e-04 |0.82¢.10 0.87 2.48e-03 8.64e-03  0.02

0.47¢0.06 0.00 0.00 2.83e-05 1.42e-05

Table 7. Performance of the mitigation strategies compared to baseline models under the CodeParrot and CodeRL frameworks. The code
synthesis capability is evaluated using the HumanEval (CodeParrot) and APPS (CodeRL) benchmarks.

Dataset #OL | OL% PUbh,c Permissive Weak Strong
Domain Copyleft Copyleft

GCPY 526k | 17.17% | 1.49% 69.75% 3.18%  25.57%

CodeParrot-Clean | 424k | 97.03% | 1.68% 64.89% 341%  30.02%

CodeSearchNet | 79k |69.30% | 0.14% 92.43% 2.16% 5.27%

The Pile 65k | 34.03% | 1.34% 84.66% 2.64%  11.35%

Table 8. The total number of overlapped code and their license
distributions for each dataset (OL represents overlap).

which consist of 0.1% of the examined repositories. For
instance, 268 repositories were forked from strong copy-
left licensed code, but were not themselves licensed under
strong copyleft. Similarly, 71 repositories were forked from
weak copyleft licensed code, but were neither licensed under
strong nor weak copyleft. A total of 14 repositories were
forked from permissive code, however, they were released
under public-domain licenses that require no restriction.

What is probably more concerning is that there may be a
significant number of repositories that include portions of
code from restrictive sources without providing appropriate
licenses or attribution (Wolter et al., 2022). As such cases
are not included in the study, the boundaries between per-
missible and restricted code can be even more blurred than
our results suggest.

7. Evaluating Mitigation Methods

Although the issue has been less studied before, potential
mitigation strategies are not entirely out of scope. We in-
vestigated the effectiveness of two approaches: data-based
techniques, which involve fine-tuning the model with public-
domain licensed code; and decoding-based techniques,
where we developed a dynamic token filtering strategy to
prevent similar generations. We used the four models under
the CodeRL and CodeParrot frameworks as the basis for
performance comparisons.

Fine-tune Models. In this approach, we wonder if further
tuning models with public-domain data would help them
recall less restrictive code. Specifically, we used samples
from previously collected public-domain data, totaling over
17K code snippets. The hyperparameters for tuning each
model are detailed in Table 9 in the Appendix. We then used
the same strategies in Section 5 to assess the performance.

Dynamic Token Filtering. Recent research on control-
lable text generation has shown promise in preventing the
generation of toxic natural language (Ghosh et al., 2017;
Dathathri et al., 2020). Inspired by the concept, we devel-
oped a dynamic filtering mechanism where we only decode
k tokens at a time and evaluate the similarity using the
CODEIPPROMPT framework. If the score is above 0.5, we
roll back one token and choose from the remaining options.
We also added a termination condition where no options
are available to ensure a score lower than 0.5. To balance
computational costs, we set £ = 10 in the experiments.

Besides EM and EP for evaluation in terms of IP, we in-
cluded additional measurement on code synthesis capa-
bility using the APPS (Hendrycks et al., 2021) and Hu-
manEval (Chen et al., 2021) benchmark with pass @k met-
rics. The results summarized in Table 7 showed that both
strategies were useful in reducing the reproducibility of
code, although to different extents. Data-based fine-tuning
was less effective in preventing the reproduction of code,
as most of the EM and EP scores did not significantly drop
to the desired range. The only exception occurred in the
CodeT5-large model, where the reproducibility actually in-
creased significantly. This is because the model’s synthesis
capability improved with fine-tuning, leading it to exhibit
similar characteristics as CodeT5-large-ntp-py under the
same framework. However, its reproducibility is indeed
reduced via tuning, which is lower compared to the CodeT5-
large-ntp-py models with similar synthesis capabilities but
higher reproducibility. On the other hand, dynamic filter-
ing was able to suppress the similarity scores to within the
threshold of 0.5, but it also reduced the overall ability of the
models to generate coherent code, as indicated by the APPS
metric. Through human inspection, we found that blocked
tokens led the model to generate suboptimal or even incor-
rect solutions. As a result, neither of these approaches fully
solves the problem, and may come at the cost of reduced
synthesis performance. Potential improvements are further
discussed in Section 8.

8. Discussions

Mitigation by Removing Restrictive Data. One potential
mitigation strategy is to reduce the percentage of restrictive
code within the training dataset. While the inclusion of
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copyrighted content in training machine learning models
remains a controversial topic, with legal cases (Coyer, 2022)
having been brought forth, it seems necessary to consider
this approach. Despite this, our analysis suggests that sim-
ply excluding them from the training dataset may not be
fully effective, as there may be a non-negligible number of
restrictive code being implicitly included in “permissive”
repositories. It is therefore imperative to implement more
careful and granular processing of training data.

Mitigation with Controllable Code Generation. In this
study, we implemented a dynamic blocklist based on sim-
ilarity scores as feedback to disallow the generation of re-
strictive code. However, we observed a significant drop in
performance as the current models rely, to some extent, on
recalling training data to provide solutions. Potential im-
provements include increasing efficiency by learning hidden
representations from restrictive code, or by improving the
balance between performance and IP compliance. In the
context of code generation, the unique challenge for control-
lable generation is that IP violations cannot be assessed at
the granularity of individual tokens, but rather require spans
of sufficient length. Therefore, further research is needed
for adaptive code generation control.

