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ABSTRACT

Standard training datasets for deep learning often contain objects in common set-
tings (e.g., “a horse on grass” or “a ship in water”) since they are usually col-
lected by randomly scraping the web. Uncommon and rare settings (e.g., “a plane
on water”, “a car in snowy weather”) are thus severely under-represented in the
training data. This can lead to an undesirable bias in model predictions towards
common settings and create a false sense of accuracy. In this paper, we introduce
FOCUS (Familiar Objects in Common and Uncommon Settings), a dataset for
stress-testing the generalization power of deep image classifiers. By leveraging
the power of modern search engines, we deliberately gather data containing ob-
jects in common and uncommon settings in a wide range of locations, weather
conditions, and time of day. We present a detailed analysis of the performance of
various popular image classifiers on our dataset and demonstrate a clear drop in
performance when classifying images in uncommon settings. By analyzing deep
features of these models, we show that such errors can be due to the use of spuri-
ous features in model predictions. We believe that our dataset will aid researchers
in understanding the inability of deep models to generalize well to uncommon
settings and drive future work on improving their distributional robustness.

(a) deer at night (b) plane in snowy weather (c) ship indoors

(d) bird at night (e) car in rain (f) frog in snow

Figure 1: Some uncommon images in the FOCUS dataset. The images in the first column depict
uncommon time of day, those in the second column depict uncommon weather, and the ones in the
third column depict uncommon locations.

1 INTRODUCTION

Since the remarkable success of AlexNet (Krizhevsky et al., 2012) in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2015), deep learning models have
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been used in a variety of applications ranging from robotics and self-driving cars to stock trading
and computational biology. Undoubtedly, large scale datasets such as ImageNet (Deng et al., 2009)
deserve much of the credit for the success of deep learning as they allow training robust, large-scale
models with good generalization behavior (especially in the absence of test time distribution shifts).

Although there have been a number of recent innovations in terms of deep architecture designs
(Ioffe & Szegedy (2015), He et al. (2016), Vaswani et al. (2017)), non-convex optimization solvers
(Kingma & Ba (2015)), etc., not much has changed in terms of how datasets are collected. To this
day, the Internet, thanks to its ease of use and availability of huge amounts of data, remains to be
the predominant source for building a dataset where typically, the data is mined through a search
engine. However, this means that the data distribution in the acquired dataset is subject to biases
in the search results. If the search queries are not constructed carefully, the resulting dataset could
potentially suffer from various types of biases. Consequently, models trained on these datasets may
have poor generalization and may not perform as well as one would expect.

Natural images of objects are at the heart of many datasets for computer vision tasks. These images
often capture an object of interest in some environment. For our purposes, the environment in an
image includes all the contextual information surrounding the object in the image. Evidently, objects
do not occur independently of their environments. In other words, objects are more likely to be found
in some environments than in others (we call these common settings). For example, ships are often
on water; cars are usually on streets; birds are usually on trees, etc. Search engines are more likely to
return images with objects in their common settings when queried for an object alone, i.e., without
any additional qualifiers (e.g., just “deer” or “frog”). As a result, objects in uncommon settings
are severely under-represented in many of the popular datasets in use today. Therefore, evaluating a
classifier’s performance on these datasets can be unreliable in novel environments.

Training deep models on datasets containing mostly objects in common settings can create biases
and security risks since models may rely heavily on spurious visual attributes (Geirhos et al., 2020)
in their predictions and thus may suffer from a severe performance degradation in test samples with
uncommon settings. Arjovsky et al. (2019) pose a simple thought experiment that demonstrates this
issue: consider a binary classification between cows and camels. Since the training dataset contains
mostly images in common settings (i.e., cows in pastures and camels in deserts), trained models
perform poorly in classification of images in uncommon settings (e.g., cows on sandy beaches.)

To address this issue, we introduce a new dataset containing images both in common and uncommon
settings called FOCUS (Familiar Objects in Common and Uncommon Settings). Our key idea is
that modern search engines often return many relevant results even for qualified queries of objects in
uncommon settings. For example, searching “bird indoors” still returns a few relevant images even
though this is an uncommon setting. Building on this idea, we collect images of objects in various
common and uncommon environments explicitly. Our FOCUS dataset has around 24K images of
ten objects along with annotations for different aspects of the environment in the images including
a wide range of locations, weather conditions, and time of day. Depending on the class, we further
annotate these environmental settings as common or uncommon.

