
Do Large Language Models Truly Grasp Addition?
A Rule-Focused Diagnostic Using Two-Integer Arithmetic

Anonymous ACL submission

Abstract

Large language models (LLMs) achieve impres-001
sive results on advanced mathematics bench-002
marks but sometimes fail on basic arithmetic003
tasks, raising the question of whether they have004
truly grasped fundamental arithmetic rules or005
are merely relying on pattern matching. To006
unravel this issue, we systematically probe007
LLMs’ understanding of two-integer addition008
(0 to 264) by testing three crucial properties:009
commutativity (A + B = B + A), repre-010
sentation invariance via symbolic remapping011
(e.g., 7 7→ Y), and consistent accuracy scal-012
ing with operand length. Our evaluation of013
12 leading LLMs reveals a stark disconnect:014
while models achieve high numeric accuracy015
(73.8–99.8%), they systematically fail these di-016
agnostics. Specifically, accuracy plummets to017
≤ 7.5% with symbolic inputs, commutativity018
is violated in up to 20% of cases, and accuracy019
scaling is non-monotonic. Interventions further020
expose this pattern-matching reliance: explic-021
itly providing rules degrades performance by022
29.49%, while prompting for explanations be-023
fore answering merely maintains baseline accu-024
racy. These findings demonstrate that current025
LLMs address elementary addition via pattern026
matching, not robust rule induction, motivating027
new diagnostic benchmarks and innovations028
in model architecture and training to cultivate029
genuine mathematical reasoning.030

1 Introduction031

Why basic arithmetic still matters. Large Lan-032

guage Models (LLMs) have demonstrated impres-033

sive, often graduate-level, performance on sophis-034

ticated mathematics benchmarks (OpenAI, 2024;035

DeepSeek-AI, 2025). This success, however, is036

frequently contrasted with surprising failures on037

elementary operations when inputs are minimally038

perturbed, such as reordering operands, substitut-039

ing digits with symbols, or rephrasing problems (Li040

Question 3: 1364 + 2638 = ?

1. Let's think step by step.

* Add theones place: 8 + 4 = 12. Write down 2 and carry-over 1.

* Add the tens place: 3 + 6 + 1 (carry-over) = 10. Write down 0 and carry-over 1.

* Add the hundreds place: 6 + 3 + 1 (carry-over) = 10. Write down 0 and carry-over 1.

* Add the thousands place: 2 + 1 + 1 (carry-over) = 4.

2. Final Answer: $\boxed{4002}$

Question 2: 2638 + 1364 = ?

Question 4: dieh + aeir = ? (Mapping Rule shown in Blue)

1. Columnar Addition(right to left):

Column 1 (rightmost): `h + r` # 4 + 8

- According to the rules: `h + r = da` (Write 'a', Carry 'd') # 4 + 8 = 12

Column 2: `e + i + d` # 6 + 3 + 1

- According to the rules: `e + i = c` and `c + d = c` (Write 'c', Carry 'c') # 6 + 3 = 9, 9 + 1 = 9

Column 3: `i + e + c` # 3 + 6 + 9

- According to the rules: `i + e = r` and `r + c = dv` (Write 'v', Carry 'd') # 3 + 6 = 8, 8 + 9 = 15

Column 4: `d + a + d` # 1 + 3 + 1

- According to the rules: `d + a = i` and `i + d = h` (Write 'h', Carry 'h') # 1 + 3 = 3, 3 + 1 = 4

Column 5 (leftmost): `h` (Carry from previous column) # 4

- Write 'h’

2. Result: `\\boxed{hcvah}` # 49524
Position Addition Error in Symbolic Mapping

1. Let's think step by step.

Add the ones place: 4 + 8 = 12. Write down the 2 and carry-over the 1.

Add the tens place: 6 + 3 + 1 (carry-over) = 10. Write down the 0 and carry-over the 1.

Add the hundreds place: 3 + 6 = 9. Write down the 0 and carry-over the 1.

Add the thousands place: 1 + 2 = 3.

2. Final Answer: \boxed{3902}
Carry-over Error

Failure in Commutativity

Failure in Rule Generalization

Let the base be b. The numbers are given in base b.

The number 17_b can be written in base 10 as $1 \cdot b^1 + 7 \cdot b^0 = b+7$.

The number 97_b can be written in base 10 as $9 \cdot b^1 + 7 \cdot b^0 = 9b+7$.

…

These are the only solutions. The sum is $21+49=70$.

The final answer is $\boxed{70}$.

Question 1: Find the sum of all integer bases $b>9$ for which 17_{b} is a divisor of 97_{b}.

Success Case of Competition Math

Success Case of Fundamental Math

Figure 1: Illustration of LLM Paradox: LLMs excel at
complex math but falter on basic addition, raising the
question of whether they grasp rules or merely reproduce
patterns. “True grasp” implies consistent performance and
adherence to mathematical properties (e.g., commutativity,
representation invariance) under novel conditions. This study
probes LLMs’ comprehension of elementary two-integer addi-
tion (RQ1) and the factors that modulate it (RQ2). Findings
suggest that LLMs rely on token-level heuristics rather than
rule abstraction.

