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Abstract

Transformer-based large language models (LLMs) typically have a limited context
window, resulting in significant performance degradation when processing text
beyond the length of the context window. Extensive studies have been proposed to
extend the context window and achieve length extrapolation of LLMs, but there is
still a lack of in-depth interpretation of these approaches. In this study, we explore
the positional information within and beyond the context window for deciphering
the underlying mechanism of LLMs. By using a mean-based decomposition
method, we disentangle positional vectors from hidden states of LLMs and analyze
their formation and effect on attention. Furthermore, when texts exceed the context
window, we analyze the change of positional vectors in two settings, i.e., direct
extrapolation and context window extension. Based on our findings, we design two
training-free context window extension methods, positional vector replacement
and attention window extension. Experimental results show that our methods can
effectively extend the context window length.

1 Introduction

Recently, Transformer-based large language models (LLMs) have demonstrated excellent capabilities
on downstream tasks [1–3], in which positional encodings (e.g., absolute or relative) are widely used
in Transformers to better capture positional information within input sequences [4, 5]. However,
LLMs typically suffer from a limited input length (called context window), which is constrained by
the maximum length of training data. Beyond the context window, the positional encodings at larger
position indices are out-of-distribution (OOD), not encountered during the training phase. Therefore,
when the input sequence exceeds the context window length, there would often be a significant
degradation in model performances, as evidenced by a surge in perplexity (PPL) score [6].

Prior work has primarily focused on extending the context window of existing LLMs by manipulating
positional encodings. Owing to its excellent performance and long-term decay nature, RoPE [7] has
been widely used to learn positional encodings for existing LLMs [8, 9]. To circumvent the OOD
positional encodings in RoPE, various methods have been proposed to modify the base [10–12] or
positional indices [13–16]. In addition, special relative positional encodings that apply larger negative
biases to attention based on the relative distance have achieved promising length extrapolation, which
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can effectively stabilize the model performance beyond the context window [6, 17, 18]. Furthermore,
decoder-only Transformers without positional encodings (NoPE) have been found to be capable of
learning implicit positional information [19], and their context window size can be extended via the
adjustment of temperature hyper-parameters [20]. However, the above extension methods solely focus
on adapting positional encodings or attention scores, lacking a detailed analysis of the underlying
mechanisms of hidden states in LLMs.

In this work, we aim to investigate the inner working mechanism of LLMs within and beyond the
context window to interpret these context window extension approaches. As the basis, our work is
developed by analyzing the positional information implicitly encoded in the hidden states of LLMs
across various layers and positions, both within and outside the context window. Inspired by previous
work [21], we use a mean-based decomposition approach to disentangle positional vectors from the
hidden states, which captures the information independent of semantics but related to positions.

Specifically, we first investigate how positional information is formed and examine its impact on the
attention mechanism within the context window. Second, for inputs beyond the context window, we
analyze the change of positional vectors in two settings, i.e., direct extrapolation and context window
extension. Our key findings include: (1) After the first layer, initial tokens can form distinct positional
vectors, serving as anchors for shaping positional vectors in subsequent tokens; (2) Positional vectors
play a critical role in modulating the long-term decay and establishing attention sinks; (3) When
exceeding the context window, OOD positional vector is the major factor contributing to performance
degradation, while length extrapolation can effectively keep the consistency of positional vectors both
within and beyond the context window; (4) Context window extension methods enable interpolation
of positional vectors by adjusting the information flow from initial tokens to subsequent tokens.

Based on the empirical findings, we further propose two training-free context window extension
methods from the perspective of interpolating positional vectors: positional vector replacement
and attention window extension. For LLMs with NoPE, the former method replaces the positional
vectors in critical layers with interpolated ones; while for LLMs with window attention and NoPE,
the latter method directly scales the window size and adjusts the temperature hyper-parameter. We
evaluate the length generalization capacities of the proposed methods on PG-19 [22]. Experimental
results demonstrate that our methods can effectively generalize to longer texts without fine-tuning,
achieving comparable performance to previous methods.

Our main contributions are summarized as follows:

• We explicitly delineate the formation process and the effect of positional vectors, highlighting
the anchoring role of initial tokens in shaping different positional vectors across tokens and their
importance in achieving long-term decay and attention sinks.

• We are the first to unify length extrapolation and context window extension from the perspective
of positional vectors, identifying that preventing OOD positional vectors is crucial for avoiding
performance degradation.

• We propose two training-free context window extension methods via the lens of adjusting posi-
tional vectors, i.e.,positional vector replacement and attention window extension. Experimental
results show that our methods can effectively generalize to longer texts without fine-tuning.

2 Background

Transformer Decoder-only Transformer [4] has become the foundational architecture for LLMs [4,
8, 1]. For a Transformer with L layers and a context window size C, given an input sequence s of
T tokens, i.e., {x1, . . . , xT }, we denote the output of the l-th layer l as Hs

l = {hs
l,1, . . . ,h

s
l,T }. At

each layer, the output Hs
l is obtained through multi-head attention (MHA) and feed-forward network

(FFN) with residual connections applied to both components as follows:

H̃s
l = MHA(Hs

l−1) +Hs
l−1, Hs

l = FFN(H̃s
l ) + H̃s

l . (1)

Finally, the output of the last layer Hs
L is then projected into the logits, which will be used to generate

the prediction probability for each token in the vocabulary.