Using the FOCUS dataset, we assess the performance of some popular deep learning models
with high standard accuracy on ImageNet, namely ResNet50 (He et al., 2016), Wide-ResNet50-
2 (Zagoruyko & Komodakis, 2016), MobileNet-v3-large (Howard et al., 2019), EfficientNet-b4 (Tan
& Le, 2019), and EfficientNet-b7 (Tan & Le, 2019) on uncommon settings. We observe that all of
these popular models show significant drop in accuracy when tested on objects in uncommon set-
tings with EfficientNet-b4 doing the best in terms of generalization and Wide-ResNet50-2 doing the
worst. We find that generalizing to uncommon time is easier than generalizing to uncommon weather
or locations. We also analyze the deep features (neurons in the penultimate layer) of ResNet50 to
find that the most likely reason for this drop is that the model relies on spurious features in its
predictions, mounting additional evidence to this undesirable behavior of deep neural networks.

To the best of our knowledge, FOCUS is the first large-scale dataset of natural images with explicit
environmental annotations such as locations, weather conditions, and time of day for both common
and uncommon settings. As we demonstrate in this work, FOCUS can help stress-test deep models
and evaluate their generalization power to uncommon settings. We believe richly annotated datasets
such as FOCUS can pave the way to develop models that not only have high accuracy in common
settings but are reliable in rare and uncommon settings as well.
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2 RELATED WORK

Realistic corruptions such as blur, noise, etc., can occur in the real world, for instance, due to camera
shake, low light, etc. Thus, training on high-quality clean images may cause classifiers to perform
poorly on corrupted images. Hendrycks & Dietterich (2019) propose ImageNet-C, a dataset of 15
types of artifically corrupted images to systematically study robustness of deep learning models
against (synthetic) corruptions. Hendrycks et al. (2021a) propose Real Blurry Images, a dataset
of 1000 real world blurry images. Ever since when deep neural networks surpassed human level
performance on ImageNet (He et al., 2015), there has been an increasing need for more challenging
datasets. Recht et al. (2019) carefully replicate the methodology through which ImageNet was
originally built to create a new test set for ImageNet. They find a 11-14% drop in accuracy on
this new test set. However, Engstrom et al. (2020) have found statistical biases in the replicated
test set and found the accuracy drop to be about 3.6% after correcting for the biases. ImageNet-
A (Hendrycks et al., 2021b) is a dataset of natural, adversarial images which yield drastically low
performance on classifiers trained on ImageNet.

Hendrycks et al. (2021a) propose three datasets, namely, ImageNet-Renditions, DeepFashion
Remixed, StreetView StoreFronts that are designed to test the generalization ability of classifiers
to unseen rendition styles, camera view points, and geography, respectively. Beery et al. (2018) in-
troduce a dataset of camera trap images. Since, the traps are fixed, the backgrounds in these images
are also more or less fixed. This gives researchers an ideal opportunity to test the generalization
ability of neural networks to unseen locations in animal classification tasks. Geirhos et al. (2020)
have observed that deep learning models often fail to perform as well in the real world as they
do in standard benchmarks because they rely on shortcuts. Many works have sought to find these
shortcuts and/or circumvent them. Singla et al. (2021) propose a method for identifying the visual
attributes that cause classification failures using the features of an adversarially robust model. Xiao
et al. (2020) propose the Backgrounds Challenge to evaluate how robust models are to (synthetic)
changes in backgrounds. Wong et al. (2021) show that training sparse linear models with deep fea-
tures as inputs results in improved debuggability of neural networks. In a similar vein, 3DB (?) uses
photorealistic simulations to test and debug computer vision models.

3 FOCUS: A DATASET WITH COMMON AND UNCOMMON SETTINGS

3.1 BUILDING FOCUS

We choose to work with the same 10 object classes in CIFAR-10 (Krizhevsky et al., 2014). We
use the time of day, weather and the locations depicted in an image to characterize environment in
it. Using the capability of modern search engines in returning relevant results even for uncommon
qualified queries of objects (e.g., “frog indoors”), we collect images of objects in various common
and uncommon environments explicitly. Concretely, we query the Microsoft Bing Image Search
API1 with statements of the form <object> <preposition> <attribute> (e.g., “ship
on grass”). This ensures that we have sufficient number of uncommon images and alleviates the
issue of bias towards common settings. We also use synonyms of the object categories and the
attributes to increase the number of samples we collect. We only query for images which have a
license that permits sharing allowing us to release the FOCUS dataset for the research community.