et al., 2024; Mirzadeh et al., 2024). This stark con- 041

tradiction fuels a critical question at the heart of 042

understanding LLM capabilities: 043

Do LLMs truly grasp arithmetic rules, 044

or do they primarily reproduce famil- 045

iar token patterns learned from vast 046

datasets? 047

Here, we define rules as generalizable algorithms 048

that apply consistently across all valid inputs, and 049

true grasp as the ability to maintain performance 050

and adhere to mathematical properties even under 051

novel conditions, reflecting an understanding of the 052

principles themselves. 053

1

Diagnostic gap in existing benchmarks. Popu-054

lar benchmarks such as GSM8K, MATH-500, and055

Humanity’s Last Exam emphasize final-answer056

accuracy on multi-step word problems (Cobbe057

et al., 2021; Lightman et al., 2024; Humanity-Team,058

2025). Because many sub-steps are unobserved,059

these benchmarks cannot determine whether suc-060

cess arises from rule learning or from distribution-061

specific heuristics. Recent robustness probes con-062

firm this concern, but still involve problems whose063

complexity obscures which precise rule is vio-064

lated (Li et al., 2024; Mirzadeh et al., 2024). A065

targeted diagnostic is therefore required.066

Our diagnostic lens: two-integer addition. We067

propose elementary two-integer addition as a con-068

trolled probe of rule learning (Figure 1). The069

task isolates a single algorithm with two compo-070

nents, digit-wise addition and carry propagation,071

and removes linguistic confounds. Any system that072

genuinely implements this algorithm must satisfy073

three observable properties: (i) digit-scaling con-074

sistency, meaning accuracy should decline mono-075

tonically with operand length; (ii) representation076

invariance, meaning performance should be stable077

under any bijective digit-to-symbol remapping; and078

(iii) algebraic integrity, meaning commutativity079

holds for every operand pair.080

Empirical Findings. Our empirical investigation,081

centered on these properties, reveals that contem-082

porary LLMs predominantly rely on pattern match-083

ing rather than exhibiting a robust, rule-based un-084

derstanding of elementary addition. Key findings085

highlight significant violations of digit-scaling con-086

sistency: numeric accuracy often shows an erratic087

’drop-rebound’ pattern, such as declining for 4–6088

digit operands, then improving for 8–10 digits, in-089

stead of the expected monotonic degradation with090

increasing operand length. LLMs also frequently091

fail to uphold algebraic integrity; commutativity092

(A + B ̸= B + A) is systematically violated in093

thousands of instances across various models, with094

some models failing this property in up to 20%095

of problem pairs. Moreover, performance dra-096

matically collapses under symbolic representation;097

models achieving over 99% numeric accuracy, like098

Claude-3.5-Sonnet at 99.81%, experience a per-099

formance drop to as low as 7.51% when standard100

digits are replaced by novel symbols. Interventions101

such as providing explicit rules via prompting of-102

ten counterintuitively degrade performance, some-103

times by more than 50% relative to zero-shot accu-104

racy. Finally, fine-tuning experiments underscore 105

a persistent tension. Task-specific supervised fine- 106

tuning (SFT) significantly boosts numeric accuracy 107

but typically fails to generalize this improvement 108

to symbolic tasks. In contrast, reinforcement learn- 109

ing (RL) based methods show somewhat better 110

symbolic transfer, although often without matching 111

SFT’s peak numeric performance. These outcomes 112

indicate that LLMs’ arithmetic competence is often 113

tied to learned surface token patterns, rather than an 114

internalized, abstract grasp of mathematical rules. 115

Contributions. Our main contributions are: 116

1. Diagnostic Methodology: We introduce a di- 117

agnostic methodology centered on two-integer ad- 118

dition, using notation invariance, digit-scaling con- 119

sistency, and algebraic integrity as key criteria to 120

differentiate genuine rule learning from superficial 121

pattern matching in LLMs. 122

2. Empirical Findings: Through extensive ex- 123

periments, we demonstrate that current LLMs sys- 124

tematically fail these diagnostic tests, exhibiting 125

significant performance drops with symbolic in- 126

puts, erratic scaling, and commutativity violations. 127

Furthermore, interventions like explicit rule provi- 128

sion often impair performance, while fine-tuning 129

highlights a persistent preference for pattern mem- 130

orization over rule abstraction. 131

3. Implications for LLM Evaluation and Devel- 132

opment: These findings reveal a core limitation in 133

LLMs’ compositional generalization for elemen- 134

tary arithmetic. This suggests that success on com- 135

plex benchmarks may mask deficiencies in foun- 136

dational reasoning, underscoring the need for new 137

evaluation approaches and model architectures to 138

foster genuine mathematical understanding. 139

2 Related Work 140

Benchmark progress and limits. Leaderboard- 141

oriented benchmarks have propelled LLMs to- 142

ward increasingly impressive performance on com- 143

plex reasoning tasks, ranging from general knowl- 144

edge assessments to graduate-level mathemat- 145

ics (Hendrycks et al., 2021; Cobbe et al., 2021; 146

MAA, 2024; Humanity-Team, 2025). However, 147

these suites prioritize final answers over the under- 148

lying generalizable rules that generate them. Since 149

each problem combines multiple subtasks, high 150

accuracy can be achieved through localized pat- 151

tern matching, which can evade detection by ag- 152

gregate metrics. Thus, the fundamental question 153

persists, and our work specifically addresses this 154

2

uncertainty.155

Robustness analyses that reveal surface depen-156

dence. Several studies probe models with minimal157

input perturbations. Replacing digits with unfamil-158

iar symbols, altering numeral formats, or retokeniz-159

ing inputs consistently reduces accuracy (Mirzadeh160

et al., 2024; Zhou et al., 2024; Zhong et al., 2024;161

Zeng et al., 2024). Although specialized embed-162

dings can recover some performance (McLeish163

et al., 2024), these fixes improve specific surface164

forms and do not demonstrate rule abstraction. Our165

notation-remapping experiments extend this line166

of inquiry by isolating the addition algorithm from167

every other linguistic cue.168

Mechanistic studies of arithmetic circuits.169

Neuron-level inspections report units that store par-170

tial carries, as well as heuristics that fail outside171

the training range (Qiu et al., 2024; Nikankin et al.,172

2025). Grokking phenomena illustrate that models173

can memorize before they generalize, and some-174

times never reach full rule induction (Power et al.,175

2022). Instruction-tuning and in-context exemplars176

can elicit temporary algebraic behavior, yet system-177

atic transfer remains narrow (Chang and Wu, 2024;178

Gorceix et al., 2024; Chen et al., 2024; Deng et al.,179

2024). These findings motivate a diagnostic that180

tests rule mastery directly rather than inferring it181

from indirect proxies.182

We contribute such a diagnostic by focusing on183

two-integer addition, a task whose solution requires184

commutativity and notation invariance but avoids185

confounds from multi-step language understanding.186

By evaluating models against these minimal yet187

stringent criteria, we close the empirical gap left188

by prior robustness and mechanistic studies and189

provide a concrete baseline for future architectural190

and training advances.191

3 Methodology192

3.1 Background and Motivation193

LLMs predominantly employ auto-regressive gen-194

eration to produce responses. Given a question195

Q, an LLM samples an answer sequence A =196

(T1, . . . , TN) from a learned probability distribu-197

tion of pre-training data:198

A ∼ P (A | Q) =

N∏
i=1

P (Ti | T<i, T) , (1)199

where T in P (Ti | T<i, T) represents the condi-200

tioning context. Ideally, this learned distribution201

P (A | Q) should approximate a true underly- 202

ing distribution P ∗(A | Q) that reflects genuine 203

comprehension, or true grasp, of the principles 204

needed to answer Q. Such genuine comprehen- 205

sion would manifest as consistent behavior; for 206

example, semantically identical questions should 207

elicit responses from similar conditional distribu- 208

tions, and increased question complexity should be 209

reflected in the corresponding distributions. How- 210

ever, empirical evidence indicates that LLMs often 211

deviate from this ideal. High accuracy on com- 212

plex benchmarks like GSM8K can significantly 213

decrease with minor input perturbations, such as 214

paraphrasing or digit substitution, or on simpler 215

arithmetic tasks (Li et al., 2024; Mirzadeh et al., 216

2024; Zhou et al., 2024). This discrepancy between 217

the learned P (A | Q) and the ideal P ∗(A | Q) sug- 218

gests a reliance on surface-level pattern matching 219

rather than internalized, rule-governed reasoning. 220

While the complexity of word-problem bench- 221

marks obscures precise failure attribution, an ideal 222

diagnostic task should isolate a single, verifiable al- 223

gorithm and use an input domain too vast for mem- 224

orization. Two-integer addition, a classic micro- 225

benchmark for algorithmic generalization (Saxton 226

et al., 2019), meets these criteria. 227

Our methodology thus rigorously probes LLMs’ 228

grasp of elementary addition, addressing: 229

RQ1: Do LLMs satisfy key markers of rule-based 230

addition: notation invariance, digit-scaling consis- 231

tency, and algebraic integrity? 232

RQ2: Can prompt-level or parameter-level inter- 233

ventions bridge the gap between pattern recall and 234

rule induction? 235

To answer these questions, we construct a dataset of 236

two-integer addition problems and evaluate LLMs 237

against three diagnostic properties: digit-scaling 238

consistency, representation invariance, and alge- 239

braic integrity. We also explore the effects of ex- 240

plicit rule provision and prompting strategies on 241

model performance in following sections. 242

3.2 Diagnostic Task: Two-Integer Addition 243

Two-integer addition is our diagnostic task. It is 244

the simplest complete arithmetic algorithm (core 245

components: per-digit addition, carry propagation), 246

requires generalization beyond memorization, and 247

permits unambiguous verification. From these char- 248

acteristics, we derive three fundamental prop- 249

erties that any model claiming to have truly 250

3

2 4 6 8 10 12 14 16 18 20
Zero-shot Acc. via Digit Counts

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

2 4 6 8 10 12 14 16 18 20
Symbolic Acc. via Digit Counts

Qwen Family
Llama Family

Gemma Family
claude-3-5-sonnet

gpt-4o
ERNIE-Speed-8K

DeepSeek-V3
DeepSeek-R1

o1-preview

Figure 2: Performance Degradation Patterns in Zero-shot vs. Symbolic Addition. While LLMs achieve high
accuracy on standard numerical addition (left), their non-monotonic performance curve suggests brittle pattern
matching rather than true algorithmic reasoning. In contrast, symbolic addition tests (right) reveal systematic
degradation with increasing digit count. This stark contrast between numerical and symbolic performance suggests
LLMs rely heavily on memorized patterns rather than learned arithmetic principles.

