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Toward Interactive Image Inpainting via Robust
Sketch Refinement

Chang Liu"”’, Shunxin Xu ", Jialun Peng

Abstract—One tough problem of image inpainting is to
restore complex structures in the corrupted regions. It motivates
interactive image inpainting which leverages additional hints, e.g.,
sketches, to assist the inpainting process. A sketch is simple and
intuitive for end users to provide, but meanwhile has free forms with
much randomness. Such randomness may confuse the inpainting
models, and incur severe artifacts in completed images. To better
facilitate image inpainting with sketch guidance, we propose a
two-stage image inpainting system, termed SketchRefiner. The first
stage of our approach serves as a data provider that simulates
real sketches and derives the capability of sketch calibration from
the simulated data. In the second stage, our approach aligns
the sketch guidance with the inpainting process so as to elevate
image inpainting with sketches. We also propose a real-world test
protocol to address the evaluation of inpainting methods upon
practical applications with user sketches. Experimental results on
three prevailing benchmark datasets, i.e., CelebA-HQ, Places2, and
ImageNet, and the proposed test protocol demonstrate the state-
of-the-art performance of our approach, and its great potentials
upon real-world applications. Further analyses illustrate that our
approach effectively utilizes sketch information as guidance and
eliminates the artifacts due to the free-form sketches.

Index Terms—Image inpainting, sketch-based image inpainting,
sketch refinement, image editing, generative adversarial network
(GAN).

1. INTRODUCTION

MAGE inpainting refers to the task of completing a given
I “corrupted” image in the hope of making the completed im-
age consistent and photo-realistic [2]. In some scenarios, an im-
age was indeed corrupted, e.g., due to transmission error; in other
scenarios, users may intentionally “corrupt” a complete image,
e.g. to remove an unwanted foreground object. Thus, image in-
painting has revealed great practical value in real-world appli-
cations, e.g. old photo restoration, image editing, watermark
removal, object removal, and so on. Among these applications,
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one of the most challenging scenarios in real practice is to re-
cover complex structures in the missing areas, which motivates
studies on the interactive image inpainting task that allows users
to provide hints for the inpainting process to alleviate the diffi-
culty. Among numerous user-interacted physical medias, sketch
has stood out as a simple and intuitive way to express creative
ideas from users. By simply depicting several lines, sketch is
able to highlight the outlines of important elements for the cor-
rupted image and convey demands from users straightforwardly,
which has emerged as a prominent attractive research direction
in the field of image inpainting.

Existing methods for interactive image inpainting can be di-
vided into two main categories, i.e., traditional methods and
learning-based methods, respectively. Among traditional meth-
ods, some studies attempted to introduce user interactions as
structural guidance [3], [4] to assist the image inpainting pro-
cess. Nevertheless, these methods are heuristic and fail torecover
plausible textures in the corrupted areas. Recently, learning-
based methods gradually became dominant and revealed more
plausible performance than traditional ones, where these meth-
ods derive outstanding capability of recovering corrupted re-
gions with large-scale training data. Despite this, it is diffi-
cult for existing learning-based methods to effectively handle
real sketches for interactive image inpainting, since there are
no available image-sketch pairs in sufficient scale, and collect-
ing them is also resource-consuming. To address such difficul-
ties, a series of studies [1], [5], [6], [7], [8], [9], [10], [11],
[12] are thus motivated to simulate hand-drawn sketches with
automatic solutions, e.g., edge detection models [13], [14].
However, such methods neglect the modal characteristics of
user-drawn sketches, where it is tough for untrained users to
depict pixel-wise precise outlines as the ones in the edge map.
On treating the input sketch as the edge map in inference, the
inpainting model will be confused by incorrect guidance and in-
cur severe artifacts similar to the examples presented in Fig. 1,
thereby revealing less practical value in real-world applications.
To facilitate interactive image inpainting upon real-world appli-
cations, the gap between sketch-like inputs and existing image
inpainting models is expected to be bridged.

In this paper, we present a paradigm to address the afore-
mentioned limitations and bridge the existing gap of the sketch-
based interactive image inpainting task, namely SketchRefiner.
SketchRefiner is a two-stage system that calibrates the in-
put sketch and facilitates the inpainting process with elabo-
rated guidance based two components, namely robust sketch
refinement (RSR) and sketch-modulated image inpainting (SII),
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Fig. 1.
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SketchEdit, Ours;

Interactive image inpainting results of scene editing (top two rows) and face manipulation (the third row), produced by SketchEdit [1] and our approach.

Given user-provided sketches and masks (the second and fifth columns), SketchEdit [1] tries to use the sketches as if they were edges in the missing area, thereby
producing noticeable artifacts. In reverse, our method uses the sketches as coarse guiding information, thus reflects user intentions in the produced results and

meanwhile tolerates certain randomness of user input.

respectively. Specifically, RSR performs the sketch refinement
process, equipped with deformable sketch simulation (DSS)
and sketch refinement network (SRN), which provides vari-
ous deformed sketches and learns the sketch calibration process
along with the simulated data, respectively. SII aligns the re-
fined sketch with the inpainting process and recovers the missing
textures in the corrupted regions with the assistance of struc-
tural guidance. Therefore, SketchRefiner is able to facilitate
the image inpainting process with sketch guidance and elimi-
nates artifacts in the inpainted results brought by the free forms
of hand-drawn sketches. Experimental results on three public
benchmark datasets, i.e., CelebA-HQ [15], Places2 [16], and
ImageNet [17] demonstrate the guaranteed performance of our
approach compared to existing state-of-the-art methods. For fur-
ther evaluation of our approach on real applications, we propose
a real-world test protocol with manually annotated masks and
sketches for interactive image inpainting, which indicates the
great potentials of our approach in a series of practical applica-
tions. Generally speaking, our contributions are three-fold:

® We re-investigate the challenges of sketch-based interac-
tive image inpainting, by proposing a two-stage system
called SketchRefiner to bridge the existing gap between
sketch-like inputs and image inpainting models.

o SketchRefiner utilizes sketch guidance to facilitate the in-
painting process with RSR and SII, which learns the struc-
tural calibration process with simulated data and aligns the
sketch guidance with the inpainting process, respectively.

® We establish a real-world test protocol with manually an-
notated masks and sketches for sketch-based interactive
image inpainting. Experimental results on three bench-
mark datasets, i.e., CelebA-HQ, Places2, ImageNet, and

the proposed test protocol illustrate that our approach ob-
tains state-of-the-art performance and reveals great poten-
tials on real-world applications.
Our code and the proposed test protocol are available at https:
/I github.com/AlonzoLeeeooo/SketchRefiner.

II. RELATED WORK
A. Image Inpainting

Existing methods for image inpainting can be divided into two
categories, i.e., traditional methods and learning-based methods,
whose details are illustrated in the following text.

Among traditional methods, the most typical solution for im-
age inpainting is to solve partial differential equations so as to
predict the missing pixels in the corrupted regions according to
the valid ones. Other studies, namely patch-based methods [18],
[19], [20], attempted to fill the missing areas with retrieved
similar patches from the target image [21] or a pre-defined
database [22]. Nevertheless, methods that solve partial differ-
ential equations struggle to recover corrupted images with large
missing areas, while patch-based methods suffer from the lim-
itations that patches with similar textures are difficult to find,
especially when the corrupted areas contain stochastic textures
or complicated structures.