Mitigation by Enabling More Intelligent Model. Another
important direction in addressing the issue is to develop
more “intelligent” models. In our evaluation that covers di-
verse language model architectures, we found that in some
cases, even state-of-the-art models or commercial products
seem to simply copy previously learned information. There-
fore, exploring improved model architectures from the per-
spective of IP protection could be a valuable future work
direction. CODEIPPROMPT can serve as a benchmark to
evaluate and compare different model architectures.

Attributing to Origins of Generated Code. One signif-
icant challenge in addressing the issue is the difficulty in
identifying the source of the code. This lack of informa-
tion makes it difficult to determine the applicable licensing
terms and conditions for the generated code. To tackle the
problem, it is essential to develop mechanisms for tracing
the generated code back to its training data to determine
whether there are any potential matches. However, the tradi-
tional method of iteratively comparing the generated code
with the potentially extensive training data can be computa-
tionally expensive. Therefore, it is worth considering more
efficient solutions as future research directions.

CoODEIPPROMPT Beyond Benchmarking IP Violation.
The impact of CODEIPPROMPT could extend beyond bench-
marking the extent of IP rights violation by code LMs. One
important application is to evaluate the effectiveness of mit-
igation methods. For example, it can be used to assess the
extent to which new model architectures rely on direct recall

of training code, and to verify the accuracy of attribution
based on similarity scores. Additionally, CODEIPPROMPT
can be employed to detect implicit inclusion of restrictive
code within more permissively licensed programs. As a
result, CODEIPPROMPT can serve as an instrumental tool in
addressing the issue and ensuring improved IP protection.

9. Limitations

There are several limitations to our study. First, our con-
structed prompts only cover a portion of existing licensed
code with a focus on five commonly-used programming
languages (i.e., Python, C, C++, C#, and Java). Second,
we did not compare the generated code against every single
licensed program file, so the maximum similarity scores
could be even higher than our results suggest. Therefore,
our results can serve as a lower bound for similarity, while
the generated code might be even more similar to other ex-
isting licensed programs. Future work could expand upon
our analysis by evaluating a larger range of code generation
models and programming languages.

10. Conclusion

We present CODEIPPROMPT, a generalizable platform for
evaluating the extent to which language models can repro-
duce learned code, which can result in potential intellectual
property infringement. Using the framework, we analyzed
multiple state-of-the-art models and commercial products,
and investigated potential strategies for addressing the is-
sue. To better understand the root cause, we examined the
existing large training datasets and discovered that many of
them contain a significant number of copyrighted programs,
either explicitly or implicitly. Finally, we provide insights
on mitigation strategies and shed light on future directions.

11. Ethical Considerations

The authors of this work hereby affirm that they are aware
of and adhere to the NeurlPS Ethics Guidelines. Code
language models were utilized in this work, and the risks
and potential harm of which are discussed in (Brown et al.,
2020). All generated code, particularly those that may po-
tentially violate original licenses, were deprecated following
the conclusion of the research and were not used outside of
the study. We do not anticipate that the use of our framework
will result in harmful outputs.
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A. Open Source Licenses

Public domain license. Public domain licenses grant users the maximal degree of freedom to utilize, modify, and distribute
software without any legal restrictions. These licenses waive all copyright protections and permit users to employ the
software for any purpose, without incurring any obligations or conditions. Representative examples include the Unlicense
and the CCO Public Domain Dedication.

Permissive licenses. Permissive licenses place very few restrictions on how the source code can be used and allow users to
freely modify and distribute the code. These licenses often include a disclaimer of liability, and do not require that modified
versions of the code be distributed under the same license. Users are generally free to do as they wish with the source
code, as long as they include a copy of the license and attribution to the original authors in the copies or derivative works.
Examples of permissive licenses include the MIT License, the BSD License, the Apache License, and Version 2.0 of the
Artistic Licence.

Weak copyleft licenses. Weak copyleft licenses are a type of copyleft license that allows users to incorporate the source
code into proprietary software, as long as the source code is made available under the same license. This means that users
can use the source code in proprietary software, but they must make the source code of the original copylefted work available
under the same license. Examples of weak copyleft licenses include Lesser GNU Public License (LGPL), the Mozilla Public
License (MPL), and Eclipse Public License (EPL).

Strong copyleft licenses. Strong copyleft licenses are the most restrictive type of copyleft licenses and require users to
distribute any modified versions of the source code under the same license, even if the source code is incorporated into
proprietary software. This means that users must open source any modifications to the code and must distribute the resulting
software product under the same license. Compared to weak copyleft licenses that apply only to the original copylefted
work, strong copyleft licenses apply to all derived works and software components in the package. Examples of strong
copyleft licenses include GNU General Public License (GPL) and GNU Affero General Public License (AGPL).

B. Details of Studied Models

ChatGPT. ChatGPT is a commercial language model developed by OpenAl. It is a GPT-3-based model and is used for
generating human-like text responses in conversation. ChatGPT is trained on a diverse range of internet text but fine-tuned
with human supervision, incorporating reinforcement learning from human feedback. In this study, we evaluate the GPT-3.5
model accessible via the OpenAl API.