learned the addition algorithm must consistently251

demonstrate:252

1. Digit-scaling consistency: Accuracy should253

not increase (ideally, it should monotonically de-254

crease) with increasing operand length. This re-255

flects the cumulative error potential inherent in it-256

erative algorithms such as carry propagation. Any257

deviation from this non-increasing pattern indicates258

a reliance on length-specific heuristics instead of a259

general, scalable rule.260

2. Algebraic integrity: Fundamental algebraic261

properties, such as commutativity (A + B =262

B + A), must be consistently upheld. A model263

with a genuine grasp should yield P (S | Query(A+264

B)) ≈ P (S | Query(B + A)). Systematic viola-265

tions of such properties provide direct evidence266

against true rule grasp.267

3. Representation invariance: Performance must268

remain robust when standard digits are bijectively269

mapped to novel, arbitrary symbols. A significant270

degradation in performance under such mapping271

implies that the learned distribution P (A | Q) is272

memorized to surface token patterns, rather than273

grasping rule of P ∗(A | Q).274

These three properties serve as direct litmus tests275

for distinguishing genuine rule induction from su-276

perficial pattern matching.277

3.3 Dataset Construction278

To systematically evaluate LLMs against our di-279

agnostic properties, we construct a comprehen-280

sive dataset of 100,000 unique two-integer addition281

problems. The operands A and B are sampled from282

the range [0, 264−1). We structure the dataset gen-283

eration in three phases to ensure thorough coverage 284

and facilitate targeted analyses: 285

1. Phase 1 (Baseline): All two-digit addition pairs 286

(0-99) for fundamental assessment. 287

2. Phase 2 (Digit Scaling): Uniform sampling of 288

same-length operand pairs (3-20 digits), enabling 289

assessment of length-dependent performance. 290

3. Phase 3 (Large Numbers): Additional samples 291

from 249 to 264, testing robustness. 292

To directly assess our diagnostic properties, the 293

dataset incorporates specific structural features. Al- 294

gebraic integrity, particularly commutativity, is sys- 295

tematically evaluated by including the commuted 296

counterpart (B,A) for every generated ordered pair 297

(A,B). For testing representation invariance, we 298

define ten independent bijective digit-to-symbol 299

mappings (e.g., 0 7→ U, . . . , 9 7→ C) and apply 300

them to a designated subset of numerical problems 301

to create corresponding symbolic variants. The 302

dataset is subsequently split into training (80%), 303

validation (10%), and test (10%) portions. To en- 304

sure efficiency, evaluations of proprietary, reason- 305

ing, and fine-tuned models are restricted to this test 306

set. This comprehensive dataset design facilitates 307

a thorough assessment of both rule-learning cri- 308

teria and intervention effects through systematic 309

property verification. 310

4 Experiments 311

To empirically test our central hypothesis, that 312

LLMs rely on pattern matching over rule induc- 313

tion for elementary addition, and to validate our 314

diagnostic methodology (Section 3), we conducted 315

experiments addressing the two RQs: 316

4

Task Type zero-shot symbolic zero-shot symbolic
T 0.0 0.7 0.7 0.0 0.7 0.7
Violation Threshold # 5 5 5 10 10 10

Llama3-8B-it 11918 1678 41 4783 1 -
Llama3-70B-it - 5402 506 - 432 20
Llama3.1-8B-it 13324 3232 49 4546 6 -
Llama3.1-70B-it - 4546 602 - 253 22
Llama3.3-70B-it - 5086 1122 - 1771 81
Qwen2.5-7B-it 7442 3961 302 3402 151 29
Qwen2.5-72B-it - 812 745 - 25 10

Table 1: Commutativity Violations Statistics. Each entry
reports the number of (A,B) pairs, out of 50,000, where the
model correctly computes A+B but fails on B+A; lower
counts indicate better performance. Columns correspond to
different decoding temperatures T and minimum thresholds
(5 or 10 identical successes out of 10 samples in total).

• RQ1: Do LLMs satisfy key markers of rule-317

based addition? To answer this, we evaluate a318

diverse set of LLMs against the three core diagnos-319

tic properties derived from our methodology: digit-320

scaling consistency, algebraic integrity (specifically321

commutativity), and notation invariance.322

• RQ2: Can prompt-level or parameter-level323

interventions bridge the gap between pattern324

recall and rule induction? Here, we probe how325

LLM performance on addition is modulated by326

explicit rule provision, self-explanation prompting,327

and task-specific fine-tuning.328

We evaluated a diverse range of contemporary329

LLMs, including open-source families (e.g., Llama,330

Qwen) and proprietary LLMs (e.g., GPT-4, Gemini331

series), with full details in Appendix A.2. These332

experiments provide empirical evidence for our333

claims about LLM arithmetic capabilities.334

4.1 RQ1: Do LLMs Truly Grasp Addition?335

To determine if LLMs have truly grasp the addition336

rules, as opposed to merely mimicking patterns,337

we evaluated their performance against the three338

properties. Failure to satisfy these properties would339

serve as strong evidence of a superficial understand-340

ing, reliant on surface-level heuristics rather than341

genuine rule learning. We present the empirical342

findings for each diagnostic in turn.343

Violation of Digit-Scaling Consistency. Our344

first diagnostic, digit-scaling consistency, posits345

that accuracy should not increase with operand346

length for a system that has internalized an iter-347

ative algorithm like addition. However, LLMs fre-348

quently violate this principle. As shown in Fig-349

ure 2 (left panel), many models exhibit a non-350

monotonic ’drop-rebound’ accuracy curve on nu-351

meric inputs: performance initially declines for352

4–6 digit operands, then unexpectedly improves353

for 8–10 digits, before declining again. This er- 354

ratic scaling suggests that the learned distribution 355

P (A | Q) for numeric addition deviates from the 356

ideal P ∗(A | Q) defined in Section 3.1, indicat- 357

ing reliance on length-specific heuristics or memo- 358

rized fragments rather than a general, scalable rule. 359

In contrast, when inputs are symbolic (Figure 2, 360

right panel), accuracy, while substantially lower, 361

tends to decline more monotonically with increas- 362

ing digit count. This latter pattern, paradoxically 363

more aligned with algorithmic processing under 364

stress, reinforces the interpretation that high perfor- 365

mance on standard numeric inputs reflects pattern 366

matching rather than the robust rule application 367

outlined by our criteria in Section 3.2. 368

Failure to Uphold Algebraic Integrity. We as- 369

sessed algebraic integrity by testing adherence to 370

commutativity, a fundamental property of addition. 371

A violation occurred if a model correctly computed 372

A+B but not B + A (or vice versa) in at least 5 373

(or all 10) of 10 stochastic decodes per problem, at 374

temperatures T = 0.0 and T = 0.7. The results 375

(Table 1) reveal frequent and systematic commuta- 376

tivity failures. For instance, some 7-8B Llama and 377

Qwen models processing numerical inputs violated 378

commutativity in approximately 20% of 50,000 379

problem pairs (when failing ≥ 5/10 decodes) and 380

in 8.48% (4,243 pairs) when failing all 10 decodes. 381

These inconsistencies persisted even at T = 0.7, 382

where 0.104% of pairs (52 instances) showed such 383

persistent violations across all decodes. Conversely, 384

on symbolic tasks, Qwen2.5-7B showed such con- 385

sistent (10/10) violations in only 0.058% of pairs 386

(29 instances), while Llama models exhibited none. 387

Moreover, the observation that larger Llama mod- 388

els were sometimes more prone to these violations 389

challenges the notion that increased model scale 390

inherently confers deeper arithmetic understanding. 391

Such widespread and systematic failures strongly 392

suggest inherent deficiencies in the models’ un- 393

derstanding of the addition algorithm, rather than 394

random noise. 395

Breakdown under Tests of Notation Invariance. 396

Our third diagnostic, notation invariance, assesses 397

if LLM performance on addition remains stable 398

when standard digits are bijectively mapped to 399

novel symbols, a property expected if the abstract 400

addition algorithm is truly internalized. As detailed 401

in Table 2, all tested models dramatically failed this 402

test. Even those with near-perfect accuracy on nu- 403

meric inputs (e.g., 99.81% for Claude-3.5-Sonnet) 404

5

Overall Acc. Position Add Acc. Carry-over Acc.
Task Type ZS S ∆ ZS S ∆ ZS S ∆

Gemini2.0-pro-exp 94.88 14.21 -80.67 69.52 4.19 -65.33 77.36 7.07 -70.29
Claude-3.5-Sonnet 99.81 7.51 -92.30 81.78 3.19 -78.59 90.28 6.92 -83.36
GPT-4o 93.39 9.59 -83.80 76.12 3.79 -72.33 79.55 6.73 -72.82
DeepSeek-V3 98.92 16.14 -82.78 78.55 11.98 -66.57 81.14 15.23 -65.91

Gemma2-9b-it 66.34 1.45 -64.89 58.52 0.34 -58.18 60.44 0.44 -59.99
Gemma2-27b-it 83.65 2.62 -81.03 74.77 0.91 -73.85 76.68 0.91 -75.77

Llama3.1-8B-it 43.34 0.57 -42.76 20.38 0.10 -20.27 21.96 0.25 -21.72
Llama3.1-70B-it 72.58 2.51 -70.07 60.13 0.52 -59.61 61.05 1.33 -59.71