Positional Vector Previous work has found that positional information can be learned and encoded
in the hidden states of Transformers [19]. Drawing inspiration from prior work [21], we hypothesize
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that each hidden state (e.g., query, key, value, output of each layer) within Transformer can be
decomposed into two parts, i.e., a positional vector that captures positional information and a
semantic vector that captures the contextual information. Taking the output hs

l,t of the l-th layer at
t-th position as an example, it can be decomposed into a positional vector pl,t and a semantic vector
csl,t:

hs
l,t = pl,t + csl,t. (2)

Such a decomposition can disentangle two primary factors, namely positional and semantic vectors,
for interpreting the internal mechanism of LLMs. Notably, since positional vectors are globally
shared across different inputs, there is no superscript s for pl,t. Further, the positional vector pl,t can
be decomposed into a mean vector ul and a positional basis ml,t:

pl,t = ul +ml,t, (3)
where the mean vector ul denotes the mean of the distribution of positional vectors and the positional
basis ml,t denotes the offset of t-th position from the mean vector within the context window size C.
Following previous work [21], we adopt a mean-based decomposition method to obtain the above
three vectors based on N samples from the training corpus as follows:

pl,t =
1

N

N∑
s=1

hs
l,t, ml,t = pl,t −

1

C

C∑
t′=1

pl,t′ , csl,t = hs
l,t − pl,t. (4)

With this decomposition, it offers an explicit way to analyze and explore the positional information
encoded in the hidden states of Transformer models. For example, we can use similarity measurements
to compare the positional vectors of different positions and also can visualize them in low-dimensional
embedding space. In the following sections, we will mainly focus on studying the formation and
impact of the positional vector pl,t, and conduct the analysis experiments.

3 Empirical Analysis

3.1 Experimental Settings

To better analyze positional information, we consider model variants with different positional encod-
ings (PE) and attention mechanisms: variants without positional encodings (NoPE) [19] as well as
variants with two different positional encodings: RoPE [7] and ALiBi [6]. We continually pre-train
the TinyLlama-1.1B checkpoint [23] on 50B tokens from RedPajama [24] with a context window
C = 2048, resulting in a set of comparison models with different positional encodings and attention
mechanisms, as shown in the Table 1. Full attention means that each token can attend to all previous
tokens, while window attention restricts each token to attend only to previous tokens within a window
size W . The training details are described in Appendix A. We also evaluate common LLMs (e.g.,
Llama-3-8B) and LLMs without positional encodings trained from scratch, and the evaluated results
are listed in Appendix F.

Specifically, we subsample 32K samples with the same number of tokens from RedPajama. We
perform the inference on these data to obtain hidden states of LLMs. By using the mean-based
decomposition method (Eq. 4), we can obtain the positional vectors pl,t of tokens in these sample
texts.

Table 1: The compared model variants. Full attention is denoted as Full and window attention with a
window size of W tokens is denoted as Window (W ). We abbreviate TinyLLaMA as TL.

Model TL-NoPE TL-RoPE TL-ALiBi TL-Window TL-Window-80 TL-Window-RoPE

PE NoPE RoPE ALiBi NoPE NoPE RoPE
Attention Full Full Full Window (512) Window (80) Window (512)

3.2 Formation and Effect of Positional Vectors within Context Window

In existing LLMs, the bottom (first) layer typically takes as input token embeddings that lack inherent
positional information; while interestingly, the hidden states from top layers can implicitly capture
positional information, even without explicit positional encodings [19, 21, 14]. In order to have a
deep understanding of implicit positional information, we next investigate the formation and effect of
positional vectors in Transformers, with both full attention and window attention.

3



Figure 1: PCA visualization of positional vectors
from the 1-st and 7-th layers.
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Figure 2: Comparison of distinct positional
vectors and theoretical receptive field.

3.2.1 Formation of Positional Vectors with Full Attention

Positional Vector After the First Layer To study how positional information is distributed over
different positions, we first visualize the positional vectors p1,t (Eq. 4) decomposed from the outputs
of the first layer using principal component analysis (PCA). As shown in Figure 1 (left column),
initial tokens (e.g., ≤ 4 tokens) exhibit significantly distinct positional vectors, while the positional
vectors of subsequent tokens are similar to each other. As a comparison, we also present the PCA
results of all positional vectors at the 7-th layer. Interestingly, position vectors are evenly distributed
across all the positions in Figure 1 (right column). Such a finding indicates that position vectors have
captured the corresponding positional information since these vectors are distinct from each other
across positions. In other words, being distinct can be considered as a kind of positional evidence. By
comparing the left and right columns of Figure 1, it seems that only initial tokens are different from
the rest tokens after the first layer, which might suggest that after the first layer, initial tokens have
already formed distinct positional information but subsequent tokens have not yet established
such information. To investigate the reasons behind this phenomenon, we select the first attention
head in the first layer (similar to other heads) to analyze attention scores, as detailed in Appendix B.
We can prove that the positional vector p1,1 for the first token is different from the following tokens
and the attention scores affect the formation of positional information. Thus, through several layers,
the tokens after the first token will gradually form distinct positional vectors (Figure 1 right column).

Positional Information Flow From Initial Tokens By applying positional vectors at top layers
(PCA visualized in Appendix G), we find that after forwarding several layers, tokens at all positions
can also exhibit distinct positional vectors, and similar findings are also found in previous work [19].
To trace back to the source of positional information, a reasonable speculation is that initial tokens
play a key role in the formation of positional information for the rest tokens since only initial tokens
capture positional information after the first layer. To validate this, we select two groups of reference
tokens: initial tokens (1∼4) and secondary tokens (4∼256), and further analyze what information
of these tokens is critical for the formation of positional information in subsequent tokens (>256).
Thus, based on a top-down strategy, we conduct an ablation study for each group by respectively
deleting the value vs

l,t of attention module (w/o value), the semantic vector csl,t (w/o semantic vector),
positional vector pl,t (w/o positional vector), and positional basis ml,t (w/o positional basis). Then,
for each variant, we average the outputs of all layers and decompose new positional vectors based on
Eq. 4. Finally, we compute the average cosine similarity between the original and new positional
vectors for those subsequent tokens (>256) and also report PPL on samples in RedPajama. From
Table 2, we can see that removing the positional vector and basis of 1∼4 tokens largely affect the
positional vectors at later positions (low similarity). Conversely, removing the semantic vector or
altering secondary tokens has slight effects on both similarity and PPL. From these findings, we
conclude that the positional vectors of initial tokens seem to serve as the role of anchors, largely
contributing to the formation of positional information in subsequent tokens.
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Table 2: Results of removing different components in attention. Sim denotes the cosine similarity
between original and new positional vectors, and PPL denotes perplexity on RedPajama.