GPT-4. GPT-4 is the latest iteration of conversational language models. Built upon the architecture of GPT-3, it boasts an
increased scale to allow for more precise and nuanced outputs. The model has been trained on a wider range of internet text
and has shown promising improvements in natural language understanding and generation tasks. In the context of this study,
we utilize GPT-4 API to send prompts and get responses.

GitHub Copilot. Copilot is a widely used commercial tool that utilizes a GPT-3 based engine to suggest lines of code
or entire functions. However, since it does not provide an API that allows for automatic evaluation, we conducted a
human-in-the-loop evaluation and manual efforts mainly lie in code completion. We used Copilot integrated into the Visual
Studio Code IDE and completed code suggestions based on constructed prompt files. In order to minimize the influence
of human inputs, we only complete provided suggestions with given prompts, and the process will also stop once the tool
repeats the existing code. Additionally, we took measures to mitigate the potential for desirability bias by keeping the
original source files used to create the prompts hidden.

Codex. Codex is a left-to-right autoregressive model based on the GPT-3 architecture. It is trained on tens of millions of
public repositories and is used to power GitHub Copilot. In this study, we focus on code-davinci-002, the most capable
model available through the OpenAl commercial API.

CodeRL. CodeRL is a descendant of the CodeT5 family of encoder-decoder language models (Wang et al., 2021). It has
demonstrated impressive performance with integrated deep reinforcement learning. We evaluated two models within the
framework: CodeT5-large and CodeT5-large-ntp-py>.

>To avoid confusion, we use the original name of the released model. The two models are built upon CodeTS5 as the backbone and are
therefore named with CodeTS5 in the official release.
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CodeGen. CodeGen is a family of code language models in the form of autoregressive transformers. These models
are trained to perform next-token prediction language modeling on a combination of natural language and programming
language data sourced from GitHub. In this study, we focus on the CodeGen-350M and CodeGen-2.7B models.

CodeParrot. CodeParrot is a series of transformer-based models built upon GPT-2 architecture. The released checkpoints
are trained on a dataset derived from a GitHub dump, and have demonstrated strong downstream performance compared to
other models with a similar scale. We use CodeParrot-110M and CodeParrot-1.5B for evaluation.

C. Computational Resources

The experiments and fine-tuning were conducted on graphics cards as summarized in Table 10. Three pieces of GPU1 were
mainly used for training, while three pieces of GPU2 were utilized for both training and running code language models. The
machines were equipped with 128 pieces of AMD EPYC 7742 (1.80GHz) and 24 pieces of Intel 19-10920X CPU (3.50GHz)
for data processing. The training hyperparameters are summarized in Table 9. The fine-tuning for CodeParrot required 4
GPU hours for the smaller model with 110M parameters and 12 GPU hours for the larger model with 1.5B parameters. For
the CodeT5-large and CodeT5-1arge-ntp-py models within the CodeRL framework, both took 66 GPU hours respectively.
Both HumanEval and APPS benchmarks were conducted on GPU1, with settings following the original implementation.

Hyperparameter CodeRL CodeParrot
optimizer AdamW AdamW
initial learning rate 2e-5 Se-4 Graphics Card 1 NVIDIA A100 (80GB VRAM)
batch size 1 2 Graphics Card 2 NVIDIA GeForce RTX 3090 (24GB VRAM)
gradient accumulate steps 32 32 Central Processing Unitl Intel 19-10920X CPU (3.50GHz)
number of epochs 10 54 Central Processing Unit2 AMD EPYC 7742 64-Core Processor (1.80GHz)
warmup steps 500 100
weight decay 0.05 0.1 Table 10. Computational resources used for experiments.

Table 9. Hyperparameter for fine-tuning models.

D. Detailed Information of Studied Datasets

The Pile. The Pile (Gao et al., 2020) contains both natural language text and programming code and is compiled from 22
diverse, high-quality subsets, including programs collected from popular GitHub repositories (>100 stars). This dataset
is used to train the CodeGen model. While the dataset does not indicate the licenses of individual programming files, it
provides a metadata CSV file containing repository names. We parse these names through the GitHub API to obtain license
information.

CodeSearchNet. The CodeSearchNet dataset, introduced by Husain et al. (Husain et al., 2019), consists of over 2 million
program examples paired with natural language queries and summaries describing their purpose. It includes both unimodal
(PL-only) and bimodal (PL-NL) data for training the CodeRL and CodeBERT models.

CodeParrot-Clean. It contains exclusively Python code from the GitHub dataset available through Google’s BigQuery. It
was used to train and validate the official release of CodeParrot models.

