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Abstract

Learning with noisy labels is a common problem in weakly supervised learning,1

where the transition matrix approach is a prevalent method for dealing with label2

noise. It estimates the transition probabilities from a clean label distribution to a3

noisy label distribution and has garnered continuous attention. However, existing4

transition matrix methods predominantly focus on class-dependent noise, making5

it challenging to incorporate feature information for learning instance-dependent6

label noise. This paper proposes the idea of using diffusion models for estimating7

transition matrix in the context of instance-dependent label noise. Specifically, we8

first estimate grouped transition matrices through clustering. Then, we introduce9

a process of adding noise and denoising with the transition matrix, incorporating10

features extracted by unsupervised pre-trained models. The proposed method11

enables the estimation of instance-dependent transition matrix and extends the12

application of transition matrix method to a broader range of noisy label data.13

Experimental results demonstrate the significant effectiveness of our approach on14

both synthetic and real-world datasets with instance-dependent noise. The code15

will be open sourced upon acceptance of the paper.16

1 Introduction17

For classification problems with given labels, deep neural networks have demonstrated significant18

improvements compared to traditional methods in recent years [25]. The efficacy of deep neural19

networks heavily relies on the accuracy of the labels. Directly incorporating polluted erroneous labels20

into network learning can result in the network fitting the noise, potentially severely impacting the21

predictive performance of the network [8]. However, in reality, obtaining accurate annotated data can22

be prohibitively expensive, and a substantial amount of data comes from the Internet or is annotated23

by non-expert annotators, inevitably containing noisy labels. Therefore, researching and promoting24

methods to mitigate the damage to models and make them more robust in the face of label noise data25

is a highly worthwhile problem to investigate, known as the problem of learning with noisy labels26

[23, 10, 34, 1].27

Different approaches have been proposed to address the problem of label noise. One category28

[31, 22] involves the design of specialized loss functions or network structures to enhance the model’s29

robustness against noisy labels. Another major category focuses on sample selection [2, 10, 14],30

where samples are partitioned into a set of clean samples and a set of contaminated noisy samples31

based on the magnitude of the loss or the similarity of extracted features. The labels of the noisy32

samples are then modified or their weights are reduced, followed by learning using semi-supervised33

methods. Sample selection methods are currently mainstream and have achieved promising results.34

However, the selection process relies heavily on intuition and lacks theoretical support. Additionally,35

the sample selection procedure is often complex and computationally intensive. In contrast, another36
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Figure 1: Diffusion Model for Transition Matrix.

significant category of methods is the transition matrix method [34, 17, 12, 42], which estimates the37

transition probabilities from the clean label distribution to the noisy label distribution. This class38

of methods reveals the generation process of noisy labels and exhibits statistical consistency, often39

accompanied by theoretical analyses as methodological support. As a result, they have garnered40

continuous attention and occupy an important position in various algorithms for learning with noisy41

labels.42

In transition matrix methods, accurate estimation of the transition matrix is crucial. If an accurate43

estimation of the transition matrix can be obtained, along with the observed data for estimating the44

posterior distribution of the noisy labels, it is possible to infer the distribution of clean labels for45

neural network learning. Previous transition matrix methods [34, 17, 39] have mainly focused on46

class-dependent label noise, where a single transition matrix is estimated for all samples, which is47

typically straightforward. However, for instance-dependent label noise and complex real-world data,48

the label transition probabilities for each sample are not entirely identical. The transition matrix often49

depends on the specific features of individual samples, requiring the estimation of a separate transition50

matrix for each sample. However, in most cases, a single observed label corresponds to each sample51

in the dataset, making it an identifiability problem to estimate a separate transition matrix for each52

sample [20]. Although some methods [33, 41, 15] have utilized separate small networks to generate53

the transition matrix or divided the data into groups to transform it into a grouped class-dependent54

scenario, there still exist significant estimation errors and a lack of incorporating features effectively55

into the estimation of the transition matrix.56

To better incorporate the feature information of images into the estimation of the transition matrix,57

this work employs conditional diffusion models. The diffusion model originates from generative58

models and has been widely applied in various computer vision tasks in recent years [36, 7], showing59

