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Abstract

We consider the problem of fair multi-agent navigation for a large group of decen-
tralized agents using multi-agent reinforcement learning (MARL). Previous MARL
research optimizes for efficiency, safety, or both. We introduce a methodology that
considers fairness over the entirety of the simulation period using a specialized re-
ward function and decentralized goal assignment approach. Specifically, our work
(1) incorporates fairness into the reward function, which leads to (2) agents learn-
ing a fair assignment of goals and (3) achieves almost perfect goal coverage in the
navigation scenario using each agent’s localized observations in a decentralized man-
ner that allows scaling to any number of agents. We show that our work achieves
higher fairness metrics when compared to other centralized goal-assignment fairness
methodologies.

1 Introduction

Scalable coordination methods with equitable resource distribution will need to be developed to
manage interactions between entities in large multi-agent systems like advanced air mobility (Chin
et al., 2023) and space traffic management (Dolan et al., 2023). Traffic management for these systems
must actively direct well-actuated but fast-moving and safety-critical autonomous agents to reach
their intended destinations without incident.

Multi-agent reinforcement learning (MARL) approaches enable the investigation of a range of inter-
actions (e.g., competitive or cooperative) between agents or between teams of agents. The ability of
RL to learn by trial and error makes it well-suited for problems in which optimization-based methods
are not effective. In particular, multi-agent reinforcement learning (MARL) approaches are suitable
in these situations due to their fast run times, superior performance, and ability to model shared
goals between agents using appropriate reward structures.

One common approach to training cooperative multi-agent reinforcement learning models is the cen-
tralized training decentralized execution (CTDE) paradigm. In CTDE, decentralized agent policies
are trained through a centralized mixing model with global state information, while agents select
actions using only their local observations (Zhou et al., 2023). As an example, agents could be
required to complete a set of tasks in a collaborative manner. The learning process occurs as the
agents seek to find an optimal policy to maximize the shared reward function. While this shared
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reward encourages collaboration amongst agents, it does not consider the fairness of each agent’s
task assignment, meaning that certain agents could contribute a disproportionate portion of the
overall shared reward. We wish to avoid any assignment that distributes the tasks in an inequitable
way that leads to some agents receiving an unfair advantage while others starve for resources.

Our approach focuses on the evolution of fairness throughout the course of an episode in a coop-
erative, decentralized multi-agent reinforcement learning setting. Specifically, we design a reward
function that encourages both the completion of the task and the overall fairness in each agent’s
task selection and execution. This reward is based on optimal cost distance assignment or minimax
fair distance assignment, which allows agents to learn fairness and solve it adaptively.

Our contributions include the following:

o We introduce a reward function that enables the underlying reinforcement learning algorithm
to learn fair behavior.

o We demonstrate a decentralized learning-based goal assignment approach that allows agents
to adaptively select their goals during execution rather than relying on a centralized goal
assignment algorithm.

The remainder of this paper is organized as follows: In Section 2, we review related work in the
field. Section 3 introduces our problem formulation and methods. Section 4 presents our results and
discusses our findings. Finally, we conclude in Section 5 with future work directions.

2 Related Work

2.1 Fairness

Fairness has been extensively studied in many contexts, including in game theory (Jong et al., 2008),
economics (Frey & Pommerehne, 1993), and machine learning (Caton & Haas, 2024). In machine
learning, work in fairness often refers to mitigating social biases and the social, legal, and ethical
aspects of machine learning discrimination. One of the most common classes of approaches is the
alpha fairness method (Altman et al., 2008). Our work is concerned with fairness in the network
engineering sense (Huaizhou et al., 2013), where individual users receive a fair share of system
resources (Kleinberg et al., 2001).

There are relatively few works in MARL studying this definition of fairness. De Jong et al. (2008)
incorporated priority awareness into their fairness modeling. As human notions of fairness often
consider it fair if agents receive slightly different rewards in the presence of additional contextual
information, this work assumes that each agent knows the true priority of all other agents in the
simulation. This approach produces sub-optimal reward solutions. In Grupen et al. (2022), they
find that sophisticated coordination behavior only emerges when there is a shared reward but that
this emergent behavior does not ensure fairness. They introduce a soft-constraint equivariant policy
learning method to dynamically balance the fairness-utility trade-off. By contrast, our work considers
fairness in navigation-based settings where global information is not available to each agent.