GitHub Code (GCPY). This dataset is a subset of a large-scale GitHub code dataset and consists of over 10 billion tokens.
This dataset was used to further train the CodeRL models in addition to the CodeSearchNet dataset.
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Prompt Generate Source Similarity
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc.
team.
# Copyright (c) 2018, NVIDIA CORPORATION. ALl rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the “License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
def load_tf_weights_in bert(model, config, tf_checkpoint_path): 7 http://waw.apache.org/licenses/LICENSE-2.0
TLoad tf checkpoints in a pytorch model. # Unless required by applicable law or agreed to in writing, software
Vot re # distributed under the License is distributed on an "AS IS" BASIS,
e henny a5 n # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
mgwl ten‘;zrnw e # See the License for the specific language governing permissions and
except TnporeErrors # limitations under the License.
Togger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be def loaﬁu;; ﬁ?’g:;iklgls‘:;‘i’:”:“'t;‘r’g“:[]d;{ checkpoint_path):
installed. Please see " P 24
“https://wwi. tensorflow.org/install/ for installation instructions." inport re
)
ra|5§ import numpy as np
tf_path = os.path.abspath(tf_checkpoint_path) e o as 1t
logger. info("Converting TensorFlow checkpoint from {}".format(tf_path)) axcent o ST
# Load weights from TF model '{ngge‘; ercor(
Indt_vars = Ui train. list_variables(tf_path) "Loading a TensorFlow model in PyTorch, requires TensorFlow to be
arrays - 11 installed. Please see
o aene, Shape in init_vars: ttps: //www tensorflow.org/install/ for installation instructions
logger. info("Loading TF weight {} with shape {}".format(name, shape)) Laise
array - ‘2;‘;[:;:';_)““-“”3“9"f—"““' nane) tf_path = os.path.abspath(tf_checkpoint_path)
s g" nd(array) logger. info(f"Converting TensorFlow checkpoint from {tf_path}")
for rrays.ppendlars }'n . rrays): # Load weights from TF model
ane, array punames, arrays): init_vars = tf.train.list_variables(tf_path)
name = name.split("/") names - (1
# adam_v and adam_m are variables used in AdamiWeightDecayOptimizer to iie
calculated m and v -
for name, shape in init_vars:
def Toad_tf_weights_in_bert(nodel J:fw::‘;:w are not required for using pretrained model logger. info(f"Loading TF weight {name} with shape {shape}")
config, tf_checkpoint_path): n in ["adan_v", "adam_n", “AdanWeightDecayOptimizer", e t;;":;;é}"adf"a”ame‘“J’a"" nane) 10
“AdanieightDecayOptimizer_1", “global_step"] ey and (array)
rn in name ys-app o
Togger. info("Skipping {}".format("/".join(name))) for :Zﬁifnﬁﬂil&ili";a?“ arrays):
Dm;g'fﬂ":gde‘ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to
o noname in name: calculated m and v
7 re- fullnateh( ™ [A-Za-z]+ ffwg;;r‘w are not required for using pretrained model
e copesnanes = e split(F_(\de n in ["adam_v", "adam_nm", "AdamWeightDecayOptimizer",
: _ “AdanieightDecayOptintzer. 1", "global_step"]
scope_names = [m_name] cavoptamzer
if scope_names[0] == "kernel" or scope_names[@] == “gamma":
pointer = getattr(pointer, “weight") " o "
elif scope_names [0] utput_bias" or scope_names[0] == "beta": Logger. info({"Skipping 417" join(nane) ")
pointer = getattr(pointer, "bias" ointer = model
elif scope_names[@] utput_weight: ';w Iy rame 1n name
ebf"ség;:"‘:mg:t{;]ﬁ”("“;“‘E" eight”) 17 Te. fullnatch (" [(A-Za-z]+_\d+", m name):
pointer o getattr(pointer, "classifier") oo Scope_names = re.spLIt(F"_(\d+]" n_nane)
ee: scope_nanes = [n_nanel
pointer = getattr(pointer, scope_names[0]) i Ssggﬁzgimféglattr(:;s;:f;r °.Twzi;ﬁi-."a'"e5w] - oamm
except AttributeError ’ ; weig _
Togger. info("Skipping {}".format("/".join(name))) ebfPZiﬁ‘t’S;”i"'g:t[gltr( ‘:::Z‘:Lbéfzs‘;' scope_names [0]
continue bl
- elif scope_names[0] == "output_weights
if le"‘sf"pef"a'"“) >= 2 pointer = getattr(pointer, "weight")
num = int(scope_names [1]) Uit etope nanes o]
pointer = pointer{nun] pointer = getattr(pointer, "classifier")
if m_name[-11 cleeh
try:
pointer = getattr(pointer, scope_names[0])
except AttributeErro
Togger. info(f"Skipping {*/*.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_i names[l]h
inter = pointer [num]
i mnamel-11:] —— * embeddings
/%
Copyright (C) 1999-2085 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
;{ fisé :"vf{‘scf?q“ﬁrﬁugg:ﬁ ) useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
T oat 0_rsq oa MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Llong 1s GNU General Public License for more details.
// fast inverse square root mgt oy
onet (léa{ threehalfs - 1.5F; You should have received a copy of the GNU General Public License 0.94
float Q_rsqrt( float number ) o number «pepa e = AT along with Foobar; if not, write to the Free Software
Y = numbers i Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
i=% ( long * ) &; // evil floating point bit level hacking »
1= 0x5f3750df - (i>>1);
float Q_rsqrt( float number )
{
tong i;
float x2, y
conet flsat threehalfs = 1.5F;
X2 = number * 0.5F;
y = number;
i =% ( long * ) &y; // evil floating point bit level
hacking
1= 0x5f3750df - (i >>1);

Table 11. Examples of potentially IP-violating code generated by the commercial product Copilot.
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Source

Generate

// This file is required by karma.conf.js
and loads recursively all the .spec and

framework files

// First, initialize the Angular testing

// This file is required by karma.conf.js and loads recursively all the .spec and

framework files
// First, initialize the Angular testing environment.
// Then we find all the tests.

