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Abstract

Graph embedding methods have been proposed to extract structural identities in a1

graph, but most of the existing structural role embedding methods are transductive2

and the embedding cannot be generalized to unseen nodes. Here we introduce In-3

SuRE, an inductive method to embed nodes’ structural roles. Instead of leveraging4

a diffusion process on the entire graph, we characterize a local diffusion kernel5

with two learnable parameters, the local neighborhood radius and corresponding6

diffusion scale. With the two parameters, the embedding of unseen nodes can be7

efficiently generated based on their neighborhood topology. InSuRE is computa-8

tionally efficient, provides discriminative structural features to improve GNN’s9

expressive power, and outperforms baseline methods in empirical experiments.10

1 Introduction11

Nodes in a graph may have different structural roles, reflected by their neighborhood topology. For12

example, managers in a company are usually the hubs of the communication network, whereas other13

staff are usually non-hub nodes. Identifying the structural roles of the nodes helps understand their14

identities and behaviors in many real-world applications.15

Figure 1: Similar structural roles of nodes u
and v are identified with their diffusion pat-
terns hu and hv captured as distributions.

Graph structured data analysis has traditionally fo-16

cused on predefined metrics [1, 2, 3], such as struc-17

tural hole value [4]. However, these approaches only18

extract structural information based on the predefined19

metrics. Recent graph representation learning ap-20

proaches extract nodes’ structural information in a21

data-driven fashion. Especially, they encode the high-22

dimensional, non-Euclidean structural information23

with a low-dimensional Euclidean vector, which can24

be used in downstream analysis, such as node classi-25

fication and link prediction.26

Although most of the node embedding methods [5, 6,27

7, 8, 9, 10, 11, 12, 13, 14, 15, 16] focus on proximity28

preserving (i.e., nodes nearby have similar represen-29

tations), several structural embedding methods [17,30

18, 19, 20, 21, 22, 23, 24, 25] have been proposed to embed nodes in terms of their structural roles31

(see Fig. 1). However, all of them except Role2Vec [20] are transductive in the sense that they directly32

generate node embedding from the entire graph (see details in Sec. 2). When unseen nodes are added33

to the graph, the representations of the nodes in the entire graph need to be updated. Therefore, trans-34

ductive embedding methods are not useful for analyzing evolving graphs, where the graph structure35

changes over time and unseen nodes constantly appear, such as social networks on Facebook and36
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posts on Twitter. Moreover, existing structural embedding approaches are computationally prohibitive37

in large-scale graphs. For example, struc2vec [18] has a time complexity of O(|V|3). Role2Vec has a38

time complexity of O(|V|2). SEGK [23] has a time complexity of O(|V||E|). GraphWave’s space39

complexity is O(|V|2).40

To overcome these challenges, we propose InSuRE, an Inductive Structural Role Embedding approach41

to embed the structural roles of the nodes in a graph. InSuRE leverages a local diffusion kernel to42

characterize the local neighborhood topology of the nodes. The local diffusion kernel is characterized43

by a local neighborhood radius (i.e., the neighborhood hop number) and a diffusion scale, whose44

best configurations are identified by two variance-based approaches. We demonstrate that a local45

diffusion kernel, with the optimized neighborhood radius and diffusion scale, is as effective as a46

global diffusion kernel in terms of capturing structural roles, and makes InSuRE both inductive and47

computationally efficient. We also prove that GNN coupled with InSuRE’s structural embeddings48

provides more expressive power. The contribution of our work is three-fold.49

• We develop InSuRE, an inductive structural role embedding method. InSuRE extracts node50

structural roles via a local diffusion kernel (Def. 3.2) consisting of two parameters, a local51

neighborhood radius and a diffusion scale. The optimized local diffusion kernel embeds the52

structural roles of unseen nodes efficiently.53

• InSuRE’s time complexity is linear with the number of edges (Sec. 3.5), which is lower than54

state-of-the-art structural embedding methods, making it applicable to large-scale graphs.55

• We demonstrate that using InSuRE’s structural embedding as node features improves the56

expressive power of MP-GNNs theoretically (Sec. 3.6) and empirically (Sec. 4.5).57