With the bloom of deep learning approaches, learning-based
methods have become prominent and significantly promote the
image inpainting task. Specifically, generative adversarial net-
work (GAN), which optimizes a generator and a discriminator
in an adversarial manner, have achieved great success in the
field of image inpainting. For example, Context Encoder [23]
is the first study that applies GAN on image inpainting, which
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established the foundation paradigm of GAN-based methods us-
ing pixel-wise loss and adversarial loss to optimize the model.
lizuka et al. [24] equip the GAN with dilated convolution lay-
ers and discriminators with different receptive fields, while
Yu et al. [25] adopt a contextual attention layer to perform image
inpainting in a coarse-to-fine manner. Zheng et al. [26] propose
to generate diverse inpainting results with a conditional VAE
model, and Liu et al. [27] facilitate image inpainting with a
feature equalizing encoder-decoder. Peng et al. [28] boost the
inpainting process with various structural information gener-
ated by a hierarchical VQ-VAE, and Suvorov et al. [29] propose
a fast Fourier convolution with large image receptive field to
recover highly corrupted images. Zhang et al. [30] propose a
concatenated U-Net inpainting network to enhance the texture
and structure reconstruction for image inpainting. Other stud-
ies put emphasis on tackling image inpainting with novel net-
work architectures, e.g., transformer- and diffusion-based mod-
els. Transformer-based methods demonstrate their superiority in
modeling long-term correlation, where studies for pluralistic im-
age completion [31], [32], bridging the interactions of different
image regions [33], and large hole image inpainting [34] are pro-
moted and achieve great success. Meanwhile, diffusion-based
methods provided an alternative for image inpainting through
iteratively de-noising to recover the corrupted image, where Re-
Paint [35] is the first work to adopt pre-trained unconditional dif-
fusion models for image inpainting. However, both transformer-
and diffusion-based methods require large computational
resources to implement and suffer from slow inference speed,
which fails to meet the requirement of real-time interactions for
image inpainting. In this paper, we address the image inpainting
task following GAN-based methods.

B. Interactive Image Inpainting

The topic of conducting the inpainting process interactively
has been investigated across different data modalities, e.g.,
video [36], [37], image, etc. Particularly, interactive image in-
painting attempts to facilitate the image inpainting process with
additional useful interactions, e.g., text [38], [39], local binary
pattern (LBP) [40], and so on. Among numerous interactive me-
dia, sketch has attracted much research interest for its simplic-
ity and intuitive way of presenting user interactions. Early tra-
ditional studies [3], [4] utilized structural information to help
the inpainting process by allowing users to provide it interac-
tively, which reveals less practical usage due to the ill-presenting
performance of patch-based methods. As learning-based meth-
ods become dominant, it is natural to explore their possibilities
along with user-provided sketches. However, existing datasets
lack available data pairs between real sketches and images,
while collecting one is resource-consuming, which motivates
existing studies to simulate hand-drawn sketches through auto-
matically generated alternatives, e.g., edge maps extracted by
edge detectors [13], [14]. Specifically, Yu et al. [5] propose
to conduct generative image inpainting via free-form sketches.
Liu et al. [41] present a structure-guided framework for im-
age inpainting to maintain the neighborhood consistency and
structure coherence of the inpainted region. Yang et al. [9]
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perform sketch-guided face generation both locally and glob-
ally by calibrating the input face sketch according to their style.
Liu et al. [11] edit images with interactions of sketch and color
guidance. Zeng et al. [1] predict masks according to the input
sketch and perform mask-free image inpainting. Nevertheless,
these methods are presented based on the strong assumption that
the interacted sketch aligns with the detected edge map by de-
fault, and neglect the scenarios that users may fail to provide
accurate sketches for the missing areas, thereby resulting in un-
natural artifacts as the examples shown in Fig. 1.

C. Sketch Refinement

Early research for sketch refinement [42], [43] have proven
that sketches are closely related to edges, both of which are
visually closed outlines of objects. The major difference be-
tween sketches and edges is that edges are pixel-wise corre-
sponding to sharp intensity gradients, while sketches are more
diversified and abstract. Although several efforts [6], [8], [12],
[44], [45], [46] have been motivated to recover sketches from
edges, these methods can only complete disconnected struc-
tures that are corrupted by simulated masks, and fail to han-
dle real sketches where misalignment occurs inside the masked
areas, thus becoming less practical for real-world applications.
Among the aforementioned discussed studies, DeepFill-v2 [5],
DeepPS [9], and SketchEdit [1] are the most related ones to
our study. Nevertheless, DeepPS is only limited to face images,
while DeepFill-v2 and SketchEdit require pixel-wise precise-
ness in the user-provided sketches, which still struggle to sat-
isfy the demands of real-world applications. On the contrary,
our approach is capable of eliminating the artifacts brought by
free-form sketches and provides precise structural guidance for
the image inpainting process.

III. APPROACH

Fig. 2 illustrates the overall pipeline of our approach, which
consists of two stages, namely, robust sketch refinement (RSR)
and sketch-modulated image inpainting (SII). RSR aims to re-
fine the input sketch and provide more accurate sketch guidance
for the inpainting process, and SII learns to leverage the sketch
guidance to recover the corrupted image. Specifically, RSR con-
sists of two components, namely, deformable sketch simulation
(DSS) and sketch refinement networks (SRN), where DSS sim-
ulates the randomness of free-form sketches during user interac-
tions and provides various sketches for SRN, and SRN calibrates
the coarse sketches into more accurate structural guidance. SII
involves latent sketch aligner (LSA) and sketch conditional in-
paintor (SCI), where LSA aligns the refined sketch guidance
with the inpainting process, and SCI utilizes the aligned guid-
ance to assist the process of generating the final result. In detail,
given the input image Z, we first obtain the masked image Z,,
by composing Z with the binary mask M. In training, the DSS
process f4ss(+) produces the input sketch S for SRN through
S = fass(Z, M, D), so as to have SRN learned the sketch re-
finement process. Herein, D denotes a number that controls the
magnitude of sketch deformation. Then, the SRN fq,.,(+) cali-
brates S into the refined sketch & according to M and Z,,,. The
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The overall pipeline of our proposed approach with two main processes, namely, robust sketch refinement (RSR) and sketch-modulated image inpainting

(SII). RSR contains deformable sketch simulation (DSS) and sketch refinement networks (SRN), while SII involves latent sketch aligner (LSA) and sketch
conditional inpaintor (SCI). Herein, we present an example image for better demonstration, where the goal of this example case is to remove the zebra from the
original image and the user sketch aims to provide hints for the inpainting networks to recover the fence in the background.

overall process of RSR is formulated by
§:fsrn (ImaMaS) (1)

The SII process aligns S through the LSA J1sa(+) with the in-
painting process and incorporates the aligned guidance into the
SCI fsei(+), written as

T = fuei (T M fisa (S)) @)

In RSR, SRN is optimized with our proposed cross-region
correlation (CRC) loss LY, with N referring to the region
size. In SII, we utilize pixel-wise loss Ly, , adversarial 10ss L4y
[47], feature matching loss L y,,, and high receptive field per-
ceptual loss Ly, ¢ [29]. The aforementioned loss functions are
formulated as

N,
Lrsp= Y M Lpc 3)
N=1
and
Lsrr = XLy + A3Lgqy + AaL g + AsLprf 4)

where A1, Ao, A3, Agq, and A5 are hyper-parameters to balance
the contributions of the losses. Therefore, the final loss function
L of our approach is formulated as

L=Lrsr+ Lsrr ©)

In the following texts, we introduce each component according
to the aforementioned processing sequence in detail.