2.2 Communication Structures in Multi-Agent Reinforcement Learning

Our work focuses on the problem of multi-agent navigation and collision avoidance among a set
of decentralized N agents that can only sense the presence of other obstacles and agents within a
limited radius r. Communication between agents is vital for them to complete their respective tasks
successfully. The study of the role of communication between agents is an active and extensive field
within MARL, so we refer the reader to a survey on the topic (Zhu et al., 2024) for a comprehensive
description. We highlight several works in this area that address problems similar to ours.

Existing MARL work on this problem often assumes that even if the behavior of the agents is
decentralized, communication amongst them is centralized. This means that all agents have access
to messages from all other agents in the environment. Unfortunately, this means that as the number
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of agents increases, the computational expense of communication increases superlinearly. Centralized
communication also creates privacy concerns, where agents are unable to participate in the MARL
framework without sharing data with everyone. To address this expense, ATOC (Jiang & Lu, 2018;
Das et al., 2018) relies on attention mechanisms to provide a compact representation of message
priority. In EMP (Agarwal et al., 2019), the environment is translated into a shared agent-entity
graph representation that allows agents to communicate along connected edges. This formulation
provides a compact graph representation of the communication connections between all entities in
the environment. However, all agents must know the positions of all entities in the graph at the
beginning of an episode, and thus, a similar centralized communication constraint arises. In contrast
to these centralized communication approaches, InforMARL (Nayak et al., 2023) differs from these
works in that it relies on only locally available information throughout training and during evaluation.
Our algorithm relies on InforMARL as the underlying MARL algorithm for training and evaluation,
with several adaptations to its reward and buffer structure.

3 Methodology

In this section, we will describe a modified reward function that trains policies with fairer outcomes
of agents to goals. We first describe the environment, then discuss centralized efficiency and fairness
optimization formulations, and finally discuss modifications to the reward function that lead to fair
behavior.

We train an adapted version of InforMARL, an existing CTDE multi-agent reinforcement learning
algorithm, on our modified reward functions. The details of this algorithm are beyond the scope of
this paper and can be found in Nayak et al. (2023).

3.1 Preliminaries

Following the InforMARL framework, our environment comprises entities categorized into agents,
obstacles, and goals. For each agent i at each time-step ¢, we define an agent-entity graph as
gt(l) € G:(V,€), where each node v € V is an entity in the environment. Entities are connected to
each other by edges if they are within a certain sensing distance. Agent-agent edges are bi-directional,
which is equivalent to a communication channel between them, whereas agent-non-agent edges are
unidirectional, with messages being passed from the non-agent entity to the agent.

Our environment is based on the Multi Particle Environments (MPE) (Lowe et al., 2017) collection
of tasks. We formulate our environment as a Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) defined by the tuple (N, S,0, A, G, P, R,~), where:

e N is the number of agents

e s S =RN*PD ig the state space of the environment, with D as the dimension of the state

o o) = O(sM) € R? is the local observation for agent i.

e a() € A is the action space for agent i.The action space for each agent is discretized such
that it can control unit acceleration and deceleration in the x- and y- directions.

o g € G(s;i) is the graph network formed by the entities in the environment with respect
to agent ¢

o P(s'|s, A) is the transition probability from s to s’ given the joint action A

o R(s,A) is the joint reward function

e v €10,1) is the discount factor

Note that our environment has modified the reward structure and the collaborative information
sharing setup compared to the environments originally tested for InforMARL. The task is to find
a policy II = (71'(1)7 e ,ﬂ'(N)), where 7'(';2) (a(i)\o(i),g(i)) for agent 7 selects action a(¥ based on its
graph network ¢ and the local observation o(* which consists of its position and velocity in a
global frame of reference and the information about each agent’s goals denoted by ¢ € G. Any
goal position that is input to the agent’s observation is the relative position of the goals with respect
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to the agent’s position. We also add a goal occupancy flag that informs agents of the proximity of
any agent to a particular goal. In Section 3.2, we discuss this modification that allows our algorithm
to be scalable and more decentralized.