remarkable results. The proposed method revolves around the core idea of replacing image samples in60

the original diffusion process with a transition matrix. The matrix undergoes a process of adding noise61

and denoising, where the denoising step incorporates the sample features extracted by a pre-trained62

model as conditions. This generates a feature-dependent transition matrix. The constructed diffusion63

module is illustrated in Figure 1. Additionally, considering the assumption that instance-dependent64

label noise is usually correlated with features [6], clustering methods are utilized at the feature level65

to group samples. Preliminary estimations of the transition matrices are obtained for each group,66

which are then incorporated into the diffusion module for learning. The overall framework of the67

method is depicted in Figure 2.68

The subsequent sections are organized as follows. Section 2 presents an in-depth review of the69

relevant works. In Section 3, we introduce our proposed model framework. Section 4 outlines70

the experimental analysis conducted on diverse synthetic and real-world noisy datasets, along with71

comparisons against other existing methods. Finally, we provide concluding in Section 5. The72

primary contributions of this paper can be summarized as follows:73

• We propose a method that utilizes diffusion models to add noise and denoise on the transition74

matrix, incorporating image features extracted through pre-trained encoder.75

• By combining the transition matrix-based diffusion model with feature-based clustering, we76

establish a framework capable of addressing instance-dependent label noise problems.77
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Figure 2: The overall framework of DTM.

• Our method demonstrates significant improvements over other transition matrix methods on78

both synthetic and real-world noisy datasets, and it achieves comparable performance to79

state-of-the-art methods.80

2 Related Works81

2.1 Transition Matrix Methods82

Most previous methods for estimating transition matrix in the presence of label noise have primarily83

focused on class-dependent noise scenarios, simplifying the estimation process. Methods such as84

[24, 34] assume the existence of anchor points to identify the transition matrix. [17] and [39]85

introduce different regularization techniques to relax the anchor point assumption. Additionally,86

[26, 38] apply techniques such as meta-learning to estimate the transition matrix, but these approaches87

may require more clean data and computational resources. While these methods are effective for88

handling class-dependent label noise, they are not suitable for instance-dependent noise or real-world89

noisy data.90

However, estimating an individual transition matrix for each sample without additional assumptions91

or multiple noisy labels is infeasible [20]. To approximate the estimation of the instance-dependent92

transition matrix, [9] utilize an adaptation layer that estimates the transition matrix based on the93

output of each sample. [37] employs a separate network to estimate the transition matrix based on94

Bayesian labels. Some methods, such as [33, 30, 41], employ clustering to learn part-dependent95

or group-dependent matrices, which can be viewed as a compromise between instance-dependent96

and class-dependent methods. Other approaches, including [6, 12], utilize the similarity in the97

feature space to aid in learning the transition matrix. Although these instance-dependent transition98

matrix methods achieve identifiability through specialized treatments, they have not effectively99

utilized feature information in the learning process, resulting in errors in estimating feature-dependent100

transition matrices.101

2.2 Diffusion Models102

Diffusion models, as generative models, have played a significant role in computer vision [36, 7].103

Prominent examples include DDPM [11], DDIM [27], score matching methods [28], and methods104

based on stochastic differential equations [29]. Diffusion models and their variants have been applied105

to various computer vision tasks such as image generation, image-to-image translation, text-to-image106

generation, among others. However, their application to the problem of label noise is relatively novel.107

To the best of our knowledge, only one existing work [3] has utilized diffusion models for addressing108

this problem. However, this work treats labels as the output of the diffusion model, which limits109

their expressive power due to the low dimension of the labels. Moreover, it overly relies on directly110

incorporating image features as conditions in the label generation process, which depends heavily on111
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pre-trained models and may not be as reasonable as incorporating them into the transition matrix that112

reveals the process of noise generation. Experimental results also support this perspective.113

3 Method114

In this section, we present the definitions of symbols and introduce our method of using Diffusion115

models to construct the Transition Matrix (DTM).116

3.1 Preliminaries117

Let X ⊂ Rd be the input image space, Y = {1, 2, · · · , C} be the label space, where C is the number118

of classes. Random variables (X,Y ), (X, Ỹ ) ∈ X × Y denote the underlying data distributions119

with true and noisy labels respectively. In general, we can not observe the latent true data samples120