We collect a total of around 37K images using the above procedure. But the search results are not
always accurate; a significant fraction of them do not have the relevant object or if they do, the object
is not in the environment mentioned in the search query. In addition, because we query images based
on only one attribute, we do not have any information about the other attributes in the images. For
instance, we do not know the time of day or the locations in a search result for “car in rain”.

We conduct an Amazon Mechanical Turk study both to improve the accuracy of annotations derived
from the search queries and to collect missing annotations. Images are shown to workers in a series
of Human Intelligence Tasks (HITs), and they are asked to annotate the image with the appropriate
choice for the different attributes. See the appendix C for more details about the design of our HITs.

1Google does not provide a publicly accessible API for its image search.
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3.2 THE DATA IN FOCUS

The FOCUS dataset is a collection of around 24K images, each annotated with the time of day, the
weather condition and the locations in the image. Concretely, our dataset is as follows:

{(xi, yi, ti, wi, li)}ni=1

where

xi is the image
yi is the object label ∈ {truck, car, plane, ship, cat, dog, horse, deer, frog, bird}
ti is the time of day ∈ {day, night, none}
wi is the weather ∈ {cloudy, foggy, partly cloudy, raining, snowing, sunny, none}
li are the locations ⊂ {forest, grass, indoors, rocks, sand, street, snow, water, none}

The rationale behind our choices for different attributes is as follows:

1. Time of day: Most images in standard datasets are captured during the day, when the
objects are well lit. In contrast, nighttime images often lack a lot of details and are corrupted
by high levels of noise.

2. Weather: Our choices of weather are fairly comprehensive and include the raining, snow-
ing and foggy conditions which often produce natural corruptions in images.

3. Locations: We choose a wide range of locations with a healthy mix between common and
uncommon (object, location) pairs. Since images are often likely to include a combination
of locations, we let the locations attribute of an image to be a subset of the above set instead
of being exactly one element out of it.

“none” is assigned to an attribute if its ambiguous or impossible to determine from the image. In
addition, “none” is also assigned to li of an image if none of the considered locations is in the image.
Table 1 summarizes the number of FOCUS samples for each object in various environments.

3.3 COMMON VS. UNCOMMON SETTINGS

We consider two sources of uncommon (object, environment) pairs:

1. The pair is uncommon in the real world (e.g., “ship on grass”). On the Internet, searching
for “ship” alone is extremely unlikely to return any images of a ship on grass in the top
results. In other words, the rarity of a pair in the real world is reflected in the dataset.

2. The pair is uncommon due to the choice of labels and queries used to construct a particular
benchmark. E.g., consider the “plane” class. ImageNet has two labels —“warplane, mil-
itary plane”, “airliner” — corresponding to an airplane. Neither of these are planes that
are usually found on water making (“plane in water”) an uncommon, if not a non-existent
pair in ImageNet. Seaplanes, however, are not that uncommon in the real world.

We declare an (object, attribute) uncommon if the number of samples corresponding to that pair is
low (case 1 above). Additionally, we also declare the (“plane”, “water”) pair as uncommon (case
2 above). Our final choices for uncommon settings are highlighted in orange, in table 1. Figure 1
shows some uncommon images from our dataset.

Obviously categorizing environments into common and uncommon settings for various objects can
be subjective. We used a combination of the two criteria described above for this categorization and
we acknowledge that this is by no means the one true way. We facilitate other studies opting to do it
in other ways by providing all annotations for the collected samples our dataset, FOCUS.