2 Related work58

Structural role node embedding. Most of the existing structural role embedding methods follow two59

major steps to embed nodes — first construct a node-feature matrix by extracting nodes’ structural60

features, and then embed the nodes based on either feature-based matrix factorization or feature-based61

random walk [26, 27]. As one example of feature-based matrix factorization, RolX [17, 28] factorizes62

the matrix with node topological features to assign nodes with a mixed-membership across the63

predetermined structural roles. HONE [21] and SEGK [23] also embeds nodes’ structural roles based64

on factorizing a set of motif-based matrices and the structural feature matrix generated by graph65

kernels, respectively. Another line of structural role embedding methods performs feature-based66

random walk using the skip-gram model [29, 30]. Struc2vec [18] embeds node structural roles by67

performing biased random walks on a multilayer graph, with each layer capturing the structural68

similarities of the neighboring hops between the nodes. RiWalk [31] performs random walks on69

a role-identification graph constructed by graph kernels. DRNE [22] utilizes a normalized LSTM70

model recursively to embed nodes with regular equivalence. Struc2gauss [25] leverages Gaussian71

embedding to embed nodes based on node structural features. However, all of the aforementioned72

methods require either manual feature engineering or explicit predefined functions to extract nodes’73

structural features. Moreover, they are all transductive. Recently, GraphWave [19] proposes to extract74

structural features based on a predefined diffusion process [32, 33, 34] on the graph. It interprets heat75

diffusion on graphs in the context of graph wavelet transform [35], treats the node diffusion patterns76

as random variables, and embeds them using a characteristic function [36]. However, GraphWave is77

transductive due to the nature of spectral methods. Graph spectrum changes completely when new78

nodes are added, thus changing the predefined diffusion process. By contrast, InSuRE characterizes a79

local diffusion process, and thus can efficiently embed the structural roles of the unseen nodes.80

Inductive node embedding. While most embedding methods are transductive, a few inductive81

approaches have been proposed recently. Planetoid [37] is the first inductive embedding approach82

while it does not use any structural features. GraphSAGE [11] embeds nodes inductively by aggre-83

gating information from nodes’ neighborhoods, while it is proximity-preserving. Recently, both84

SPINE [24] and Role2Vec [20] embed node structural identities inductively. They first generate85

structural features and perform attributed random walks to embed nodes. While SPINE approximates86

the Rooted-PageRank score from the local structure to ensure inductiveness, it still relates to local87

proximity. Role2Vec embeds unseen nodes by mapping them to pre-trained node types and embeds88

them using the learned skip-gram model. However, it becomes inappropriate when the unseen nodes89

do not match the pre-trained node types. [38] also propose an inductive embedding method for90

temporal graphs based on causal anonymous walks.91
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3 Methods92

Since a node’s structural role is mostly reflected by its local neighborhood, InSuRE (Algo. 1)93

extracts node structural roles via a local diffusion kernel (Def. 3.2), characterized by two parameters,94

namely a local neighborhood radius and a diffusion scale. Section 3.1 introduces basic notations and95

definitions. Section 3.2 introduces the embedding procedure given two specific parameters. Section96

3.3 and 3.4 describes the optimization of the local neighborhood radius and the diffusion scale,97

respectively. Section 3.5 discusses InSuRE’s time complexity. Section 3.6 proves that InSuRE’s98

structural embedding improves GNN’s expressive power.99

3.1 Preliminaries100

Suppose that G={V, E} is an undirected graph, where V=[n] and E⊆V×V denote the node set101

and the edge set respectively. Each node u∈V has a node feature vector xu∈Rd. Let A be the102

adjacency matrix and D be the degree matrix. The random walk adjacency matrix is Arw=D−1A.103

Only a subgraph is selected in training to accelerate the parameter optimization, with a sampling104

rate α. T={t1, . . . , td} is a set of evenly spaced sampling time points used to sample an empirical105

characteristic function.106

Regular equivalence. We follow Everett and Borgatti [39] and Rossi et al. [40] and consider two107

regularly equivalent nodes to have the same structural role. Formally, let ru be the structural role of108

node u and Nu denote the set of u’s neighbors. Two nodes u and v are regularly equivalent iff they are109

connected to regularly equivalent nodes (i.e., ru=rv⇐⇒{r(s)|s∈Nu}={r(t)|t ∈ Nv},∀u,v∈V).110

Graph Neural Networks (GNNs). GNNs learn a vector representation of node v, mv, within the111

message passing framework. During each message-passing iteration of a messgae-passing GNN112

(MP-GNN), mv is updated as113

m(k+1)
u =UPDATE(m(k)

u ,AGG({m(k)
v ,∀v∈N (u)})), (1)

where m0
u = xu ∈ Rd,∀u ∈ V . UPDATE is a differentiable function (e.g., ReLU) and AGG is a114

differentiable permutation invariant function (e.g., summation).115

Weisfeiler-Lehman (WL) test. Testing for graph isomorphism is to declare whether two graphs have116

identical graph structure while only differing in the node ordering in the adjacency matrix. No general117

polynomial time algorithms are known for the problem [41]. The Weisfeiler-Lehman (WL) test of118

graph isomorphism [42] is an effective and efficient algorithm for approximate isomorphism testing119

[43]. Its simplest form, commonly known as the 1-WL, iteratively aggregates the labels of nodes and120

their neighborhoods, and hashes the aggregated labels into unique new labels. The algorithm declares121

two graphs to be isomorphic iff the labels of the nodes between the two graphs are identical.122

