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Abstract

Large language models (LLMs) achieve impres-
sive results on advanced mathematics bench-
marks but sometimes fail on basic arithmetic
tasks, raising the question of whether they have
truly grasped fundamental arithmetic rules or
are merely relying on pattern matching. To
unravel this issue, we systematically probe
LLMs’ understanding of two-integer addition
(0 to 25%) by testing three crucial properties:
commutativity (A + B = B + A), repre-
sentation invariance via symbolic remapping
(e.g., 7 — Y), and consistent accuracy scal-
ing with operand length. Our evaluation of
12 leading LLMs reveals a stark disconnect:
while models achieve high numeric accuracy
(73.8-99.8%), they systematically fail these di-
agnostics. Specifically, accuracy plummets to
< 7.5% with symbolic inputs, commutativity
is violated in up to 20% of cases, and accuracy
scaling is non-monotonic. Interventions further
expose this pattern-matching reliance: explic-
itly providing rules degrades performance by
29.49%, while prompting for explanations be-
fore answering merely maintains baseline accu-
racy. These findings demonstrate that current
LLMs address elementary addition via pattern
matching, not robust rule induction, motivating
new diagnostic benchmarks and innovations
in model architecture and training to cultivate
genuine mathematical reasoning.

1 Introduction

Why basic arithmetic still matters. Large Lan-
guage Models (LLMs) have demonstrated impres-
sive, often graduate-level, performance on sophis-
ticated mathematics benchmarks (OpenAl, 2024;
DeepSeek-Al, 2025). This success, however, is
frequently contrasted with surprising failures on
elementary operations when inputs are minimally
perturbed, such as reordering operands, substitut-
ing digits with symbols, or rephrasing problems (Li

Question 1: Find the sum of all integer bases $b>9% for which $17_{b}$ is a divisor of $97_{b}$.

Let the base be $b$. The numbers are given in base $b$. @@
The number $17_b$ can be written in base 10 as $1 \cdot bA1 + 7 \cdot bA0 = b+7$. =
The number $97_b$ can be written in base 10 as $9 \cdot b*1 + 7 \cdot b*0 = 9b+7$. IQI

These are the only solutions. The sum is $21+49=70$.
The final answer is Success Case of Competition Math
Question 2: 2638 + 1364 = ?

1. Let's think step by step.
* Add theones place: 8 + 4 = 12. Write down 2 and carry-over 1.
* Add the tens place: 3 + 6 + 1 (carry-over) = 10. Write down 0 and carry-over 1.
* Add the hundreds place: 6 + 3 + 1 (carry-over) = 10. Write down 0 and carry-over 1.
* Add the thousands place: 2 + 1 + 1 (carry-over) = 4.
2. Final Answer: $\boxed{4002}$

Success Case of Fundamental Math
Question 3: 1364 + 2638 = ? Failure in Commutativity

1. Let's think step by step. =
Add the ones place: 4 + 8 = 12. Write down the 2 and carry-over the 1. |

Add the tens place: 6 + 3 + 1 (carry-over) = 10. Write down the 0 and carry-over the 1.
Add the hundreds place: 3 + 6 = 9. Write down the 0 and carry-over the 1.

Add the thousands place: 1 +2=3.  Carry-over Error
2. Final Answer: \boxed{3902}

Question 4: dieh + aeir = ? (Mapping Rule shown in Blue) Failure in Rule Generalization

1. Columnar Addition(right to left):

Column 1 (rightmost): "h+r #4+8 ||
- According to the rules: *h + r = da’ (Write ‘a’, Carry 'd") # 4 + 8 = 12 ~n
Column2: ‘e+i+d #6+3+1

- According to therules: ‘e +i=c’and 'c +d =c’ (Write'c’,Carry 'c¢')#6+3=9,9+1=9

Column3: li+e+c #3+6+9

- According to the rules: “i +e =r"and r + ¢ = dv’ (Write'v', Carry 'd") #3 +6=8,8 + 9= 15
Column4: d+a+d #1+3+1

- According to the rules: 'd +a=i"and i +d =h” (Write'h’, Carry 'h") #1+3=3,3+1=4
Column 5 (leftmost): “h" (Carry from previous column) # 4

- Write 'h’
Position Addition Error in Symbolic Mappin:
2. Result: “\boxed{hcvah}' # 49524 ! in Sy pping

Figure 1: Ilustration of LLM Paradox: LLMs excel at
complex math but falter on basic addition, raising the
question of whether they grasp rules or merely reproduce
patterns. “True grasp” implies consistent performance and
adherence to mathematical properties (e.g., commutativity,
representation invariance) under novel conditions. This study
probes LLMs’ comprehension of elementary two-integer addi-
tion (RQ1) and the factors that modulate it (RQ2). Findings
suggest that LLMs rely on token-level heuristics rather than
rule abstraction.

et al., 2024; Mirzadeh et al., 2024). This stark con-
tradiction fuels a critical question at the heart of
understanding LLLM capabilities:

Do LLMs truly grasp arithmetic rules,
or do they primarily reproduce famil-
iar token patterns learned from vast
datasets?

Here, we define rules as generalizable algorithms
that apply consistently across all valid inputs, and
true grasp as the ability to maintain performance
and adhere to mathematical properties even under
novel conditions, reflecting an understanding of the
principles themselves.



Diagnostic gap in existing benchmarks. Popu-
lar benchmarks such as GSM8K, MATH-500, and
Humanity’s Last Exam emphasize final-answer
accuracy on multi-step word problems (Cobbe
etal., 2021; Lightman et al., 2024; Humanity-Team,
2025). Because many sub-steps are unobserved,
these benchmarks cannot determine whether suc-
cess arises from rule learning or from distribution-
specific heuristics. Recent robustness probes con-
firm this concern, but still involve problems whose
complexity obscures which precise rule is vio-
lated (Li et al., 2024; Mirzadeh et al., 2024). A
targeted diagnostic is therefore required.

Our diagnostic lens: two-integer addition. We
propose elementary two-integer addition as a con-
trolled probe of rule learning (Figure 1). The
task isolates a single algorithm with two compo-
nents, digit-wise addition and carry propagation,
and removes linguistic confounds. Any system that
genuinely implements this algorithm must satisfy
three observable properties: (i) digit-scaling con-
sistency, meaning accuracy should decline mono-
tonically with operand length; (ii) representation
invariance, meaning performance should be stable
under any bijective digit-to-symbol remapping; and
(iii) algebraic integrity, meaning commutativity
holds for every operand pair.