A. Robust Sketch Refinement

The goal of our approach is to calibrate the input sketch so
as to facilitate the inpainting process with more accurate sketch
guidance. However, one of the biggest challenges is the absence
of large-scale image-sketch pairs for the training of the sketch
calibration process, where existing methods still struggle to han-
dle real sketches using detected edge maps as alternatives. To
address such challenges, we propose a novel method named
robust sketch refinement (RSR) to simulate real sketches auto-
matically and learn the sketch refinement process based on two
sequentially connected components, namely deformable sketch
simulation (DSS) and sketch refinement networks (SRN), re-
spectively. In the following texts, we illustrate the aforemen-
tioned components in detail.

1) Deformable Sketch Simulation: DSS serves as the data
provider that offers a series of simulated sketches for the sketch
refinement process. In doing so, we utilize edge maps with dif-
ferent degrees of deformation to simulate the randomness of free
forms in user-drawn sketches. Specifically, given a ground truth
image Z, we use a saliency detector to detect the foreground
mask M from Z and use M to segment the foreground Zy
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Fig. 3. Visualization of the intermediate results in DSS. Lines in the mask

regions of the simulated sketch S* and the edge map & are highlighted in white,
whereas the others are in grey. We also show all the mathematical symbols of
the intermediate results to offer a better demonstration of the DSS process.

from Z. Then we use an off-the-shelf edge detector to produce
the foreground edge map & from Z;.! Afterward, we conduct

a Gaussian projector? f,,(-) to obtain a warping map W from

a random Gaussian signal X',> where JV is then used to project
each pixel in £y onto another position using bilinear interpo-
Sw

lation f;(+), resulting in the deformed sketch S". The overall

process is formulated by
W= fop (X) D
8 = fui (&1, W) ©6)
and
S="oM+E0(1-M) (7)

where © refers to the Hadamard product between matrices. D
is a number that controls the magnitude of sketch deformation,
which is sampled from a uniform distribution U [Dyyin, Dimax]-
M refers to randomly generated masks using free-form masking
algorithm [5]. In training, we randomly vary D and M to ensure
the diversity in simulated sketch S*. In Fig. 3, we show the
visualization of the intermediate results in DSS.

2) Sketch Refinement Networks: Once the simulated sketch
is obtained, the next step is to train SRN in learning the process
of refining the input sketch into more useful structural guidance.
In doing so, SRN aligns the input sketch with the missing edge
lines of the corrupted image, and then connects the structural
vacancies in the intermediate sketch based on two components,

Herein, we use U2-Net [48] and BDCN [14] as the saliency detector and
edge detector, respectively.

2The Gaussian projector is conducted as a convolutional layer with random
Gaussian parameters as its model weights.

3X represents a randomly generated white Gaussian noise that has the same
size as T € RT*Wx*C where H, W, and C indicate the height, width, and
number of channels of Z, respectively. We use X’ to obtain the randomness of
free forms during user interactions.
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namely sketch registrator (SR) and structural connector (SO).4
To build SRN, we utilize gated convolutional blocks [5] to con-
duct the architecture of SR so as to selectively utilize information
in the valid region of the corrupted image, and use vanilla convo-
lutional blocks in SC to enhance the structural coherence of the
intermediate sketch. Particularly, we send the concatenation of
the masked image Z,,,, the binary mask M, andA the input sketch
S into SR to generate the intermediate sketch S*, formulated by

®)

where fs,(-) denotes SR. Note that S refers to S* in training
and denotes the user-provided sketch in inference.

Although SR provides a strong registration process for sketch
refinement, there are still structural vacancies in the interme-
diate sketch, where these vacancies will mislead the inpainting
process and cause structural incoherence in the inpainted result.
To address the aforementioned limitation, the SC fs.(-) further
eliminates the vacancies in the intermediate sketch by learning
to connect them, which ensures the preciseness in tlje refined
sketch. Practically, we send the intermediate sketch S* into SC
to generate the final refined sketch S, where the process is writ-
ten as

3\* = fsr (Im,va‘S)

S = fse(S") &)
To optimize the sketch refinement process, existing studies use
the pixel-wise loss (normally L1/L2 distance) to optimize the
sketch refinement process, expecting the networks to reconstruct
the input sketch into the corresponding edge map. However, such
methods are insufficient for the sketch refinement task, since
calibrating the sketch usually requires region-level information
where structures in different regions are highly correlated to each
other, e.g., sketch registration. Therefore, we propose a cross
region correlation (CRC) loss to utilize the interaction between
regions and facilitate the sketch refinement process with their
mutual information. Given the refined sketch S, we attempt to
compute the local means of S within a sliding grid p; in size of
N2, formulated as

(10)

B | NN
8= §E 2D v
j=11i=1

where S;i represents the local means of refined sketch within
Di» v4,j denotes the i-th column and j-th row pixel value within
p;. Similarly, we calculate the local means of input sketch S and
edge map € within p;, written as S, and &,,, respectively. Next,
CRC loss compares the local means within the sliding region p;
and a fixed region p in a formulation of the cross-correlation
(CC) function. Specifically, for N = 1, which represents the
pixel-wise correlation, we set LY, as the Euclidean distance
between different pixels, which is

Lirc(S,6) =8¢ (11)

“#In Section I of our appendix, Tables I and ITillustrate the detailed architectural
designs of SR and SC, respectively.
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For N > 1, we write the CRC loss in a formulation of cross
correlation, formulated by?

Ly, (§ 5) ~- _cC (§ 5)

IS = ElNEp, — &
oy TalSogllEos
v (Spien 155, = &) (Spiep 10 = 1)
where € represents the overall regions of S and || - || represents

the Euclidean distance. p; iterates over all pixels within p and p
iterates over (2. In training, we optimize SRN in the formulation
of (5), where SRN learns the sketch refinement process from
different region levels.

B. Sketch-Modulated Image Inpainting

Once RSR has calibrated the input sketch, SII aims to inpaint
the corrupted image with the assistance of the refined sketch.
To incorporate the sketch guidance into the inpainting process,
most existing studies send the sketch guidance into an additional
channel of the inpainting networks, so that the sketch guidance is
integrated by learning the inter-information between channels.
However, such studies suffer from the misalignment between
input sketch in the pixel space and image information in the fea-
ture space, where the sketch guidance diminishes as networks
go deeper and contributes little to deep features in the inpainting
process after downsampling and pooling. To address such mis-
alignment, we conduct the SII process along with two compo-
nents, namely latent sketch aligner (LSA) and sketch conditional
inpaintor (SCI).® Details of the aforementioned components are
illustrated as follows.