D = {(xi, yi)}Ni=1, but can only obtain the corrupted data D̃ = {(xi, ỹi)}Ni=1, where ỹ ∈ Y is the121

noisy label corrupted from the true label y, while denote corresponding one-hot label as y and ỹ.122

Transition matrix methods use a matrix T (x) ∈ [0, 1]C×C to represent the probability from clean123

label to noisy label, where the ij-th entry of the transition matrix is the probability that the instance124

x with the clean label i corrupted to a noisy label j. The matrix satisfies the requirement that the125

sum of each row
∑C

j=1 T ij(x) is 1, and usually has the requirement for T ii(x) > T ij(x),∀j ̸= i.126

Let P (Y |X = x) = [P (Y = 1|X = x), · · · , P (Y = C|X = x)]⊤ be the clean class-posterior127

probability and P (Ỹ |X = x) = [P (Ỹ = 1|X = x), · · · , P (Ỹ = C|X = x)]⊤ be the noisy128

class-posterior probability, the formula can be write as:129

P (Ỹ |X = x) = T (x)⊤P (Y |X = x). (1)

By estimating the transition matrix and the noisy class-posterior probability, the clean class-posterior130

probability can be inferred by131

P (Y |X = x) = T (x)−⊤P (Ỹ |X = x), (2)

where the symbol −⊤ denotes the transpose of the inverse matrix.132

The majority of existing methods [24, 10, 17] focus on studying the class-dependent and instance-133

independent transition matrix, i.e., T (x) ≡ T for ∀x. However, these methods are not applicable to134

instance-dependent noise scenarios where the transition matrix T (x) varies with respect to the input135

X . The main focus of our work is to utilize the feature information from input images to construct a136

instance-dependent transition matrix T (x).137

3.2 Diffusion Model for Transition Matrix138

We adopt the classic DDPM model [11] from diffusion models as a reference to perform noise139

addition and denoising on the transition matrix. The diagram is illustrated in Figure 1.140

For the forward diffusion process beginning with transition matrix T 0 ∼ q(T ), the process of141

gradually adding noise is obtained according to the following Markov process:142

q (Tm | Tm−1) = N
(
Tm;

√
1− βmTm−1, βmI

)
, (3)

for m = 1, 2, · · · ,M , where we use M to replace T , which is usually used in other diffusion models,143

in above equation for distinguishing from the symbol of transition matrix T .144

We aim to make the distribution of q(TM ) approach a standard normal distribution N (0, I) and145

through TM to conduct the reverse denoising process by fitting a neural network µθ to fit the146

disttibution:147

pθ (Tm−1 | Tm) = N
(
Tm−1;µθ (Tm,x, fp,m) , β̃mI

)
, (4)

where define β̃m = 1−ᾱm−1

1−ᾱm
βm, αm = 1− βm, ᾱm =

∏m
i=1 αi. The fp in equation (4) denotes the148

pre-trained encoder for feature extraction.149

4



The diffusion model can be learned by optimizing the evidence lower bound:150

LELBO = Eq

[
LM +

M∑
m>1

Lm−1 + L0

]
, (5)

where151

L0 = − log pθ (T 0 | T 1) ,

Lm−1 = DKL (q (Tm−1 | Tm,T 0) ∥pθ (Tm−1 | Tm)) ,

LM = DKL (q (TM | T 0) ∥pθ (TM )) .

(6)

Similar to the derivation and simplification process of DDPM, when a pre-trained encoder fp is152

provided along with the training data incorporating the initial transition matrix T , the learning153

algorithm for the diffusion model is presented in Algorithm 1.154

Algorithm 1 Diffusion Model for Transition Matrix
Input: Training data {xi,T i}Ni=1, pre-trained encoder fp.
while not converged do

Sample (x0,T 0) from data
Sample m ∼ {1, · · · ,M}
Sample noise ϵ ∼ N (0, I)
Take gradient descent step on the loss:

∇θ

∥∥ϵ− ϵθ
(√

ᾱmT 0 +
√
1− ᾱmϵ,x0, fp,m

)∥∥2
end while

Next, for each image x, we can sample the corresponding transition matrix T (x) as shown in155