Empirical Findings. Our empirical investigation,
centered on these properties, reveals that contem-
porary LLMs predominantly rely on pattern match-
ing rather than exhibiting a robust, rule-based un-
derstanding of elementary addition. Key findings
highlight significant violations of digit-scaling con-
sistency: numeric accuracy often shows an erratic
’drop-rebound’ pattern, such as declining for 4-6
digit operands, then improving for 8-10 digits, in-
stead of the expected monotonic degradation with
increasing operand length. LLMs also frequently
fail to uphold algebraic integrity; commutativity
(A+ B # B + A) is systematically violated in
thousands of instances across various models, with
some models failing this property in up to 20%
of problem pairs. Moreover, performance dra-
matically collapses under symbolic representation;
models achieving over 99% numeric accuracy, like
Claude-3.5-Sonnet at 99.81%, experience a per-
formance drop to as low as 7.51% when standard
digits are replaced by novel symbols. Interventions
such as providing explicit rules via prompting of-
ten counterintuitively degrade performance, some-
times by more than 50% relative to zero-shot accu-

racy. Finally, fine-tuning experiments underscore
a persistent tension. Task-specific supervised fine-
tuning (SFT) significantly boosts numeric accuracy
but typically fails to generalize this improvement
to symbolic tasks. In contrast, reinforcement learn-
ing (RL) based methods show somewhat better
symbolic transfer, although often without matching
SFT’s peak numeric performance. These outcomes
indicate that LLMs’ arithmetic competence is often
tied to learned surface token patterns, rather than an
internalized, abstract grasp of mathematical rules.

Contributions. Our main contributions are:

1. Diagnostic Methodology: We introduce a di-
agnostic methodology centered on two-integer ad-
dition, using notation invariance, digit-scaling con-
sistency, and algebraic integrity as key criteria to
differentiate genuine rule learning from superficial
pattern matching in LLMs.

2. Empirical Findings: Through extensive ex-
periments, we demonstrate that current LLMs sys-
tematically fail these diagnostic tests, exhibiting
significant performance drops with symbolic in-
puts, erratic scaling, and commutativity violations.
Furthermore, interventions like explicit rule provi-
sion often impair performance, while fine-tuning
highlights a persistent preference for pattern mem-
orization over rule abstraction.

3. Implications for LLM Evaluation and Devel-
opment: These findings reveal a core limitation in
LLMs’ compositional generalization for elemen-
tary arithmetic. This suggests that success on com-
plex benchmarks may mask deficiencies in foun-
dational reasoning, underscoring the need for new
evaluation approaches and model architectures to
foster genuine mathematical understanding.

2 Related Work

Benchmark progress and limits. Leaderboard-
oriented benchmarks have propelled LLMs to-
ward increasingly impressive performance on com-
plex reasoning tasks, ranging from general knowl-
edge assessments to graduate-level mathemat-
ics (Hendrycks et al., 2021; Cobbe et al., 2021;
MAA, 2024; Humanity-Team, 2025). However,
these suites prioritize final answers over the under-
lying generalizable rules that generate them. Since
each problem combines multiple subtasks, high
accuracy can be achieved through localized pat-
tern matching, which can evade detection by ag-
gregate metrics. Thus, the fundamental question
persists, and our work specifically addresses this



uncertainty.

Robustness analyses that reveal surface depen-
dence. Several studies probe models with minimal
input perturbations. Replacing digits with unfamil-
iar symbols, altering numeral formats, or retokeniz-
ing inputs consistently reduces accuracy (Mirzadeh
et al., 2024; Zhou et al., 2024; Zhong et al., 2024;
Zeng et al., 2024). Although specialized embed-
dings can recover some performance (McLeish
et al., 2024), these fixes improve specific surface
forms and do not demonstrate rule abstraction. Our
notation-remapping experiments extend this line
of inquiry by isolating the addition algorithm from
every other linguistic cue.

Mechanistic studies of arithmetic circuits.
Neuron-level inspections report units that store par-
tial carries, as well as heuristics that fail outside
the training range (Qiu et al., 2024; Nikankin et al.,
2025). Grokking phenomena illustrate that models
can memorize before they generalize, and some-
times never reach full rule induction (Power et al.,
2022). Instruction-tuning and in-context exemplars
can elicit temporary algebraic behavior, yet system-
atic transfer remains narrow (Chang and Wu, 2024;
Gorceix et al., 2024; Chen et al., 2024; Deng et al.,
2024). These findings motivate a diagnostic that
tests rule mastery directly rather than inferring it
from indirect proxies.

We contribute such a diagnostic by focusing on
two-integer addition, a task whose solution requires
commutativity and notation invariance but avoids
confounds from multi-step language understanding.
By evaluating models against these minimal yet
stringent criteria, we close the empirical gap left
by prior robustness and mechanistic studies and
provide a concrete baseline for future architectural
and training advances.

3 Methodology
3.1 Background and Motivation

LLMs predominantly employ auto-regressive gen-
eration to produce responses. Given a question
@, an LLM samples an answer sequence A =

(Th,...,Ty) from a learned probability distribu-
tion of pre-training data:
N
A~vPAQ =]]P T | T, T), (D)
i=1

where T in P (T; | T<;, T) represents the condi-
tioning context. Ideally, this learned distribution

P(A | @) should approximate a true underly-
ing distribution P*(A | @) that reflects genuine
comprehension, or true grasp, of the principles
needed to answer (. Such genuine comprehen-
sion would manifest as consistent behavior; for
example, semantically identical questions should
elicit responses from similar conditional distribu-
tions, and increased question complexity should be
reflected in the corresponding distributions. How-
ever, empirical evidence indicates that LLMs often
deviate from this ideal. High accuracy on com-
plex benchmarks like GSM8K can significantly
decrease with minor input perturbations, such as
paraphrasing or digit substitution, or on simpler
arithmetic tasks (Li et al., 2024; Mirzadeh et al.,
2024; Zhou et al., 2024). This discrepancy between
the learned P(A | Q) and the ideal P*(A | Q) sug-
gests a reliance on surface-level pattern matching
rather than internalized, rule-governed reasoning.

While the complexity of word-problem bench-
marks obscures precise failure attribution, an ideal
diagnostic task should isolate a single, verifiable al-
gorithm and use an input domain too vast for mem-
orization. Two-integer addition, a classic micro-
benchmark for algorithmic generalization (Saxton
et al., 2019), meets these criteria.

Our methodology thus rigorously probes LLMs’
grasp of elementary addition, addressing:

RQ1: Do LLMs satisfy key markers of rule-based
addition: notation invariance, digit-scaling consis-
tency, and algebraic integrity?

RQ2: Can prompt-level or parameter-level inter-
ventions bridge the gap between pattern recall and
rule induction?

To answer these questions, we construct a dataset of
two-integer addition problems and evaluate LLMs
against three diagnostic properties: digit-scaling
consistency, representation invariance, and alge-
braic integrity. We also explore the effects of ex-
plicit rule provision and prompting strategies on
model performance in following sections.