1) Latent Sketch Aligner: To inpaint the corrupted image us-
ing the sketch guidance, the first step is to align the inpainting
process with the refined sketch. In doing so, LSA projects the
refined sketch onto a feature space and aligns the projected fea-
tures with the corresponding image features in SCI. Specifically,
given the refined sketch S, LSA first encodes S into a series of
latent features, formulated by

{ff”fR}Zﬁm(g)

where fis, represents LSA and F7 (i € {1,2,..., Ny}) refers
to the extracted feature from the i-th layer with N features in
total. For further explanation, LSA encodes & into { F5 . . . F3 N
and aligns each individual F; with the corresponding feature in
i-th layer of SCI.

2) Sketch Conditional Inpaintor: The final step is to recover
the missing textures in the corrupted images with the assistance
of aligned sketch guidance. To achieve so, we propose SCI based
on LaMa [29] to complete the corrupted image according to the
sketch guidance and SFA to facilitate the feature aggregation
process of SCI. Particularly, SCI consists of a generator and

13)

SA greater cross-correlation value (i.e., CC' (3'\, £)) indicates a better align-
ment between the refined sketch and edge map, where we set the cross-
correlation value negative to formulate the loss function.

®In Section I of our appendix, Tables IIT and IV illustrate the detailed archi-
tectural designs of LSA and SCI, respectively.
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i-th Layer of LSA »I Feature

Image
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i-th Layer of SCI +|
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Detailed architectural design of SFA block.

Fig. 4.

discriminator, where we conduct the generator in an encoder-
decoder architecture that incorporates the sketch guidance with
SFA blocks and completes the corrupted regions, and we use the
default discriminator in LaMa. Given the corrupted image Z,,,
binary mask M, and aligned sketch features {77 ... F} }, we
send the concatenation of Z,,, and M into the encoder and inject

{F7 ... FX._} into corresponding block, formulated by
F' = foi (T, My FY R (14)
where F' denotes the encoded input feature and f¢,; represents

the encoder of SCI. Herein, Fig. 4 illustrates the detailed archi-
tectural design of SFA block, where the ¢-th SFA block in
aggregates the sketch feature 7 by

FY F3) — i

SL?

F=m(F)o (F+ )

(15)
where ]?f denotes the processed image feature. ~;(F7) and
B;(F?) are trainable tensors that adaptively learn the scale and
shift of the aggregation process. j; and o; are mean and stan-
dard deviation of (F} + F7), which are used to normalize the
added features. The intermediate layers are conducted with fast
Fourier convolution blocks, and the decoder consists of upsam-
pling layers, which process F* and predict the missing pixels in
the corrupted regions, formulated by

i

~

I = fSCl (‘F,U)

where I and d .(-) denote the inpainted result and the decoder of
SCI, respectively. Therefore, SCI restores the corrupted regions
according to the sketch guidance. In training, we optimize LSA
and SCI with L g in the formulation of (4) following the default
setup of LaMa [29].

(16)

IV. EXPERIMENTS
A. Datasets

We conduct our experiments on public benchmark datasets
for evaluation with simulated data, and collect a real-world test
protocol with manually annotated masks and sketches for eval-
uation on sketch-based real-world applications. Details of the
public benchmarks and the real-world test protocol are illus-
trated in the following texts.

1) Public Benchmarks: We conduct our approach on three
conventional benchmark datasets of image inpainting, which are
CelebA-HQ [15], Places2 [16], and ImageNet [17]. CelebA-HQ
dataset is widely used to perform image inpainting upon face
images, where we split 28,000 images as the training set, 1,000
images as the validation set, and 1,000 images as the test set,
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respectively. We use the Places2-Standard split of Places2 to ad-
dress the challenging scene-level image inpainting, which con-
sists of about 180,000 images in its training set. We randomly
sample 10,000 images from the default validation and test split of
Places?2 to formulate our validation set and test set. We also con-
duct our experiments on ImageNet with objectimages to perform
applications such as object completion or editing, where Ima-
geNet contains about 120,000 images for training. Similarly, we
randomly sample 10,000 images to formulate the validation and
test sets on ImageNet. In inference, we utilize simulated sketches
by DSS for evaluation on the public benchmark datasets.

2) Real-World Test Protocol: To evaluate the performance
of inpainting methods upon real-world applications, we build a
sketch-based test protocol with hand-drawn sketches and masks.
Specifically, we collect 40 unseen face images from CelebA-HQ
to demonstrate applications of portrait images, and 80 images
(40 scene images and 40 object images) from ECSSD [49] to
perform applications on natural images. For face images, we
manually annotate the mask for each image by covering common
editing regions, e.g., eyes, mouth, hair, etc. For scene images,
we annotate the masks based on the saliency masks in ECSSD,
where the final masks cover partial or whole objects to perform
scene editing or object removal. For sketches, we ask different
users to complete the edges in the corrupted region according to
the pre-defined masks. Both sketches and masks are produced
using the application SketchBook on iPad with an Apple pencil.
By doing so, the test protocol covers a series of applications,
including scene editing, face editing, object removal, etc. In in-
ference, we use the user masks and sketches for evaluation on the
test protocol.” We also propose an interactive demo that allows
users to experience the interactive image inpainting process.’

B. Baselines and Evaluation Metrics

We compare our method with both state-of-the-art image
inpainting and image editing methods. For comparison with
the baseline, we compare our approach with LaMa [29]. For
comparison with previous sketch-based image inpainting or
editing methods, we choose DeepFill-v2 [5], DeepPS [9], and
SketchEdit [1]. Also, we compare our approach with ZITS [12]
which serves as a strong competitor and achieves the state-of-
the-art performance on edge-guided image inpainting.

For evaluation on public benchmark datasets, we use con-
ventional metrics including peak signal-to-noise ratio (PSNR),
structural similarity (SSIM), and fréchet inception distance
(FID) [50] so as to measure the reconstruction quality of the in-
painted results. Since there is no ground truth on the real-world
test protocol, we evaluate the results using qualitative metrics,
including inception score (IS) [51], and style loss [52] following
SketchEdit [1]. We also conduct a user study on the real-world
test protocol to perform a human evaluation on all compared
methods. Each user is presented with inpainted results of differ-
ent methods according to the same input, and requested to rank
the results according to their quality. Eventually, we calculate

"In Section II of our appendix, Fig. 2 demonstrates some examples of the
proposed test protocol.
8In Section III of our appendix, Fig. 3 presents our proposed interactive demo.
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the top-1 percentage of human preferences to measure which
method is mostly preferred.

C. Implementation Details

In the following texts, we illustrate the implementation de-
tails of our approach following our pipeline sequence and other
compared methods.