Algorithm 2.156

Algorithm 2 Sample for Transition Matrix
Sample TM ∼ N (0, I)
for m = M, · · · , 1 do
z ∼ N (0, I) if t > 1, else z = 0

Tm−1 = 1√
αm

(
Tm − 1−αm√

1−ᾱm
ϵθ (Tm,x, fp,m)

)
+ σmz

end for
Output: T 0

3.3 Feature-Dependent Framework157

From Algorithm 1, it can be observed that there are two components of the diffusion process that158

need to be provided in advance: the pre-trained encoder fp and the initial input T (x).159

The pre-trained encoder fp can be obtained through self-supervised learning or directly using the160

large model like CLIP. In our experiments, we employ the commonly used SimCLR [4] method in161

contrastive learning as the feature extraction model.162

On the other hand, the part involving the transition matrix T (x) used for learning the diffusion163

model is also related to the pre-trained encoder fp. Based on the assumption that the noise transition164

probability depends on image features, we adopt a group-dependent transition matrix as the initial165

input. We perform clustering algorithms at the feature extraction level fp(x), using the K-means166

method in our experiments, to group the image data. Then, based on the method VolMinNet [17], we167

train class-dependent transition matrices for each group and obtain the initial transition matrix T (x)168

for each image x, which is then used as input in Algorithm 1. It is worth to note that the initial T (x)169

used as input for the diffusion process does not require different for each x. However, the denoising170

process of the diffusion model will further incorporate the feature information into the learning of the171

transition matrix.172
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After obtaining the instance-dependent estimated transition matrix T (x), the neural network can be173

learned to fit the clean label distribution by the loss function:174

L =
1

N

N∑
i=1

ℓ
(
T (xi)

⊤fϕ(xi), ỹi

)
, (7)

where fϕ(·) : X → ∆C−1 (∆C−1 ⊂ [0, 1]C is the C-dimensional simplex) is a differentiable175

function represented by a neural network with parameters ϕ and ℓ is a loss function usually using176

cross-entropy (CE) loss.177

The schematic diagram of the proposed framework is shown in Figure 2, and the pseudocode is178

presented in Algorithm 3.179

Algorithm 3 A framework of DTM

Input: Training set {(xi,yi)}
N
i=1, pre-trained encoder fp, diffusion model ϵθ, classification neural

network fϕ.
1: Utilize input data to train fp or directly utilizing fp to extract features.
2: Perform K-means on feature space and estimate the transition matrix for each group to get data

{xi,T i}Ni=1.
3: Train the diffusion model ϵθ with Algorithm 1.
4: Sample instance-dependent train matrix T (x) for any input image xi with Algorithm 2.
5: Update the parameters of the classification network by incorporating the transition matrix T (xi)

into equation (7).
Output: Network parameters ϕ.

3.4 Matrix Transformation180

Considering that the transition matrix typically require the sum of each row
∑C

j=1 T ij(x) is 1, and181

for T ii(x) > T ij(x),∀j ̸= i, we employ a transformation during the update learning process in our182

practical experiments.183

We utilize a C × C weight matrix W = (wij) to assist in the process. Denote matrix A as184

Aii = 1 + σ (wii) for all i ∈ {1, 2, . . . , C} and Aij = σ (wij) for all i ̸= j where σ is the sigmoid185

function. Then we do the normalization T ij =
Aij∑C

k=1 Akj
to get the transition matrix T .186

Through this transformation, we ensure that the learned transition matrix has row sums equal to 1 and187

that the diagonal elements are the largest in each row. In practical experiments, we apply the diffusion188

modeling discussed in subsection 3.2 to the matrix W , and then transform it into the transition matrix189

T for application. To simplify the notation, we uniformly use the term of transition matrix W to190

represent it, unless it leads to singularity.191

4 Experiments192

In this section, we present experimental findings to showcase the effectiveness of our proposed193

method compared to other methods. We evaluate our approach on both synthetic instance-dependent194

noisy datasets and real-world noisy datasets.195

4.1 Datasets196

We conduct experiments on following image classification datasets: CIFAR-10 and CIFAR-100 [13],197