3.2 Diagnostic Task: Two-Integer Addition

Two-integer addition is our diagnostic task. It is
the simplest complete arithmetic algorithm (core
components: per-digit addition, carry propagation),
requires generalization beyond memorization, and
permits unambiguous verification. From these char-
acteristics, we derive three fundamental prop-
erties that any model claiming to have truly
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Figure 2: Performance Degradation Patterns in Zero-shot vs. Symbolic Addition. While LLMs achieve high
accuracy on standard numerical addition (left), their non-monotonic performance curve suggests brittle pattern
matching rather than true algorithmic reasoning. In contrast, symbolic addition tests (right) reveal systematic
degradation with increasing digit count. This stark contrast between numerical and symbolic performance suggests
LLMs rely heavily on memorized patterns rather than learned arithmetic principles.

learned the addition algorithm must consistently
demonstrate:
1. Digit-scaling consistency: Accuracy should
not increase (ideally, it should monotonically de-
crease) with increasing operand length. This re-
flects the cumulative error potential inherent in it-
erative algorithms such as carry propagation. Any
deviation from this non-increasing pattern indicates
a reliance on length-specific heuristics instead of a
general, scalable rule.
2. Algebraic integrity: Fundamental algebraic
properties, such as commutativity (A + B =
B + A), must be consistently upheld. A model
with a genuine grasp should yield P(S | Query(A+
B)) ~ P(S | Query(B + A)). Systematic viola-
tions of such properties provide direct evidence
against true rule grasp.
3. Representation invariance: Performance must
remain robust when standard digits are bijectively
mapped to novel, arbitrary symbols. A significant
degradation in performance under such mapping
implies that the learned distribution P(A | Q) is
memorized to surface token patterns, rather than
grasping rule of P*(A | Q).

These three properties serve as direct litmus tests
for distinguishing genuine rule induction from su-
perficial pattern matching.

3.3 Dataset Construction

To systematically evaluate LLMs against our di-
agnostic properties, we construct a comprehen-
sive dataset of 100,000 unique two-integer addition
problems. The operands A and B are sampled from
the range [0, 264 — 1). We structure the dataset gen-

eration in three phases to ensure thorough coverage
and facilitate targeted analyses:

1. Phase 1 (Baseline): All two-digit addition pairs
(0-99) for fundamental assessment.

2. Phase 2 (Digit Scaling): Uniform sampling of
same-length operand pairs (3-20 digits), enabling
assessment of length-dependent performance.

3. Phase 3 (Large Numbers): Additional samples
from 249 to 264, testing robustness.

To directly assess our diagnostic properties, the
dataset incorporates specific structural features. Al-
gebraic integrity, particularly commutativity, is sys-
tematically evaluated by including the commuted
counterpart (B,A) for every generated ordered pair
(A,B). For testing representation invariance, we
define ten independent bijective digit-to-symbol
mappings (e.g., 0 — U,...,9 — C) and apply
them to a designated subset of numerical problems
to create corresponding symbolic variants. The
dataset is subsequently split into training (80%),
validation (10%), and test (10%) portions. To en-
sure efficiency, evaluations of proprietary, reason-
ing, and fine-tuned models are restricted to this test
set. This comprehensive dataset design facilitates
a thorough assessment of both rule-learning cri-
teria and intervention effects through systematic
property verification.

4 Experiments

To empirically test our central hypothesis, that
LLMs rely on pattern matching over rule induc-
tion for elementary addition, and to validate our
diagnostic methodology (Section 3), we conducted
experiments addressing the two RQs:



Task Type zero-shot  symbolic zero-shot  symbolic
T 0.0 0.7 0.7 00 07 0.7
Violation Threshold # 5 5 5 10 10 10
Llama3-8B-it 11918 1678 41 4783 1 -
Llama3-70B-it - 5402 506 - 432 20
Llama3.1-8B-it 13324 3232 49 4546 6 -
Llama3.1-70B-it - 4546 602 - 253 22
Llama3.3-70B-it - 5086 1122 - 177 81
Qwen2.5-7B-it 7442 3961 302 3402 151 29
Qwen2.5-72B-it - 812 745 - 25 10

Table 1: Commutativity Violations Statistics. Each entry
reports the number of (A,B) pairs, out of 50,000, where the
model correctly computes A+ B but fails on B+ A; lower
counts indicate better performance. Columns correspond to
different decoding temperatures 7" and minimum thresholds
(5 or 10 identical successes out of 10 samples in total).

* RQ1: Do LLMs satisfy key markers of rule-
based addition? To answer this, we evaluate a
diverse set of LLMs against the three core diagnos-
tic properties derived from our methodology: digit-
scaling consistency, algebraic integrity (specifically
commutativity), and notation invariance.

* RQ2: Can prompt-level or parameter-level

interventions bridge the gap between pattern
recall and rule induction? Here, we probe how
LLM performance on addition is modulated by
explicit rule provision, self-explanation prompting,
and task-specific fine-tuning.
We evaluated a diverse range of contemporary
LLMs, including open-source families (e.g., Llama,
Qwen) and proprietary LLMs (e.g., GPT-4, Gemini
series), with full details in Appendix A.2. These
experiments provide empirical evidence for our
claims about LLM arithmetic capabilities.

4.1 RQ1: Do LLMs Truly Grasp Addition?

To determine if LLMs have truly grasp the addition
rules, as opposed to merely mimicking patterns,
we evaluated their performance against the three
properties. Failure to satisfy these properties would
serve as strong evidence of a superficial understand-
ing, reliant on surface-level heuristics rather than
genuine rule learning. We present the empirical
findings for each diagnostic in turn.

Violation of Digit-Scaling Consistency. Our
first diagnostic, digit-scaling consistency, posits
that accuracy should not increase with operand
length for a system that has internalized an iter-
ative algorithm like addition. However, LLMs fre-
quently violate this principle. As shown in Fig-
ure 2 (left panel), many models exhibit a non-
monotonic 'drop-rebound’ accuracy curve on nu-
meric inputs: performance initially declines for
4-6 digit operands, then unexpectedly improves

for 8-10 digits, before declining again. This er-
ratic scaling suggests that the learned distribution
P(A | Q) for numeric addition deviates from the
ideal P*(A | @) defined in Section 3.1, indicat-
ing reliance on length-specific heuristics or memo-
rized fragments rather than a general, scalable rule.
In contrast, when inputs are symbolic (Figure 2,
right panel), accuracy, while substantially lower,
tends to decline more monotonically with increas-
ing digit count. This latter pattern, paradoxically
more aligned with algorithmic processing under
stress, reinforces the interpretation that high perfor-
mance on standard numeric inputs reflects pattern
matching rather than the robust rule application
outlined by our criteria in Section 3.2.