original w/o value w/o positional vector w/o positional basis w/o semantic vector
- 1∼4 4∼256 1∼4 4∼256 1∼4 4∼256 1∼4 4∼256

TL-NoPE Sim 1 -0.1558 0.9797 -0.1810 0.9086 -0.1817 0.9046 0.9985 0.9514
PPL 7.56 >1000 8.97 >1000 13.36 >1000 10.23 8.20 10.55

TL-RoPE Sim 1 0.8394 0.9902 0.8505 0.9874 0.1711 0.9944 0.9970 0.9596
PPL 6.06 11.98 6.44 12.28 6.24 >1000 6.11 6.63 6.85

Figure 3: Logarithmic attention maps of TL-RoPE, and TL-NoPE.

3.2.2 Formation of Positional Vectors with Window Attention

Unlike full attention, LLMs employing window attention restrict each token to attend only to tokens
within a window size. Previous work has shown that the maximum theoretical receptive field (TRF)
in window attention is equal to the product of the window size W and the layer index l [18].

To analyze how positional vectors change across layers, we compute the number of distinct positional
vectors within the maximum TRF. Notably, those tokens beyond the maximum TRF share the same
positional vectors due to translation invariance [18]. Specifically, we first randomly select a positional
vector outside the maximum TRF and then compute the cosine similarity between positional vectors
within the maximum TRF and the selected vector. We consider the positional vector with a similarity
score lower than a threshold (i.e., 0.99) as distinct. Figure 2 presents the number of distinct positional
vectors and TRF at each layer. We can see that after the first layer, only initial tokens show distinct
positional vectors, further verifying the findings in Section 3.2.1. As the layer increases, more tokens
display different positional information and the number of distinct positional vectors increases by
512 (a window size W ) with each additional layer. The reason is that due to the constraint of window
attention, each token at the preceding layer can only influence tokens within the window size at the
next layer. As being distinct indicates the formation of position information, similar positional
information flow from initial tokens to subsequent tokens also occurs for window attention, but
gradually propagating across both windows and layers.

3.2.3 Effect of Positional Vectors on Attention

After discussing the formation of positional vectors, we explore their impact on the attention module,
mainly focusing on the attention scores. We first extract queries and keys from each head in all layers,
and then compute the average attention scores in the following four settings, including (1) original:
the original model, (2) w/o semantic vector: removing the semantic vectors of keys and queries, (3)
w/o positional vector: removing the positional vectors of keys and queries, (4) w/o positional basis:
removing the positional basis of keys and queries. Figure 3 presents the logarithmic attention scores
for the first 100 tokens in the first head and fifth layer (similar results in many other heads and layers).
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Figure 4: Left: The average PPL across positions during direct extrapolation. Right: The maximum
cosine similarity between positional vectors within and beyond context window during extrapolation.

Effect of Positional Vectors on Attention Sinks Previous work has found that the initial tokens
will be assigned high attention scores, called “attention sinks” [15], which can be clearly observed
in Figure 3. However, once the positional vector or positional basis is removed from the keys and
queries, the attention scores between initial tokens and other tokens drop significantly for TL-NoPE
and TL-RoPE. This finding suggests that the presence of attention sinks is likely attributed to the
inherent positional information in the positional vectors of initial tokens.

Effect of Positional Vectors on Long-term Decay For long texts, the attention scores of LLMs
often exhibit a long-term decay pattern, which means that the score decreases as the relative distance
between tokens increases [7, 6]. However, as shown in Figure 3, when removing the positional
vector or positional basis, TL-NoPE fails to exhibit long-term decay. Even with explicit relative
positional encoding, the distribution of attention scores in TL-RoPE tends to be smooth after removing
decomposed positional vectors. Therefore, positional vectors also play a crucial role in the long-
term decay property of attention scores.

3.3 Effect of Positional Vectors beyond Context Window

Typically, when dealing with texts that exceed the context window, there are two lines of research,
i.e., direct extrapolation and context window extension. In this section, we aim to investigate the
change of positional vectors in these two methods for revealing their effectiveness.

3.3.1 Direct Extrapolation

Relationship Between Positional Vectors and Length Extrapolation Ability To examine the
impact of positional vectors in direct extrapolation, we reuse the trained model variants in Table 1
to perform inference on samples consisting of 8192 tokens. Further, we analyze the change in PPL
score and the maximum cosine similarity between positional vectors within and beyond the context
window. As shown in Figure 4 Left, only TL-Window-RoPE and TL-Window-80 demonstrate the
length extrapolation ability, maintaining stable PPL across longer texts. These models can preserve
the consistency of positional vectors both within and beyond the context window (high similarity in
Figure 4 Right). Conversely, the rest models, including those with extrapolated positional encodings
or window attention (e.g., TL-ALiBi), struggle to generalize to longer contexts. Notably, these
models exhibit rapid changes in positional vectors (beyond 2048), diverging from the distributions
observed within the context window. Thus, our findings underscore the critical role of the stability
of positional vectors in enhancing the capability for length extrapolation.

Effect of OOD Positional Vectors Beyond the context window, position vectors are not encountered
during training and are out-of-distribution from those vectors within the context window. To explore
whether OOD positional vector is a key factor in performance degradation, we select TL-NoPE
for evaluation, which does not use explicit positional encodings. First, we compare the attention
distribution within and beyond the context window. Figure 5 shows the attention map and scores
between initial and rest tokens by averaging all heads of the 5-th layer (similar results in other layers).
Once exceeding the context window (T = 2048), the attention distribution in these positions changes
sharply, losing the characteristics of attention sinks and long-term decay. Since these properties
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highly depend on the positional vectors within the context window, we speculate that OOD positional
vectors disrupt the original attention distribution. Besides, we feed the positional vectors of
the last layer into the linear projection of the softmax layer to get the logits at different positions.
Figure 5 (Right) presents that the logits within the context window are tightly similar while others
show different distributions. Thus, the OOD positional vectors can damage the token prediction
probability distribution, thereby leading to performance degradation.