CIFAR-10N and CIFAR-100N [32], Clothing1M [35], Webvision and ILSVRC12 [16]. Among198

them, CIFAR-10 and CIFAR-100 both have 32 × 32 × 3 color images including 50,000 training199

images and 10,000 test images. CIFAR-10 has 10 classes while CIFAR-100 has 100 classes. We200

generate instance-dependent noisy data on CIFAR-10 and CIFAR-100 with noise rates ranging from201

10% to 50%, following the same generation method as in [33]. CIFAR-10N has three annotated202

labels, namely Random1, Random 2 and Random 3. The "Aggregate" is the aggregation of three noisy203

labels by majority voting, and the "Worst" is the dataset with the worst case. For CIFAR-100N, each204
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image contains a coarse label and a fine label given by a human annotator. Clothing1M is a real-world205

dataset consisting of 1 million training images, consisting of 14 categories. WebVision contains 2.4206

million images crawled from the websites using the 1,000 concepts in ImageNet ILSVRC12, but only207

the first 50 classes of the Google image subset are used in our experiments. For the validation set208

selection in our BTR method, we randomly sampled 10 samples from each observed class for each209

dataset to form the validation set, while the remaining samples were used for the training set.210

4.2 Experimental Setup211

For the pre-trained model, we employ the commonly used SimCLR model [4] from contrastive212

learning, which directly performs self-supervised learning on input images without utilizing additional213

datasets. For the diffusion model, we follow the setup similar to DDPM [11] to set β1 = 10−4, βM =214

0.02 and utilize a similar U-Net network architecture but we reduce the M from 1000 to 10 to215

accelerate the learning process. As for the classification network, it may vary depending on the216

specific dataset. More specifically, for CIFAR-10/10N, we use ResNet-18 as the backbone network217

with batch size 128 and learning rate 0.05. For CIFAR-100/100N, we use ResNet-34 network218

with batch size 128, learning rate 0.02. For clothing1M, we use a ResNet-50 pre-trained with 10219

epochs, batch size 64, learning rate 0.002 for network and divided by 10 after the 5th epoch. We use220

InceptionResNetV2 network on Webvision, with 100 epochs, batch size 32, learning rate 0.02 for221

network and divided by 10 after the 30th and 60th epoch. For clustering, we utilize the K-means222

method, where the number of clusters is set to 10 times the number of classes in the datasets. For223

the initialization of transition matrix, the update method and setting are consistent with [17]. While224

the updates for other parameters are performed using the stochastic gradient descent optimization225

method.226

Table 1: Test accuracy with instance-dependent noise on CIFAR-10/100.
CIFAR-10

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%
CE 88.86±0.23 86.93±0.17 82.42±0.44 76.68±0.23 58.93±1.54

VolMinNet 89.97±0.57 87.01±0.64 83.80±0.67 79.52±0.83 61.90±1.06
PeerLoss 90.89±0.07 89.21±0.63 85.70±0.56 78.51±1.23 59.08±1.05
BLTM 90.45±0.72 88.14±0.66 84.55±0.48 79.71±0.95 63.33±2.75
PartT 90.32±0.15 89.33±0.70 85.33±1.86 80.59±0.41 64.58±2.86

MEIDTM 92.91±0.07 92.26±0.25 90.73±0.34 85.94±0.92 73.77±0.82
SOP 93.58±0.31 93.07±0.45 92.42±0.43 89.83±0.77 82.52±0.97
CC 95.24±0.20 93.68±0.12 93.31±0.46 94.97±0.09 91.19±0.34

LRA 95.87±0.42 94.70±0.28 93.79±0.40 92.72±0.29 90.95±0.43
DTM 96.45±0.17 95.90±0.21 95.14±0.20 94.82±0.31 92.04±0.42

CIFAR-100
IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE 66.55±0.23 63.94±0.51 61.97±1.16 58.70±0.56 56.63±0.69
VolMinNet 67.78±0.62 66.13±0.47 61.08±0.90 57.35±0.83 52.60±1.31
PeerLoss 65.64±1.07 63.83±0.48 61.64±0.67 58.30±0.80 55.41±0.28
BLTM 68.42±0.42 66.62±0.85 64.72±0.64 59.38±0.65 55.68±1.43
PartT 67.33±0.33 65.33±0.59 64.56±1.55 59.73±0.76 56.80±1.32