Qwen2.5-7B-it 83.00 0.58 -82.41 71.39 0.11 -71.28 74.49 0.13 -74.37
Qwen2.5-72B-it 96.07 5.97 -90.10 88.19 2.09 -86.10 89.78 4.12 -85.67

Table 2: Accuracy on elementary two-integer addition.
ZS = zero-shot numeric form; S = Symbolic form (bijective
digit-to-symbol mapping);

Task Task Type Llama3.1-8B-it Qwen2.5-7B-it

Add
symbolic 0.64 0.58
zero-shot 43.43 83.03

Multi
symbolic 0.01 0.04
zero-shot 9.92 17.29

Sub
symbolic 0.02 0.01
zero-shot 18.39 43.88

Table 3: Performance on Other Arithmetic Operations.
Building on observed difficulties with addition, we evaluated
subtraction and multiplication. LLMs performed poorly on
symbolic representations of these operations, with low zero-
shot accuracy. This suggests their struggles extend to these
more complex operations and their symbolic forms.

saw performance collapse on symbolic equivalents,405

to as low as 7.51%. This failure extended to fun-406

damental components like positional addition and407

carry-over sub-tasks once familiar digit patterns408

were absent. Such pronounced inability to general-409

ize to novel symbols strongly indicates that current410

LLMs rely on recognizing and reproducing patterns411

tied to standard decimal representations, rather than412

having learned an abstract, symbol-agnostic addi-413

tion rule.414

Collectively, the evidence from these three di-415

agnostic tests converges on a clear and consistent416

conclusion: despite often achieving high accuracy417

on standard numeric addition problems, contempo-418

rary LLMs do not demonstrate a robust, rule-based419

understanding of this elementary operation. Their420

competence appears tightly coupled to familiar sur-421

face token patterns and specific operand lengths,422

and it degrades systematically when these patterns423

are disrupted or when fundamental algebraic prop-424

erties are rigorously tested. This pattern of behav-425

ior strongly indicates a primary reliance on pattern426

matching rather than genuine rule induction for427

performing elementary addition.428

Having established these fundamental deficien-429

cies in LLMs’ grasp of basic addition, we next430

investigate factors that might modulate this under-431

standing in Section 4.2.432

4.2 RQ2: What factors modulate grasping? 433

The preceding analysis (RQ1) demonstrated LLMs’ 434

significant deficiencies in internalizing elementary 435

addition rules. To further understand the nature of 436

these limitations and explore potential avenues for 437

improvement, RQ2 investigates factors that might 438

modulate LLMs’ ability to grasp these rules. We 439

examine two primary categories of interventions: 440

(1) prompt-level strategies, including the provision 441

of explicit rules and the use of self-explanation 442

prompts, and (2) parameter-level modifications 443

through task-specific fine-tuning. 444

4.2.1 Explicit Rule Provision 445

Building on RQ1’s finding that LLMs struggle with 446

genuine arithmetic understanding, this subsection 447

investigates whether explicit rule provision can en- 448

hance their performance. We evaluated LLMs un- 449

der several prompt-level interventions: few-shot 450

prompting with definitions of addition principles 451

and examples of varying digit lengths (denoted 452

Few-Shot, Few-Shot-2, and Few-Shot-3), and an 453

Explain-and-Do strategy, where models first ar- 454

ticulate their problem-solving approach. Results 455

are presented in Table 4 and Figure 3. 456

Our investigation reveals a counterintuitive find- 457

ing: providing LLMs with abstract addition rules 458

consistently degraded performance compared to 459

zero-shot settings. This suggests LLMs favor mem- 460

orizing token patterns over abstracting principles. 461

When faced with human-articulated rules (e.g., 462

"carry the 1"), models struggle to operationalize 463

them, defaulting to pre-trained pattern-matching. 464

This preference explains performance disparities 465

between numerical and symbolic tasks and ob- 466

served commutativity violations. In contrast, the 467

Explain-and-Do strategy—prompting models to 468

first articulate their reasoning—generally main- 469

tained performance near zero-shot levels. These 470

findings indicate current LLMs are predominantly 471

optimized for pattern recognition, not abstract rule 472

learning, highlighting a divergence from human 473

mathematical cognition. 474

Architectural differences among LLM families 475

influenced their responses to interventions. Llama 476

models, despite sometimes lower zero-shot nu- 477

merical accuracy than Qwen or Gemma (RQ1), 478

adapted better to explicit rules, especially with 479

the Explain-and-Do strategy; some variants (e.g., 480

Llama3.1, Llama3.2) even surpassed zero-shot 481

baselines, showing modest compositional general- 482

ization gains (Table 4). Conversely, Qwen models, 483

6

Figure 3: Few-Shot Performance with Explicit Rule Provision. Explicit rule provision leads to a significant drop in
performance compared to zero-shot, contradicting the expected improvement.

Carry-over Acc. Position Add Acc.
Task Type ZS S FS FS-2 FS-3 E ZS S FS FS-2 FS-3 E
Models

Llama3-8b-it 15.89 0.20 8.42 15.38 16.68 13.54 16.25 0.07 7.15 15.00 14.34 12.32
Llama3.1-8b-it 21.96 0.25 8.84 15.33 12.46 24.80 20.38 0.10 7.92 12.91 10.14 23.61
Llama3.2-11b-it 17.35 0.26 9.04 19.70 13.97 27.47 16.60 0.12 8.29 18.92 12.57 27.13

Qwen1.5-7b-it 47.44 0.09 3.09 6.40 5.36 7.51 46.78 0.05 2.66 5.98 4.62 8.00
Qwen2-7b-it 62.94 0.06 28.36 57.22 32.35 70.83 60.03 0.05 23.65 48.34 28.25 68.80
Qwen2.5-7b-it 74.49 0.13 38.28 55.08 41.54 72.09 71.39 0.11 33.16 48.12 36.11 71.53

Table 4: Impact of Different Knowledge Intervention Strategies. Contrary to expectations, providing explicit rules (few-shot
conditions) significantly reduces performance compared to zero-shot baseline, e.g. “Qwen2.5-7b-it” drop 29.49%. However,
when models explain their reasoning before computation (explain-and-do), performance remains comparable to zero-shot levels.
ZS = Zero-Shot, FS = Few-Shot, E = Explain-and-Do.

despite stronger initial zero-shot performance, de-484

graded more with explicit rules and showed less485

compositional generalization. These variations sug-486

gest fundamental architectural differences in knowl-487

edge encoding and access, affecting prompt re-488

sponsiveness beyond mere computational capacity.489

While model upgrades generally improve perfor-490

mance, core pattern recognition tendencies persist.491

Overall, this indicates LLMs primarily rely on pat-492

tern matching, highlighting a persistent limitation493

in abstract, rule-based reasoning.494

4.2.2 Rule Internalization495

We then investigated if parameter-level modifi-496

cations via fine-tuning could improve LLMs’ in-497

ternalization of arithmetic rules, moving beyond498

mere pattern matching. We explored various fine-499

tuning strategies: SFT, RL with Direct Preference500

Optimization (DPO) (Rafailov et al., 2023), and501

a hybrid RPO (SFT+DPO) (Pang et al., 2024).502

Model performance was assessed on both numer-503

ical and symbolic addition post-fine-tuning, and504

benchmarked against specialized mathematical rea-505

soning models like Eurus2 (Cui et al., 2025), Ope-506

nAI o1 (OpenAI, 2024), DeepSeek R1 (DeepSeek-507

AI, 2025), and their distilled counterparts. For RL,508

training data comprised model responses, with cor-509

rect and incorrect answers from our dataset serving510

as positive and negative examples, respectively (de- 511

tails in Appendix A.3). 512

Fine-tuning experiments (Table 5) revealed clear 513

trade-offs. Task-specific SFT boosted performance 514

on in-domain numerical addition but failed to gen- 515

eralize to symbolic one, indicating that SFT pri- 516

marily reinforces pattern matching tied to data. 517

Conversely, RL-based methods (DPO and RPO) 518

achieved better generalization to symbolic inputs, 519

albeit with lower absolute accuracy on the fine- 520

tuned numerical task. Notably, the RPO still 521

struggled with symbolic transfer, suggesting SFT’s 522

propensity for pattern matching can overshadow 523

RL’s generalization benefits. These findings imply 524

that standard fine-tuning, particularly SFT, opti- 525

mizes for surface-level pattern recognition over the 526

abstraction of underlying arithmetic principles. 527

Supporting this, models fine-tuned on general- 528

domain reasoning objectives (e.g., DS-R1-Distill) 529

demonstrated more robust generalization to sym- 530

bolic tasks. This improved transfer is likely due to 531

training objectives that promote extended reason- 532

ing, highlighting the training paradigm’s crucial 533

role in fostering generalizable mathematical skills. 534

In contrast, domain-specific models like Eurus2- 535

SFT and Eurus2-PRIME, despite excelling at com- 536

plex numerical tasks within their domain, showed 537

limited transfer to symbolic addition. However, 538

7

Fine-Tuning Type Dataset Domain Overall Acc. Position Add Acc. Carry-over Acc. Map Acc.
Task Type ZS S ∆ ZS S ∆ ZS S ∆ S
Models

