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Figure 1. Living Scenes. A living scene is a 3D environment with multiple moving objects that evolves over time. (a) Two temporal
observations (scans) represent the scene at times (t1, t2) and capture the objects having moved around. To understand the change in the
scene, given instance segmentation, we (b) match object point clouds from t1 and t2 that belong to the same instance; (c) register and
reconstruct the matches through our joint optimization, (d) accumulate all point clouds per instance from the multiple temporal scans,
improving the registration and reconstruction quality over time. We illustrate on two scans for simplicity.

Abstract

Research into dynamic 3D scene understanding has pri-
marily focused on short-term change tracking from dense
observations, while little attention has been paid to long-
term changes with sparse observations. We address this
gap with MORE2, a novel approach for multi-object relo-
calization and reconstruction in evolving environments. We
view these environments as “living scenes” and consider
the problem of transforming scans taken at different points
in time into a 3D reconstruction of the object instances,
whose accuracy and completeness increase over time. At
the core of our method lies an SE(3)-equivariant represen-
tation in a single encoder-decoder network, trained on syn-
thetic data. This representation enables us to seamlessly
tackle instance matching, registration, and reconstruction.
We also introduce a joint optimization algorithm that facil-
itates the accumulation of point clouds originating from the
same instance across multiple scans taken at different points
in time. We validate our method on synthetic and real-world
data and demonstrate state-of-the-art performance in both
end-to-end performance and individual subtasks. [project]

1. Introduction
3D scene reconstruction serves as the foundation for numer-
ous applications of computer vision and robotics, such as
mixed reality, navigation, and embodied perception. Many
of these applications involve the repeated execution of sim-
ilar tasks, such as cleaning or searching objects, within a
given environment. Consequently, they would benefit from
an integrated understanding of the environment, accumu-
lated over multiple 3D scans acquired at different points in
time. Such a cumulative scene understanding can enhance
interaction with scene objects by progressively improving
their geometric completeness and accuracy over time – es-
pecially when previously unseen parts are unveiled – and
could help to develop a foundational understanding of ob-
jects’ relocation within the environment. Progressively ac-
quiring a cumulative scene understanding, characterized by
increasing geometric completeness and accuracy of con-
stituent objects, can be framed as multi-object relocaliza-
tion and reconstruction. In this context, object relocaliza-
tion refers to estimating the 6DoF motion that an object has
undergone between two scans, relative to the scene back-
ground. This resonates with efforts in dynamic scene un-
derstanding. The bulk of previous research focused on real-
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time observation of dynamic scenes [22, 31, 65], where ob-
ject relocalization boils down to tracking [4, 14, 31, 37].
Fewer works address the long-term dynamics of 3D scenes
[1, 56, 62], where sensor data cannot be captured constantly
but rather at irregular points in time. Due to the long gaps
between captures, modeling the objects’ intermediate mo-
tions is infeasible. Alternative methods [62] solve relocal-
ization via point or object matching, followed by object-
wise registration [21, 50]. Jointly tackling relocalization
and reconstruction [13, 36, 41] over time has been largely
overlooked. As we will show in Sec. 4, using separate meth-
ods for each task tends to yield increased errors.

To bridge this gap, we introduce MORE2, a method for
multi-object relocalization and reconstruction of evolving
environments over long time spans and from sparse obser-
vations, aiming to create a living scene. This draws inspi-
ration from the concept of living building information mod-
els1 [29], which treats buildings as living organisms and as-
pires to maintain their digital twins throughout their lifes-
pan. As shown in Fig. 1(a), our approach takes as input
multiple 3D point clouds, acquired at different times and
segmented into instances. It addresses the creation of a liv-
ing scene by solving three connected tasks, namely: match-
ing (Fig. 1(b)), registering (Fig. 1(c) top), and reconstruct-
ing (Fig. 1(c) bottom) all instances. With a single encoder-
decoder network trained on synthetic data, our method is
able to solve these tasks for real-world scans. At its heart
lies an SE(3)-equivariant representation. Additionally, we
introduce an optimization scheme that facilitates the accu-
mulation of point clouds originating from the same instance
but different scans (Fig. 1(c)). We evaluate MORE2 on two
long-term living scene datasets, a synthetic one that we gen-
erate using 3D object models from ShapeNet [7] and the
real-world 3RScan [62], and achieve state-of-the-art perfor-
mance for both the end-to-end system and each of its sub-
tasks. Our contributions are:
1. A new object-centric formulation of parsing an evolving

3D indoor environment as a living scene. It involves in-
stance matching, relocalization, and reconstruction.