We investigate a navigation problem involving N agents that navigate a 2D space using a double
integrator dynamics model (Rao & Bernstein, 2001). Agents are tasked with navigating to goals in
the environment such that each agent is at a unique goal while avoiding obstacles and walls. At each
timestep, we calculate the preliminary reward for each agent a(?), Ra(st, agi)) by taking the negative
mean of the minimum Euclidean distances to an assigned goal. When an agent reaches its assigned
goal, it receives a goal reward R (s:, al). The agents are flagged as “done” and stay locked in at
the goal. We also restrict the actions that can be taken by these “done” agents. This prevents the
agents from drifting away under the collision force influence of other agents that are still navigating
to their respective goals. We call this setting “death-masking” based on Yu et al. (2021).

To demonstrate the impact of our learning-based goal assignment and fairness reward function, we
compare our methods against fair a priori goal assignment methods. In Section 3.3, we discuss these
a priori goal assignment techniques used in this work. In Section 3.4, we discuss the structure of
our fairness reward function.

3.2 Observations for Decentralized Execution

In typical MARL applications, agents are provided with all goal positions as well as information
about the neighboring agents in the environments. This leads to a lower level of privacy and
assumes global knowledge of every agent’s position. When agents are sparsely distributed in larger
environments, they can only observe parts of the environment preventing them from knowing the
positions of all goals a priori. We model this in our observation function by only using the positions
of the closest two goals from each agent. The information of other goals is shared between agents
within the sensing distance using graph message passing.

We provide a goal occupancy flag that informs agents how close any agent is to that goal. It allows
agents to know if a goal in their sensing range is occupied or will be soon occupied due to the
presence of another agent in its proximity. The goal occupancy flag 7 is created for each goal in the
environment. We populate the flags based on the distance of the closest agent to the goal. For each
goal ¢ with position pg), we initialize all 7® to 0. As agents move closer to the goals, we calculate
the minimum distance any agent is from a particular goal i,
d), = min[la@) — pli|
JjEN g (1)
We restrict the value of n to be within 0 and 1 for ease of computation. For a given goal,
the flag value 7" increases from 0 to 1 as an agent tries to reach it. In particular, n( =
0 means the goal () is available for any agent, and 1 indicates that the goal is occupied.
The final ego observation o is o = [pl-,vi,pgoall,nfoall,pgoal2,n§°alz]. The neighborhood in-
formation is also collected into a graph observation vector that is then passed into the GNN.

T = [pj,vg,pfoall’j,nfoall,entity_type(j)] where pg,vf,pfoall’j are the relative position, veloc-
ity, and position of the closest goal of the entity at node j with respect to agent i, respectively. The

variable entity_type(j) € {agent, obstacle,goal} determines the type of entity at node j.

3.3 Goal Assignment

Assigning agents to goals is a well-investigated problem (Skaltsis et al., 2021). In this paper, we
compare an optimal method of assigning goals with a min-max fair method and describe their
implementation here. Note that this assignment is only used to determine the rewards for the
agents and is not used in the observations.
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3.3.1 Optimal Cost Assignment

For an efficient assignment, we use the linear sum assignment or minimum weight matching in the
bipartite graphs algorithm. This matches each agent ¢ to a goal j so that the total cost c;; for all

n n
agents is minimized, which here corresponds to minimizing the total distance, or ming,; » CijTij-
i=1j=1
where x;; is 1 if agent ¢ is assigned to goal j and 0 otherwise.

3.3.2 Min-Max Fair Assignment

We compare the optimal cost assignment with the performance of agents when the system is provided
with a fair assignment of agent-goal results. We determine a min-max fair assignment by optimizing
the objective min z subject to constraints ensuring each agent and goal is assigned exactly once. z
represents the maximum cost assigned to any agent, c;;x;; < z where ¢;; and x;; are defined as
above.

3.4 Fairness

Many works prior have tried to enable fairness in multi-agent networked systems. We want to incor-
porate fairness by having an equitable allocation of resources. We choose the distance traveled and
time taken by each agent to reach its goal as the metrics for fairness. We would like to minimize the
standard deviation of distance traveled and time to reach goals among all agents. By incorporating
these metrics in our reward function, we can add fairness to agent behavior in the system.