30

25

20

15

10

5

0
0 1000 2000 3000 4000

Position id

0

500

1000

1500

2000

2500

3000

3500

4000

Po
sit

io
n 

id

Logarithmic Attention Map

0 1000 2000 3000 4000
Position id

0.0

0.2

0.4

0.6

0.8

1.0

At
te

nt
io

n 
Sc

or
e

Attention Scores on Initial Token

0 1000 2000 3000 4000
position id

0

500

1000

1500

2000

2500

3000

3500

4000

po
sit

io
n 

id

Similarity of Logits

Figure 5: Left: Attention map of TL-NoPE. Middle: Attention Scores between initial token and
others in TL-NoPE. Right: Similarity of logits of positional vectors across positions in TL-NoPE.

Table 3: The interpolation results of positional vectors, where Factor (= Target Length/C) is the
expansion factor of the context window, Ratio is the effective interpolation ratio of positional vectors
(detailed in Appendix C), and Similarity is the average cosine similarity between the scaled positional
vector and the original most similar positional vector by averaging all layers.

Model Method Target Length Factor Ratio Similarity PPL/∆PPL

TL-NoPE

Attention Scaling (λ = 1.2) 4096 2 2.56 0.98 8.95/+1.42
Attention Scaling (λ = 1.3) 8192 4 4.30 0.94 17.87/+10.34
Initial Scaling (λ = 1.2) 4096 2 2.38 0.97 9.82/+2.29
Initial Scaling (λ = 1.3) 8192 4 4.10 0.91 32.78/+25.25

TL-RoPE Dynamic NTK 4096 2 2.05 0.99 6.00/-0.02
Dynamic NTK 8192 4 3.75 0.96 6.78/+0.76

3.3.2 Context Window Extension

Change of Positional Vectors When Extending Context Windows To investigate why context
window extension can prevent performance degradation, we analyze the change of positional vectors
in two training-free context window extension methods, including dynamic-NTK [11] for TL-RoPE
and attention scaling (qikj multiplied by a scaling factor λ) [20] for TL-NoPE. From Figure 6,
we can see that after context window extension, positional vectors have undergone interpolation
compared to the original ones. Comparing the Factor and Ratio metrics in Table 3, we conclude that
the effective interpolation ratio is close to the expansion factor (e.g., 2 vs 2.56). Besides, as the
expansion factor increases, there is a decrease in Similarity and an increase in PPL. Therefore, we
suspect that imperfect interpolation may be a major reason for the decline in model performance.
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Effect of Initial Tokens on Context Window Extension Since the initial tokens serve as the anchor
for the formation of subsequent positional vectors, we evaluate whether changing the information
flow from the initial tokens to the rest tokens can achieve the interpolation effect. To avoid the effect
of OOD positional encodings, we follow the attention scaling method on TL-NoPE but only scale the
attention logits between the initial tokens and others, denoted as Initial Scaling. As shown in Table 3,
it can achieve comparable performance and interpolation ratios closer than scaling all attention logits
in Attention Scaling (e.g., 2.38 vs 2.56), further underscoring that the interpolation of positional
vectors is mainly achieved by adjusting the information flow of anchor tokens.

4 Extending Context Window via Positional Vectors

Inspired by our analysis of the formation of positional vectors and the interpolation of positional
vectors when extending the context window, we propose two training-free context window extension
methods, i.e., positional vector replacement and attention window extension. The pseudocode of
these methods can presented in Appendix E.

4.1 Positional Vector Replacement

In Section 3.2.3, we show that when exceeding the context window, the OOD positional vectors tend
to cause the collapse of attention distribution. Further, we observe that context window extension
methods can achieve length interpolation of positional vectors and the effective interpolation ratio is
close to the expansion factor of the context window. Thus, we propose to replace all the implicitly
learned positional vectors with the interpolated ones, called positional vector replacement, to avoid
the OOD issue in LLMs without positional encodings (NoPE).

Specifically, we linearly interpolate the positional vectors within the context window with an in-
terpolation ratio r and multiply the interpolated ones with a times α (≥ 1). In practice, we find
that properly increasing the interpolation ratio r and times α can achieve better effectiveness of
interpolation (details are discussed in Appendix D). Owing to the critical role of initial tokes, the
positional vectors of the first four tokens remain unchanged, while those of subsequent tokens are
replaced with the interpolated vectors. The replaced output ĥl,t for each layer can be formulated as:

ĥl,t = hl,t − pl,t + αp̂l,t, (5)
{p̂l,5, . . . , p̂l,r(C−4)+5} = Interpolation({pl,5, . . . ,pl,C}), (6)

where C, l, and s represent the original context window size, replaced layer, and interpolation ratio.
Since replacing positional vectors for all layers requires heavy recalculation efforts and the positional
information is passed across layers, we only apply the replacement strategy to a single early layer.
We find that the 4-th layer is the optimal layer for replacement in TL-NoPE, as shown in Figure 8.