// And load the modules.

import ‘zone.js/dist/zone-testing';
import { getTestBed } from ‘@angular/core/testing';
import
BrowserDynamicTestingModule,
platformBrowserDynamicTesting
} from ‘@angular/platform-browser-dynamic/testing';

/%
* Copyright 2018-present
*

environment.
// Then we find all the tests
// And load the modules.

declare const require: any;

// First, initialize the Angular testing environment

getTestBed().initTestEnvironment(
BrowserDynamicTestingModule,
platformBrowserDynamicTesting()

)i

// Then we find all the tests.

const context = require.context('./', true, /\.spec\.ts$/);
// And load the modules.

context.keys().map(context);

* Licensed under the Apache License, Version 2.0 (the “License");
* you may not use this file except in compliance with the License
* You may obtain a copy of the License at

*
* http://www.apache.org/Licenses/LICENSE-2.0
*

* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and

* limitations under the License.

*/

// This file is required by karma.conf.js and loads recursively all the .spec and
framework files

import 'zone.js/dist/zone-testing';
import { getTestBed } from 'Gangular/core/testing’
import {
BrowserDynamicTestingModule,
platformBrowserDynamicTesting
} from 'Gangular/platform-browser-dynamic/testing';

declare const require: any;

// First, initialize the Angular testing environment

getTestBed().initTestEnvironment(
BrowserDynamicTestingModule,
platformBrowserDynamicTesting()

// Then we find all the tests.

const context = require.context('./', true, /\.spec\.ts$/);
// And load the modules

context.keys () .map(context) ;

public class KaptchaTextCreator extends
DefaultTextCreator

public class KaptchaTextCreator extends DefaultTextCreator

private static final String[] CNUMBERS = "0,1,2,3,4,5,6,7,8,9,10".spLit("

@Override
public String getText()
{

Integer result = 0;
Random random = new Random();
int x =
int y = random.nextInt(10);
StringBuilder suChinese =

i
i

else if (randomoperands

random.nextInt(10);

new StringBuilder();
(int) Math.round(Math.random() * 2);
0)

nt randomoperands
 (randomoperands ==

result = x * y;
suChinese.append (CNUMBERS [x]) ;
suChinese.append (
suChinese.append (CNUMBERS [y]) ;

1)

0)

if (Hx ==10) &y % x
{

result =y / x;
suChinese.append (CNUMBERS [y]) ;
suChinese.append("/");
suChinese.

public class KaptchaTextCreator extends DefaultTextCreator

private static final String[] CNUMBERS = "e,1,2,3,4,5,6,7,8,9,10".split(

@Override
public String getText()
{

Integer result = 0;

Random random = new Random () ;

int x = random.nextInt(10);

int y = random.nextInt(10

StringBuilder suChinese = new StringBuilder();
int randomoperands = (int) Math.round(Math.random() * 2);
if (randomoperands == 0)

result = x * y;
suChinese.append (CNUMBERS [x]) ;
suChinese.append
suChinese.append (CNUMBERS [y]) ;

}

else if (randomoperands == 1
if (1(x ==0) &y % x == 0)
{

result =y / x;

suChinese.append (CNUMBERS [y]) ;

suChinese.append("/");

suChinese.append (CNUMBERS [x1) ;
}

/// <summary>

/// <sunmary>
/// Required designer variable.
/17 </summary>

Systen. ComponentModel, IContainer
components = null;

/// <sunmary>

otherwise, false.</param>

System. ComponentModel. ComponentResourceManager (typeof (Form1)

/// Required designer variable.

/17 </summary>
private System.Componentiodel, IContainer components = null;

/// <sunmary>
/// Clean up any resources being used.

71/ </summary>
/1/ <param name="disposing">true if managed resources should be disposed

protected override void Dispose(bool disposing)
if (disposing && (components != null))
{
components.Dispose();

base.Dispose(disposing);

#region Windows Form Designer generated code

/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor
/17 </summary>
private void InitializeComponent()

this.components = new System.ComponentModel.Container();

System. ComponentMode. ComponentResourceManager resources = new

new System.Windows.Forms.Label();
new System.Windows.Forms. Label(
new System.Windows.Forms.Label(

this.labell
this. label2
this. label3
this.label

/// Required designer variable.

71/ </summary>
private System.ComponentModel.IContainer components = null;

/// <summary>
/// Clean up any resources being used.
71/ </summary>

/// <param name='
otherwise, false.</param>
protected override void Dispose(bool disposing)

disposing“>true if managed resources should be disposed

if (disposing && (components != null))
{
components. Dispose() ;

base.Dispose(disposing);

#region Windows Form Designer generated code

/// <sunmary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor

/17 </summary>

private void InitializeComponent()

System. ComponentMode. ComponentResourceManager resources = new
System. ComponentModel. ComponentResourceManager ( typeof (ConfigureUserPassword));
this.btnCancel = new System.Windows.Forms.Button();

this.btnOK = new System.Windows.Forms.Button();

this.labell = new System.Windows.Forms.Label();

this.tUsername = new System.Windows.Forms.TextBox()
this.tPasswordl = new System.Windows.Forms.TextBox();

this.label2 = new System.Windows.Forms.Label()

this.tPassword2 = new System.Windows.Forms.TextBox()

this.label3 = new System.Windows.Forms.Label();
this.SuspendLayout () ;

def run_virsh_resume(test, params, env)

def run_virsh_resume(test, params, env)
Test command:

The command can Resume a domain
1.Prepare test environment.
2.When the libvirtd

3.Perform virsh resume operation
4.Recover test environment.
5.Confirm the test result.

vn_name = parans.get("main_vm"

vm
vn_ref = params.get("resune_vn_ref")
status_error = params.get("status_error", "no"

libvirtd
extra = params.get("resume_extra®, "")

if vm_ref

virsh resume.