Qwen2.5-7B-it - - 83.00 0.58 -82.41 71.39 0.11 -71.28 74.49 0.13 -74.37 0.57

Eurus2-7B-SFT SFT Domain Specific 83.21 0.42 -82.79 81.21 3.19 -78.02 82.28 6.87 -75.41 -
Eurus2-7B-PRIME RL(PRM) Domain Specific 94.11 1.03 -93.08 91.59 3.10 -88.49 92.51 3.11 -89.40 -
DS-R1-Distill-Qwen-7B RL(Reasoning) General 74.76 6.88 -67.88 65.38 33.41 -31.97 64.27 31.52 -32.75 -

Qwen2.5-7B-it SFT Task Specific (Numerical) 97.17 0.00 -97.17 87.91 0.25 -87.66 89.51 1.26 -88.25 8.21
Qwen2.5-7B-it RL(DPO) Task Specific (Numerical) 95.32 0.37 -94.95 86.23 1.17 -85.06 87.75 2.35 -85.40 2.25
Qwen2.5-7B-it RL(SFT+DPO) Task Specific (Numerical) 96.95 0.28 -96.67 84.48 0.29 -84.19 85.52 0.61 -84.91 0.10
Qwen2.5-7B-it SFT Task Specific (Symbolic) 0.00 30.66 +30.66 3.40 3.89 +0.49 6.71 6.98 +0.27 23.49
Qwen2.5-7B-it RL(DPO) Task Specific (Symbolic) 50.73 24.10 -26.63 47.71 3.48 -44.23 48.40 6.37 -42.03 19.84
Qwen2.5-7B-it RL(SFT+DPO) Task Specific (Symbolic) 12.32 2.85 -9.47 9.31 0.58 -8.73 9.70 1.13 -8.57 2.00

Table 5: Impact of Fine-Tuning Approaches on Arithmetic Capabilities. Different fine-tuning strategies and dataset domains
yield distinct trade-offs between performance and generalization. While SFT achieves highest numerical accuracy, it shows
minimal transfer to symbolic tasks. RL-based approaches demonstrate better generalization but lower absolute performance.
Task-specific training on numerical data excels within-domain but fails to transfer, whereas general-domain training (e.g.,
DS-R1-Distill) enables broader generalization through its diverse training objectives, suggesting the importance of training
paradigm design in developing robust mathematical capabilities.

Position Add Acc. Carry-over Acc.
Task Type ZS S ∆ ZS S ∆

Gemini2.0-pro-exp 69.52 4.19 -65.33 77.36 7.07 -70.29
Gemini2.5-pro-exp (thinking) 88.97 19.80 -69.17 88.49 24.56 -63.93

Llama3.3-70b-it 73.82 0.77 -73.05 75.00 2.43 -72.57
DS-R1-Distill-Llama-70B 68.91 42.94 -25.97 68.56 40.75 -27.81

Llama3.1-8b-it 20.38 0.10 -20.27 21.96 0.25 -21.72
DS-R1-Distill-Llama-8B 45.54 39.55 -5.99 44.16 35.09 -9.07

Table 6: LLMs’ Understanding of Addition Principles.
Models achieve high accuracy(%) on standard numerical tasks
(zero-shot) but show severe degradation when tested on sym-
bolic representations, both for carry operations and digit ad-
dition. This stark contrast suggests that models only grasp
principles in numerical form and fail to generalize to abstract
representations.