4.2 Attention Window Extension

As discussed in Section 3.2.2, the positional vectors are shaped across layers and windows by the
distinct positional information of initial tokens. Inspired by these observations, we propose attention
window extension, the first training-free length interpolation method for window attention-based
LLMs without positional encodings. The core idea is to extend the attention window size to control
the formation of positional vectors. When scaling the context window by a ratio, the window size also
needs to be extended by the same interpolation ratio r. However, for positions in the extended first
window {W + 1, . . . , rW}, their position vectors are OOD. To avoid this, we follow the attention
scaling method [20] and scale the attention logits with a scaling factor λ, achieving better interpolation
of positional vectors. We define the attention score aij between query qi ∈ RDH and key kj ∈ RDH

for any heads and layers as:

aij =
exp(λqikj/

√
DH)∑i

z=i−rW exp(λqikz/
√
DH)

. (7)

4.3 Results on Language Modeling

To assess the effectiveness of our proposed methods, we evaluate language modeling performance
on the test set of PG-19 [22]. In line with previous work [6], we measure PPL across various input
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Table 4: Results of language modeling in PG-19. The context window size C is 2048.
Model Interpolation Method Factor 2K 4K 6K 8K

TL-RoPE
- - 10.17 > 103 > 103 > 103

Dynamic NTK - 10.17 10.45 11.28 28.58

TL-NoPE

- - 11.92 > 103 > 103 > 103

Attention Scaling λ = 1.2 17.03 17.05 54.26 > 103

λ = 1.3 32.07 43.84 51.50 46.59

Positional Vector Replacement
(ours)

r = 2, α = 1.1 13.54 15.58 - -
r = 5, α = 1.3 28.15 47.65 49.79 73.79

TL-Window
- - 12.86 713.51 660.30 660.51

Attention Window Extension
(ours)

r = 2, λ = 1.1 13.70 14.10 - -
r = 4, λ = 1.2 17.23 31.66 29.27 29.30

lengths (from 2K to 8K) using a sliding window approach. We apply positional vector replacement
to TL-NoPE and attention window extension to TL-Window. All the hyper-parameters are selected
according to the PPL and the change of positional vectors across layers. For compared baselines, we
select Dynamic-NTK [11] for TL-RoPE and Attention Scaling [20] for TL-NoPE.

The results are shown in Table 4. First, without interpolation, the PPL increases extremely after
beyond the context window (e.g., > 103). When using the positional vector replacement or attention
window extension methods, we observe that PPL decreases substantially, showing the effectiveness
of our proposed methods. Compared to attention scaling, our attention window extension method
successfully extends the context window to 8K tokens with lower PPL. Moreover, our positional vector
replacement method achieves similar performance to attention scaling within 6K tokens but shows
increased PPL at 8K. We attribute this phenomenon to the decreasing effective interpolation ratio
across layers, as shown in Figure 9. Additionally, an increase in PPL with the rising interpolation ratio
r is also observed in both our methods, likely due to imperfect interpolation of positional vectors.

5 Related Work

Position Information in Transformers Positional information was crucial in Transformer-based
LLMs, to enhance the sequence modeling abilities. The vanilla Transformer introduced absolute
positional encodings, using a unique embedding to each position and adding it to the corresponding
input embedding [4]. In contrast, relative positional encodings introduced biases based on the relative
distance between tokens within attention modules [25–27, 6, 7]. Besides explicit positional encodings,
some work investigated the implicit positional information within hidden states of Transformers.
Even without positional encodings, positional information was found in hidden states of Transformer
decoders [19, 28, 29]. Besides, prior work decoupled positional basis from hidden states in Trans-
formers and analyzed geometric properties [21]. Our work mainly explores positional information
embedded in the hidden states of LLMs, examining the formation and impact of positional vectors,
and using it to analyze the mechanism of context window for LLMs.

Extending Context Window LLMs were often constrained by pre-defined context windows.
When processing inputs that exceed these windows, models typically encountered OOD issues,
leading to significant performance degradation. To meet the growing demands of long context
tasks [30, 31], various methods were proposed to address this limitation and model longer texts,
which can be roughly categorized into length extrapolation and context window extension [32].
Length extrapolation techniques aimed to maintain stable PPL regardless of text length by designing
specialized positional encodings or window attention mechanisms [6, 17, 18, 15, 14]. Conversely,
context window extension methods focused on extending the context window of existing models
by adapting positional encodings or temperature hyper-parameters, thereby enlarging the context
window with minimal performance loss [13, 12, 16, 20, 11, 10]. This paper bridges the concepts of
length extrapolation and context window extension through the lens of positional vectors, enhancing
the interpretability of context windows in LLMs.

9



6 Conclusion

In this work, we explored the inner working mechanism of LLMs within and beyond the context
window via decomposed positional vectors. We found that the initial tokens initially present different
positional information and serve as anchors for shaping the positional vectors of subsequent tokens.
Besides, after exceeding the context window, length extrapolation methods maintain the stability of
positional vectors, while context window extension methods achieve the interpolation of positional
vectors. Based on our observations, we proposed two methods: positional vector replacement and
attention window extension, which achieve training-free context window extension for specific LLMs.
We believe that positional vectors will serve as an effective tool for analyzing the context window of
LLMs and promote the design of better algorithms for extending the context windows of LLMs.

7 Limitation

Our work provides an extensive discussion and analysis of the context window through the lens
of positional vectors. However, our study is mainly constrained by the use of small-scale LLMs
that we trained ourselves, due to the unavailability of existing LLMs with the specific positional
encodings and attention patterns required for our experiments. Though some mainstream LLMs are
evaluated, these models are all based on RoPE. Furthermore, we have demonstrated the effectiveness
of our proposed methods solely on our own models, again limited by the absence of suitable external
models. In future work, we aim to seek a broader range of models to validate our findings more
comprehensively.
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A Training and Experimental Details

We continue pre-training all our models from the TinyLlama3 [23] checkpoint on the RedPajama [24]
dataset. All models undergo the same training process, with differences only in their positional
encoding and attention patterns. Each model is trained on 16 A800 GPUs over two days. Detailed
training parameters are provided in Table 5.