In RSR, we set k£ = 11 for the Gaussian projector in DSS
and uniformly sample D from U(25,200). SRN is conducted
with sequentially connected SR and SC. We use Adam [54] for
500k steps of optimization with a learning rate of 2e — 4 and
a batch size of 10. We try different hyper-parameter settings
on ImageNet and use the one with highest performance on the
validation set, where weuse N = land9 withA} = 1,1 = 0.4
for SR, and the same N with A} = 1,1 = 0.9 for SCiin (5). Itis
worth noting that the trained SRN is able to directly generalize to
unseen datasets (i.e., CelebA-HQ [15] and Places2 [16]) without
retraining. In SII, Ny is set to 4 to extract features in different
dimensions from sketches. For optimization of LSA and SCI, we
use Adam [54] optimizer with a batch size of 25 and learning
rates of the generator and the discriminator as 3e — 4 and le — 4,
respectively, where the learning rates are reduced to half in the
middle of the training process. We train LSA and SCI for 400k
steps on CelebA-HQ, and 800k steps on Places2 and ImageNet.
As for the loss function in (4), we follow the default setup of
LaMa [29] with Ay = 10, A3 = 10, A4 = 100, and A5 = 30. In
training and inference, all images, masks, sketches, and edge
maps are resized to 256 x 256 resolution, where the pixel values
of sketches and edge maps are binarized into 0 or 1.

For implementation of other compared methods, we fol-
low their default setup reported in their paper to achieve
their best performance. We retrain DeepFill-v2 [5] for 500k
steps, LaMa [29] for 800k steps, ZITS [12] for 800k steps
on Places2 [16] and ImageNet [17] to achieve sufficient opti-
mization, and reimplement these methods with steps in half on
CelebA-HQ [15].° For DeepPS and SketchEdit, we use their re-
leased model weights for evaluation.!® For fair comparison in
training and inference, we use the same edge detector as ours
to extract edge maps from corresponding ground truth images
for DeepFill-v2, ZITS, and SketchEdit. Also, for fair compari-
son between SketchEdit and other compared methods, we use
the same masks as others for evaluation instead of the original
estimated masks.

D. Comparison With Previous Studies

1) Quantitative Comparison: Table 1 reports the results
of quantitative comparison with simulated data on CelebA-
HQ [15], Places2 [16], and ImageNet [17] test set, and Ta-
ble II reports the comparison on the real-world test protocol
using qualitative metrics. There are several observations. First,

9Since our evaluation do not focus on the inpainting setting with large cor-
rupted regions that requires 1 M steps of optimization, training LaMa with 800k
steps is sufficient to reproduce its best performance on small mask setting.

10The model weights and inference code of DeepPS [9] and SketchEdit [1] are
available at https:/github.com/VITA-Group/DeepPS and https://github.com/
zengxianyu/sketchedit.
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TABLE I
QUANTITATIVE COMPARISON USING PSNR, SSIM, AND FID [50] ON PUBLIC BENCHMARK DATASETS, INCLUDING CELEBA-HQ [15], PLACES2 [16] AND
IMAGENET [17]

CelebA-HQ Places2 ImageNet
Method PSNRT SSIMT  FID+ PSNRT SSIMT FID+ PSNRT SSIMT  FID+
DeepPS [9] 20.59 0.739 7274 - - - - - -
DeepFill-v2 [5]  22.06 0.788 26,78 2442 0.872 6.71 20.46 0.745  22.34
LaMa [29] 23.48 0.825 19.13  24.17 0.871 6.57 21.25 0.752 1431
SketchEdit [1] 20.21 0.759 4128  22.08 0.806  11.12 - - -
ZITS [12] 22.79 0812  18.79  24.50 0.871 6.20 20.98 0.743 1771
Ours 23.90 0.831 1632  24.99 0.877 5.53 22.16 0.769 9.53

Herein, the best and second best results are highlighted in boldface and underlines.”-” stands for unavailable results because corresponding methods did not perform

experiments on that dataset.

TABLE II
QUANTITATIVE COMPARISON USING QUALITATIVE METRICS (LE., IS [51] AND
STYLE LOSS [52]) ON THE PROPOSED REAL-WORLD TEST PROTOCOL

Face Editing Object Removal
Method st SsL_1+ sL 2+ 18T SL_1% SL_2*
DeepPS [9] 2.973 0.0039 0.0154 - - -
DeepFill-v2 [5] 3.149 0.0018 0.0078 4.516 0.0081 0.0393
LaMa [29] 3.287 0.0023 0.0107 4.692 0.0078 0.0381
SketchEdit [1] 3.058 0.0033 0.0123 4.669 0.0089 0.0479
ZITS [12] 3.268 0.0019 0.0098 4.711 0.0074 0.0369
Ours 3.339 0.0013 0.0076 4.840 0.0067 0.0354

Herein, the best and second best results are highlighted in boldface and underlines.
“SL_1"and “SL_2” denote the style loss computed between features extracted from the
first and second ReLU layers of VGG [53].

our approach achieves state-of-the-art on all public benchmark
datasets, suggesting the promising performance of SketchRe-
finer for applications of face, scene and object images. Second,
our approach outperforms all other methods on the collected
real-world test protocol, where our approach produces results
with the closest style similarity to natural images, indicating the
superiority of SketchRefiner while handling real-world applica-
tions. Third, by comparing our approach to the baseline model
(i.e.,LaMa), our approach reveals significant improvements with
the assistance of sketch guidance, which confirms the effective-
ness of facilitating image inpainting with user sketches. Fourth,
by comparing our approach with state-of-the-art edge-based
methods (i.e., ZITS) and sketch-based methods (i.e., DeepPS,
DeepFill-v2, and SketchEdit), these methods struggle to deal
with both simulated and real sketches that are misaligned in the
pixel level, where our approach better utilizes sketches for the
inpainting process.

2) Qualitative Comparison: We perform the qualitative
comparison with selected samples from public benchmarks and
the test protocol, where we demonstrate the results of face im-
ages and natural images in Fig. 5 and Fig. 6, respectively.'!
Also, we present the visualization of refined sketches and the
corresponding inpainting results in Fig. 7 to demonstrate the
effect of the sketch refinement process in our approach. It is
observed that LaMa fails to complete the corrupted image ac-
cordingly (e.g., the fourth row in Fig. 5) and struggles to restore

n Section IV in our appendix, Fig. 3 and 4 demonstrate more results on
applications of face and natural images, respectively.

TABLE III
ToP-1 PERCENTAGE OF HUMAN PREFERENCES ON DIFFERENT MODELS ON THE
REAL-WORLD TEST PROTOCOL

Test Protocol

Methods Face Scene Total
DeepPS [9] 10.61% - -
DeepFill-v2 [5] 10.61% 11.36% 11.56%
LaMa [29] 12.12% 15.91% 14.97%
SketchEdit [1] 16.67% 7.955% 12.24%
ZITS [12] 18.18% 22.73% 21.77%
Ours 31.81% 42.05% 39.46 %
Herein, the best and second best results are highlighted in boldface and
underlines.

complex backgrounds without user guidance (e.g., the fourth
row in Fig. 6), where our approach effectively guides the in-
painting process with sketches and produces plausible results.
For edge-based methods, ZITS treats the input sketch as edge
map and generates misguided results due to the inaccurate edges
in user sketches (e.g., the second row in Fig. 5). For sketch-based
methods, DeepPS fails to calibrate the user sketches correctly
which leads to severe artifacts in the inpainted results (e.g., the
first and third rows in Fig. 5). DeepFill-v2 and SketchEdit re-
quest for pixel-wise precise sketch guidance and struggle to pro-
duce plausible result if the input sketch is not elaborately drawn
(e.g., the first and second rows in Fig. 6). On the contrary, our
approach is able to effectively refine the input sketch so as to
facilitate the inpainting process with more accurate structural
guidance, thereby resulting in more photo-realistic results.