Eurus2-PRIME generalized better than Eurus2-539

SFT. This suggests RL-based signals can aid in540

abstracting principles, though balancing specializa-541

tion with generalization remains challenging.542

Specialized reasoning models (Table 6) offered543

further insights. These models typically showed544

less performance degradation on symbolic addi-545

tion compared to standard LLMs, suggesting that546

training on prolonged or complex reasoning tasks547

can foster better abstraction of arithmetic princi-548

ples. Yet, this improved abstraction may entail549

a trade-off: some reasoning-focused architectures550

sacrificed accuracy on elementary computations551

(Figure 2), potentially by "over-thinking" simple552

problems despite excelling at complex ones. This553

pattern underscores how architectural design and554

training objectives critically shape the balance be-555

tween foundational computational skills and higher-556

order reasoning.557

5 Conclusion558

Our empirical results of two-integer addition task559

reveal that LLMs fail to grasp elementary addi-560

tion rules, still relying instead on surface-level 561

pattern matching. This conclusion is evidenced 562

by: (1) a collapse in accuracy (e.g., from ≥ 99% 563

to ≤ 7.5%) when standard digits are replaced with 564

novel symbols, demonstrating a lack of notation 565

invariance; (2) non-monotonic accuracy scaling 566

with operand length, suggesting specific memoriza- 567

tion over consistent carry-propagation; and (3) sys- 568

tematic commutativity violations, which contradict 569

genuine rule grasp. These findings collectively in- 570

dicate that LLMs’ success on complex math bench- 571

marks may mask a superficial understanding of 572

basic rules. 573

Interventions further highlight these deficits: pro- 574

viding formal rules from human knowledge para- 575

doxically degrades performance (by up to 81.2%), 576

while prompting models to "Explain-and-Answer" 577

merely preserves baseline scores. Task-specific 578

SFT boosts numeric accuracy but fails to general- 579

ize to symbolic tasks; conversely, RL shows better 580

symbolic transfer but at the cost of lower absolute 581

accuracy. This suggests a fundamental misalign- 582

ment between human-like abstract rule learning 583

and the pattern-matching heuristics LLMs develop 584

during pre-training. 585

The implications are significant: current bench- 586

marks, rewarding final answers over rule fidelity, 587

risk inflating perceived LLM competence. Future 588

evaluations must test notation invariance, scaling 589

consistency, and algebraic integrity. Model design 590

should explore explicit symbolic manipulation or 591

execution-grounded reasoning. Bridging the pat- 592

tern recall-rule abstraction gap is crucial for gen- 593

uine mathematical understanding in LLMs. 594

8

Ethical Considerations595

While our research primarily focuses on the mathe-596

matical reasoning capabilities of LLMs, which not597

directly involve ethical considerations. However,598

the implications of our findings extend to broader599

ethical concerns in AI deployment. We highlight600

following key areas:601

Why arithmetic robustness matters. Elemen-602

tary addition underpins many downstream compu-603

tations. A model that answers graduate-level prob-604

lems yet violates commutativity can silently corrupt605

applications that rely on implicit arithmetic, includ-606

ing dose calculation, portfolio rebalancing, and au-607

tomated bidding. This gap between perceived and608

actual competence creates a direct safety hazard.609

Inflated competence metrics. Public leader-610

boards optimise for final-answer accuracy rather611

than rule fidelity. Our results show that such met-612

rics can conceal thousands of systematic arithmetic613

errors. Deploying models on the basis of these614

scores may therefore foster unwarranted confidence615

and expose users to financial or physical harm.616

Recommendations for high-stakes deployment.617

Before adoption in safety-critical settings, de-618

velopers should (i) report notation-invariance619

and algebraic-integrity scores alongside aggregate620

benchmarks, (ii) document failure modes such621

as the symbol-mapping collapse identified here,622

and (iii) install run-time monitors that flag out-of-623

distribution numeric inputs. These measures align624

claimed capability with real-world reliability.625

Toward stronger evaluation standards. The626

field needs public, reproducible suites that test for-627

mal properties directly, not just end-to-end accu-628

racy. Without such standards, the gap between629

apparent and actual mathematical competence will630

widen and public trust in AI will erode.631

With these considerations in mind, we would632

highlight the importance and significance these633

findings have for the future of AI systems. As634

LLMs are increasingly integrated into various do-635

mains, ensuring their reliability and robustness in636

fundamental tasks like arithmetic is crucial for safe637

and effective deployment.638

Limitations639

Scope of mathematical operations. Our study640

targets two-integer addition because it offers a641

clean probe of rule learning. Preliminary exper- 642

iments suggest similar failures in subtraction, mul- 643

tiplication, and symbolic logic, but verifying those 644

trends remains future work. 645

Range of intervention techniques. We evalu- 646

ate prompt engineering, SFT, and preference-based 647

RL. Alternative strategies—such as modular arith- 648

metic heads, execution-augmented decoding, or 649

neuro-symbolic hybrids—may yield different gen- 650

eralisation patterns that we have not explored. 651

External validity of the synthetic dataset. The 652

symbol-mapping protocol strips away contextual 653

cues that may aid reasoning. In real documents, 654

numeric reasoning is embedded in richer text, so 655

model behaviour could differ. Future studies should 656

embed the same invariance checks in realistic narra- 657

tives such as medical charts or financial statements. 658

Sampling constraints. API costs limited us to 659

fewer than ten stochastic decodes for some pro- 660

prietary models. Although the observed failure 661

margins are large, denser sampling would narrow 662

confidence intervals. 663

Mechanistic understanding. We observe strong 664

evidence of pattern matching rather than rule in- 665

duction, yet the circuit-level mechanisms remain 666

unidentified. Tracing these mechanisms and de- 667

signing architectures that promote rule abstraction 668

are important directions for future research. 669

References 670

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien 671
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael 672
Harrison, Russell J. Hewett, Mojan Javaheripi, Piero 673
Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li, 674
Weishung Liu, Caio C. T. Mendes, Anh Nguyen, 675
Eric Price, Gustavo de Rosa, Olli Saarikivi, and 676
8 others. 2024. Phi-4 technical report. Preprint, 677
arXiv:2412.08905. 678

Fu-Chieh Chang and Pei-Yuan Wu. 2024. Unraveling 679
arithmetic in large language models: The role of 680
algebraic structures. Preprint, arXiv:2411.16260. 681

Junhao Chen, Shengding Hu, Zhiyuan Liu, and 682
Maosong Sun. 2024. States hidden in hidden states: 683
Llms emerge discrete state representations implicitly. 684
Preprint, arXiv:2407.11421. 685

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 686
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 687
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 688
Nakano, Christopher Hesse, and John Schulman. 689
2021. Training verifiers to solve math word prob- 690
lems. Preprint, arXiv:2110.14168. 691

9

https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2411.16260
https://arxiv.org/abs/2411.16260
https://arxiv.org/abs/2411.16260
https://arxiv.org/abs/2411.16260
https://arxiv.org/abs/2411.16260
https://arxiv.org/abs/2407.11421
https://arxiv.org/abs/2407.11421
https://arxiv.org/abs/2407.11421
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang,692
Wendi Li, Bingxiang He, Yuchen Fan, Tianyu693
Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu694
Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang, Yuan695
Yao, Xu Han, Hao Peng, Yu Cheng, and 4 others.696
2025. Process reinforcement through implicit re-697
wards. Preprint, arXiv:2502.01456.698

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea-699
soning capability in llms via reinforcement learning.700
Preprint, arXiv:2501.12948.701

Chunyuan Deng, Zhiqi Li, Roy Xie, Ruidi Chang, and702
Hanjie Chen. 2024. Language models are symbolic703
learners in arithmetic. Preprint, arXiv:2410.15580.704

Antoine Gorceix, Bastien Le Chenadec, Ahmad Ram-705
mal, Nelson Vadori, and Manuela Veloso. 2024.706
Learning mathematical rules with large language707
models. Preprint, arXiv:2410.16973.708

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,709
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.710
2021. Measuring massive multitask language under-711
standing. In International Conference on Learning712
Representations.713

Humanity-Team. 2025. Humanity’s last exam. Preprint,714
arXiv:2501.14249.715

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng716
Kong, and Wei Bi. 2024. Gsm-plus: A compre-717
hensive benchmark for evaluating the robustness of718
llms as mathematical problem solvers. Preprint,719
arXiv:2402.19255.720

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-721
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,722
John Schulman, Ilya Sutskever, and Karl Cobbe.723
2024. Let’s verify step by step. In The Twelfth Inter-724
national Conference on Learning Representations.725

MAA. 2024. American invitational mathematics726
examination 2024. https://huggingface.co/727
datasets/Maxwell-Jia/AIME_2024.728

Sean Michael McLeish, Arpit Bansal, Alex Stein,729
Neel Jain, John Kirchenbauer, Brian R. Bartoldson,730
Bhavya Kailkhura, Abhinav Bhatele, Jonas Geiping,731
Avi Schwarzschild, and Tom Goldstein. 2024. Trans-732
formers can do arithmetic with the right embeddings.733
In The Thirty-eighth Annual Conference on Neural734
Information Processing Systems.735

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,736
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.737
2024. Gsm-symbolic: Understanding the limitations738
of mathematical reasoning in large language models.739
Preprint, arXiv:2410.05229.740

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and741
Yonatan Belinkov. 2025. Arithmetic without algo-742
rithms: Language models solve math with a bag of743
heuristics. In The Thirteenth International Confer-744
ence on Learning Representations.745

OpenAI. 2024. Openai o1 system card. https://cdn. 746
openai.com/o1-system-card-20241205.pdf. 747

Richard Yuanzhe Pang, Weizhe Yuan, He He, 748
Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason 749
Weston. 2024. Iterative reasoning preference opti- 750
mization. In Advances in Neural Information Pro- 751
cessing Systems, volume 37, pages 116617–116637. 752
Curran Associates, Inc. 753

Alethea Power, Yuri Burda, Harri Edwards, Igor 754
Babuschkin, and Vedant Misra. 2022. Grokking: 755
Generalization beyond overfitting on small algorith- 756
mic datasets. Preprint, arXiv:2201.02177. 757

Luyu Qiu, Jianing Li, Chi Su, Chen Jason Zhang, 758
and Lei Chen. 2024. Dissecting multiplication 759
in transformers: Insights into llms. Preprint, 760
arXiv:2407.15360. 761

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 762
pher D Manning, Stefano Ermon, and Chelsea Finn. 763
2023. Direct preference optimization: Your language 764
model is secretly a reward model. In Advances in 765
Neural Information Processing Systems, volume 36, 766
pages 53728–53741. Curran Associates, Inc. 767

David Saxton, Edward Grefenstette, Felix Hill, and 768
Pushmeet Kohli. 2019. Analysing mathematical rea- 769
soning abilities of neural models. In International 770
Conference on Learning Representations. 771

Zhongshen Zeng, Pengguang Chen, Shu Liu, Haiyun 772
Jiang, and Jiaya Jia. 2024. Mr-gsm8k: A meta- 773
reasoning benchmark for large language model eval- 774
uation. Preprint, arXiv:2312.17080. 775

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran 776
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2024. 777
Generative verifiers: Reward modeling as next-token 778
prediction. Preprint, arXiv:2408.15240. 779

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue 780
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos 781
Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark 782
Barrett, and Ying Sheng. 2024. Sglang: Efficient 783
execution of structured language model programs. 784
Preprint, arXiv:2312.07104. 785

Qihuang Zhong, Kang Wang, Ziyang Xu, Juhua Liu, 786
Liang Ding, and Bo Du. 2024. Achieving >97% 787
on GSM8k: Deeply understanding the problems 788
makes LLMs better solvers for math word problems. 789
Preprint, arXiv:2404.14963. 790

Zhejian Zhou, JIayu Wang, Dahua Lin, and Kai Chen. 791
2024. Scaling behavior for large language models re- 792
garding numeral systems: An example using pythia. 793
In Findings of the Association for Computational 794
Linguistics: EMNLP 2024, pages 3806–3820, Mi- 795
ami, Florida, USA. Association for Computational 796
Linguistics. 797