4 EVALUATING DEEP MODELS ON FOCUS

It is crucial to have reliable machine learning models even in rare and uncommon settings especially
when they are deployed in safety-critical applications. As an example, consider a self-driving car
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Truck Car Plane Ship Cat Dog Horse Deer Frog Bird

Time of Day
Day 1217 2798 1740 1731 2109 2766 2260 1838 1096 2526

Night 66 304 136 167 84 66 56 57 201 58
None 32 266 99 33 997 566 88 44 370 131

Weather

Cloudy 189 400 314 377 79 195 248 175 18 187
Foggy 22 115 47 106 6 44 90 55 3 48

Partly Cloudy 161 363 340 307 98 184 282 159 50 170
Raining 16 161 27 10 15 11 14 3 3 21
Snowing 13 66 3 5 29 49 49 53 0 39
Sunny 662 1252 850 837 768 1266 1183 880 503 1297
None 252 1011 394 289 2195 1649 538 614 1090 953

Locations

Forest 185 473 179 75 90 262 519 835 117 434
Grass 355 738 397 97 532 874 1171 1254 293 578

Indoors 37 311 119 3 1451 897 76 12 37 41
Rocks 57 119 52 67 130 114 83 86 265 192
Sand 305 596 247 181 137 451 625 186 162 315
Street 702 1811 331 96 376 386 235 74 32 124
Snow 113 308 129 157 140 357 222 306 8 192
Water 65 225 354 1728 102 433 331 135 404 611
None 90 188 673 64 524 342 245 93 555 804

Table 1: A frequency breakdown of the various categories and attributes in the FOCUS dataset.
Uncommon settings are highlighted in orange.

that infers various attributes about its surroundings using deep learning models. The deployed mod-
els may be accurate in 99.99% of cases that occur in common settings (e.g., pedestrian crossing on
a sunny day). However, given the vast complexity of the real world, uncommon and corner cases,
although rare, are still possible (e.g., a heavily snow covered car cutting in). If a model is not reliable
in those uncommon settings, it could make a grave error resulting in loss of life and/or property.

In spirit of the above mentioned, we stress test the generalization power of various deep learning
models to uncommon settings using the FOCUS dataset. Specifically, we are considering models
that are trained using images close to the mode of the (object, environment) distribution (i.e., com-
mon images) and evaluating them on images that fall more on the tail of the (object, environment)
distribution (i.e., uncommon images).

4.1 EXPERIMENTAL SETUP

Model architectures. We select some of the most popular deep learning models that have high
test accuracy on ImageNet, namely ResNet50 (He et al., 2016), Wide-ResNet50-2 (Zagoruyko &
Komodakis, 2016), MobileNet-v3-large (Howard et al., 2019), EfficientNet-b4 (Tan & Le, 2019),
and EfficientNet-b7 (Tan & Le, 2019). For the first three models, we use the pretrained weights
provided by PyTorch and for both variations of EfficientNet, we obtain the weights from this GitHub
repository: https://github.com/lukemelas/EfficientNet-PyTorch.

Total
(23902)

P0

(16692)
P1

(6530)
P2

(647)
P3

(35)
P (t)

(752)
P (w)

(597)
P (l)

(5181)
P (t,w)

(51)
P (w,l)

(440)
P (t,l)

(156)
P (t,w,l)

(35)

Table 2: Sizes of different partitions in FOCUS. Pi is the set of images with i uncommon attributes
and PA, A ⊆ {t, w, l} is the set of images where the attributes in A are uncommon. Note that P0

constitutes common images.
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Evaluation metrics. Since the models we evaluate are pretrained on ImageNet, they output 1,000
probabilities (recall, ImageNet has 1,000 classes). On the other hand, our dataset has only 10 object
categories. We resolve this apparent mismatch by first constructing a mapping (denoted by M )
between the 1000 labels in ImageNet and those in our dataset. Concretely, a label lI in ImageNet
is assigned to a label lF in our dataset if lF is a semantic superclass of lI . For example, all the
different dog breeds in ImageNet are mapped to the dog label in FOCUS. Decidedly, some labels
in ImageNet do not have any corresponding labels in our dataset (e.g., “analog clock”, “carton”
etc.). As our dataset has no images from these labels, we declare a misclassification whenever
the network predicts a label that is not in the domain of M . We say a prediction is correct if the
ImageNet label with the highest logit was assigned to the ground truth label in FOCUS. That is, for
a sample (xi, yi, ti, wi, li) from the FOCUS dataset, let g(xi) be the ImageNet label predicted by a
trained network. Then, we have:

correct prediction ⇐⇒ f(xi) := M(g(xi)) = yi.

To facilitate the evaluation of the effect of uncommon attributes, we first partition the dataset based
on the number of uncommon attributes in images: Pi is a subset of FOCUS samples with i un-
common attributes for i = 0, 1, 2, 3. Note that P0 denote common samples while

⋃
i≥1 Pi denotes

uncommon samples that have at least one uncommon attribute.