2. A novel compact object representation that simultane-
ously tackles all three tasks. It can generalize to real
scenes while being trained on synthetic data only.

3. A joint optimization algorithm that progressively im-
proves the performance of the point cloud registration
and reconstruction as more data are accumulated.

2. Related Work
Dynamic point cloud understanding. Dynamic scenes
mainly consist of multiple moving instances and a static
background. Modeling such complex environments usu-

1A building information model is a digital representation of a building
in terms of semantically meaningful building parts, including their geom-
etry, attributes, and relations.

ally starts with estimating the per-point motion – i.e.,
scene flows [32, 33, 61, 68] – in the scene. Nevertheless,
conventional scene flow estimation methods are instance-
agnostic, lacking high-level scene representations for down-
stream tasks related to moving agents. Other methods
[3, 12, 20, 22, 54] further disentangle the segmentation and
motion estimation for multi-body scenes and object artic-
ulation. By combining detection with motion models, 3D
multi-object tracking methods [40, 66, 67, 76] directly ob-
tain object instance motions. This line of work relies on
regular and constant observations at a high frequency in a
short time horizon, such as those in self-driving car datasets
[6, 16, 55]. To study long-term changing indoor envi-
ronments, researchers captured 3D datasets (3RScan [62],
ReScan [19], and NSS [56]), where changes between ob-
servations are more drastic, making tracking-based meth-
ods [31, 53, 76] no longer applicable. To understand long-
term changes, Adam et al. [1] develop a 3D change de-
tection method using geometric transformation consistency,
however they do not have a notion of instances and/or se-
mantics. Halber et al. [19] build a spatiotemporal model
for temporal point clouds to improve instance segmentation,
however they do not tackle the task of relocalization or re-
construction. Wald et al. [62] focus on the task of object in-
stance relocalization in two temporal point clouds. They in-
troduce a triplet network for local feature matching, aiming
to identify 3D keypoint correspondences between instance
patches from two observations. In contrast, our approach
goes beyond local matching and infers 6DoF transforma-
tions at the entire instance level. It additionally performs
reconstruction, which no existing method designed for in-
door long-term changing environments addresses.

SO(3)-equivariant networks. Randomly oriented point
clouds make coordinate-based networks suffer from incon-
sistent predictions and poor performance. Such negative
effects can be partially alleviated by heavy data augmen-
tation during training [45]. Thus, preserving rotations, i.e.,
SO(3)-equivariance, in point cloud processing networks be-
comes a desired property. Thomas et al. [58] apply spher-
ical harmonics to constrain the network to achieve SE(3)
equivariance. SO(3)-transformers [15] introduce equivari-
ance to the self-attention mechanism [60] and significantly
improve the efficiency of [58]. Deng et al. develop Vector
Neurons (VNN) [11], a general framework to make MLP-
based networks SO(3)-equivariant by vectorizing scalar
neurons. GraphOnet [8] extends vector neurons to SE(3)
equivariance. Assaad et al. [2] apply rotation equivariant
attention for vector neurons. EFEM [28] uses VNN to store
shape priors and performs unsupervised object segmenta-
tion through expectation maximization. Deng et al. [12] de-
velop a Banach-fixed point network with inter-part equivari-
ance for object articulation and multi-object segmentation.
Yang et al. [70] extend VNN to policy learning and non-
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rigid object manipulation in robotics. We utilize VNNs to
comprehend the dynamics of multiple objects.

Point cloud registration. Aligning posed point clouds is
essential for 3D perception and mapping. Several hand-
crafted 3D feature descriptors have been developed for lo-
cal feature matching, such as FPFH [49] and SHOT [59].
Following advancements in deep learning, 3DMatch [75],
PerfectMatch [17], and RPMNet [71] focus on learning-
based descriptors. Predator [21] introduces attention mech-
anisms [60] into finding 3D correspondences, particularly in
low-overlapping regions. In [47, 72], the use of transformer
architectures is refined for superpoint matching. [25, 50, 74]
leverage additional prior information like surface curvature,
2D image overlap, and scene structure. Apart from the cor-
respondence matching methods above, another line of work
is to learn equivariant representations to solve the relative
pose. Wang et al. [63] develop rotation equivariant descrip-
tors using group equivariant learning [10]. Yu et al. [73] de-
velop a rotation invariant transformer method to cope with
pose variations in point cloud matching. Zhu et al. [77]
directly solve the pairwise rotation using rotation equivari-
ant [11] embeddings. Our method also uses equivariant rep-
resentation but additionally leverages neural implicit sur-
faces to align two point clouds using test-time optimization.