GNNs and 1-WL test. Despite the success of GNNs, recent works have proved that the expressive123

power of MP-GNNs is upper bounded by the 1-WL test as follows.124

Theorem 3.1. [44, 45]. Consider a K-layer MP-GNN with each layer following the form of Eq. 1.125

Suppose the initial input node feature is discrete, i.e., m0
u = xu ∈ Zd,∀u ∈ V . Then mK

u ̸= mK
v126

only if nodes u and v have different labels after K iterations of the WL algorithm.127

3.2 Structural role embedding from local heat diffusion128

Algorithm 1 InSuRE
1: Input: G={V, E}, initial diffusion scale s0, sampling

rate α, standard deviation threshold η, sampling time
point set T

2: Output: Optimal local neighborhood radius k∗η , opti-
mal scale s∗, node embedding ϕi for vi ∈ V

3: Compute transition matrix P=D−1/2AD−1/2

4: Generate subgraph Gsub and transition matrix Psub

5: Optimize local neighborhood radius k∗η (Sec. 3.3)
6: Learn the optimal diffusion scale s∗ (Sec. 3.4)
7: Compute optimal diffusion pattern H∗ (Eq. 2)
8: Generate embedding ϕa for va ∈ V (Eq. 3)

This section introduces the embedding129

procedure given the local neighborhood130

radius and the diffusion scale. The pro-131

cedure has two steps — the first step is132

to extract each node’s structural infor-133

mation through a local diffusion process,134

and the second step is to embed their dif-135

fusion pattern.136

Step 1. Generating diffusion pattern137

InSuRE starts with modeling a diffusion138

process on a graph to extract each node’s139

structural information. The global diffu-140

sion kernel is defined as follows.141

3



Definition 3.1. (Global diffusion kernel) A diffusion kernel operator is defined as Hs = e−sLrw .142

As the diffusion kernel operator reformulated as a continuous-time random walk [32], the global143

diffusion kernel, Hs, is defined as Hs = e−s
∑∞

k=0
sk

k!P
k, where P is the random walk adjacency144

matrix Arw, Lrw=I−D−1A denotes the normalized Laplacian matrix, k is the steps of random145

walk, and s is the diffusion scale.146

The global diffusion kernel describes a flow of heat energy at a diffusion scale s over the entire147

graph [46]. Each node’s neighborhood structural information is characterized by the energy received148

from its neighborhoods, namely the diffusion pattern. Directly computing the global heat kernel149

is both time and space expensive. However, it is easily verified that Hs’s coefficient series (i.e.,150

{ essk

k! }k=0,...,∞, s > 0) converges rapidly and the random walk on a graph converges to a stationary151

distribution as k→∞. The local diffusion kernel is therefore defined as the sum of Hs’s first k′ terms.152

Definition 3.2. (Local diffusion kernel) A local diffusion kernel H̃(s, k′) = e−s
∑k′

k=0
(s)k

k! Pk. is153

characterized by two parameters, namely a local neighborhood radius k′ and a diffusion scale s. The154

local neighborhood radius k′ limits a diffusion process to neighboring nodes within k′ hops, and the155

diffusion scale s controls the heat propagation.156

With the optimized local neighborhood radius k∗η and the diffusion scale s∗, the optimal local diffusion157

kernel is H̃(s∗, k∗η)=e−s∗
∑k∗

η

k=0
(s∗)k

k! P k. We concatenate the local diffusion kernel within k∗η-hop158

neighborhoods and obtain the final optimal diffusion pattern as159

H∗ = [H̃(s∗, 1)T , . . . , H̃(s∗, k∗η)
T ]T . (2)

The yielded diffusion pattern for a node u is denoted as hu = H∗δu, where δu=Iu denotes the one-160

hot vector of node u. Since the local diffusion kernel can be easily computed given k∗η and s∗, InSuRE161

performs well in an inductive learning setting (see Sec. 4.2 and 4.4). The local diffusion calculation162

also makes InSuRE computationally efficient (see Sec. 3.5). Note that we use the symmetric random163

walk adjacency matrix Asym=D−1/2AD−1/2, which yields better performance in experiments.164

Step 2. Embedding structural roles165

Given nodes u and v have the same structural role, the neighborhood subgraphs rooted at u and166

v are isomorphic. As a node’s neighborhood topology is encoded in the yielded local diffusion167

pattern, nodes u and v also have “isomorphic” local diffusion pattern (i.e., ∃π : V→V, π(hu) = hv).168

However, directly solving the diffusion pattern matching problem is computationally prohibitive [47].169