We further subdivide Pi into PA, A ⊆ {t, w, l}, |A| = i where the attributes in A are uncommon
(for instance, P (w,l) is the set of all images with two uncommon attributes: weather and location).
Table 2 shows the sizes of the different partitions in our dataset.

We then evaluate the classification accuracy of different models in different partitions (referred to as
Acc(P )). In an attempt to measure the effect of a single attribute on the accuracy of a model f , we
define the following generalization gap with respect to an attribute a:

Ga =
|{xi ∈ C(a) | f(xi) = yi}|

|C(a)|
− |{xi ∈ UC(a) | f(xi) = yi}|

|UC(a)|
, (1)

where C(a) and UC(a) are the subsets of images in which attribute a is common and uncommon,
respectively. Succinctly, Ga is the difference in the classification accuracy between images with a
common choice for a and those with an uncommon choice for the same. The larger the Ga, the
worse the generalization performance of the model on uncommon choices for a.
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Figure 2: Classwise top-1 accuracy for ResNet50. The large error bars at P2 are due to insufficient
number of samples in this partition. Similar plots for other models are in appendix D.

4.2 RESULTS

Figure 3 shows the accuracy of different model architectures on different partitions of the FOCUS
dataset. We observe that for all the models, the accuracy falls as the number of uncommon attributes
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Figure 3: Top-1 classification accuracy for dif-
ferent models on the FOCUS dataset as a func-
tion of the partitions Pi

Model Gt Gw Gl

ResNet50 8% 16% 19%
Wide-ResNet50-2 8% 18% 18%

MobileNet-v3-large 9% 14% 19%
EfficientNet-b4 5% 12% 17%
EfficientNet-b7 8% 13% 15%

Table 3: Generalization gap (as in Equation 1)
per attribute for various models. The best gap
on each attribute is in boldface.

Model P0 P (t) P (w) P (l) P (t,w) P (w,l) P (t,l)

ResNet50 69.22 58.57 48.33 44.81 39.22 37.33 35.26
Wide-ResNet50-2 73.04 60.42 46.82 48.19 41.18 41.86 46.15

MobileNet-v3-large 67.26 54.98 46.82 42.07 27.45 38.46 35.26
EfficientNet-b4 73.01 64.01 54.68 49.44 47.06 45.70 50.00
EfficientNet-b7 72.39 59.63 49.67 50.89 39.22 48.42 47.44

Table 4: Top-1 accuracies of different models on various partitions of the dataset. The best accuracy
on each partition is in boldface. The models perform the best on the first column corresponding to
the common images while the accuracy decreases as the number of uncommon attributes increases.

increases2. The overall generalization gap between common and uncommon images (i.e., A(P0)−
A(

⋃
i≥1 Pi)) is the highest (i.e., the worst generalization) for Wide-ResNet50-2 at 24.2% and the

lowest (i.e., the best generalization) for EfficientNet-b7 at 21.00%.

Table 3 shows the generalization gap (as in Equation 1) per attribute for various models. We see that
all the gaps are positive, clearly indicating poor generalization ability to uncommon settings. Note
that Gt is smaller than both Gw and Gl for all the models. So, these models are not hurt as much
by uncommon time (i.e., “night”) as they are by uncommon weather or location. Additionally, we
see that EfficientNet-b4 has the best generalization in uncommon time of day and weather, while
EfficientNet-b7 has the best generalization in uncommon locations.

Table 4 shows the accuracy for various combinations of uncommon attributes. Though Wide-
ResNet50-2 has the best accuracy on common images, it does not do as well as other models on
uncommon images. Just like our observation from table 3, table 4 also shows EfficientNet-b4 and
Efficient-b7 doing the best on different partitions.

Finally, figure 2 shows the classwise top-1 accuracy of ResNet50 on the partitions Pi. We observe a
declining trend here as well in almost all cases. The uptick from P1 to P2 for the “dog” and “bird”
classes could be due to their small number of P2 samples (i.e., the dog class has 71 P2 samples while
the bird class has only 40) as their accuracies show high variances. We observe similar trends for
other models as well (the plots for them are included in Appendix D).

4.3 NEURAL FEATURE ANALYSIS OF COMMON AND UNCOMMON SAMPLES

In this subsection, we take a close look at the deep features (i.e., neurons in the penultimate layer)
for common and uncommon images. We also make an effort to gain insight into the aspects of
uncommon images that affect the model’s classification performance on them.