Table 5: Training Details of Models.
Training Data RedPajama [24]
Tokens 50B
Parameters 1.3B
Context Window Size 2048
Decay style cosine
Learning Rate 2e-5
Min Learning Rate 1e-6
Optimizer AdamW(0.95,0.9)
Warmup Steps 3000
Batch size 48
Gradient clipping 1.0

In addition, all the subsequent experiments are computed in 8 A800 GPUs.

B The Positional Vectors After the First Layer

Though previous work [29, 28] have proven that implicit positional information can be encoded in
hidden states after one attention module, they only set the attention logits are equal regardless of
queries and keys, which does not hold in actual Transformers. In this section, we demonstrate the
preference in attention scores promotes the formation of different positional information in the initial
tokens.

B.1 Details

For the s-th sample in the corpus, we denote vs
1,i, ĥ

s
1,i as the value and output of the first attention

head and the first layer at position i, and asi,j as the attention score between position i and position
j. We also denote p̂1,i as the positional vector of the attention output, and uv as the mean vector of
values. The positional vector can be represented as the formula:

p̂1,1 =
1

N

N∑
s=1

ĥs
1,1 =

1

N

N∑
s=1

vs
1,1 = uv (8)

p̂1,i =
1

N

N∑
s=1

ĥs
1,i =

1

N

N∑
s=1

i∑
j=1

asi,jv
s
1,j (9)

For the first token, the output is equal to the value of itself, so the positional vector is equal to the
mean of values. In addition, When asi,j = 1/i, positional information of all positions is equal as
follows:

p̂1,i =
1

N

N∑
s=1

i∑
j=1

1

i
vs
1,j =

1

i

i∑
j=1

1

N

N∑
s=1

vs
1,j =

1

i

i∑
j=1

uv = uv. (10)

However, due to the preferences in attention scores, values that can be decomposed into more vector
p̂1,i − uv will be assigned larger weights, making the positional information of the following tokens
differ from the beginning token. In summary, the preferences of attention scores force the formation
of different positional vectors of the following tokens with the initial ones.

3https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
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B.2 Proof of Preference in Attention Scores

Following previous work [28], we only focus on a single attention head in the first layer with specific
weights. In our parameterization, we only consider the first two dimensions. We demonstrate the
capacity of causal Transformers to learn this capacity with either NoPE or RoPE.

In our settings, the Transformer has H attention heads in each layer and the word embedding matrix
is WE ∈ RD×V , where D is the dimension of the hidden states and V is the number of vocabulary.
We set that the first dimension in word embedding conforms to normal distribution N (0, 1), (i.e.,
e1,t ∼ N (0, 1),∀t ∈ {1, . . . , V }), while the second dimension is 1. Other dimensions are arbitrary
values. Thus, the word embedding matrix WE is:

WE =


e1,1 e1,2 e1,3 . . . e1,V
1 1 1 . . . 1

e3,1 e3,2 e3,3 . . . e3,V
...

...
...

. . .
...

eD,1 eD,2 eD,3 . . . eD,V


D×V

(11)

Next, we set the projection matrix of query, key, and value as WQ, WK , WV of the first layer and
first head of Transformers.

WQ =


0 1 . . . 0
0 1 . . . 0
...

...
. . .

...
0 1 . . . 0


D
H ×D

,WK =


1 0 . . . 0
1 0 . . . 0
...

...
. . .

...
1 0 . . . 0


D
H ×D

,WV =


1 0 . . . 0
1 0 . . . 0
...

...
. . .

...
1 0 . . . 0


D
H ×D

.

(12)
WK make sure that only the first dimension will be considered in attention scores. WQ transfers the
second dimension in the input to the first dimension. For Transformers without positional vectors
(NoPE), the attention logits for each key at position i is asi,j = e1,si . Thus, the vectors with large
first dimensions will be assigned with large attention logits, which proves that the model without
positional vectors can learn to preference some values regardless of the query.

For Transformer with RoPE, we assume that the first two dimensions correspond to the basis of the
rope with a value of 1/10000 and the maximum context window size is 2048. Thus, for the largest
relative distance i− j, the rotation angle is smaller than π

2 . Thus, the attention score can be represent
as asi,j = e1,si cos ((i− j)/10000). Thus, the attention logits will be larger than zero only if the first
dimension of the key is larger than zero. In addition, for the same relative distance, keys with larger
first dimensions have large attention logits. Thus, keys with positive values in the first dimension will
be assigned greater attention weights.
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Figure 7: The values of first elements of the output of single head attention due to attention preferences
in Transformers with NoPE and RoPE.

We also experimentally examine the first element of the output at different positions. With the
above settings, we generate 10000 sequences with a length of 2048 from this distribution. Then,
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Figure 8: Changes of PPL with replacement
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Figure 9: Effective scaling factors of posi-
tional vectors at each layer.

we compute the averaged first element of each hidden state after attention in the first layer and
head, which represents the positional vectors at that position for both NoPE and RoPE. As shown in
Figure 7, the first element of the output increases fast at initial positions. Here, we can observe that
the attention preferences make the first element of the output increase fast at the initial positions and
tend to stabilize at a later position, further proving the different positional vectors of following tokens
from the initial ones.

In summary, Transformers with either NoPE or RoPE can learn preference in attention score. In
addition, the preference in attention scores forces the different positional vectors of the subsequent
tokens with the initial tokens.