To compare the patterns more efficiently, we regard each node u’s diffusion pattern hu as a random170

variable following a distribution, with hmu treated as if they were sampled observations. Then its171

empirical characteristic function is used to characterize the distribution. Specifically, for a node u, the172

characteristic function of hu is defined as zu(t)=E[eithu ]. It is a Fourier transform of the probability173

distribution ha, and thus fully describes ha. Based on the calculated coefficients of node u’s diffusion174

pattern, the empirical characteristic distribution of hu is defined as zu(t)=
1
n

∑k∗
η·n

m=1 e
ithmu . By175

Euler’s formula (i.e., eix=cosx+i sinx), we divide zu(t) into real and imaginary parts. Sampling176

the characteristic function at d points in set T , node u’s embedding is generated by concatenating all177

the values [19],178

ϕu = [Re (zu (tk)) , Im (zu (tk))]tk∈T , (3)

where Re (zu (tk))=
1

k∗
η·n

∑k∗
η·n

m=1 cos(tkhmu), and Im (zu (tk))=
1

k∗
η·n

∑k∗
η·n

m=1 sin(tkhmu).179

For unseen nodes: InSuRE generates the induced k∗η-hop neighborhood subgraph centered at each180

unseen node, and applies Eq. 2 to embed their structural roles.181

3.3 Optimizing local neighborhood radius k182

The local neighborhood radius k′ controls the range of heat diffusion. Too small or too large k′ leads183

to limited or redundant diffusion, and cannot extract the proper structural information. As k′ also184

denotes the number of random walk steps, the random walk converges to a stationary distribution185

when k′ goes to infinity [48]. The stationary distribution is identical for all nodes in a graph, and186

cannot differentiate the diffusion pattern between nodes. Thus, optimizing k′ is related to choosing187

a proper random walk convergence level. Since the initial transition matrix P0 is usually far from188
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convergence, we derive the optimal k∗η via r(k′), the ratio between the average standard deviation189

of row vectors in the k′-step random walk matrix Pk′
and the average standard deviation of row190

vectors in the initial random walk matrix P0, namely r(k′) = std(Pk′
)

std(P0) =
∑

std(pk′
i )∑

std(pk′
0 )

, where pk
′

i ∈ Rn191

denotes the i-th row of Pk′
, i=0, 1, . . . ,∞. Given a predefined threshold η, the random walk with k′192

steps is not informative on identifying nodes’ diffusion pattern if r(k′) < η. Let F (k′) denote the193

set that contains all the values of k′ satisfying r(k′) ≥ η (i.e., F (k′) = {k′|r(k′) ≥ η}), and k∗η is194

computed as k∗η = maxk′ F (k′). The relationship between k and the random walk convergence level195

is formally derived as follows (with proof in the supplementary material).196

Theorem 3.2. Consider a random walk on a connected graph. For every initial probability distribu-197

tion p0 and every k≥0, we have ∥pk−π∥≤
√

maxu du

minu du
λk
2 , where pk denotes the distribution after k198

steps, π denotes the stationary distribution, du denotes node u’s degree, and λ2 denotes the second199

largest eigenvalue of the transition matrix P.200

Corollary 3.3. Given a ratio threshold η, we have r(k)=η ⇐⇒ k≤ logλ2
(
η2
kVar(P0)

d ), where201

d=maxu du

minu du
, Var(P0)= 1

n

∑n
i=1

∑n
j=1 ∥P0

ij−p0i ∥22, and p0i=
1
n

∑n
j=1 P

0
ij , i,j∈V .202

Note that the convergence of random walk using transition matrix P=Arw is equivalent to the203

convergence of random walk using P=Asym, as Ak
sym=D−1/2AAk−1

rw D−1/2. Since λ2 < 1,204

Corollary 3.3 indicates that the value of η is proportional to the selection of k∗η . We refer to η as a205

hyper-parameter in our method, with a larger η corresponding to global node structural roles, and a206

smaller η corresponding to local node structural roles.207

3.4 Optimizing diffusion scale s208

The scale parameter s determines the heat propagation time. Too small or too large s leads to limited209

diffusion or identical diffusion. For a given k∗η , the scale parameter s is optimized to best identify210

nodes’ structural roles. Thus, we optimize s by maximizing the covariance between nodes’ diffusion211

pattern, which is denoted as cov(hi, hj)=
1
n

∑
a

∑
b haihbj−h̄ih̄j , where h̄i and h̄j denote the means212

of hi and hj . However, directly computing the covariance has a time complexity O(n4). To reduce213

computation, the covariance between the sample mean of hi, i∈V , is maximized with a loss function214

L(s) = −n

n∑
i=1

n∑
j=1

cov(h̄i, h̄j) = −(

n∑
i=1

h̄2
i − nh̄2), (4)

where h̄= 1
n

∑
i h̄i. The simplification is based on the idea that covariance between the diffusion215

pattern of the nodes can be estimated by the variance between their sample means, with details in the216

supplementary material. To accelerate the optimization, only a subset of the nodes are considered217

during training. We first randomly select an initial node, traversing the graph with a breadth-first218

search (BFS) strategy and sampling nodes with the sampling rate α, until α∗|V| nodes are collected.219