Failure to Uphold Algebraic Integrity. We as-
sessed algebraic integrity by testing adherence to
commutativity, a fundamental property of addition.
A violation occurred if a model correctly computed
A+ Bbutnot B + A (or vice versa) in at least 5
(or all 10) of 10 stochastic decodes per problem, at
temperatures 7" = 0.0 and 7' = 0.7. The results
(Table 1) reveal frequent and systematic commuta-
tivity failures. For instance, some 7-8B Llama and
Qwen models processing numerical inputs violated
commutativity in approximately 20% of 50,000
problem pairs (when failing > 5/10 decodes) and
in 8.48% (4,243 pairs) when failing all 10 decodes.
These inconsistencies persisted even at T' = 0.7,
where 0.104% of pairs (52 instances) showed such
persistent violations across all decodes. Conversely,
on symbolic tasks, Qwen2.5-7B showed such con-
sistent (10/10) violations in only 0.058% of pairs
(29 instances), while Llama models exhibited none.
Moreover, the observation that larger Llama mod-
els were sometimes more prone to these violations
challenges the notion that increased model scale
inherently confers deeper arithmetic understanding.
Such widespread and systematic failures strongly
suggest inherent deficiencies in the models’ un-
derstanding of the addition algorithm, rather than
random noise.

Breakdown under Tests of Notation Invariance.
Our third diagnostic, notation invariance, assesses
if LLM performance on addition remains stable
when standard digits are bijectively mapped to
novel symbols, a property expected if the abstract
addition algorithm is truly internalized. As detailed
in Table 2, all tested models dramatically failed this
test. Even those with near-perfect accuracy on nu-
meric inputs (e.g., 99.81% for Claude-3.5-Sonnet)



Overall Acc. Position Add Acc.  Carry-over Acc.
Task Type A N A ZS N A ZS N A

Gemini2.0-pro-exp 94.88 14.21 -80.67 69.52 4.19 -65.33 77.36 7.07 -70.29
Claude-3.5-Sonnet 99.81 7.51 -92.30 81.78 3.19 -78.59 90.28 6.92 -83.36
GPT-40 93.39 9.59 -83.80 76.12 3.79 -72.33 79.55 6.73 -72.82
DeepSeek-V3 98.92 16.14 -82.78 78.55 11.98 -66.57 81.14 15.23 -65.91

Gemma2-9b-it 66.34 1.45 -64.89 58.52 0.34 -58.18 60.44 0.44 -59.99
Gemma2-27b-it ~ 83.65 2.62 -81.03 74.77 091 -73.85 76.68 0.91 -75.77

Llama3.1-8B-it 43.34 0.57 -42.76 20.38 0.10 -20.27 21.96 0.25 -21.72
Llama3.1-70B-it ~ 72.58 2.51 -70.07 60.13 0.52 -59.61 61.05 1.33 -59.71

Qwen2.5-7B-it 83.00 0.58 -82.41 71.39 0.11 -71.28 74.49 0.13 -74.37
Qwen2.5-72B-it ~ 96.07 5.97 -90.10 88.19 2.09 -86.10 89.78 4.12 -85.67

Table 2: Accuracy on elementary two-integer addition.
ZS = zero-shot numeric form; S = Symbolic form (bijective
digit-to-symbol mapping);

Task  Task Type Llama3.1-8B-it Qwen2.5-7B-it
symbolic 0.64 0.58

Add 530 ot 43.43 83.03
. symbolic 0.01 0.04
Multi 75r6_shot 9.92 17.29
symbolic 0.02 0.01

Sub  Zero-shot 18.39 43.88

Table 3: Performance on Other Arithmetic Operations.
Building on observed difficulties with addition, we evaluated
subtraction and multiplication. LLMs performed poorly on
symbolic representations of these operations, with low zero-
shot accuracy. This suggests their struggles extend to these
more complex operations and their symbolic forms.

saw performance collapse on symbolic equivalents,
to as low as 7.51%. This failure extended to fun-
damental components like positional addition and
carry-over sub-tasks once familiar digit patterns
were absent. Such pronounced inability to general-
ize to novel symbols strongly indicates that current
LLMs rely on recognizing and reproducing patterns
tied to standard decimal representations, rather than
having learned an abstract, symbol-agnostic addi-
tion rule.

Collectively, the evidence from these three di-
agnostic tests converges on a clear and consistent
conclusion: despite often achieving high accuracy
on standard numeric addition problems, contempo-
rary LLMs do not demonstrate a robust, rule-based
understanding of this elementary operation. Their
competence appears tightly coupled to familiar sur-
face token patterns and specific operand lengths,
and it degrades systematically when these patterns
are disrupted or when fundamental algebraic prop-
erties are rigorously tested. This pattern of behav-
ior strongly indicates a primary reliance on pattern
matching rather than genuine rule induction for
performing elementary addition.

Having established these fundamental deficien-
cies in LLMs’ grasp of basic addition, we next
investigate factors that might modulate this under-
standing in Section 4.2.

4.2 RQ2: What factors modulate grasping?

The preceding analysis (RQ1) demonstrated LLMs’
significant deficiencies in internalizing elementary
addition rules. To further understand the nature of
these limitations and explore potential avenues for
improvement, RQ2 investigates factors that might
modulate LLMs’ ability to grasp these rules. We
examine two primary categories of interventions:
(1) prompt-level strategies, including the provision
of explicit rules and the use of self-explanation
prompts, and (2) parameter-level modifications
through task-specific fine-tuning.

4.2.1 Explicit Rule Provision

Building on RQ1’s finding that LLMs struggle with
genuine arithmetic understanding, this subsection
investigates whether explicit rule provision can en-
hance their performance. We evaluated LLMs un-
der several prompt-level interventions: few-shot
prompting with definitions of addition principles
and examples of varying digit lengths (denoted
Few-Shot, Few-Shot-2, and Few-Shot-3), and an
Explain-and-Do strategy, where models first ar-
ticulate their problem-solving approach. Results
are presented in Table 4 and Figure 3.

Our investigation reveals a counterintuitive find-
ing: providing LLMs with abstract addition rules
consistently degraded performance compared to
zero-shot settings. This suggests LLMs favor mem-
orizing token patterns over abstracting principles.
When faced with human-articulated rules (e.g.,
"carry the 1"), models struggle to operationalize
them, defaulting to pre-trained pattern-matching.
This preference explains performance disparities
between numerical and symbolic tasks and ob-
served commutativity violations. In contrast, the
Explain-and-Do strategy—prompting models to
first articulate their reasoning—generally main-
tained performance near zero-shot levels. These
findings indicate current LLMs are predominantly
optimized for pattern recognition, not abstract rule
learning, highlighting a divergence from human
mathematical cognition.