MEIDTM 69.88±0.45 69.16±0.16 66.76±0.30 63.46±0.48 59.18±0.16
SOP 74.09±0.52 73.13±0.46 72.14±0.46 68.98±0.58 64.24±0.86
CC 80.52±0.22 79.61±0.19 77.34±0.31 76.58±0.25 72.68±0.36

LRA 81.20±0.16 80.53±0.29 78.22±0.19 76.55±0.31 72.97±0.51
DTM 82.96±0.25 82.04±0.32 80.87±0.45 78.56±0.60 74.85±0.56

4.3 Comparison Methods227

In our experiments, we included the following common transition matrix and baseline methods as228

comparison: (1) VolMinNet [17], (2) PeerLoss [21] (3) BLTM [37], (4) PartT [33], (5) MEIDTM229

[6], as well as state-of-the-art methods for learning with noisy labels: (6) Co-teaching [10], (7) ELR+230

[18], (8) DivideMix [14], (9) SOP and SOP+ [19], (10) PGDF [5], (11) CC [40], (12) LRA [3]231

with SimCLR as encoder similarly.232
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Table 2: Test accuracy on CIFAR-10N and CIFAR-100N.
CIFAR-10N CIFAR-100N

Aggregate Random 1 Random 2 Random 3 Worst Noisy
Co-teaching 91.20±0.13 90.33±0.13 90.30±0.17 90.15±0.18 83.83±0.13 60.37±0.27

ELR+ 94.83±0.10 94.43±0.41 94.20±0.24 94.34±0.22 91.09±1.60 66.72±0.07
DivideMix 95.01±0.71 95.16±0.19 94.89±0.23 95.03±0.20 92.56±0.42 71.13±0.48

SOP+ 95.61±0.13 95.28±0.13 95.31±0.10 95.39±0.11 93.24±0.21 67.81±0.23
PGDF 95.35±0.12 94.95±0.21 94.78±0.34 94.92±0.28 94.22±0.29 67.76±0.35

CC 95.63±0.21 95.11±0.31 94.93±0.37 95.09±0.21 94.24±0.40 71.21±0.22
LRA 94.57±0.23 94.19±0.17 94.38±0.42 94.02±0.32 93.20±0.59 70.96±0.53
DTM 96.13±0.17 95.98±0.22 96.01±0.28 95.78±0.34 94.93±0.21 72.51±0.30

4.4 Experimental Results on Synthetic Datasets233

We primarily validated our proposed method DTM against previous instance-based transition matrix234

methods on synthetic CIFAR-10/100 noise datasets. These methods mainly focus on estimating the235

transition matrix and some methods applicable to instance-dependent label noise. We performed 5236

independent runs for each experimental configuration, and the average values and standard deviations237

of each experiment are presented in Table 1.238

The results demonstrate that our proposed DTR method outperforms other methods of the same239

category across various noise rates. It is evident that traditional transition matrix methods for class-240

dependent noise as VolMinNet exhibit subpar performance when handling instance-dependent noise.241

While even advanced transition matrix methods for instance-dependent label noise such as BLTM,242

ParT and MEIDTM, still show significant gaps compared to our method.243

Furthermore, as the noise rates increase, the test accuracy of existing transition matrix methods244

significantly decline. This is particularly pronounced in the case of CIFAR-100 with 50% instance-245

dependent noise (IDN) data, where all transition matrix methods achieve test accuracy below 60%.246

In contrast, our proposed DTR method achieves a remarkable test accuracy of 74.85%, showcasing247

its exceptional performance. That demonstrates relatively robust performance of DTM with only a248

slight decrease as the noise rate increases.249

This experiment clearly demonstrates that there is a significant performance gap between previous250

transition matrix methods and other advanced techniques, such as CC and LRA, when dealing with251

instance-dependent noise problems. However, the experimental results indicate that our proposed252

method DTM, which incorporates the diffusion model into the estimation of the transition matrix,253

outperforms these advanced techniques, except for the case of 40% noise in CIFAR-100, where254

our method slightly underperforms CC. It is evident that by leveraging the diffusion modeling to255

estimate the transition matrix, we effectively incorporate the image’s feature information, leading to a256

substantial improvement in the effectiveness of the transition matrix.257

4.5 Experimental Results on Real-World Datasets258

In addition to synthetic datasets, we also applied our method to real-world datasets and compared it259

with other state-of-the-art techniques for handling label noise problems. The results are presented in260

Table 2 and Table 3.261

Table 3: Test accuracy on Clothing1M, Webvision and ILSVRC12.