This BFS strategy preserves nodes’ structure since nodes with more neighbors still have larger degrees220

after sampling.221

3.5 Time complexity222

Since InSuRE utilizes a subset of nodes during training, its time complexity stems from computing223

the optimal local diffusion pattern (line 7 in Algo. 1), which requires multiplying transition matrices224

of different orders (i.e., Pk∈R|V|×|V|, k=0, 1, . . ., k∗η). Sparse matrix multiplication is used to reduce225

computation. Let τ(P) denote the number of the non-zero elements in P, and the expected number226

of multiplication operations between Pk and P is τ(Pk)τ(P)/|V| [49]. For large sparse graphs,227

|E|=c|V|, where c is a constant. The total time complexity for embedding existing nodes is O(|E|).228

For a set of unseen nodes V ′={v′1, . . ., v′m}, subgraphs G′
i={V ′

i, E
′

i}, centered at these nodes are229

generated. The time complexity for embedding unseen nodes is O(|V̄ ′|2), where V̄ ′ denotes the230

average size of G′
i for each node vi ∈ V ′.231

3.6 Improving a GNN’s expressive power with InSuRE’s structural embedding232

MP-GNN’s limited expressive power is inherited from the 1-WL test which does not capture distance233

information between the nodes. Recently, Li et al. [50] proposed DE-GNN to improve MP-GNN’s234

5



expressive power by encoding distance information as extra node features. Due to InSuRE’s efficiency235

and effectiveness in embedding nodes’ structural roles, we couple MP-GNN with InSuRE’s structural236

embedding, termed as InSuRE-GNN, and theoretically demonstrate that InSuRE-GNN increases the237

expressive power of MP-GNNs by proving that InSuRE-GNN is more powerful than DE-GNN with238

a simple aggregation function. We introduce definitions and theorems below, and save the detailed239

derivations in the supplementary material.240

Definition 3.3. (DE-GNN) [50]. Given a subset of nodes S ⊆ V (e.g., a set including node u and its241

neighbors), the distance encoding (DE) for node u is242

ζ(u | S) = AGG({ζ(u | v) | v ∈ S}), (5)

where ζ and AGG are differentiable permutation invariant functions. ζ(u | v) chracterizes a certain243

distance between nodes v and u. For instance,244

ζ(u | v) = g (ℓuv) , ℓuv =
(
1, (Arw)uv, . . . ,

(
Ak

rw

)
uv

)
. (6)

DE-GNN couples MP-GNN with DE as extra features. DE-GNN is called proper if UPDATE, AGG in245

Eq. 1, AGG in Eq. 5, and g in Eq. 6 are all injective mapping if the input features are all countable.246

Li et al. [50] formally prove that DE-GNN is more powerful than MP-GNN in distinguishing247

structural identities in regular graphs without node attributes. Nevertheless, the simple aggregation248

function AGG :R|S|×R|S|→R used in DE-GNN satisfies the injective assumption only if |S|=1,249

where DE contains limited distance information from itself. When |S|>2, AGG becomes surjective,250

and nodes with different distance information may be mapped together. Thus, AGG has limited251

capability to generate distinguishable node structural features. By contrast, InSuRE uses the empirical252

characteristic function to embed the distribution of the distance information between nodes (i.e., the253

diffusion pattern of nodes). Note that InSuRE’s diffusion pattern generation is equivalent to set g254

in Eq. 6 as heat kernel operator and the obtained diffusion pattern containing distance information255

between nodes. As the empirical characteristic function uniquely characterizes the distribution of256

node diffusion pattern, it is capable of distinguishing non-isomorphic node diffusion patterns, which257

is formally stated as follows.258

Theorem 3.4. The empirical characteristic function of nodes u and v are the same if and only if their259

diffusion pattern hu, hv are isomorphic (i.e., ∃π : V → V, π(hu) = hv).260

Based on Theorem 3.4, we conclude as follows.261

Corollary 3.5. InSuRE-GNN is more expressive than DE-GNN with a simple set aggregation function.262

263

4 Experiments264

We evaluate InSuRE’s performance in five experiments with different purposes. The first experiment265

(Sec. 4.1) investigates the effectiveness of a local diffusion kernel comparing to a global diffusion266

kernel in structural role embedding. Then, we use a simulated barbell graph to examine InSuRE’s267

structural embedding in both transductive and inductive settings (Sec. 4.2). We further test InSuRE’s268

embedding in transductive (Sec. 4.3) and inductive (Sec. 4.4) node classification tasks. Finally, we269

evaluate InSuRE-GNN’s expressive power in node classification tasks (Sec. 4.5).270