‘off", stop the libvirtd service.

= env.get_vn(vn_name)

won®

params.get("libvirtd

id
vm.get_id()
hex_id

def run_virsh_resume(test, params, env)

Test command: virsh resume.
1) Start vm, Prepare options such as id, uuid
2) Prepare vm state for test, default is paused
3) Prepare other environment

4) Run command, get result.

5) Check result.

vn_name = parans.get("main_vm"

vm = env.get_vm(vm_name)

vm.verify_alive()

# Get parameters
vm_ref = params.get("resume_vm_ref", "domname")
vm_state = params.get("resume_vm_state", "paused")
option_suffix = parans.get("resume_option_suffix"
status_error = parans.get("status_error", "no"

domid = vm.get_id()
domuuid = vm.get_uuid()

# Prepare vm state
"pause

"shutoff":
vm.destroy()

# Prepare options
if vm_ref == "domname":
vm_ref = vm_name

elif vm_ref domid
_ref = domid
“domuuid":

0.80

vn_ref = domuuid

Table 12. Examples of potentially IP-violating code generated by the commercial Codex API.
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Prompt Generate Source Similarity
/%
* Copyright 2015-present Open Networking Foundation
¥
* Licensed under the Apache License, Version 2.0 (the "License");
% you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
M
% http://ww.apache.org/licenses/LICENSE-2.0
¥
public class BgpOpenMsgVerd implements BgpOpentisg { * Unless required by applicable law or agreed to in writing, software
BgpHeader bgphsgHeader; * distributed under the License is distributed on an "AS IS" BASIS
int version; * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied
int asNumber; * See the License for the specific language governing permissions and
int holdTime; * Llinitations under the License
int bgpld; */
List<BopOpenPacket> bgpOpenpacketList;
public BgpOpenMsgVera() {
ok this.bgpMsgHeader = null;
* Returns object of this class with specified values. this.version = 0
* this.holdTime = 0;
* @param bgpisgHeader BGP message header this.asNumber = 0;
public class BgpOpenMsgVerd implements * @param version BGP version this.bgpId = 0;
BgpOpenMsg { « @param asNumber AS number this.capabilityTly = null; 0.80
* @param holdTime hold time }
* @param bgpId BGP 1D x
* @param bgpOpenPacketList list of BGP open packets * Constructor to initialize all variables of BGP Open message.
*/ *
public BgpOpentsgVerd( , int version, int asNumber, * @param bgphsgHeader BGP Header in open message
int holdTine, int bgp * @param version BGP version in open message
List<BgpOpenpacket> bgpOpenPacketList) { * @param holdTime hold time in open message
this.bgpisgHeader = bgpMsgHeader; * @param asNumber AS number in open message
this.version = version; * @param bgpId BGP identifier in open message
this.asNumber = asNumber; * @param capabilityTlv capabilities in open message
this.holdTime = holdTime; */
this.bgp ublic BgpOpentisgverd( p , byte version, long asNumber
short holdTime,
int bopld, LinkedList<BgpValueType> capabilityTlv) {
this.bgpMsgHeader = bgpMsgHeader;
this.version = version;
this.asNumber = asNumbe
this.holdTime = holdTine;
this.bgpId = bgpld;
this.capabilityTlv = capabilityTlv;
}
def VnFailedStartingSecondaryEvent(vim, ¥args, +kwargs)
def YTfi;;i“zs:;t1:g§§$§2“f;§fvfaé‘:;:én§:;350m’:éziégslo ctart.in "*'This event records vmotion failure when starting a secondary VM.
obj = vim.client.factory.create('ns0:VnFailedStartingSecondaryEvent') obj = vin.client. factory.create('ns0:VnFailedstartingsecondaryEvent
# do_some validation checking...
ffd?\st:r;z}lfaiézzkzgfgthg< . if (len(args) + len(kwargs)) < 5:
raise IndexError('Expected at least 6 arguments got: %d' % len(args)) raise IndexError(’Expected at least 6 arguments got: %d' % len(args)
required = [ 'template’, 'chainId’, 'createdTine’, 'key', 'userName' ] required = [ 'template’, ‘chainld’, 'createdTine’, 'key', ‘userName' ]
optional = [ 'changeTag', 'computeResource', 'datacenter’, 'ds', 'dvs', gysPHional = [ freason’, fchangeTag!, 'computeResource’, 'datacenter’, 'ds
def VmFailedStartingSecondaryEvent(vim, . .~ fullFormattedMessage', ‘host', 'net’, 'wn', 'dynamicProperty’, ‘fullFormattedMessage', ‘host', ‘net', 'vm', 'dynamicProperty"
xargs, Fxkwargs): dynanicType