Multi-object reconstruction. The recent emergence of
neural implicit reconstruction [9, 36, 41] has boosted the
performance and flexibility of object reconstruction meth-
ods. This is attributed to the learned shape prior and dif-
ferentiability for test-time optimization [13]. FroDo [48]
reconstructs object shapes using detection and multi-view
optimization. ELLIPSDF [53] and ODAM [30] fur-
ther introduce geometric representations, specifically su-
perquadrics, to represent shape primitives and constrain
multi-view optimization. Irshad et al. [23, 24, 35] do not
rely on existing detectors but instead develop a single-
shot pipeline to regress object pose, shape, and appear-
ance. BundleSDF [65] focuses on single dynamic objects
and generalizes to unknown objects using graph optimiza-
tion. Our reconstruction is built on top of [41]. We further
introduce joint optimization on shape and pose to aggregate
multiple observations for more accurate and complete re-
construction.

3. Living Scenes
We define a living scene as a built environment with dy-
namic and static objects. Its reconstruction occurs cumula-
tively over time from temporal scans and showcases how it
has been lived. Our method, MORE2, creates living scenes
and is designed to understand the rigid motion and the ge-
ometry of objects. It reconstructs each individual 3D ob-
ject separately, with increased accuracy and completeness
as more temporal scans become available (c.f . Fig. 1(d)).

These reconstructions can be seamlessly positioned within
the scans acquired over time and used for other tasks, e.g.,
learning from historical data or creating 3D assets.

Problem Setting. Consider a collection of scans {St}Tt=1

of a 3D environment captured at irregular intervals. Scan
St represents the environment observed at time t and con-
tains a list of point clouds {Xt

i}Ni=1. Hereafter, we term
object-level point clouds as point cloud and scene-level
point clouds as scan. We denote the first scan S1 as the
reference scan and the following ones {St|t > 1} as tem-
poral rescans. Our goal is formulated as:
1. Multi-object relocalization: We aim to compute the

6DoF rigid transformation {Tt
i ∈ SE(3)| t > 1} be-

tween the point clouds belonging to the same instance in
the reference scan and rescan respectively. Specifically,
we formulate relocalization in two steps: matching of
point clouds followed by their registration.

2. Object reconstruction: The goal is to reconstruct each
instance from the accumulated point clouds {X1 ◦
T2

iX
2 ◦ ... ◦Tt

iX
t | t > 1}, where ◦ denotes concatena-

tion operation.
Since our method reasons at the instance level, we assume
the availability of instance segmentation masks.2.

Method Overview. MORE2 sequentially addresses in-
stance matching (Sec. 3.2), registration (Sec. 3.3), and re-
construction (Sec. 3.4) with a single compact representa-
tion obtained from our encoder-decoder network (Sec. 3.1),
which is trained solely on the object reconstruction task.
We obtain the final accumulated point clouds per instance
through joint shape-pose optimization (Sec. 3.5). An
overview is provided in Fig. 2.

3.1. Encoder-decoder Network

Vector Neuron Encoder (VN). To obtain rotation equiv-
ariant features from point clouds, we follow Deng et al. [11]
and “lift” the neuron representation from a scalar to a vec-
tor and preserve the rotation during forward propagation.
SO(3) equivariance and invariance of function f are ex-
pressed as:

f(RX) = Rf(X), f(RX) = f(X), (1)

where R denotes the rotation applied to input point
cloud X. [28] extends VNNs from SO(3)- to SIM(3)-
equivariance by additionally estimating a scale factor and
the centroid of the point cloud. The encoder Φ takes a point
cloud X as input and outputs F = (Finv ∈ R256,Feqv ∈
R3×256,Fs ∈ R+,Fc ∈ R3), with the four components
representing the invariant embedding, equivariant embed-

2In Sec. 4, we offer an experiment using predicted instance masks as
input to MORE2. Note that MORE2 is agnostic to the semantic labels.
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Figure 2. Overview of the MORE2 pipeline. Given two temporal point clouds with instance masks {Xt0
i }3i=1 and {Xt1

i }3i=1, we
first use the VN encoder to compute the embeddings for each instance. a) Matching solves the pairwise correspondences of the same
instances using Hungarian matching [38] on the embeddings. b) Registration estimates 6DoF transformations within matched pairs: Kabsch
algorithm [26] is employed to compute the initial transform, followed by optimization to further refine the registration. c) Joint optimization
simultaneously refines the registration and d) reconstruction. The output is the signed distance values (SDF) of query coordinates.