10

https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2410.15580
https://arxiv.org/abs/2410.15580
https://arxiv.org/abs/2410.15580
https://arxiv.org/abs/2410.16973
https://arxiv.org/abs/2410.16973
https://arxiv.org/abs/2410.16973
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2501.14249
https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2402.19255
https://openreview.net/forum?id=v8L0pN6EOi
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://openreview.net/forum?id=aIyNLWXuDO
https://openreview.net/forum?id=aIyNLWXuDO
https://openreview.net/forum?id=aIyNLWXuDO
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://openreview.net/forum?id=O9YTt26r2P
https://openreview.net/forum?id=O9YTt26r2P
https://openreview.net/forum?id=O9YTt26r2P
https://openreview.net/forum?id=O9YTt26r2P
https://openreview.net/forum?id=O9YTt26r2P
https://cdn.openai.com/o1-system-card-20241205.pdf
https://cdn.openai.com/o1-system-card-20241205.pdf
https://cdn.openai.com/o1-system-card-20241205.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d37c9ad425fe5b65304d500c6edcba00-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d37c9ad425fe5b65304d500c6edcba00-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d37c9ad425fe5b65304d500c6edcba00-Paper-Conference.pdf
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2407.15360
https://arxiv.org/abs/2407.15360
https://arxiv.org/abs/2407.15360
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://openreview.net/forum?id=H1gR5iR5FX
https://openreview.net/forum?id=H1gR5iR5FX
https://openreview.net/forum?id=H1gR5iR5FX
https://arxiv.org/abs/2312.17080
https://arxiv.org/abs/2312.17080
https://arxiv.org/abs/2312.17080
https://arxiv.org/abs/2312.17080
https://arxiv.org/abs/2312.17080
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2404.14963
https://arxiv.org/abs/2404.14963
https://arxiv.org/abs/2404.14963
https://arxiv.org/abs/2404.14963
https://arxiv.org/abs/2404.14963
https://doi.org/10.18653/v1/2024.findings-emnlp.218
https://doi.org/10.18653/v1/2024.findings-emnlp.218
https://doi.org/10.18653/v1/2024.findings-emnlp.218

A Appendix798

A.1 AI Use Statement799

This research utilized AI assistance for code debug-800

ging and grammatical refinement. All experimental801

designs, analyses, results, and conclusions were802

developed independently by the authors without803

generative AI input. We employed AI tools solely804

for technical implementation support and language805

polishing to ensure clear communication of our806

findings.807

A.2 Experimental Setup808

Our evaluation framework utilized the SGLang809

platform through the official Docker container810

lmsysorg/sglang (Zheng et al., 2024). For sta-811

tistical robustness, most models underwent 10 re-812

peated evaluations per test example using a temper-813

ature setting of 0.7 across the full dataset. Due814

to computational and budget constraints, select815

models including GPT4-o, Claude-3.5-Sonnet,816

QwQ-32B-Preview, Deepseek-R1 and its variants817

were evaluated once on the test split only.818

For assessing Position Addition and819

Carry-over accuracy, we used Phi-4 (Abdin820

et al., 2024) as an independent generative evaluator821

following Zhang et al. (2024). Solutions were822

evaluated by feeding them to the evaluator823

to determine carry-over and position addition824

correctness, using the first token as the prediction.825

We conducted comprehensive evaluations across826

all model variants in both zero-shot and symbolic827

settings, with complete results presented in Table 7.828

A.3 Fine-Tuning Configuration829

Our investigation employed three fine-tuning ap-830

proaches: standard DPO, RPO (combining DPO831

with SFT), and pure SFT. Each approach shared832

core configuration elements while varying key833

method-specific parameters.834

Base Configuration. The base configuration uti-835

lized a batch size of 1 sample per device with 4836

gradient accumulation steps (effective batch size of837

4). Training ran for 1 epoch using cosine learning838

rate scheduling with 10% warmup steps. We imple-839

mented BF16 mixed precision and non-reentrant840

gradient checkpointing, evaluating on a 1% vali-841

dation set every 500 steps. Flash Attention 2 opti-842

mized computation efficiency.843

Distributed Training. Training leveraged Deep-844

Speed ZeRO-3 with 8 processes per machine. The845

implementation included CPU optimizer state of- 846

floading, gradient clipping at 1.0, 16-bit parame- 847

ter saving, and static process coordination through 848

DeepSpeed’s rendezvous mechanism. 849

Method-specific Parameters. 850

• Standard DPO: Learning rate 5.0 × 10−6, β = 851

0.0, sigmoid loss function 852

• RPO: DPO settings with β = 1.0 for integrated 853

preference modeling and SFT 854

• SFT: Learning rate 1.0 × 10−4 for supervised 855

training 856

All approaches utilized full-parameter fine- 857

tuning through DeepSpeed ZeRO-3. For prefer- 858

ence learning (DPO/RPO), we initialized reference 859

models from SFT checkpoints with preference loss 860

weight (λftx) set to 1.0. 861

Infrastructure. Training infrastructure consisted 862

of 4 NVIDIA A100 GPUs (80GB each), with com- 863

plete fine-tuning requiring approximately 15 hours 864

per run. 865

11

Prompt Template for Zero-Shot Setting

Context:
You are a helpful AI assistant.

Instruction:
Present your solution in the following format:
1. Let’s think step by step.
2. Final Answer: Express using LaTeX notation \boxed{answer}

Question:
%s + %s = \boxed{?}

Figure 4: Zero-Shot Setting Prompt Template. Example prompt template for zero-shot addition tasks, providing context,
instructions, and question format for LLMs.

Prompt Template for Few-Shot Setting

Context:
You are a helpful AI assistant.

Instruction:
Present your solution in the following format:
1. First, compute the sum of the two numbers, working from right to left using place values.
2. Then, for each place value, add the digits in the same place value column, and carry over if the sum is greater than 9.
3. Iterate this process from right to left until all place values are added.
4. Final Answer: Express using LaTeX notation \boxed{answer}.

Examples:
1. Compute 1996 + 126 = \boxed{?}
Let’s solve 1996 + 126 step by step, working from right to left using place values.

• For the ones place: 6 + 6 = 12. Write down 2 in the ones place and carry over 1 to the tens place.
• For the tens place: 9 + 2 + 1 = 12. Write down 2 in the tens place and carry over 1 to the hundreds place.
• For the hundreds place: 9 + 1 + 1 = 11. Write down 1 in the hundreds place and carry over 1 to the thousands place.
• For the thousands place: 1 + 1 = 2.
• Putting it all together: 2 * 1000 + 1 * 100 + 2 * 10 + 2 * 1 = 2000 + 100 + 20 + 2 = 2122.
Therefore, 1996 + 126 = \boxed{2122}.

2. Compute 1994 + 222 = \boxed{?}
Let’s solve 1994 + 222 step by step, working from right to left using place values.

• For the ones place: 2 + 4 = 6.
• For the tens place: 2 + 9 = 11. Write down 1 in the tens place and carry over 1 to the hundreds place.
• For the hundreds place: 2 + 9 + 1 = 12. Write down 2 in the hundreds place and carry over 1 to the thousands place.
• For the thousands place: 1 + 1 = 2.
• Putting it all together: 2 * 1000 + 2 * 100 + 1 * 10 + 6 * 1 = 2000 + 200 + 10 + 6 = 2216.
Therefore, 1994 + 222 = \boxed{2216}.

Question:
%s + %s = \boxed{?}

Figure 5: Few-Shot Setting Prompt Template. Example prompt template for few-shot addition tasks, providing context,
instructions, examples, and question format for LLMs.

Prompt Template for Explain-and-Do Setting

Context:
You are a helpful AI assistant.

Instruction:
Present your solution in the following format:
1. First, comprehensively explain how to do addition with both positive integers.
2. Then, let’s analyze the problem step by step following your explanation.
3. Final Answer: Express using LaTeX notation \boxed{answer}.

Question:
%s + %s = \boxed{?}

Figure 6: Explain-and-Do Setting Prompt Template. Example prompt template for explain-and-do addition tasks, providing
context, instructions, and question format for LLMs.

12

Prompt Template for Symbolic Setting

Context:
You are a helpful AI assistant. Your task is to perform addition within a custom symbolic system in a simple and clear manner.