C Defination of Effective Interpolation Ratio

Given a Transformer with a context window size C. For samples with length C ′(C ′ > C), we disen-
tangle positional vectors {pl,1, . . . ,pl,C′}. Subsequently, we employ a context window extension
method and re-compute the position vectors {p′

l,1, . . . ,p
′
l,C′}. We first define the corresponding

position indices f(p′
l,t) for positional vector after extension p′

l,t) as the indices of the most similar
positional vectors before extension:

f(p′
l,t) = arg max

1≤i≤C′

pT
l,ip

′
l,t

∥pl,i∥∥p′
l,t∥

. (13)

Then, the effective interpolation ratio r′ can be represented as the ratio between the maximum indices
of position vectors after extension whose corresponding position indices are the context window size
C, as shown in Equation 14.

r =
argmax1≤t≤C′(f(p′

l,t) = C)

C
. (14)

D Analysis of Positional Vector Replacement

D.1 Optimal Replacement Layer

Replacing positional vectors for all layers requires heavy recalculation efforts, so we only select
one critical layer to apply the replacement strategy. We evaluate the performance (logarithmic PPL
score) of our replacement strategy at each layer in TL-NoPE, using different interpolation ratios
and expansion factors, i.e.,(r = 4, α = 1) and (r = 5, α = 1.2), on samples with 8K tokens from
RedPajama. As shown in Figure 8, the PPL is the lowest when replacing the 4-th layer of TL-NoPE.
Thus, we choose the 4-th layer for replacement in TL-NoPE in other experiments.

D.2 Effective Interpolation Ratio

We further examine the effective interpolation ratio of positional vectors with different settings. In
our setting, we only replace the positional vectors in the 4-th layer of TL-NoPE with interpolated

16



positional vectors in four settings on samples with 8K tokens from RedPajama: (1) r = 4, α = 1, (2)
r = 5, α = 1, (3) r = 4, α = 1.3, (4), r = 5, α = 1.3.

Figure 9 presents the effective interpolation ratio in each layer. As the layer increases, the effective
interpolation ratio decreases as the layer increases. When the interpolation ratio is equal to the
expansion factor of the context window, i.e., r = 4, the effective interpolation ratio is unavoidably
smaller than the expansion factor, leading to degraded performance. In addition, multiplying the
interpolated positional vectors with a larger times e.g., α = 1.3, alleviates the decrease of effective
interpolation ratio across layers. Thus, we suggest to properly increase the interpolation ratio r and
times α.

E Pseudo Code

E.1 Positional Vector Replacement

For Positional Vector Replacement, we give the implementation with Pytorch code in Algorithm 1,
which can be inserted after the output of the selected layer.

Algorithm 1 PyTorch-style Pseudocode of Positional Vector Replacement
h, p # hidden states, positional vectors
T, layer, s, alpha # context window size, interpolation ratio, selected layer, scaling factor of positional
vectors.

h[:,4:] -= p[layer, 4:h.shape[1]].unsqueeze(0)
# removing original positional vectors.

interpolated = torch.nn.functional.interpolate(p[layer, 4:T].transpose(0,1).unsqueeze(0), size
= int(T*s), mode = ’linear’, align_corners=True).transpose(1,2)
# Linear interpolation of positional vectors.

h[:,4:] += alpha*interpolated[:,:h.shape[1]-4]
# Replacing with new positional vectors.

E.2 Attention Window Extension

For attention window extension, we give the implementation with Flash-Attention-2 [33] in Algo-
rithm 2.

Algorithm 2 PyTorch-style Pseudocode of Attention Window Extension
query, key, value, attn_output # queries, keys, values, and output in the attention model
W, lambda, s # original window size, scaling factor of attention logits, window extension factor
flash_attn_varlen_func # attention function in flash attention 2.

new_window = W*s # extended window size

attn_output = flash_attn_varlen_func( query, key*lambda, value, ..., window_size = (new_window,
new_window) )

F Results of Additional LLMs

To ensure a fair comparison of positional vectors across various attention mechanisms and positional
encodings, we conducted continual pre-training using TinyLlama under consistent settings. However,
TinyLlama is a relatively small language model with suboptimal performance and continual pre-
training may result in positional vectors exhibiting properties distinct from those obtained through
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Figure 10: PCA visualization of positional vectors from the 1-st layer of Llama-3-8B, Qwen1.5-7B,
Yi-9B, and TL-NoPE-new.

training from scratch. Therefore, we selected three mainstream LLMs: Llama-3-8B [34], Yi-9B [35],
and Qwen1.5-7B [36], for comparison. Additionally, we trained a new LLM, TL-NoPE-new, from
scratch under the same conditions as TL-NoPE. In a similar vein, we extracted positional vectors
using 32K samples from the RedPajama dataset.

F.1 Formation of Positional Vectors within Context Window

Through principal component analysis (PCA), we first visualize the positional vectors from the initial
layer of these LLMs, as illustrated in Figure 10. Consistent with our expectations, the initial tokens
exhibit distinct positional information, while the subsequent tokens display a high degree of similarity.
This observation supports the conclusion that the first-layer attention mechanism makes the initial
tokens form unique positional information, as discussed in Section 3.2.1.

Furthermore, we remove different components of the value vectors at different positions across all
attention heads after the first layer. We then evaluate the impact of these modifications on both the
positional vectors and the perplexity (PPL). As shown in Table 6, removing the positional basis of the
initial tokens significantly degrades the model’s performance. Conversely, removing the components
from subsequent tokens has a relatively smaller effect, highlighting the pivotal role of initial token
positioning in influencing later tokens. However, we observe that larger LLMs are more attuned to
semantic information and less affected by the removal of positional vectors compared to smaller
LLMs.

Table 6: Results of removing different components in attention.
original w/o value w/o positional vector w/o positional basis w/o semantic basis
- 0∼4 32-256 0∼4 32∼256 0∼4 32-256 0∼4 32-256

simi 1 0.75 0.9995 0.75 0.9583 0.2059 0.9997 0.9259 0.8666Llama-3 ppl 6.74 16.27 6.63 17.20 8.4 >1000 6.60 17.6 15.18

simi 1 0.98 0.9999 0.92 0.9998 0.5368 1 0.91 0.9996Yi-9B ppl 7.08 8.03 6.56 37.92 6.62 >1000 6.52 42.271 7.08

simi 1 0.98 0.9997 0.9847 0.9986 0.7382 0.9993 0.9998 0.9951Qwen-1.5-7B ppl 7.97 9.51 8.03 9.51 8.04 217.13 7.98 8.09 8.68

simi 1 0.70 0.95 0.69 0.95 0.41 0.93 0.99 1.0TL-NoPE-new ppl 11.03 224.74 22.36 263.53 20.91 >1000 21.78 11.66 12.699

F.2 Effect of Positional Vectors on Attention

In line with the experiments conducted in Section 3.2.3, we extract various components from the keys
and queries to assess their impact on attention scores. The attention maps for the first 50 tokens are
illustrated in Figure 11. When both the positional vectors and positional basis are removed, attention
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Figure 11: Logarithmic attention maps of Llama-3-8B, Qwen1.5-7B, Yi-9B, and new TL-NoPE.

sinks disappear, and long-term decay is observed, which is consistent with the behavior seen in
TinyLlama.