*dynamicType" 0.92
for name, arg in zip(required+optional, args): . .
for name, arg in zip(required+optional, args):

setattr(obj, name, arg) setattr(gb], nal:e, grgi g ¢
for name, value in kwargs.items():

if name in required + optional: for ;‘?mﬁam;a}:er;;ufrzggi;;im;
else?etattr(obj, name, value) setattr(obj, name, value)
. ' . . s else:
.+ Jotn(rerdsE YolUeError( Tnvslid srgment: %5, Expected one of %' % (nane, Taise TovalidhrgunentError (*Invalid arguments %s. Expected one of %"

% (name, ", “.join(required + optional)))
return obj return obj

#1/usr/bin/env python #1/usr/bin/env python
# #

class ReferenceParametersType_(SamlBase):

def reference_parameters_type__from_string(xml_string):

return saml2.create_class_fron_xnl_string(ReferenceParanetersType_, def reference_parameters_type__from_string(xml_string):
xml_string) return saml2.create_class_fron_xml_string(ReferenceParanetersType_,
xml_string)

class ReferenceParametersType_(SamlBase) :

class BasisType_(SamiBase):
#1/usr/bin/eny python ""The BasisType attribute is an optional element
#

class MetadataType (SamlBase):
See: http://www.secteurs.org/2011/letter-concepts/xsd-reference-parameter_type he

tp://wi.w3.0rg/2005/08/address ing:MetadataType element

;;?55 ReferenceParametersType_(SamlBase) : c_tag - 'basisType’ c_tag - 'MetadataType’ 090
= NAMESPACE c_namespace = NAMESPACE
SsamlBase.c_children.copy() c_children = SamlBase.c_children.copy()
c_attributes = SamlBase.c_attributes.copy() c_attributes = SamlBase.c_attributes.copy()
c_child_order = samlBase.c_child_order[:] c_child_order = samlBase.c_child_order[:]
c_cardinality = SamlBase.c_cardinality.copy() c_cardinality = SamlBase.c_cardinality.copy()

reference_parameters_type__from_string(xml
_string):

def basis_type__from_string(xnl_string):

def metadata_type__from_string(xml_string):
return saml2.create_class_from_xml_string(BasisType_, xml_string)

return saml2.create_class_from_xml_string(MetadataType_, xml_string)

class CryptographicParametersType_(SamlBase): class RelationshipTypeOpenEnun_(SamiBase):

# License: GNU General Public License v3. See license.txt

§ § class PurchaseReceipt (BuyingController):
¢ e G General Pslic License 2. S Licnses ot et Init (SeLf, saross wkwarge):
’ d’;v‘rw(::ifweiéf;wﬁy‘fxg e super(PurchaseReceipt, self).__init__(xargs, wkwargs)
PO NN self.status_updater = [{
super(PurchaseReceipt, self). _init_(xargs, +-kvargs) : date . s
1f. status_updater = [ source_dt': 'Purchase Receipt Ttem',
‘source_dt': ‘Purchase Receipt Item’, target_dt Purchase Order Item
‘target_dt': 'Material Request Item', 'join_field': 'purchase_order_item',
‘join_field': 'naterial_request_iten', ‘target_field': 'received_gty',

“target_field': ‘ordered_qty’,
‘target_parent_dt': ‘Material Request',
“target_parent_field: 'per_ordered’,

# License: GNU General Public License v3.

‘target_parent_dt': 'Purchase Order',
See license. txt

“target_parent_field': 'per_received’,

X ‘target_ref field': ‘qty’, 071
class PurchaseReceipt (BuyingController): “target_ref_field': 'aty’, "source_field': 'qty’, .
def __init__(self, *args, xrkwargs): *source_tield': ‘qty’ ‘percent_join_field 2 purchase order',
“percent_join_tield': ‘purchase_order’ ‘overflow_type': 'receip
percent_join_field': ‘naterial_request’, }.end
‘overflow_type': 'billing*
n def validate(self):
self.validate_posting_time()
def validate(self): super(PurchaseReceipt, self).validate()
self.validate_posting_tine()
£ ot self.is_

setf.po, if self. actiol :
i self.make_batches ('warehouse')

bmit"

Table 13. Examples of potentially IP-violating code generated by the open-source models (CodeGen, CodeRL, and the last two by
CodeParrot models respectively).

16



CODEIPPROMPT: Intellectual Property Infringement Assessment of Code Language Models

L->next->prev = lprev;

return list.next;

1->next = 11 7 11
1->next->prev = 1;

12;

return list.next;