Baselines. We compare InSuRE with struc2vec [18], GraphWave [19], and Role2Vec [20] in terms271

of their embedding quality and inductive ability. We also compare InSuRE with RolX [17] in the272

simulated experiments and node2vec [7] in the transductive node classification. In the experiments for273

evaluating InSuRE’s expressive power, seven baselines are chosen. The first three methods, Struc2vec-274

GNN, GraphWave-GNN, Role2Vec-GNN, denote MP-GNN coupled with Struc2vec, GraphWave,275

Role2Vec node embeddings. Regarding DE-GNN, we choose its landing probability (LP) variant, as276

it achieved the best performance on the node classification task reported in the original paper. The277

remaining three baselines, GCN [51], GraphSAGE [11], and GIN [44] are representative MP-GNNs,278

and node degrees are used as the initial node features. Parameters are tuned for all the baselines.279

4.1 Comparing local and global diffusion kernels in structural role embedding280

To investigate a local diffusion kernel’s capability of identifying nodes’ structural roles, we compare281

the performance of a local diffusion kernel with different neighborhood radii (k = 1, 2, 3, and 4)282

and the global diffusion kernel used in GraphWave on a simulated barbell graph. The simulated283

barbell graph is a symmetric, unweighted graph with two 70-vertex cliques, connected by a path284

of seven nodes (Fig. 2). It has six structural equivalent classes indicated by different colors.285
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Figure 2: Barbell graph with node colors
denoting structural roles.

Fig. 3 shows the 2D-PCA projection of the embedding286

obtained by a local diffusion kernel with neighborhood287

radii k = 1, 2, 3, and 4, and the global diffusion kernel288

(i.e., k = ∞) used by GraphWave. The optimal local289

neighborhood radius k∗η learned by InSuRE is 4, which290

produces a embedding nearly the same as that from a291

global diffusion kernel. The result demonstrates that a292

local diffusion kernel is as effective as a global diffusion kernel in extracting nodes’ structural roles.

Figure 3: 2D-PCA projections of the embedding obtained by a local diffusion kernel with neighbor-
hood radius k = 1, 2, 3, 4, and the global diffusion kernel (i.e., k = ∞) used by GraphWave.

Figure 4: 2D-PCA projections of node structural embedding from different methods in (A) transduc-
tive setting and (B) inductive setting.

293

4.2 Comparing structural role embedding in both transductive and inductive settings294

We use the same barbell graph and evaluate all the approaches in both transductive and inductive295

settings. In the transductive setting, InSuRE and baselines are applied to the entire graph, and the296

structural embedding from different approaches is visualized and compared. In the inductive setting,297

we randomly remove one yellow clique node and its edges, and regard it as an unseen node. All298

approaches are applied to the remainder graph to generate their embedding. The unseen node together299

with its neighborhood is then fed to all the approaches to generate its embedding. A successful300

inductive embedding approach should project the unseen node and its structural equivalent class301

in the remainder graph to the same place. The structural embedding from different approaches is302

visualized in Fig. 4. The colors of the nodes represent their ground-truth structural roles. In the303

transductive embedding task (Fig. 4A), InSuRE, GraphWave, and struc2vec correctly identify all304

of the six structural roles in the graph, whereas RolX only identifies three structural roles, with305

purple/red/brown nodes projected together, green/yellow nodes projected together, and blue-green306

nodes projected as the third role. Role2Vec fails to classify the structural roles between green and307

yellow nodes as well as between purple and red nodes. Moreover, InSuRE and GraphWave accurately308

capture the similarity between different structural roles — yellow and green nodes with similar roles309

are projected closer, and the other four similar roles are projected closer. In the inductive experiment310

(Fig. 4B), only InSuRE and Role2Vec correctly classify the unseen node into the right class. However,311

InSuRE still identifies all of the six structural roles whereas Role2Vec fails to classify the structural312

roles between nodes, especially for the classes other than yellow.313
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TABLE 1: ACCURACY, RUN TIME, AND PEAK MEMORY USAGE OF DIFFERENT METHODS ON
TRANSDUCTIVE NODE CLASSIFICATION.

MEASURE GRAPH INSURE STRUC2VEC GRAPHWAVE ROLE2VEC NODE2VEC

BRAZIL-AIR 82.59 ± 8.93 76.67 ± 8.77 78.52 ± 7.73 43.33 ± 10.74 43.70 ± 10.86
ACCURACY (%) EUROPE-AIR 58.00 ± 4.00 57.63 ± 4.09 52.37 ± 5.63 32.00 ± 6.35 38.12 ± 4.55

USA-AIR 61.51 ± 2.52 60.42 ± 2.21 56.17 ± 3.18 48.57 ± 3.43 52.98 ± 2.84
ACTOR 45.56 ± 0.69 46.17 ± 0.99 45.45 ± 1.26 34.50 ± 9.31 35.73 ± 0.99