3) Human Evaluation: We compare the results of human
evaluation upon all compared methods in Table III. It is observed
that users overwhelmingly preferred the generated results by
our approach than other methods, which reveals the same trend
as the aforementioned quantitative and qualitative comparison.
This observation confirm the effectiveness and superiority of our
approach for interactive image inpainting, especially upon real
applications that interacts via user sketch.

E. Ablation Studies

In this section, we analyze the effect of the RSR and SII pro-
cesses in our approach. We first explore the effect of different
components in RSR, which includes DSS, SR, SC, and CRC
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(a) Image (b) Input (c) DeepFill-v2 (d) DeepPS

Fig. 5.
Note that (b) represents the visualization of masked image and sketch.

(e) LaMa (f) SketchEdit (g) ZITS (h) Ours

Qualitative results of different models with simulated sketches (top two rows) and user-drawn sketches (bottom two rows) on applications of face images.

(a) Image

(b) Input (c) DeepFill-v2

Fig. 6.

(d) LaMa

(d) SketchEdit (e) ZITS (f) Ours

Qualitative results of different models with simulated sketches (top two rows) and user-drawn sketches (bottom two rows) on applications of scene and

object images. Note that (b) represents the visualization of masked image and sketch.

loss. Then, we investigate the effect of the overall RSR process
on both our approach as well as other methods. Finally, we an-
alyze the effect of different components in SII, including LSA,
the generator, and SFA.

1) Effect of Components in RSR: We explore the effect of
different components in RSR following the pipeline sequence,
where details are illustrated in the following text.

a) DSS: To investigate the effect of DSS, we try an alter-
native setting that directly utilizes detected edge map for sim-
ulation. Table IV compares the results on ImageNet [17] test
set, where “Ours (edge)” denotes the aforementioned setting. It
is observed that “Ours (DSS)” significantly outperforms “Ours
(edge)”, which confirms the effectiveness of our sketch simu-
lation strategy compared to previous solutions. This might be
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Fig.7. Visualization of refined sketches and corresponding inpainting results.
(a) Image, (b) input, (c) inpainted result, (d) sketch, and (e) refined sketch. Note
that (b) represents the visualization of masked image and sketch. In (d) and (e),
grey strokes represent sketch in the mask regions.

TABLE IV
QUANTITATIVE COMPARISON FOR ABLATION STUDIES OF DSS ON
IMAGENET [17] TEST SET

Methods PSNRT SSIMT FID+
Ours (edge) 20.72 0.723 23.58
Ours (DSS) 22.16 0.769 9.53

Herein, the best results are highlighted in boldface. “Ours (edge)”
represents directly using edge maps detected by BDCN [14] to simulate
real sketches and “Ours (DSS)” denotes our approach with DSS.

explained that directly using detected edge maps fails to effec-
tively simulate real sketches, where the model generates mis-
guided results when given misaligned sketches in inference. The
observation also addresses the superiority of our approach (i.e.,
using DSS for simulation) compared to previous solutions (i.e.,
using detected edge maps for simulation), where our approach
provides a more elaborated automatic simulation solution for
sketch-based interactive image inpainting.

b) SC and CRC Loss: We explore the effect of SC and
CRC loss by comparing the performance of whether using them
or not, where the comparisons are presented in Table V and
Fig. 8. By comparing the first two rows in Table V, (c) and (d) in
Fig. 8, one can see that the use of SC brings performance gain in
all metrics and generates results with more explicit edges, where
SC helps the sketch refinement process to handle the structural
vacancies in the intermediate sketch and further facilitates the

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

TABLE V
QUANTITATIVE RESULTS FOR ABLATION STUDIES OF DIFFERENT COMPONENTS
INRSR (LE., Lo re, SC, AND SR) ON CELEBA-HQ [15] TEST SET,
CORRESPONDING TO FIG. 8

Components of SRN CelebA-HQ
Lcre  SC SR PSNR'T  SSIM'  FID*
v 23.60 0.828 20.81
v v 23.93 0.831 16.66
v v v 24.99 0.877 5.54

Herein, the best results are highlighted in boldface.

4
-

@ O © @ ©

Fig. 8.  Qualitative results for ablation studies of different components in RSR,
corresponding to Table V. (a) Image, (b) input, (c) using SR, (d) using SR and
SC, and (e) using SR, SC, and L r¢- Note that (b) represents the visualization
of masked image and sketch.

TABLE VI
QUANTITATIVE COMPARISON FOR ABLATION STUDIES OF THE OVERALL RSR
PROCESS ON IMAGENET [17] TEST SET, CORRESPONDING TO FIGURE 9

Methods PSNRT SSIMT FID+
fsii wlo sketch 20.46 0.745 22.34
fsii 21.03 0.749 16.03
fsii + frsr 22.16 0.769 9.53

Herein, the best results are highlighted in boldface. f;; and f,, represent the

SIT and RSR processes, respectively. “f;;; w/o sketch” denotes the model that
completes the corrupted images only based on the masked regions.

inpainting process with more coherent sketch guidance. By us-
ing both SC and L e in RSR, it is observed that our full model
reveals the best performance and produces the most plausible in-
painted results, which confirms the vitalness of Lo o for the
optimization of RSR process. This observation illustrates the
effectiveness of the two-stage architecture in SRN that handles
the sketch refinement task in a coarse-to-fine fashion, and indi-
cates the superiority of Lo g to facilitate the task with mutual
information across different regions from the calibrated sketch
and the supervision label.

2) Effect of RSR on Different Methods: We conduct experi-
ments to investigate the effect of the overall RSR process upon
our approach as well as other inpainting methods, where details
are illustrated in the following paragraphs.

a) Ourapproach: To explore the effect of the overall RSR
process for our approach, we try two alternative settings of com-
pleting the corrupted images, which completes the corrupted im-
ages only based on the masked regions, or directly uses the SII
process to handle the input sketch. Fig. 9 presents the qualitative
comparison and Table VI reports corresponding quantitative re-
sults on ImageNet test set, where “ f5;; w/o sketch” and “ f,;;” in
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(d) (e)

Fig. 9. Qualitative results for ablation studies of the overall RSR process,
corresponding to Table VI. (a) Image, (b) input, (c) result without sketch, (d)
result using unrefined sketch, and (e) result using sketch refined by RSR. Note
that (b) represents the visualization of masked image with sketch.

TABLE VII
QUANTITATIVE RESULTS FOR ABLATION STUDIES OF THE OVERALL RSR
PROCESS UPON EDGE- AND SKETCH-BASED METHODS (L.E., DEEPFILL-V2 [5],
SKETCHEDIT [1], AND ZITS [12]) ON CELEBA-HQ [15] TEST SET

Methods PSNR' SSIM" FID*
DeepFill-v2 22.06 0.788 26.78
DeepFill-v2 w/ RSR 23.61 0.817 24.72
SketchEdit 20.21 0.759 41.28
SketchEdit w/ RSR 22.62 0.813 20.15
ZITS 22.79 0.812 18.79
ZITS w/ RSR 23.60 0.830 17.63

Experiments using the same method represent a comparison group. Herein,
the best results in each group are highlighted in boldface.