Architectural differences among LLM families
influenced their responses to interventions. Llama
models, despite sometimes lower zero-shot nu-
merical accuracy than Qwen or Gemma (RQ1),
adapted better to explicit rules, especially with
the Explain-and-Do strategy; some variants (e.g.,
Llama3.1, Llama3.2) even surpassed zero-shot
baselines, showing modest compositional general-
ization gains (Table 4). Conversely, Qwen models,



Task Type: few-shot

Gemma
— Uama
— Qwen

Accuracy
e e e
N ) o

o
5}

Average_few-shot
Average_few-shot-2
Average_few-shot-3

Task Type: few-shot-2

Gemma
— Llama
— Qwen

Average_few-shot

Average_few-shot-2

Average_few-shot-3

Task Type: few-shot-3

Gemma

— Uama
— Qwen

Average_few-shot
Average_few-shot-2
Average_few-shot-3

25 50 75 100 125 15.0 175 20.0 25 5.0

75 100 125 150 17.5 20.0 25 50 715
Digits

10.0 12.5 150 17.5 20.0

Figure 3: Few-Shot Performance with Explicit Rule Provision. Explicit rule provision leads to a significant drop in
performance compared to zero-shot, contradicting the expected improvement.

Carry-over Acc. Position Add Acc.

Task Type A S FS FS-2 FS-3 E A S FS FS-2 FS-3 E
Models

Llama3-8b-it 15.80 020 842 1538 16.68 13.54 | 1625 0.07 7.15 1500 14.34 1232
Llama3.1-8b-it | 21.96 0.25 8.84 1533 1246 2480|2038 0.10 7.92 1291 10.14 23.61
Llama3.2-11b-it | 17.35 0.26  9.04 19.70 1397 27.47 | 16.60 0.12 829 1892 1257 27.13
Qwenl.5-7b-it | 4744 0.09 3.09 640 536 7.51|4678 005 266 598 4.62 8.00
Qwen2-7b-it 6294 0.06 2836 57.22 3235 70.83 | 60.03 0.05 23.65 48.34 28.25 68.80
Qwen2.5-7b-it | 74.49 0.13 3828 55.08 41.54 72.09 | 71.39 0.11 33.16 48.12 36.11 71.53

Table 4: Impact of Different Knowledge Intervention Strategies. Contrary to expectations, providing explicit rules (few-shot
conditions) significantly reduces performance compared to zero-shot baseline, e.g. “Qwen2.5-7b-it” drop 29.49%. However,
when models explain their reasoning before computation (explain-and-do), performance remains comparable to zero-shot levels.

ZS = Zero-Shot, FS = Few-Shot, E = Explain-and-Do.

despite stronger initial zero-shot performance, de-
graded more with explicit rules and showed less
compositional generalization. These variations sug-
gest fundamental architectural differences in knowl-
edge encoding and access, affecting prompt re-
sponsiveness beyond mere computational capacity.
While model upgrades generally improve perfor-
mance, core pattern recognition tendencies persist.
Overall, this indicates LLMs primarily rely on pat-
tern matching, highlighting a persistent limitation
in abstract, rule-based reasoning.

4.2.2 Rule Internalization

We then investigated if parameter-level modifi-
cations via fine-tuning could improve LLMs’ in-
ternalization of arithmetic rules, moving beyond
mere pattern matching. We explored various fine-
tuning strategies: SFT, RL with Direct Preference
Optimization (DPO) (Rafailov et al., 2023), and
a hybrid RPO (SFT+DPO) (Pang et al., 2024).
Model performance was assessed on both numer-
ical and symbolic addition post-fine-tuning, and
benchmarked against specialized mathematical rea-
soning models like Eurus2 (Cui et al., 2025), Ope-
nAl ol (OpenAl, 2024), DeepSeek R1 (DeepSeek-
Al 2025), and their distilled counterparts. For RL,
training data comprised model responses, with cor-
rect and incorrect answers from our dataset serving

as positive and negative examples, respectively (de-
tails in Appendix A.3).

Fine-tuning experiments (Table 5) revealed clear
trade-offs. Task-specific SFT boosted performance
on in-domain numerical addition but failed to gen-
eralize to symbolic one, indicating that SFT pri-
marily reinforces pattern matching tied to data.
Conversely, RL-based methods (DPO and RPO)
achieved better generalization to symbolic inputs,
albeit with lower absolute accuracy on the fine-
tuned numerical task. Notably, the RPO still
struggled with symbolic transfer, suggesting SFT’s
propensity for pattern matching can overshadow
RL’s generalization benefits. These findings imply
that standard fine-tuning, particularly SFT, opti-
mizes for surface-level pattern recognition over the
abstraction of underlying arithmetic principles.

Supporting this, models fine-tuned on general-
domain reasoning objectives (e.g., DS-R1-Distill)
demonstrated more robust generalization to sym-
bolic tasks. This improved transfer is likely due to
training objectives that promote extended reason-
ing, highlighting the training paradigm’s crucial
role in fostering generalizable mathematical skills.
In contrast, domain-specific models like Eurus2-
SFT and Eurus2-PRIME, despite excelling at com-
plex numerical tasks within their domain, showed
limited transfer to symbolic addition. However,



Fine-Tuning Type Dataset Domain Overall Acc. Position Add Acc. Carry-over Acc. Map Acc.
Task Type ZS S A ZS S A ZS S A S
Models
Qwen?2.5-7B-it - - 83.00 0.58 -82.41 ‘ 7139 0.11 -71.28 ‘ 7449  0.13 -74.37 0.57
Eurus2-7B-SFT SET Domain Specific 8321 042 -82.79 | 81.21 3.19 -78.02 | 8228 6.87 -75.41 -
Eurus2-7B-PRIME RL(PRM) Domain Specific 94.11 1.03  -93.08 | 91.59 3.10 -88.49 | 92.51 3.11 -89.40 -
DS-RI1-Distill-Qwen-7B  RL(Reasoning) General 7476 6.88 -67.88 | 6538 33.41 -31.97 | 6427 31.52 -32.75 -
Qwen2.5-7B-it SET Task Specific (Numerical) | 97.17  0.00 -97.17 | 87.91  0.25 -87.66 | 89.51 1.26 -88.25 8.21
Qwen2.5-7B-it RL(DPO) Task Specific (Numerical) | 95.32 037 -94.95 | 86.23 1.17 -85.06 | 87.75 2.35 -85.40 2.25
Qwen2.5-7B-it RL(SFT+DPO) Task Specific (Numerical) | 96.95 0.28 -96.67 | 8448 0.29 -84.19 | 8552  0.61 -84.91 0.10
Qwen?2.5-7B-it SFT Task Specific (Symbolic) 0.00 30.66 +30.66 | 3.40 3.89 +049 | 671 698 +0.27 23.49
Qwen?2.5-7B-it RL(DPO) Task Specific (Symbolic) | 50.73 24.10 -26.63 | 47.71 348 -44.23 | 4840 6.37 -42.03 19.84
Qwen2.5-7B-it RL(SFT+DPO) Task Specific (Symbolic) | 12.32  2.85 947 | 931 058 -873| 970 1.13 -857 2.00

Table 5: Impact of Fine-Tuning Approaches on Arithmetic Capabilities. Different fine-tuning strategies and dataset domains
yield distinct trade-offs between performance and generalization. While SFT achieves highest numerical accuracy, it shows
minimal transfer to symbolic tasks. RL-based approaches demonstrate better generalization but lower absolute performance.
Task-specific training on numerical data excels within-domain but fails to transfer, whereas general-domain training (e.g.,
DS-R1-Distill) enables broader generalization through its diverse training objectives, suggesting the importance of training

paradigm design in developing robust mathematical capabilities.