The distance traveled by each agent i at each time step is represented by dil), with an overall mean
u¢ and standard deviation oy for all agents. We compute the coefficient of variation as CVy = o/ .
We choose our fairness metric F = 1/CV to be the inverse of CV so that it is a non-dimensional
quantity with higher numerical values indicating greater fairness.

i 1
Fi(s ,a(l) = 2
snaf’) = & 2
We then pass F to every agent policy 7(?) through the reward function. The fairness metric is
transformed through a tanh function whose zero value is shifted appropriately by 7y to enable
agents to have a higher fairness metric. This value is scaled up by a factor A to determine the

fairness reward R (s, aﬁi) ).

fo = tanh(Fy (s, al") — 7o) (3a)
Ry(sea’) = My (3b)

Another metric could be the standard deviation or its inverse, 1/0;. Further investigation found that
the trends in fairness are similar between the two metrics; thus, we continue our implementation
with 1/CV, which is a non-dimensional quantity. The agents have a common objective to reach the
targets, and the fairness metric does not directly conflict with the goal reward.

We also have a goal reaching reward R (s¢, agl)). This goal-reaching reward occurs when an individ-
ual agent reaches their assigned goal, as marked by p. p is 1 if the agent reaches the goal; otherwise,
0. The overall reward is tuned with the addition of the fairness metric, which we will call the “fair”
reward.

Reotat (s6:a”) = Ra(se, al”) + Ry (se,at”) + pRy (50, at”) (4)

4 Experiments

4.1 Problem Setting

We formulate our problem as a navigation coverage task (Tokekar et al., 2014; Dames et al., 2017),
where each agent must reach a single unique goal. In a navigation task with pre-assigned goals, the
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Figure 1: Visualization of behaviors of the four navigation cases with and without fairly assigned
goals and fairness metric rewards. The agents start from the upper half of the environment and
navigate to goals located on the bottom left part of the environment. The darker shades indicate
newer states in the trajectories traveled by each agent, and the lighter circles indicate earlier states.

Metric Fairness metric F
Type || OA, nFR | OA, FR | FA, nFR | FA, FR
2.43 2.77 11.82 12.44

Table 1: Fairness metric F calculated for the four navigation scenarios shown in Fig. 1.

agent’s policy is fixated on reaching that particular goal. However, this approach is not feasible for
a scalable decentralized system, as it fixes the model’s input and outputs.

Based on the local observations at each step, the agent is provided with the two closest goals available
for that step. The agents also get additional information about the two closest goals to prevent issues
with crowding on any one goal. For each of the two selected goals, the agents also receive a goal
occupancy flag, which determines if the goal has been occupied by another agent. This enables
the agents to prioritize goals that they need to navigate to based on the level of occupancy of a
particular goal.

We use both goal assignment schemes and add the fairness reward to create four cases for the
coverage navigation scenario, varying using the optimal (Sec. 3.3.1) or fair (Sec. 3.3.2) assignment
and including and not including the fairness reward in Eqn. 4.

1. Fair goal assignment with fairness reward (FA, FR)

2. Fair goal assignment with no fairness reward (FA, nFR)

3. Optimal distance cost goal assignment with fairness reward (OA, FR)

4. Optimal distance cost goal assignment with no fairness reward (OA, nFR)

An example scenario of these four cases is shown in Fig. 1. Three agents are initialized in the upper
portion of the environment, and the three goals are located in the lower left corner. Agents navigate
to their goals based on the different policies they are trained on, and the colored dots show their
trajectories. Table 1 shows the fairness metric values for each case for this episode.