Table VI denote the aforementioned settings, respectively. There
are several observations. First, “ fs;; w/o sketch” struggles to re-
store the complex backgrounds without sketch guidance (e.g., (¢)
in Fig. 9) and leads to poor quantitative performance, which con-
firms the effectiveness of introducing sketch guidance into the
inpainting process, especially while addressing some challeng-
ing scenarios with complex structures to recover. However, when
directly utilizing the sketch guidance, the model suffers from
the inaccurate guidance brought by free forms of hand-drawn
sketches (e.g., (d) in Fig. 9) without the enhancement of RSR,
thereby producing results with unnatural artifacts. Second, our
full approach (i.e., “fsi; + frsr”) present the best performance
both quantitatively and qualitatively, where the model is capa-
ble of restoring the corrupted regions with coherent structures.
This observation verifies the effectiveness of sketches for im-
age inpainting, and demonstrates the superiority of RSR as a
task-specific technique that better facilitates the inpainting pro-
cess with sketch guidance.

b) Other Inpainting Methods: We analyze the impact of
the overall RSR process on other image inpainting methods by
facilitating their inpainting processes with the refined sketch
from RSR. Table VII presents the quantitative results on CelebA-
HQ test set, where we perform the experiments on a series of
state-of-the-art image inpainting methods, including DeepFill-
v2 [5], SketchEdit [1], and ZITS [12]. DeepFill-v2, which orig-
inally utilizes detected edge maps by HED [13] for sketch
simulation, reveals significant improvements with the enhance-
ment of RSR, suggesting that RSR helps DeepFill-v2 to address
sketch-like inputs. Although SketchEdit proposes to augment
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TABLE VIII
QUANTITATIVE RESULTS FOR ABLATION STUDIES OF LSA UNDER DIFFERENT
SETTINGS OF SKETCH-IMAGE ALIGNMENT, EVALUATED ON CELEBA-HQ [15]

TEST SET

Methods CelebA-HQ
Fy FS F5 Fi Concat. PSNRT SSIM'T  FIDV
v 19.58 0.681 25.97
v 20.76 0.709 17.11
v v 21.23 0.731 13.83
v v v 21.83 0.757 11.48
v v v v 22.16 0.769 9.53

Here, the best results are high-lighted in boldface. Concat. represents concatena-
ting sketches as an additional channel of the SCI instead of using LSA. F7? (i €
{1...N,} and N, = 4) represents the used features in i-th layer of LSA with
corresponding feature in SCI.

the corrupted images by randomly warping, such solution is still
insufficient to simulate real sketches and obtains poorer perfor-
mance than the one using RSR, where the original SketchEdit
suffers from the gap between simulation in training and user
interactions in inference. ZITS puts emphasis on facilitating im-
age inpainting with Canny edge maps and Hough lines, which
is further strengthened by RSR in the hand-drawn sketch set-
ting, resulting in more convincing performance in all metrics.
The aforementioned analyses prove the effectiveness of RSR on
both our approach and other inpainting methods, where RSR is
able to serve as a plug-and-play plugin for other methods and
promote further related studies for the sketch-based interactive
image inpainting task.

3) Effect of Components in SII: In this section, we analyze
the effect of different components in SII following the pipeline
sequence, which includes LSA and SFA, respectively. Details
are illustrated in the following text sequentially.

a) LSA: LSA introduces the sketch guidance into the in-
painting process by aligning features of both modalities. To ex-
plore the effect of LSA, we conduct experiments under different
settings of sketch-image alignment by concatenating the sketch
as input or varying the number of aligned features N,. Fig. 10
and Table VIII present corresponding qualitative and quanti-
tative results of the aforementioned settings, respectively. By
concatenating sketch as an additional channel of SCI, the model
struggles to align the sketch guidance with the inpainting pro-
cess, thereby completing corrupted images with blur edges (e.g.,
(c)in Fig. 10) and obtaining poor quantitative performance (e.g.,
the first row in Table VIII). By using LSA, it is observed that
the sketch guidance is gradually aligned with the inpainted re-
sults as IV increases (e.g., (d) to (g) in Fig. 10), which results
in gradually improved quantitative performance. This observa-
tion might be explained from the following perspectives. First,
the misalignment between sketch guidance and the inpainted
result proves the feature diminishing problem caused by con-
catenation, where the sketch guidance gradually vanishes as the
network goes deeper and fails to activate the guidance for deep
features in the inpainting networks. Second, when using LSA
with relatively small Ny (i.e., Ny = 1,2,3), one can see that
the inpainted results still reveal artifacts in the guided regions,
where only aligning features in shallow layers is insufficient to
achieve a effective sketch-image mapping. Third, when Ng is
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Fig. 10.

Qualitative results for ablation studies of LSA under different settings of sketch-image alignment, corresponding to Table VIIL. (a) Image, (b) input, (c)

Concat., (d) using F7, (e) using F7 and F3, (f) using 77, F5, and F3, and (g) using F7, 75, F3, and F (i.e., all extracted features in LSA). Concat. represents

concatenating sketches as an additional channel of the SCI instead of using LSA.

TABLE IX
QUANTITATIVE RESULTS FOR THE ABLATION STUDY UNDER DIFFERENT
SETTINGS OF THE GENERATOR ON IMAGENET [17]

Methods PSNR' SSiM’ FID*
LaMa 21.49 0.76 15.83
Ours 22.16 0.77 9.53

Herein, “LaMa” refers to the model using the original generator in LaMa
[29] and “Ours” represents our approach.

sufficiently large, the model generates plausible results with ex-
plicit edges and consistent textures, where the sketch guidance is
finally aligned with the inpainting process and further facilitates
the restoration of missing textures. The aforementioned analy-
ses confirm the effectiveness of LSA that establishes a robust
sketch-image alignment to enhance the inpainting process with
user sketches.

b) Generator: To investigate the effect of the generator
design on our approach, we compare our approach with the one
using the original generator in LaMa [29]. Table IX reports the
quantitative results on ImageNet. It is observed that our approach
obtains significant improvements over “LaMa”, indicating the
effectiveness of the proposed generator. The reason can be ex-
plained that the vanilla LaMa generator is not designed to inte-
grate sketch guidance, thereby resulting in inferior performance
due to the misalignment between guidance from LSA and the
inpainting process by SCI.

c) SFA: To explore the effect of SFA, we try different set-
tings of feature aggregation, including aggregating by adding,
using SPADE [55], and using SFA. Fig. 11 shows the quali-
tative results of the aforementioned settings and Table X re-
ports corresponding quantitative results on CelebA-HQ test set.
There are several analyses for the results. First, “fs.; (add)”
performs the worst performance of all settings, where adding
sketch and image features struggles to inject the aligned sketch
features into the inpainting process. The possible reason behind
might be that the extracted sketch features are different from the
image features in magnitude according to their modality prop-
erties so that directly adding them would be less reasonable.
Second, “fs.; (SPADE)” shows similar performance as “f.;

@

(d (e)

Fig. 11.  Qualitative results for ablation studies of SFA under different set-
tings of feature aggregation. (a) Image, (b) input, (c) aggregating by adding, (d)
SPADE [55], and (e) SFA.