2Note that we have not included P3 in this analysis as it has very few samples (only 35).
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truck car plane ship cat dog horse deer frog bird
forest 70.74 77.61 76.36 76.00 81.25 82.31 70.58 65.29 64.18 72.66
grass 67.21 74.49 80.69 77.66 86.17 83.01 77.50 74.65 67.90 78.69

indoors 75.00 91.57 96.38 100.00* 82.05 89.26 94.23 66.67 70.00 86.36
rocks 63.33 77.54 69.23 76.47 77.50 61.72 72.73 68.06 73.95 78.52
sand 74.51 79.67 74.87 79.39 82.76 77.06 73.87 63.24 72.77 82.45
street 71.49 67.90 71.00 58.70 67.48 64.88 82.43 87.50 62.50 68.24
snow 80.95 86.24 85.44 78.97 87.78 85.50 86.63 86.52 100.00* 88.03
water 58.82 73.43 78.62 75.49 72.12 87.21 83.39 78.82 81.44 88.50

Table 5: Test accuracies of a linear classifier that predicts the presence of a location solely from the
deep features of images. It does significantly better than random implying that deep features contain
information about the location. For each class, the location attribute that is most easily identifiable is
in boldface. * - have high statistical uncertainty because there are only 3 samples of “ships indoors”
and 8 samples of “frogs in snow”.

4.4 RESNET50 USES SPURIOUS FEATURES

We hypothesize that the information about the environment (that is spurious with respect to the true
object) may have been encoded in the deep features of the model, causing drops in model accuracy
in uncommon settings. To test our hypothesis, we conduct an experiment where we attempt to
predict the presence (or absence) of an environmental attribute from the deep features of a ResNet50
pretrained on ImageNet. Concretely, we pick an environmental attribute (say, “water”) and an
object class (say, “plane”) and train a simple binary linear classifier that uses the deep features of
the input images to predict if the image has the attribute in it (is there “water” in this image of a
“plane”?). If we do not use images from only one class then the linear classifier could inadvertently
use the information about the object in the image to exploit any imbalances in the (object, attribute)
distribution and do well in this task. We also ensure that both the train and test sets in the experiment
contain as many images with the attribute as those without it.

Table 5 shows the test accuracy of the linear classifier for various instances of this experiment,
each with a different choice for the location and the object class. The accuracies are well above
50% (the accuracy of a random guess) highlighting that environmental attributes have been encoded
in deep features of the model, conditioned on a particular class. In addition, we see that “snow”
and “indoors” are by far the most easily identifiable locations for all object classes except “deer”.
Ignoring “ships indoors” and “frogs in snow” as they have very few samples (3 and 8, respectively),
we see that identifying “’indoors” in “plane” images is the easiest among all object, location pairs,
while identifying “street” in images of “ship” is the hardest.

We go further in the above experiment; we randomly pick various object, location pairs and we
identify the ImageNet labels for which the 2049-dimemsional (including bias) weight vector in the
fully connected layer of ResNet-50 is most similar to the linear classifier of that location. This is to
reveal with which labels the object is most likely to be confused with when it is in that particular
location. Table 6 summarizes the results from this experiment. We see that the model has falsely
associated some object labels to the location in many cases (‘hay’ being similar to ‘grass’ is perhaps
acceptable). This is more evidence that neural networks may rely on spurious features in their
predictions, especially when there is not enough diversity in the dataset.

4.5 MODES OF FAILURE

Finally, we show the Grad-CAM localization maps for some misclassified uncommon images in
figure 4. All visualizations were generated with the predicted class as the target class for Grad-
CAM so as to highlight the parts of the images that caused their misclassification. Figures 4a, 4b
and 4c show that the model was able to localize more or less correctly on the corresponding objects.
However, they were misclassified because: (a) the striking lack of details (as is common in low light
photographs) in the middle of the image in figure 4a makes it hard to identify the warship; (b) the
model seems to be falsely correlating the presence of snow in the surrounding air with the presence
of a snowplow; (c) the frog is sticking out from between tiles of the pavement/street; its hind legs are
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Object class Location ImageNet labels
deer forest ‘suspension bridge’ (0.18), ‘centipede’ (0.15), ‘coral fungus’ (0.15)
car snow ‘snowplow’ (0.35), ‘dogsled’ (0.26), ‘snowmobile’ (0.26)