BRAZIL-AIR 1.05 23.68 0.34 12.29 6.01
RUN TIME EUROPE-AIR 3.21 155.02 3.54 52.30 23.85
(SECOND) USA-AIR 15.63 874.71 18.11 143.54 84.92

ACTOR 453.28 10490.72 559.52 2324.80 460.55
BRAZIL-AIR 5.15 8.89 19.46 15.18 17.79

PEAK MEMORY EUROPE-AIR 48.83 9.59 174.88 101.27 89.97
USAGE (MB) USA-AIR 305.99 11.66 1482.80 286.20 271.77

ACTOR 6378.05 28.95 58457.95 5711.69 1460.35

TABLE 2: PERFORMANCE ON INDUCTIVE NODE
CLASSIFICATION WITH FACEBOOK SOCIAL CIRCLE
NETWORK

MEASURE CLASSIFIER INSURE ROLE2VEC GRAPHWAVE STRUC2VEC

MEAN KNN 0.998 0.996 0.932 0.996
ACCURACY NAIVE BAYES 1.000 0.996 0.787 0.996

F1-SCORE
KNN 0.667 0.000 0.00 0.000

NAIVE BAYES 1.000 0.000 0.027 0.000

TABLE 3: PERFORMANCE ON IN-
DUCTIVE NODE CLASSIFICATION WITH
TWITTER SOCIAL CIRCLE NETWORK

MEASURE\CLASSIFIER KNN NAIVE BAYES

MEAN ACCURACY 0.9895 0.9840
F1-SCORE 0.3313 0.5068

4.3 Testing structural embedding in a transductive node classification task314

We evaluate the structural embedding from different approaches in transductive node classification315

tasks under the assumption that a good structural embedding should correctly identify nodes’ structural316

labels. Four real datasets, Brazil-Airports, Europe-Airports, USA-Airports [18], and Actor co-317

occurrence [52], are chosen as their labels indicate the structural roles. The first three datasets are318

flight traffic networks, where nodes correspond to airports and edges indicate the existence of non-stop319

flights. Each node is assigned a label according to its level of activity. In the Actor co-occurrence320

network dataset, nodes represent actors and edges indicate the co-occurrence on the same Wikipedia321

page. Each node is assigned with a label according to its influence level. For all datasets, we use 80%322

and 20% dataset splitting for training and testing. All the embedding methods are applied to learn323

each node’s embedding. We train a L2-regularized logistic regression model based on embeddings of324

training nodes. Accuracy score is used to evaluate the performance of methods, run time and peak325

memory usage are also recorded.326

Results (averaged from 10 replicates with different random seeds) are summarized in Table 1. InSuRE327

outperforms the baseline methods at almost all datasets, which indicates that InSuRE is capable328

of embedding node structural roles effectively. Especially, InSuRE outperforms GraphWave in the329

three airport traffic networks, and achieves slightly better performance in the Actor co-occurrence330

network. This demonstrates local diffusion kernel (used by InSuRE) is more powerful than the global331

diffusion kernel (used by GraphWave) in identifying node structural roles in the real-world datasets,332

as the global diffusion kernel may be interfered with by noisy information. Struc2vec has the best333

performance among all the baseline methods, which implies the structural kernel is effective to extract334

structural information. Role2Vec and node2vec do not perform well in the node classification task.335

Regarding run time and peak memory usage, InSuRE is the fastest among all the methods and has336

comparable peak memory usage with Role2Vec and node2vec. Although struc2vec uses the least337

memory, it takes too much time. GraphWave has a comparable run time with InSuRE, while it338

consumes too much space. Therefore, only InSuRE achieves a decent node classification accuracy in339

an effective manner for embedding large-scale graphs.340

4.4 Using structural embedding for an inductive node classification task341

In an inductive node classification task, we are given a graph G = {V, E}, where each node has342

its ground-truth structural label. To obtain the test set, we randomly remove 25% of the nodes in343

G and their edges, and use Vtest to denote the set of removed nodes. The remainder graph and344

node set are denoted as Gtrain and Vtrain. For each node vi ∈ Vtest, we construct its subgraph345

G′
i based on its neighborhood. Then we merge all the subgraphs G′

i to one graph called Gtest. For346

transductive methods (i.e., GraphWave, struc2vec), we apply them on Gtrain and Gtest to embed347

nodes in Vtrain and Vtest separately. For inductive methods (i.e., InSuRE and Role2Vec), we learn348
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TABLE 4: PERFORMANCE OF DIFFERENT GNN MODELS ON NODE CLASSIFICATION TASK
(MEASURE IN ACCURACY SCORE (%)).