Prompt Generate Source Similarity
uintl6_t shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t
“’“'”;n‘(‘igtffindﬁl;zg"’f’af uint16_t shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t
u _ P =05 count, uint8_t delayTime) {
for (uint8_t i = 0; i < count; i++) { uint16_t value = @;
digitaliirite(clockPin, HIGH
. for(uint8_t i = 0; i < count; ++i) {
delayMicroseconds(delayTine OTgitathrite(clockbin, HIGH):
_ delayMicroseconds(delayTime);
uint16_t shiftIn(uint8_t dataPin, uints_t if ‘?;f{g;a LZ?Fig{;eidtdatapm) i if(bitOrder == LSBFIRST) {
clockPin, uint8_t bitOrder, uint8_t count, ) e‘sep( 9 g value |= digitalRead(dataPin) << i; 0.71
uint8_t delayTime) _ _ . } else {
inputbata |= digitalRead(dataPin) << (count - 1 - i); value |- digitalRead(datapin) << ((count - 1) - i);
}
digitalWrite(clockPin, LOW);
digitaliirite(clockPin, LOW: . :
de%ﬁymcmse(mds(dELamii ; delayMicroseconds(delayTime);
return value;
return inputData; i
}
/% Example for qpOASES main function using the SQProblem class. s/ ﬁ:t 5;?’:713 for apOASES main function using the SQProblem class. +/
int main(
// Create an instance of SQProblem class USING_NAMESPACE_QPOASES
SQProblem ap; /% Setup data of first
real_t H[2+2] = { 1.0,
/7 Define ;?rublem dimensions and matrices TealTt Alias] - {10
real_t g[2] = { 1.5, 1.
int nC 1 - f
real_t 1b[2] = { 0.5, -
e 0 2.0 % real_t wbl2] = { 5.0, 2.
fealt o12) real_t 1bA[1] = { -1.0
real’t b12] real_t ubA[1] = { 2.
real"t wb(2] /# Setup data of sec
Pt Yoy real_t H_new[2+2]
rea Lt veals] = real_t A_new[1+2]
n real_t g_newl[2]
1/ set up che problen real_t b newi2] -
int_t SR = reaft :g;new[ ]1
/%% Example for qpOASES main function gp.init(H, g, A b, ub, 1bA, ubA, nWSR); ;::1 : v S:ZH i
using the SQProblem class. * S obrapten oy 0.66
int main( ) // Solve the problem él;Pr:blér:ge:Zm;J?e(mz N ject. +/
real_t xopt[nvl; i
real_t yOpt([nC+1];
qp.getPrimalSolution(x0pt); ;:ts‘;‘}gﬁ first ap. s
ap-getbualsolution(yopt); example. init( H,g,A,b,ub, LbA,ubA, nhSR,0 );
// Print the solution
cout << "Primal solution:\n"; s Solve second QP +/
f‘”‘igﬁtl«'.‘xo i :Z’]{« | = " << xOpt[i] << endls example.hotstart( H_new,g_new,A_new, lb_new, ub_new, LbA_new,ubA_new,
) P P i SR, 0 ) ;
cout << "Dual solution:\n"; /% Get and print solution of second Q. */
for(int i=0; i<nC+1; i++) { real { "Optg Solution( x0pt );
cout << "yOpt[" << i << "] = " << yOpt[il << endl; example.getPrimalSolution( xOpt ); .
N printf( "\nx0pt e, %e 1; objval = xe\nn",
X0pt (01, X0pt [1], exampie. get0b; Val() 1
} return 0; return @;
}
void printGraph(vector<int> adj[], int V) {
vold printoragh{vector<int> aof ], int V) ¢ rortint 1 20r 5 < i toey
cout << "Adjacency Llist of vertex " << i << ": cout << 13
// Vi number of vertices o e Ay e A for(int § =05 j < adj[il.size(); j++) 087
void printGraph(vector<int> adj[], int V) ad cout << "> "<<adj[i] [j]; 8
cout << endl; cout <<endl;
' )
ek
* Base class helpers for the updating state of a component.
*/
s function Component(props, context, updater) {
this.props = props;
* Base class helpers for the updating state of a component. o o s
// If a component has string refs, we will assign a different object later.
function Component(props, context, updater) { a
hie pm‘;s < pr‘:ps‘? P this.refs = emptyObject;
his.pontext & comiexts // Ve initialize the default updater but the real one gets injected by the
ok N /7 renderer.
 Base class helpers for the updating this- j;g;ie; ,)Updam || defaultUpdater; this.updater = updater || ReactNoopUpdateQueue;
state of a component. i
= ¥ 059
fur](tmr}v %omponen((p\ops, context, Component. protatype. setState = function (partialstate, callback) { Conpanent.prototype. setstate = function (partialstate, callback) {
updater y N . ' ! i
if (typeof partialState function') { typeof partialState ‘object’ &
y T typeof partialState ‘function’ &&
partialState != null
this.updater(this, partialState, callback); {
}
this.updater.enqueueSetState(this, partialState, callback, 'setState');
static GList *
g_list_sort_merge (GList  *11,
. GList  *12,
.S.E::JS::;“ #g_List_sort_merge(GList #11, GList *12, GFunc compare_func, gpointer Gume ombare func,
e . ) gpointer user_data){
G;‘é‘(:ﬁ?t' 1, *lprev; GList list, *1, +lprev;
9 Pi gint cmp;
= &list;
ZNULL: 1 = &list;
Tprev = NULL; Tprev = NULL;
while (11 && 12) {
cmp = compare_func(ll->data, 12->data, user_data); while (11 & 12)
;‘?2; g'{;f_i‘m;rge (GLls( . i (cmp <= 0) cmp = ((GCompareDataFunc) compare_func) (l1->data, 12->data, user_data);
List %12, 1->next = 11; _
GFunc compare_func, 11 = Ul->next; ”(‘C'"" <=0
gpointer user_data) } else { . o 0.69
‘ T>next = 12; et
GList list, 1, +lprev; 12 = L2->nex = ;
gint cmp; } else
I->next->prev = lprev; _ b
Tprev = l-snext; Loonext = 12;
I lorev; | 127 nets
i 1 = l->next;
Tsnext = 117 111 12; 1->prev = lprev;
Tprev

Table 14. Examples of potentially IP-violating code generated by ChatGPT.

generated by GPT-4.
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The first three are generated by GPT-3.5 and the last two are