plane water ‘sandbar’ (0.30), ‘lakeside’ (0.29), ‘promontory’ (0.27)
cat street ‘manhole cover’ (0.22), ‘sundial’ (0.18), ‘go-kart’ (0.17)
dog sand ‘sandbar’ (0.26), ‘seashore’ (0.26), ‘baboon’ (0.18)

truck grass ‘hay’ (0.20), ‘harvester’ (0.20), ‘rapeseed’ (0.17)
frog rocks ‘marmot’ (0.21), ‘rock crab’ (0.20), ‘European fire salamander’ (0.19)

Table 6: Each row shows the most similar ImageNet labels to the linear classifier for the location in
the row. The numbers in the brackets are the cosine similarities between the linear classifier and the
MLP weights (biases included) of the corresponding labels.

(a) ship at night (prediction: ‘pier’) (b) car on a snowy day (prediction: ‘snowplow’)

(c) frog on street (prediction: ‘sidewinder’) (d) plane in water (prediction: ‘submarine’)

Figure 4: Localization maps on some uncommon images misclassified by ResNet50. Each subfigure
shows the original image, the Grad-CAM overlay on the image, and the Guided Grad-CAM image
(in that order); all Grad-CAM and Guided Grad-CAM images use the predicted class as their target.
See text for possible explanations for these misclassifications. More examples are in the appendix.

hidden and the model seems to be ignoring its front legs (most noticeable in the Guided Grad-CAM
image). As a result, the model incorrectly sees a snake (‘sidewinder’) in the image.

On the other hand, in figure 4d, we see that the model is incorrectly zeroing in on the floats of the
plane which look like a submarine breaking the surface of water from afar. We postulate that this
is because of the water in the image which the model has incorrectly learned to associate with the
presence of watercraft such as boats, ships, submarines etc. We acknowledge that these explanations
of model failures in uncommon settings may not be complete and there may be other confounding
factors for such errors.

5 CONCLUSION

In this work, we introduced FOCUS, a dataset that contains images both in common and uncommon
settings. FOCUS has around 24K samples annotated by their various environmental attributes such
as locations, weather conditions, and time of day. Using FOCUS, we evaluated the performance
of several popular ImageNet classifiers such as ResNet50, Wide-ResNet50-2, MobileNet-v3-large,
EfficientNet-b4 and EfficientNet-b7. These models showed a clear drop in performance when clas-
sifying images in uncommon settings. By analyzing deep features of ResNet50, we found that this
accuracy drop in uncommon settings is partially due to the model’s reliance on spurious features in
its predictions. We believe that richly annotated datasets such as FOCUS open new directions for
the development of deep models that are reliable both in common and uncommon settings.
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REPRODUCIBILITY STATEMENT

We give more details (search queries, licenses, filters etc.,) about the procedure we followed to
collect the images in appendix B. Appendix C describes the design of our Human Intelligence Tasks
(HITs) on Amazon Mechanical Turk. In addition, as our images are licensed to be shareable, we
will share the entire dataset as well as the code to access the images, annotations and reproduce the
various experiments presented here, upon acceptance of the paper. For now, we include some more
samples from the FOCUS dataset in Appendix A.

ETHICS STATEMENT

This paper introduces a dataset that can assess potential biases of deep models against uncommon
settings. We have made the following efforts to mitigate harm in the collection of our dataset:

1. We paid the workers on Amazon Mechanical Turk 40% more than the minimum wage on
average.

2. We use the same object labels as CIFAR-10 (Krizhevsky et al., 2014), none of which, to
the best of our knowledge are stereotypes or slurs. In addition the environmental attributes
we choose are quite generic and are not targeted against any people subgroups.