Position Add Acc. Carry-over Acc.

Task Type 7S N A ZS S A
Gemini2.0-pro-exp 69.52 419 -6533 7736 7.07 -70.29
Gemini2.5-pro-exp (thinking) 88.97 19.80 -69.17 8849 24.56 -63.93
Llama3.3-70b-it 7382 077 -73.05 75.00 243 -72.57
DS-R1-Distill-Llama-70B 6891 4294 -2597 68.56 40.75 -27.81
Llama3.1-8b-it 2038 0.10 -2027 2196 025 -21.72
DS-R1-Distill-Llama-8B 4554 39.55 -5.99 44.16 3509 -9.07

Table 6: LLMs’ Understanding of Addition Principles.
Models achieve high accuracy(%) on standard numerical tasks
(zero-shot) but show severe degradation when tested on sym-
bolic representations, both for carry operations and digit ad-
dition. This stark contrast suggests that models only grasp
principles in numerical form and fail to generalize to abstract
representations.

Eurus2-PRIME generalized better than Eurus2-
SFT. This suggests RL-based signals can aid in
abstracting principles, though balancing specializa-
tion with generalization remains challenging.

Specialized reasoning models (Table 6) offered
further insights. These models typically showed
less performance degradation on symbolic addi-
tion compared to standard LL.Ms, suggesting that
training on prolonged or complex reasoning tasks
can foster better abstraction of arithmetic princi-
ples. Yet, this improved abstraction may entail
a trade-off: some reasoning-focused architectures
sacrificed accuracy on elementary computations
(Figure 2), potentially by "over-thinking" simple
problems despite excelling at complex ones. This
pattern underscores how architectural design and
training objectives critically shape the balance be-
tween foundational computational skills and higher-
order reasoning.

5 Conclusion

Our empirical results of two-integer addition task
reveal that LLLMs fail to grasp elementary addi-

tion rules, still relying instead on surface-level
pattern matching. This conclusion is evidenced
by: (1) a collapse in accuracy (e.g., from > 99%
to < 7.5%) when standard digits are replaced with
novel symbols, demonstrating a lack of notation
invariance; (2) non-monotonic accuracy scaling
with operand length, suggesting specific memoriza-
tion over consistent carry-propagation; and (3) sys-
tematic commutativity violations, which contradict
genuine rule grasp. These findings collectively in-
dicate that LLMs’ success on complex math bench-
marks may mask a superficial understanding of
basic rules.

Interventions further highlight these deficits: pro-
viding formal rules from human knowledge para-
doxically degrades performance (by up to 81.2%),
while prompting models to "Explain-and-Answer"
merely preserves baseline scores. Task-specific
SFT boosts numeric accuracy but fails to general-
ize to symbolic tasks; conversely, RL shows better
symbolic transfer but at the cost of lower absolute
accuracy. This suggests a fundamental misalign-
ment between human-like abstract rule learning
and the pattern-matching heuristics LLMs develop
during pre-training.

The implications are significant: current bench-
marks, rewarding final answers over rule fidelity,
risk inflating perceived LLM competence. Future
evaluations must test notation invariance, scaling
consistency, and algebraic integrity. Model design
should explore explicit symbolic manipulation or
execution-grounded reasoning. Bridging the pat-
tern recall-rule abstraction gap is crucial for gen-
uine mathematical understanding in LLMs.



Ethical Considerations

While our research primarily focuses on the mathe-
matical reasoning capabilities of LLLMs, which not
directly involve ethical considerations. However,
the implications of our findings extend to broader
ethical concerns in Al deployment. We highlight
following key areas:

Why arithmetic robustness matters. Elemen-
tary addition underpins many downstream compu-
tations. A model that answers graduate-level prob-
lems yet violates commutativity can silently corrupt
applications that rely on implicit arithmetic, includ-
ing dose calculation, portfolio rebalancing, and au-
tomated bidding. This gap between perceived and
actual competence creates a direct safety hazard.

Inflated competence metrics. Public leader-
boards optimise for final-answer accuracy rather
than rule fidelity. Our results show that such met-
rics can conceal thousands of systematic arithmetic
errors. Deploying models on the basis of these
scores may therefore foster unwarranted confidence
and expose users to financial or physical harm.

Recommendations for high-stakes deployment.
Before adoption in safety-critical settings, de-
velopers should (i) report notation-invariance
and algebraic-integrity scores alongside aggregate
benchmarks, (ii) document failure modes such
as the symbol-mapping collapse identified here,
and (iii) install run-time monitors that flag out-of-
distribution numeric inputs. These measures align
claimed capability with real-world reliability.

Toward stronger evaluation standards. The
field needs public, reproducible suites that test for-
mal properties directly, not just end-to-end accu-
racy. Without such standards, the gap between
apparent and actual mathematical competence will
widen and public trust in Al will erode.

With these considerations in mind, we would
highlight the importance and significance these
findings have for the future of Al systems. As
LLMs are increasingly integrated into various do-
mains, ensuring their reliability and robustness in
fundamental tasks like arithmetic is crucial for safe
and effective deployment.

Limitations

Scope of mathematical operations. Our study
targets two-integer addition because it offers a

clean probe of rule learning. Preliminary exper-
iments suggest similar failures in subtraction, mul-
tiplication, and symbolic logic, but verifying those
trends remains future work.

Range of intervention techniques. We evalu-
ate prompt engineering, SFT, and preference-based
RL. Alternative strategies—such as modular arith-
metic heads, execution-augmented decoding, or
neuro-symbolic hybrids—may yield different gen-
eralisation patterns that we have not explored.

External validity of the synthetic dataset. The
symbol-mapping protocol strips away contextual
cues that may aid reasoning. In real documents,
numeric reasoning is embedded in richer text, so
model behaviour could differ. Future studies should
embed the same invariance checks in realistic narra-
tives such as medical charts or financial statements.

Sampling constraints. API costs limited us to
fewer than ten stochastic decodes for some pro-
prietary models. Although the observed failure
margins are large, denser sampling would narrow
confidence intervals.

Mechanistic understanding. We observe strong
evidence of pattern matching rather than rule in-
duction, yet the circuit-level mechanisms remain
unidentified. Tracing these mechanisms and de-
signing architectures that promote rule abstraction
are important directions for future research.
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A Appendix
A.1 Al Use Statement

This research utilized Al assistance for code debug-
ging and grammatical refinement. All experimental
designs, analyses, results, and conclusions were
developed independently by the authors without
generative Al input. We employed Al tools solely
for technical implementation support and language
polishing to ensure clear communication of our
findings.