TABLE X
QUANTITATIVE RESULTS FOR ABLATION STUDIES UNDER DIFFERENT SETTINGS
OF SKETCH FEATURE AGGREGATION, EVALUATED ON CELEBA-HQ [15]

TEST SET
Methods PSNRT  sSM' FID*
fsei (add) 20.46 0.745 22.34
fsci (SPADE) 20.59 0.761 20.97
fsei (SFA) 22.16 0.769 9.53

“f..: (add)” indicates the model that injects sketch guidance into SCI by
directly adding the sketch feature to corresponding image feature, “f;

sci

(SPADE)” represents the model using SPADE [55] instead of SFA
blocks, and “f; .. (SFA)” denotes our approach. Herein, the best results

sci

are highlighted in boldface.

(add)”, which also fails to merge the features across modali-
ties. It can be explained that SPADE is designed to merge seg-
mentation masks into the generation process and fails to handle
sketch-like condition, where sketch is sparse and binary-valued
in terms of its modal characteristics. Third, our approach (i.e.,
using SFA) leads to significant improvements and produces re-
sults with more photo-realistic edges and textures (e.g., (e) in
Fig. 11), which confirm the superiority of SFA blocks compared
to “fse; (add)” and “ f.; (SPADE)”. This observation can be ex-
plained that SFA adaptively activates SCI with sketch features,
which serves as a vital component of our approach to effectively
facilitate the inpainting process with aligned sketches.
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TABLE XI
EFFICIENCY COMPARISON BETWEEN OUR APPROACH AND OTHER IMAGE
INPAINTING METHODS WITH RESPECT TO THEIR MODEL ARCHITECTURES
(“ARCHITECTURE”), MODEL PARAMETERS (“PARAMS”), AND AVERAGE
INFERENCE TIME (“AT")

Methods Architecture Params AT (s)
DeepPS [9] GAN 39M 0.0467
DeepFill-v2 [5] GAN 4M 0.0109
LaMa [29] GAN 27TM 0.0167
SketchEdit [1] GAN M 0.0122
ZITS [12] GAN 67TM 0.0389
MAT [34] Trans. 62M 0.0760
ICT [32] Trans. 97T™M 144.73
RePaint [35] Diff. 608M 292.04
Ours GAN 38M 0.0193

‘We conduct all experiments on the CelebA-HQ test set under the same software and
hardware environment. Herein, “Trans.” and “Diff.” represent Transformer- and
diffusion-based methods, respectively.

F. Efficiency Comparison

Our approach introduces additional components on top of the
standard image inpainting pipeline. We then conduct an effi-
ciency comparison between our approach and others, so as to
evaluate the extra computational complexity. In doing so, we
measure the computational complexity of our approach com-
pared to current state-of-the-art image inpainting methods from
different perspectives, including model parameters and aver-
age inference time. In addition to GAN-based methods, we
also make comparisons with Transformer-based [32], [34] and
diffusion-based methods to comprehensively consider the im-
pact of different model architectures. Table XI reports the re-
sults of the aforementioned experiments with several observa-
tions as follows. From the perspective of model parameters, our
approach obtains a moderate scale of parameters (i.e., 38 M)
among GAN-based methods, and has significantly fewer pa-
rameters than Transformer-based (e.g., ICT [32] with 97 M) or
diffusion-based methods (e.g., RePaint [35] with 608 M), indi-
cating that our approach is efficient to deploy. As for the av-
erage inference time, our approach brings little extra inference
time (around 0.003 seconds) compared to LaMa [29]. Moreover,
our approach is significantly faster than Transformer-based ap-
proaches, especially when compared to ICT [32] that also con-
ducts two stages to finish the image inpainting process. This
can be explained that the autoregressive paradigm of the Trans-
former architecture requires to reconstruct pixels sequentially
and causes additional inference time compared to the genera-
tive paradigm of GAN, especially when the mask region is large
with complex structures to recover. Notably, RePaint [35] re-
quires the most inference time on average (nearly 5 minutes),
since the de-noising process of diffusion models needs adequate
sampling time steps (1,000 for RePaint [35] following its default
settings) to ensure the quality of the generated image. Generally
speaking, our approach demonstrates superior efficiency com-
pared to all other methods and reveals the potential of being
deployed on real-time applications with portable devices such
as smartphones.
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Fig. 12.  Failure cases of our approach. (a) Input, (b) result, (c) input, and
(d) result. Note that (a) and (c) represent the visualization of masked image and
sketch.

G. Fuilure Cases and Limitations

Although the aforementioned sections comprehensively il-
lustrate the effectiveness of our proposed approach, we ob-
serve that the proposed approach is still limited while handling
some real-world scenarios. Therefore in this section, we discuss
the limitations and working boundaries of our approach with
some particular failure cases presented. Fig. 12 shows the afore-
mentioned failure cases, which are selected from our test proto-
col. There are some observations from different aspects. First,
as is shown in (b) of Fig. 12, our approach fails to calibrate
misaligned sketches with large corrupted regions, where the
inpainted result is blurred and contains artifacts. The possible
explanation for this is that the valid information for the sketch re-
finement and inpainting processes gradually becomes limited as
the corrupted region enlarges, and the model reaches its working
boundaries and struggles to refine the input sketch with large re-
gions of misalignment. Second, it is observed that our approach
tends to over-refine sketches with meticulous structures, e.g., the
star-shaped sunglasses in (b) of Fig. 12. Our approach tends to
calibrate the sketch from a low-level vision perspective, which
cannot recognize the semantic meaning of the refined structures
from a high-level perspective. This observation also indicates
the diversities and challenges of the sketch refinement task dur-
ing user interactions, where user intentions may sometimes be
misaligned with the model capability. Third, our approach only
accepts monochrome sketches (i.e., binary-valued sketches) as
the inputs currently, which fails to recognize color information
provided in the input sketch. This indicates that our approach is
still limited to some image editing applications that work with
colored strokes.

V. CONCLUSION

In this article, we re-investigate the challenges of sketch-
based interactive image inpainting. We attempt to bridge the
gap between sketch-like inputs and current image inpainting
models by proposing a two-stage system, namely SketchRe-
finer. SketchRefiner is able to restore complex structures in
the corrupted regions by calibrating the input sketch to facil-
itate the image inpainting process with more elaborated guid-
ance. Moreover, we collect a real-world test protocol with man-
ually annotated masks and sketches to promote further stud-
ies upon sketch-based real-world applications. Experiments on
three public benchmark datasets and the real-world test protocol
demonstrate the superiority of our approach both qualitatively
and quantitatively. Ablation studies analyze the effectiveness of
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different components in SketchRefiner and indicate the pos-
sible extension of our approach upon further related studies.
SketchRefiner provides a paradigm for interactive image inpaint-
ing, which reveals the potentials of extending to other interactive
media, e.g., colored stroke, colored sketch, etc.
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