F.3 Effect of Positional Vectors Beyond Context Window

Table 7: Resuls of PPL and change of positional vectors during direct extrapolation.
model context window(C) PPL(C) PPL(2C) Simi(2C)

Llama-3-8B 8192 6.74 >1000 0.30
Yi-9B 4096 7.08 102.58 0.24
TL-NoPE-new 2048 11.75 351.49 0.71

Table 8: Change of attention sinks and output logits beyond context window.
model context window (C) property 0∼C C∼1.5C 1.5C∼2C

attention sink 0.467 0.1 0.005Llama-3-8B 8192 logits similarity 1 0.9 0.88

attention sink 0.68 0.344 0.056Yi-9B 4096 logits similarity 1 0.98 0.97

attention sink 0.17 0.02 0.0006TL-NoPE-new 2048 logits similarity 1 0.97 0.9

We investigate the behavior of positional vectors under direct extrapolation scenarios. Specifically,
we evaluate LLMs on sequences twice the length of their maximum context window, comparing
the variations in PPL and positional vectors. The results, as shown in Table 7, indicate a sharp
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increase in PPL once the context window is exceeded. Additionally, the similarity between positional
vectors within and beyond the context window decreases, highlighting the relationship between length
extrapolation and the stability of positional representations.

Furthermore, we assess the impact of OOD positional vectors. We analyze the attention scores
of initial tokens and the positional vectors of output logits within and beyond the context window.
As demonstrated in Table 8, exceeding the context window results in the loss of the attention
sinking property, and the positional vectors of the logits exhibit a different distribution compared to
those within the context window. This suggests that OOD positional vectors influence the model’s
distribution. Moreover, OOD positional encodings play a crucial role in large language models
(LLMs) that leverage RoPE [15].

F.4 Experiments of Positional Vector Replacement

To assess whether our positional vector replacement method is specific to TL-NoPE, we applied it to
TL-NoPE-new, which was trained from scratch. We evaluated its language modeling performance
on the PG-19 dataset, using the same experimental setup as TL-NoPE. As shown in Table 9, our
approach effectively extends the context window to 8K tokens and achieves performance comparable
to attention scaling.

Table 9: Results of language modeling in PG-19 with TL-NoPE-new
Interpolation Method Factor 2048 4096 6144 8192

- - 29.0 110.7 634.8 1078.5

1.2 29.0 27.3 - -Attention Scaling 1.5 36.8 41.6 44.4 46.2

r=2.5,α=0.8 32.8 29.5 - -Positional Vector Replacement(ours) r=5, α=0.8 57.4 50.8 40.0 44.2

G Visualization of Positional Vectors

We visualize all models listed in Table 1 with PCA. The subsequent figures present the visualization
of TL-NoPE, TL-RoPE, TL-ALiBi, TL-Window, TL-Window-RoPE, and TL-Window-80.

0 250 500 750 1000

100

0

100

200

300

400

500

600
Layer 1

50 25 0 25 50 75
25

0

25

50

75

100

125

150

175
Layer 2

50 0 50 100
0

200

400

600

800

1000

1200
Layer 3

40 20 0 20 40 60

50

25

0

25

50

75

100

Layer 4

40 20 0 20 40

50

25

0

25

50

75

100

Layer 5

40 20 0 20 40

50

0

50

100

150

Layer 6

40 20 0 20 40

50

0

50

100

150

Layer 7

40 20 0 20 40

75

50

25

0

25

50

75

100
Layer 8

40 20 0 20 40

75

50

25

0

25

50

75

Layer 9

40 20 0 20 40
80

60

40

20

0

20

40

60

80
Layer 10

40 20 0 20 40

75

50

25

0

25

50

75

100
Layer 11

40 20 0 20 40 60
60

40

20

0

20

40

60

80

Layer 12

40 20 0 20 40 60

20

0

20

40

60

80

100
Layer 13

40 20 0 20 40 60

20

0

20

40

60

80

Layer 14

40 20 0 20 40 60

20

0

20

40

60

80

Layer 15

50 25 0 25 50

20

0

20

40

60

80

Layer 16

50 25 0 25 50

20

0

20

40

60

80

Layer 17

50 25 0 25 50

20

0

20

40

60

80

Layer 18

50 25 0 25 50

20

0

20

40

60

80

Layer 19

50 25 0 25 50

20

0

20

40

60

80

Layer 20

50 25 0 25 50

20

0

20

40

60

80

Layer 21

Figure 12: PCA visualization of positional vectors at different layers of TL-NoPE.
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Figure 13: PCA visualization of positional vectors at different layers of TL-RoPE.
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Figure 14: PCA visualization of positional vectors at different layers of TL-ALiBi.
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Figure 15: PCA visualization of positional vectors at different layers of TL-Window.
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Figure 16: PCA visualization of positional vectors at different layers of TL-Widow-RoPE.
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Figure 17: PCA visualization of positional vectors at different layers of TL-Window-80.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We only provide the Pytorch implementation of our methods in the Appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the training details in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not provide this.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper respect with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite existing papers and url.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: The models trained by us can not be launched. However, we give the details of
training these models.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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