Symbolic System Definition:
This system comprises ten symbols: {u, d, a, i, h, v, e, y, r, c}. The addition operation (+) between these symbols is defined as follows:

u + u = u
d + u = d d + d = a
a + u = a a + d = i a + a = h
i + u = i i + d = h i + a = v i + i = e
h + u = h h + d = v h + a = e h + i = y h + h = r
v + u = v v + d = e v + a = y v + i = r v + h = c v + v = du
e + u = e e + d = y e + a = r e + i = c e + h = du e + v = dd e + e = da
y + u = y y + d = r y + a = c y + i = du y + h = dd y + v = da y + e = di y + y = dh
r + u = r r + d = c r + a = du r + i = dd r + h = da r + v = di r + e = dh r + y = dv r + r = de
c + u = c c + d = du c + a = dd c + i = da c + h = di c + v = dh c + e = dv c + y = de c + r = dy c + c = dr

Instruction:
Present your solution in the following format:
1. Align: Arrange the two input strings vertically, aligning their rightmost symbols.
2. Columnar Addition: Starting from the rightmost column (least significant symbols), perform symbol addition using the provided definition.
3. Carry-over: If the result of a column’s addition is a two-symbol sequence (e.g., ’da’), write down the second symbol (least significant) and carry over
the first symbol to the next column on the left.
4. Iteration: Repeat steps 2 and 3, moving leftward column by column until all symbols have been added.
5. Reasoning: Keep your whole reasoning clear and simple.
6. Output Format: Write the final result in the \boxed{?} placeholder.

Examples:
1. Compute dcce + dae = \boxed{?}

Solution:
1. Columnar Addition (right to left):
- e + e = da (Write ’a’, Carry ’d’)
- c + a + d = da (Write ’a’, Carry ’d’)
- c + d + d = dd (Write ’d’, Carry ’d’)
- d + d = a
2. Result: adaa
3. Formatted Output: \boxed{adaa}

2. Compute dcch + aaa = \boxed{?}

Solution:
1. Columnar Addition (right to left):
- h + a = e
- c + a = dd (Write ’d’, Carry ’d’)
- c + a + d = da (Write ’a’, Carry ’d’)
- d + d = a
2. Result: aade
3. Formatted Output: \boxed{aade}

Your Task:
Compute %s + %s = \boxed{?}

Figure 7: Symbolic Setting Prompt Template. Example prompt template for symbolic addition tasks, providing context,
symbolic system definition, instructions, examples, and question format for LLMs.

13

Overall Acc. Position Add Acc. Carry-over Acc.
Task Type ZS S ∆ ZS S ∆ ZS S ∆
Models

Gemini2.0-pro-exp 94.88 14.21 -80.67 69.52 4.19 -65.33 77.36 7.07 -70.29
Gemini2.5-pro-exp (thinking) 99.16 55.99 -43.17 88.97 19.80 -69.17 88.49 24.56 -63.93
Gemini2.0-flash-exp 98.10 9.25 -88.85 73.83 1.21 -72.62 79.52 3.28 -76.24
Gemini2.0-flash-exp (thinking) 91.07 10.81 -80.26 86.09 2.89 -83.20 88.30 9.03 -79.27

Claude-3.5-Sonnet 99.81 7.51 -92.30 81.78 3.19 -78.59 90.28 6.92 -83.36
GPT-4o 93.39 9.59 -83.80 76.12 3.79 -72.33 79.55 6.73 -72.82
O1-preview 74.28 - - 74.71 - - 74.23 - -
ERNIE-Speed-8K 73.78 0.29 -73.49 67.66 0.07 -67.59 70.89 0.21 -70.68

DeepSeek-V2.5 95.75 - - 83.78 - - 88.19 - -
DeepSeek-V3 98.92 16.14 -82.78 78.55 11.98 -66.57 81.14 15.23 -65.91
DeepSeek-R1 97.39 - - 70.99 - - 80.58 - -

DeepSeek-R1-Distill-Llama-70B 74.19 27.19 -47.00 68.91 42.94 -25.97 68.56 40.75 -27.81
DeepSeek-R1-Distill-Llama-8B 53.23 10.97 -42.26 45.54 39.55 -5.99 44.16 35.09 -9.07
DeepSeek-R1-Distill-Qwen-1.5B 58.16 0.66 -57.50 47.85 26.16 -21.69 47.16 20.79 -26.37
DeepSeek-R1-Distill-Qwen-7B 74.76 6.88 -67.88 65.38 33.41 -31.97 64.27 31.52 -32.75

Gemma2-2b-it 33.41 - - 29.97 - - 30.59 - -
Gemma2-9b-it 66.34 1.45 -64.89 58.52 0.34 -58.18 60.44 0.44 -59.99
Gemma2-27b-it 83.65 2.62 -81.03 74.77 0.91 -73.85 76.68 0.91 -75.77

Llama2-7b-it 19.59 0.00 -19.59 20.44 0.01 -20.43 22.58 0.01 -22.57

Llama3-8B-it 32.95 0.24 -32.70 16.25 0.07 -16.18 15.89 0.20 -15.69
Llama3-70B-it 69.15 1.62 -67.53 59.84 0.39 -59.45 60.22 0.70 -59.52

Llama3.1-8B-it 43.34 0.57 -42.76 20.38 0.10 -20.27 21.96 0.25 -21.72
Llama3.1-70B-it 72.58 2.51 -70.07 60.13 0.52 -59.61 61.05 1.33 -59.71

Llama3.2-11B-it 35.13 0.53 -34.61 16.60 0.12 -16.48 17.35 0.26 -17.09

Llama3.3-70B-it 79.63 4.01 -75.61 73.82 0.77 -73.05 75.00 2.43 -72.57

Qwen1.5-7B-Chat 56.31 0.18 -56.14 46.78 0.05 -46.73 47.44 0.09 -47.34
Qwen1.5-72B-Chat 34.29 0.53 -33.75 62.28 0.09 -62.20 67.28 0.14 -67.13

Qwen2-7B-it 72.50 0.24 -72.26 60.03 0.05 -59.98 62.94 0.06 -62.88
Qwen2-72B-it 59.06 2.50 -56.56 82.82 0.21 -82.62 86.62 0.26 -86.36

Qwen2.5-1.5B-it 47.75 - - 32.54 - - 33.67 - -
Qwen2.5-3B-it 70.27 - - 54.49 - - 57.98 - -
Qwen2.5-7B-it 83.00 0.58 -82.41 71.39 0.11 -71.28 74.49 0.13 -74.37
Qwen2.5-14B-it 87.45 - - 77.56 - - 80.36 - -
Qwen2.5-32B-it 95.15 - - 90.41 - - 91.28 - -
Qwen2.5-72B-it 96.07 5.97 -90.10 88.19 2.09 -86.10 89.78 4.12 -85.67

QwQ-32B-Preview 70.59 11.12 -59.47 71.68 19.09 -52.59 73.22 20.71 -52.51

Eurus2-7B-SFT 83.21 0.42 -82.79 81.21 3.19 -78.02 82.28 6.87 -75.41
Eurus2-7B-PRIME 94.11 1.03 -93.08 91.59 3.10 -88.49 92.51 3.11 -89.40

qwen2.5-7b-dpo-sft-S 12.32 2.85 -9.47 9.31 0.58 -8.73 9.70 1.13 -8.57
qwen2.5-7b-dpo-sft-ZS 96.95 0.28 -96.67 84.48 0.29 -84.19 85.52 0.61 -84.91
qwen2.5-7b-dpo-S 50.73 24.10 -26.63 47.71 3.48 -44.23 48.40 6.37 -42.03
qwen2.5-7b-dpo-ZS 95.32 0.37 -94.95 86.23 1.17 -85.06 87.75 2.35 -85.40
qwen2.5-7b-sft-S 0.00 30.66 30.66 3.40 3.89 0.49 6.71 6.98 0.27
qwen2.5-7b-sft-ZS 97.17 0.00 -97.17 87.91 0.25 -87.66 89.51 1.26 -88.25

Table 7: Complete Performance Analysis on Base and Extended Addition Tasks. Per-model breakdown of performance (%)
across standard numerical and symbolic representations, with evaluation of degradation (∆) between formats. Results reveal
systematic failures in abstracting arithmetic principles despite high numerical accuracy.

14

	Introduction
	Related Work
	Methodology
	Background and Motivation
	Diagnostic Task: Two-Integer Addition
	Dataset Construction

	Experiments
	RQ1: Do LLMs Truly Grasp Addition?
	RQ2: What factors modulate grasping?
	Explicit Rule Provision
	Rule Internalization

	Conclusion
	Appendix
	AI Use Statement
	Experimental Setup
	Fine-Tuning Configuration