A.2 Experimental Setup

Our evaluation framework utilized the SGLang
platform through the official Docker container
lmsysorg/sglang (Zheng et al., 2024). For sta-
tistical robustness, most models underwent 10 re-
peated evaluations per test example using a temper-
ature setting of 0.7 across the full dataset. Due
to computational and budget constraints, select
models including GPT4-o0, Claude-3.5-Sonnet,
QwQ-32B-Preview, Deepseek-R1 and its variants
were evaluated once on the test split only.

For assessing Position  Addition and
Carry-over accuracy, we used Phi-4 (Abdin
et al., 2024) as an independent generative evaluator
following Zhang et al. (2024). Solutions were
evaluated by feeding them to the evaluator
to determine carry-over and position addition
correctness, using the first token as the prediction.

We conducted comprehensive evaluations across
all model variants in both zero-shot and symbolic
settings, with complete results presented in Table 7.

A.3 Fine-Tuning Configuration

Our investigation employed three fine-tuning ap-
proaches: standard DPO, RPO (combining DPO
with SFT), and pure SFT. Each approach shared
core configuration elements while varying key
method-specific parameters.

Base Configuration. The base configuration uti-
lized a batch size of 1 sample per device with 4
gradient accumulation steps (effective batch size of
4). Training ran for 1 epoch using cosine learning
rate scheduling with 10% warmup steps. We imple-
mented BF16 mixed precision and non-reentrant
gradient checkpointing, evaluating on a 1% vali-
dation set every 500 steps. Flash Attention 2 opti-
mized computation efficiency.

Distributed Training. Training leveraged Deep-
Speed ZeRO-3 with 8 processes per machine. The
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implementation included CPU optimizer state of-
floading, gradient clipping at 1.0, 16-bit parame-
ter saving, and static process coordination through
DeepSpeed’s rendezvous mechanism.

Method-specific Parameters.
» Standard DPO: Learning rate 5.0 x 1076, 3 =
0.0, sigmoid loss function
* RPO: DPO settings with 8 = 1.0 for integrated
preference modeling and SFT
* SFT: Learning rate 1.0 x 10~* for supervised
training
All approaches utilized full-parameter fine-
tuning through DeepSpeed ZeRO-3. For prefer-
ence learning (DPO/RPO), we initialized reference
models from SFT checkpoints with preference loss
weight (\gx) set to 1.0.

Infrastructure. Training infrastructure consisted
of 4 NVIDIA A100 GPUs (80GB each), with com-
plete fine-tuning requiring approximately 15 hours
per run.



Prompt Template for Zero-Shot Setting

Context:
You are a helpful Al assistant.

Instruction:

Present your solution in the following format:

1. Let’s think step by step.

2. Final Answer: Express using LaTeX notation \boxed{answer}

Question:
%s + %s = \boxed{?}

Figure 4: Zero-Shot Setting Prompt Template. Example prompt template for zero-shot addition tasks, providing context,
instructions, and question format for LLMs.

Prompt Template for Few-Shot Setting

Context:
You are a helpful Al assistant.

Instruction:

Present your solution in the following format:

1. First, compute the sum of the two numbers, working from right to left using place values.

2. Then, for each place value, add the digits in the same place value column, and carry over if the sum is greater than 9.
3. Tterate this process from right to left until all place values are added.

4. Final Answer: Express using LaTeX notation \boxed{answer}.

Examples:
1. Compute 1996 + 126 = \boxed{?}
Let’s solve 1996 + 126 step by step, working from right to left using place values.

« For the ones place: 6 + 6 = 12. Write down 2 in the ones place and carry over 1 to the tens place.

« For the tens place: 9 + 2 + 1 = 12. Write down 2 in the tens place and carry over 1 to the hundreds place.

* For the hundreds place: 9 + 1 + 1 = 11. Write down 1 in the hundreds place and carry over 1 to the thousands place.
¢ For the thousands place: 1 +1=2.

« Putting it all together: 2 * 1000 + 1 * 100 + 2 * 10 + 2 * 1 = 2000 + 100 + 20 + 2 = 2122.

Therefore, 1996 + 126 = \boxed{2122}.

2. Compute 1994 + 222 = \boxed{?}
Let’s solve 1994 + 222 step by step, working from right to left using place values.

« For the ones place: 2 +4 =6.

* For the tens place: 2 +9 = 11. Write down 1 in the tens place and carry over 1 to the hundreds place.

 For the hundreds place: 2 + 9 + 1 = 12. Write down 2 in the hundreds place and carry over 1 to the thousands place.
¢ For the thousands place: 1 +1=2.

Putting it all together: 2 * 1000 + 2 * 100 + 1 * 10 + 6 * 1 = 2000 + 200 + 10 + 6 = 2216.

Therefore, 1994 + 222 = \boxed{2216}.

Question:
%s + %s = \boxed{?}

Figure 5: Few-Shot Setting Prompt Template. Example prompt template for few-shot addition tasks, providing context,
instructions, examples, and question format for LLM:s.

Prompt Template for Explain-and-Do Setting

Context:
You are a helpful Al assistant.

Instruction:

Present your solution in the following format:

1. First, comprehensively explain how to do addition with both positive integers.
2. Then, let’s analyze the problem step by step following your explanation.

3. Final Answer: Express using LaTeX notation \boxed{answer}.

Question:
%s + %s = \boxed{?}

Figure 6: Explain-and-Do Setting Prompt Template. Example prompt template for explain-and-do addition tasks, providing
context, instructions, and question format for LLMs.



Prompt Template for Symbolic Setting

Context:
You are a helpful Al assistant. Your task is to perform addition within a custom symbolic system in a simple and clear manner.

Symbolic System Definition:
This system comprises ten symbols: {u, d, a, i, h, v, e, y, 1, c}. The addition operation (+) between these symbols is defined as follows:

u+tu=u

d+u-=d d+d=a

a+u=a a+d-=1 a+a=h

i+tu=i i+d=h i+ta=v i+i=e

h+u=h h+d=v h+a=e h+i=y h+h=r

V+us=v v+d=e v+a=y v+i=r +h=c v + v =du

etu=e e+d=y et+ta=r e+i=c¢c + h = du e +v =dd e + e =da

yt+tu=y y+d=r y+ta=c y +1i=du y + h =dd y + v =da y +e=di y +y =dh

r+u=r r+d=c r+a=du r+i=dd r +h =da r+v=di r+e=dh r+y=dv r+r =de
ctu=c c+d=du c+a=dd c+i=da c+h=di c+v=dh c+e=dv c+y=de c+r=dy c+c=dr
Instruction:

Present your solution in the following format:

1. Align: Arrange the two input strings vertically, aligning their rightmost symbols.

2. Columnar Addition: Starting from the rightmost column (least significant symbols), perform symbol addition using the provided definition.