GRAPH INSURE-GNN STRUC2VEC-GNN GRAPHWAVE-GNN ROLE2VEC-GNN DE-GNN GCN GRAPHSAGE GIN

BRAZIL-AIR 83.85 ± 7.26 72.11 ± 7.41 76.15 ± 9.39 65.39 ± 11.54 75.46 ± 6.64 73.85 ± 9.23 73.08 ± 11.53 73.24 ± 7.19
EUROPE-AIR 65.00 ± 4.33 61.25 ± 8.00 61.00 ± 3.74 59.50 ± 7.56 61.25 ± 3.75 59.25 ± 5.24 59.50 ± 5.78 60.50 ± 5.45

USA-AIR 66.98 ±2.02 62.61 ± 2.36 63.10 ± 3.71 61.09 ± 4.54 62.77 ± 3.68 58.65 ± 3.85 50.85 62.68 ± 2.67

parameters of the embedding function based on Gtrain, and embed nodes in Vtrain and Vtest using349

the learned model. Based on the obtained embedding, we predict the label of each node in Vtest with350

two classifiers — one k-nearest neighbor classifier and one naive Bayesian classifier. A successful351

inductive embedding should accurately predict the ground-truth node label based on the trained model.352

Mean accuracy and F1-score are used to measure their performance. We use the Facebook and Twitter353

social circle network datasets from Stanford Network Analysis Project database. Both of the graphs354

are unweighted. Facebook network consists of 4,039 nodes and 88,234 edges, and Twitter network355

contains 81,306 nodes and 1, 768, 149 edges. Nodes in the two networks represent individuals, and356

edges represent the pairwise friendship between two individuals. Facebook network includes ten357

ego-networks, and Twitter network contains 973 ego-networks. Each ego-network includes one ego358

node and different numbers of alter nodes. We assign labels to every node in the network according359

to their structural identities in the community, namely, “ego” or “alter”.360

Results on Facebook and Twitter networks are summarized in Tables 2 and 3. Note that for Twitter361

network, we could not run GraphWave on it with a workstation equipped with 64 GB memory due to362

its high space complexity, and we could not obtain the result of Role2Vec and struc2vec after running363

for one day due to their high time complexity. Regarding Facebook network, all methods appear to364

be accurate due to the imbalance between the two classes (i.e., only ten “ego” nodes in the 4,039365

nodes). Six of the “ego” nodes are in the train graph and the other four are in the test graph. InSuRE366

achieves both high accuracy and F1-scores, while Role2Vec and struc2vec yield high accuracy but367

poor F1-scores, since they fail to identify any of the “ego” nodes in the test set. This demonstrates368

that InSuRE correctly identifies the structural roles of the unseen nodes even though training samples369

are very few. Regarding Twitter network, InSuRE yields high mean accuracy and decent F1-score370

with a 1-hour run time, which indicates its capability of embedding nodes in large-scale graphs.371

4.5 Evaluating MP-GNN coupled with structural embeddings on node classification task372

The expressive power of different GNN models is evaluated on the node classification task under the373

assumption that a GNN with higher expressive power yields better performance in classifying the374

nodes’ structural roles. The three flight traffic network datasets, Brazil-Airports, Europe-Airports,375

USA-Airports, are chosen, with the detailed introduction in Sec. 4.3. For all the datasets, 80% of376

data are used for training, 10% of data are used for validation, and the remaining 10% are used for377

testing. Accuracy score is used to evaluate the performance of each method.378

The results averaged from 10 replicates with different random seeds are summarized in Table379

4. InSuRE-GNN outperforms the baseline models in all datasets, which indicates that it is more380

powerful than DE-GNN with a simple aggregation function. DE-GNN performs better than MP-GNN381

baselines, which demonstrates its expressive power in structural representations. GIN achieves the382

best performance among the three MP-GNN baselines, which is consistent with the theory in Xu383

et al. [44]. Although struc2vec-GNN and GraphWave-GNN achieve competitive performance with384

DE-GNN, it is either time-consuming or space-consuming for the two methods to generate node385

embeddings. By contrast, InSuRE’s efficiency makes InSuRE-GNN applicable to large-scale graphs.386

5 Discussion387

In conclusion, InSuRE innovatively uses a local diffusion kernel to capture node structural roles,388

which is proven to be effective and efficient in inductive node embedding. Theoretical and empirical389

results suggest that InSuRE’s embedding as node features increases MP-GNN’s expressive power.390

Limitations of our work In the diffusion scale parameter optimization, how different choices of391

sampling points influence structural embedding needs further investigation. Two alternative methods392

can be considered in future study. One is to measure the pairwise distribution gap with distribution393

discrepancy measures such as maximum mean discrepancy and Wasserstein distance. The other394

one is to embed distributions with the first l cumulants of empirical cumulant-generating function.395

However, the former one may be space-consuming, whereas the latter may be time-consuming.396

Negative societal impacts of our work Our work has no potential negative societal impacts.397
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