Clothing1M Webvision ILSVRC12
Co-teaching 69.2 63.6 61.5

ELR+ 74.81 77.78 70.29
DivideMix 74.76 77.32 75.20

SOP+ 74.98 77.60 75.29
PGDF 75.19 81.47 75.45

CC 75.40 79.36 76.08
LRA 75.32 80.05 76.64
DTM 75.57 81.95 77.55
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The results demonstrate that regardless of the type of noise labels, whether it is aggregated, random,262

or the worst-case scenario in CIFAR-10N, as well as in CIFAR-100N with more label categories,263

our method consistently achieves the best results in handling real-world noise. When dealing with264

large datasets like Clothing1M and complex image datasets like Webvision, DTM also performs265

comparably to other state-of-the-art methods.266

Through extensive experiments on five real-world datasets and the rusults on synthetic datasets above,267

our method outperforms the LRA method, which also utilizes the diffusion model for label noise268

problems. The LRA method models label diffusion with fewer dimensional information and lacks the269

rationale of our method, which considers noise generation from a transfer probability distribution270

perspective. The experiments demonstrate that our method achieves better learning performance by271

effectively integrating the transition matrix with the diffusion model.272

4.6 Ablation Study273

Besides the aforementioned experiments, we conducted ablation studies on proposed DTM method274

to assess the importance of each component. Table 4 presents the comparative results under 20%275

and 40% instance-dependent noise rates, where "w/o" denotes "without". We conducted ablation276

experiments on three components of our method, they are diffusion module, pre-trained encoder277

module, and clustering module respectively. "w/o diffusion" indicates directly using the features278

extracted by the pre-trained model for the classification task with the transition matrix. "w/o pre-train"279

means not extracting features through self-supervised learning and directly utilizing the classification280

network with the diffusion model. "w/o clustering" indicates that the initial transition matrix used for281

the diffusion model is the same for all samples.282

Table 4: Ablation study of DTR. The data in the table represents the test accuracy.

CIFAR-10 CIFAR-100
IDN-0.2 IDN-0.4 IDN-0.2 IDN-0.4

w/o pre-train 90.52 83.61 66.17 61.79
w/o clustering 92.25 88.35 71.93 66.47
w/o diffusion 93.74 91.66 79.82 73.51

DTR 95.90 94.82 82.04 78.56

From the results in Table 4, it can be observed that regardless of which component of diffusion283

module, pre-trained encoder module and clustering module is missing, the performance is consistently284

weaker compared to the original DTM. This indicates that each module plays a crucial role in our285

method. Our approach effectively combines the transition matrix, diffusion model, and pre-trained286

feature extraction, leading to significant improvements.287

5 Conclusion288

In this paper, we propose a method that models the transition matrix using diffusion models, incorpo-289

rating the feature information extracted by a pre-trained encoder into the estimation of the transition290

matrix. This approach enables the model to handle instance-dependent label noise with a wider range291

of applicability. Experimental results on both synthetic and real-world noisy datasets demonstrate the292

effectiveness of our proposed method.293
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institution) were obtained?709

Answer: [NA]710

Justification: The paper does not involve crowdsourcing nor research with human subjects.711

Guidelines:712

• The answer NA means that the paper does not involve crowdsourcing nor research with713

human subjects.714

• Depending on the country in which research is conducted, IRB approval (or equivalent)715

may be required for any human subjects research. If you obtained IRB approval, you716

should clearly state this in the paper.717

• We recognize that the procedures for this may vary significantly between institutions718

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the719

guidelines for their institution.720

• For initial submissions, do not include any information that would break anonymity (if721

applicable), such as the institution conducting the review.722
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