3. That said, some of the images in our dataset have identifiable humans in them even though
it was not intended. However, all the images we gathered are either in the public domain or
are free to be used and shared. We ensure that by using the appropriate license keywords in
the Bing Image Search API. See https://help.bing.microsoft.com/#apex/
18/en-us/10006/0 for more details. We believe that this license constraint filters out
the images taken or shared without the consent of the subjects.
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Appendix

A VISUALIZATIONS OF SOME FOCUS IMAGES IN UNCOMMON SETTINGS

(a) bird at night (b) car in forest (c) cat at night in forest

(d) plane at night indoors (e) plane in water (f) deer in fog

(g) car on sand (h) dog in snow (i) horse in snow

(j) car in water (k) horse in water (l) ship in fog

(m) bird indoors (n) cat in snowy weather & water (o) car in snow

(p) horse indoors (q) deer in rain (r) truck in snow

Figure 5: Visualizations of some uncommon images in the FOCUS dataset.
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B IMAGE SEARCH

The images for our dataset were collected using queries formed as a concatenation of an object label
and one of the phrases from below:

Attribute Phrases used in queries
“raining” “in rain”
“foggy” “in fog”
“snow” “on snow”
“sand” “in a desert”, “on sand”
“forest” “in forest”
“water” “on water”
“night” “at night”
“grass” “on grass”
“street” “on a street”, “on a road”

In addition, we use some class specific queries: “ship on ice”, “ship on a dock”, “dog on a couch”,
“dog on a bed”, “dog on the floor”, “cat on a couch”, “cat on a bed”, “cat on the floor”, “horse
in a stable”, “car in a garage”, “truck in a garage”, “plane in a hangar”.

C HUMAN INTELLIGENCE TASKS (HITS)

Figure 6: Our UI for annotating images in FOCUS.

To gather high quality annotations, we first vet the workers through a qualification process; workers
are shown a series of 10 images (in the UI shown in figure 6) from our dataset for which the ground
truth is known (these images were annotated by us manually). We qualify workers who have done
well on this qualification test. Worker’s annotations were checked manually in this stage instead of
using a strict threshold as there is an element of subjectivity to the annotations. In the second stage,
our HITs have 25 images each; 23 of which are unannotated and 2 are from the subset that were
annotated by us. We use these 2 images as a way to track workers’ annotation accuracy. Each image
is annotated by two workers and we pick annotations of the worker who has the higher annotation
accuracy on the 2 “check” images in that HIT. Workers received a base pay of $0.67 per HIT (25
images) which takes an average of around 5 minutes to annotate. A bonus of $30 was paid for
completion of 100 HITs. This payment structure has created an incentive for workers to annotate a
large number of images.
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D CLASSWISE CLASSIFICATION ACCURACIES FOR VARIOUS MODELS

In the main text, we presented classwise classification accuracies for the ResNet-50 model (figure
2). For completeness, we present similar plots for other models used in evaluations here. We observe
similar trends to the ones reported in the main text.
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Figure 7: Classwise top-1 accuracy for Wide-ResNe50-2.
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Figure 8: Classwise top-1 accuracy for MobileNet-v3-large.
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Figure 9: Classwise top-1 accuracy for EfficientNet-b4.
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Figure 10: Classwise top-1 accuracy for EfficientNet-b7.
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E ACCURACY AS A FUNCTION OF CLASS AND ATTRIBUTES

This section shows the accuracy of different models for each class and attribute. Uncommon at-
tributes are highlighted in shades of orange, while common attributes are highlighted in shades of
blue. The last row (except the bottom right-most value) shows the overall accuracy for the cor-
responding attribute. Additionally, the last column is the generalization gap with respect to the
corresponding attribute. The first 10 values in the last column are class specific generalization gaps,
while the last (i.e., bottom rightmost) value is the aggregate generalization gap defined in Equation 1
(and reported in table 3).

An image can have a combination of common and uncommon attributes (e.g., “cat on street at
night” — uncommon time but common location). Such images may appear in a “blue” cell in one
of the tables while in a different table they may appear in “orange”. This explains why for some
classes the models seem to do better at “night” than in day. Note that majority of the uncommon
weather conditions: (“raining”, “snowing”, “foggy”) occur during the day and they are potentially
decreasing the classification accuracy so much that it outweighs the drop due to “night” and leads to
this apparently paradoxical result.
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(c) Category vs Location

Figure 11: Accuracy of ResNet50 for all combinations of classes and attributes.
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(c) Category vs Location

Figure 12: Accuracy of Wide-ResNet50-2 for all combinations of classes and attributes.
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Figure 13: Accuracy of MobileNet-v3-large for all combinations of classes and attributes.
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Figure 14: Accuracy of EfficientNet-b4 for all combinations of classes and attributes.
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Figure 15: Accuracy of EfficientNet-b7 for all combinations of classes and attributes.
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