3. Carry-over: If the result of a column’s addition is a two-symbol sequence (e.g., ’da’), write down the second symbol (least significant) and carry over
the first symbol to the next column on the left.

4. Iteration: Repeat steps 2 and 3, moving leftward column by column until all symbols have been added.

5. Reasoning: Keep your whole reasoning clear and simple.

6. Output Format: Write the final result in the \boxed{ ?} placeholder.

Examples:
1. Compute dcce + dae = \boxed{?}

Solution:
1. Columnar Addition (right to left):

- e+ e =da (Write ’a’, Carry ’d’)

-c+a+d=da (Write ’a’, Carry ’d’)

-c+d+d=dd (Wite ’d’, Carry ’d’)
d+d=a

2. Result: adaa
3. Formatted Output: \boxed{adaa}

2. Compute dcch + aaa = \boxed{?}

Solution:

1. Columnar Addition (right to left):
-h+a=e

- c+a=dd (Write ’d’, Carry ’d’)
-c+a+d=da (Write ’a’, Carry ’d’)
-d+d=a

2. Result: aade
3. Formatted Output: \boxed{aade}

Your Task:
Compute %s + %s = \boxed{?}

Figure 7: Symbolic Setting Prompt Template. Example prompt template for symbolic addition tasks, providing context,
symbolic system definition, instructions, examples, and question format for LLMs.
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Overall Acc. Position Add Acc. Carry-over Acc.

Task Type A S A A S A VA S A
Models

Gemini2.0-pro-exp 94.88 1421 -80.67 6952 4.19 -6533 7736 7.07 -70.29
Gemini2.5-pro-exp (thinking) 99.16 5599 -43.17 8897 19.80 -69.17 88.49 2456 -63.93
Gemini2.0-flash-exp 98.10 925 -88.85 7383 121 -72.62 7952 328 -76.24
Gemini2.0-flash-exp (thinking) 91.07 10.81 -80.26 86.09 2.89 -83.20 8830 9.03 -79.27
Claude-3.5-Sonnet 99.81 7.51 -92.30 81.78 3.19 -78.59 9028 6.92 -83.36
GPT-40 9339 959 -83.80 76.12 379 -72.33 7955 6.73 -72.82
Ol-preview 74.28 - - 7471 - - 7423 - -
ERNIE-Speed-8K 73.78 029 -7349 67.66 0.07 -67.59 70.89 0.21 -70.68
DeepSeek-V2.5 95.75 - - 8378 - - 88.19 - -
DeepSeek-V3 98.92 16.14 -82.78 7855 1198 -66.57 81.14 1523 -65.91
DeepSeek-R1 97.39 - - 70.99 - - 80.58 - -

DeepSeek-R1-Distill-Llama-70B  74.19 27.19 -47.00 6891 4294 -2597 6856 40.75 -27.81
DeepSeek-R1-Distill-Llama-8B ~ 53.23 1097 -42.26 4554 3955 -599 44.16 35.09 -9.07
DeepSeek-R1-Distill-Qwen-1.5B  58.16  0.66 -57.50 47.85 26.16 -21.69 47.16 20.79 -26.37
DeepSeek-R1-Distill-Qwen-7B 74716 6.88 -67.88 6538 3341 -31.97 6427 3152 -32.75

Gemma2-2b-it 3341 - - 2997 - - 30.59 - -
Gemma?2-9b-it 66.34 145 -64.89 5852 034 -58.18 6044 044 -59.99
Gemma?2-27b-it 83.65 262 -81.03 7477 091 -73.85 76.68 091 -75.77
Llama2-7b-it 19.59 0.00 -19.59 2044 0.01 -2043 2258 0.01 -22.57
Llama3-8B-it 3295 024 -3270 1625 0.07 -16.18 1589 0.20 -15.69
Llama3-70B-it 69.15 1.62 -67.53 59.84 039 -5945 60.22 0.70 -59.52
Llama3.1-8B-it 4334 057 -4276 2038 0.10 -2027 2196 025 -21.72
Llama3.1-70B-it 7258 251 -70.07 60.13 052 -59.61 61.05 1.33 -59.71
Llama3.2-11B-it 3513 053 -34.61 1660 0.12 -1648 1735 026 -17.09
Llama3.3-70B-it 79.63 401 -7561 73.82 077 -73.05 7500 243 -72.57
Qwenl.5-7B-Chat 5631 0.18 -56.14 46.78 0.05 -46.73 4744 0.09 -47.34
Qwen1.5-72B-Chat 3429 053 -3375 6228 0.09 -6220 6728 0.14 -67.13
Qwen2-7B-it 7250 024 -7226 60.03 0.05 -5998 6294 0.06 -62.88
Qwen2-72B-it 59.06 250 -56.56 82.82 021 -82.62 86.62 026 -86.36
Qwen2.5-1.5B-it 47.75 - - 3254 - - 33.67 - -
Qwen2.5-3B-it 70.27 - - 5449 - - 5798 - -
Qwen2.5-7B-it 83.00 0.58 -8241 7139 0.11 -71.28 7449 0.13 -74.37
Qwen2.5-14B-it 87.45 - - 77.56 - - 80.36 - -
Qwen2.5-32B-it 95.15 - - 9041 - - 91.28 - -
Qwen2.5-72B-it 96.07 597 -90.10 88.19 2.09 -86.10 89.78 4.12 -85.67
QwQ-32B-Preview 70.59 11.12 -59.47 71.68 19.09 -52.59 73.22 20.71 -52.51
Eurus2-7B-SFT 83.21 042 -82.79 8121 3.19 -78.02 8228 6.87 -75.41
Eurus2-7B-PRIME 94.11 1.03 -93.08 91.59 3.10 -8849 9251 3.11 -89.40
qwen2.5-7b-dpo-sft-S 1232 285 -947 9.31 058 -873 970 1.13 -8.57
gqwen2.5-7b-dpo-sft-ZS 96.95 028 -96.67 8448 029 -84.19 8552 0.61 -84.91
qwen2.5-7b-dpo-S 50.73 24.10 -26.63 4771 348 -4423 4840 637 -42.03
qwen2.5-7b-dpo-ZS 95.32  0.37 -9495 86.23 1.17 -85.06 87.75 235 -85.40
qwen2.5-7b-sft-S 0.00 30.66 30.66 3.40 3.89 049 671 698 0.27
gwen2.5-7b-sft-ZS 97.17 0.00 -97.17 8791 025 -87.66 89.51 1.26 -88.25

Table 7: Complete Performance Analysis on Base and Extended Addition Tasks. Per-model breakdown of performance (%)
across standard numerical and symbolic representations, with evaluation of degradation (A) between formats. Results reveal
systematic failures in abstracting arithmetic principles despite high numerical accuracy.
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