4.2 Evaluation

We train with three agents in each scenario and evaluate with 3, 5 and 10 agents over 100 episodes.
During evaluation, we do not rely on a centralized critic. We also do not require knowing the
global positions of all agents and use communication through message passing to sense other agents,
obstacles, and goals present in the environment. We calculate the following metrics:

1. Fairness, which is the total fairness value (Eqn. 2) throughout the episode, denoted by F
(higher the better).
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Figure 2: The violin plots show the distribution of fairness (F), success rates (S%) and fraction of
episode time (7") over 100 episodes for each of the four cases of goal assignment and fairness reward
models discussed in Section 4.1: 1) Fair goal assignment with fairness reward (FA, FR), 2) Fair goal
assignment with no fairness reward (FA, nFR) 3) Optimal distance cost goal assignment with fairness
reward (OA, FR) 4) Optimal distance cost goal assignment with no fairness reward (OA, nFR). The
medians are denoted by a white circle and tick, a plain tick represents the means, and the vertical
black lines indicate the 90-10 percentile range. The trends show that the case (FA, FR) has the
highest fairness values, greater success rates, and lower completion time for 3 and 5-agent scenarios.
The results for the scenario with 10 agents are skewed due to congestion in the environment.
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2. Success rate as the percent of episodes in which all agents are able to get to unique goals,
denoted by S% (higher is better).

3. The fraction of an episode time taken by all agents to get to their goal, denoted T (lower is
better). T is set to 1 if any agent does not reach its goal.

Figure 2 shows the distribution of F, S% and T along with the medians, means, and 90-10 percentile
ranges for the four cases of the coverage navigation task. The results show that our method (FA,
FR) has the highest fairness metrics as compared to the other cases. We also see higher success
rates S% and a lower fraction of episode time T'. Case (FA, nFR) also performs well, showing that
the agents have learned a fair assignment and are utilizing it to maintain a greater fairness metric
independent of the fairness reward. The trend is different for the 10 agents scenarios as the agents
experience congestion with a greater agent count in the same environment. This leads to more
collisions, resulting in a decrease in overall fairness and success rates. Further results are provided
in Table 2 in Appendix A.

5 Conclusions and Future Work

In this work, we proposed a method to incorporate fairness into the multi-agent navigation problem.
The agents are able to achieve almost complete coverage of the goals in each scenario. Our approach
enables a greater level of decentralization with less dependence on a centralized oracle. As an added
benefit, we obtain some privacy by not requiring that all agents and goal positions be known before
the navigation starts. We utilized goal occupancy values for each goal to indicate to agents if a
particular goal is occupied and not worth reaching. We compared the fairness metric and success
rates of the coverage task for both goal assignment schemes with and without the inclusion of the
fairness reward. We also implemented “death masking” to prevent collision forces from influencing
the goal-reaching behaviors. In future work, we would like to extend this algorithm to various
formation tasks for a swarm of agents. We will evaluate the level of fairness metrics achieved as
agents come into formation and compare the fairness-informed models to our baselines.
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A Appendix

Number of || Experiment Fairness | Fairness | Success | Episode Fraction
Agents Type Fa t Fi T S% 1 Time (T) |

FA, FR 3.21 4.26 99.0 0.28

3 FA ) nFR 2.63 4.24 99.0 0.30
OA, FR 2.07 2.79 99.0 0.33

OA, nFR 1.86 2.53 98.7 0.34

FA, F 2.41 3.02 99.0 0.33

5 FA, nFR 2.23 3.02 98.4 0.34
OA, FR 1.39 1.86 96.0 0.46

OA, nFR 1.33 1.74 97.4 0.47

FA, FR 1.40 0.99 71.8 0.99

10 FA, nFR 1.40 1.18 81.4 0.94
OA, FR 0.93 0.72 82.2 0.96

OA, nFR 0.92 0.68 80.1 0.98

Table 2: Comparison of the fairness informed experiments. The following metrics are compared:
(a) fairness based on distance traveled (Fg, higher is better), (b) fairness based on the time taken
(Ft, higher is better), (c) success rates (S%, higher is better) and (d) fraction of episode time (7,
lower is better) over 100 episodes for each of the four cases of goal assignment and fairness reward
models discussed in Section 4.1: 1) Fair goal assignment with fairness reward (FA, FR), 2) Fair
goal assignment with no fairness reward (FA, nFR) 3) Optimal distance cost goal assignment with
fairness reward (OA, FR) 4) Optimal distance cost goal assignment with no fairness reward (OA,
nFR). The medians are presented over 100 episodes for all but the success rate where the mean
values are presented. The (FA, FR) method has the highest fairness based on distance traveled and
fairness based on the time taken for 3 and 5 agents scenarios.
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