ding, scale factor, and centroid, respectively. The SIM(3)-
equivariance is then achieved by:

Φ(sRX+ t) = (Finv,RFeqv, sFs,Fc + t). (2)

Here Φ is the VN-encoder and (s,R, t) ∈ SIM(3) denote
scale, rotation, and translation respectively. The embedding
F is used to canonicalize the query point p ∈ R3

Fq = ⟨Feqv, (p− Fc)/Fs⟩ (3)

where ⟨·, ·⟩ denotes channel-wise inner product. The canon-
icalized feature Fq is then fed to the decoder.

Neural Implicit Decoder. Here we use DeepSDF [41] as
our neural implicit decoder. It is an auto-decoder network
that takes latent code and query coordinates as input and
outputs the SDF value at query location.

SDF(p) = Ψ(Finv,Fq), (4)

where Ψ represents the DeepSDF decoder. The latent space
trained using DeepSDF decoder lays a solid ground for
shape interpolation and test-time optimization [13].

Training. We train MORE2 using the L1 reconstruction
loss [28, 41] on individual shapes:

Lrecon =
1

K

K∑
i=1

|SDF(pi)− SDF(pi)|, (5)

where SDF(p) denotes the ground truth SDF value of p
and SDF(p) the predicted SDF value. pi is the sampled
point and K denotes the number of SDF samples. Addi-
tional details are provided in Supp.

Unlike [13, 41], we make MORE2 category-agnostic by
directly training it across multiple classes. Once the train-
ing is complete, we freeze the network’s weights. Next, we
elaborate on how we flexibly adapt the network and embed-
dings to address the relocalization and reconstruction tasks.

3.2. Instance Matching

Given two sets of randomly oriented point clouds
{(Xt1

i )}Ni=1, {(Xt2
j )}Mj=1 of size N and M , the task is to

associate them across time (c.f . Fig. 1(b) and Fig. 2(a)).
We first compute the cosine similarity matrix

Λ ∈ RN×M
+ using all the invariant embedding pairs

{⟨Finv
t1
i ,Finv

t2
j ⟩}N,M

i,j=1 as our initial score matrix. Next,
since the equivariant embeddings Feqv can be treated as
3D coordinates in the latent space given the one-to-one
correspondences along the feature dimension, we extract
the rotations Ri,j between all equivariant embedding pairs
via the Kabsch algorithm [26] and consequently factor
them out for each pair. Following the factorization, we can
compute the alignment residual matrix E ∈ RN×M

+ , where

E(i, j) = ||Ri,jFeqv
t1
,i − Feqv

t2
,j ||2 (6)

indicates the inverse fitness of equivariant pairs after coarse
alignment in the SO(3) feature space using Ri,j . Finally,
we compute the aggregated matching score matrix H =
Λ⊘E, where ⊘ denotes element-wise division of matrices.
Now the problem is to find the assignment that maximizes
the total matching score

∑
i,j Hi,jPi,j . In light of exist-

ing 2D/3D feature matching paradigms [18, 51], we use the
Hungarian Matching [38] to solve this linear assignment.
Considering that the numbers of object instances in two sets
can differ and some might remain unmatched after Hungar-
ian Matching, we treat unmatched instances as removed or
added based on their appearance order in time.

3.3. Instance Registration

Consider a matched pair (Xt1 ∈ R3×N1 , Xt2 ∈ R3×N2)
(Fig. 1(c) top). The task is to estimate the relative trans-
formation T = (R, t) that aligns the source Xt2 to the
target Xt1 . To address this, we propose the following
optimization-based registration (Fig. 2(b)). We first com-
pute the SE(3)-equivariant embeddings Fse3 = Feqv +Fc

for each point cloud and solve (R, t) using Kabsch algo-
rithm [26]. This serves as the initialization for our registra-
tion. Next, the optimal transformation (R∗, t∗) is obtained
by minimizing Lreg:

(R∗, t∗) = argmin
(R,t)

Lreg(X
t1 ,Xt2), (7)
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where Lreg is defined as:

Lreg(X
t1 ,Xt2) = ||Ψ(Ft1

inv, ⟨F
t1
eqv, (RiX

t2 + ti − Ft1
c )/Ft1

s ⟩)||1︸ ︷︷ ︸
Lsdf

+ C̃D(RiX
t2 + ti,X

t1)︸ ︷︷ ︸
Lcd

.
(8)

Here Lsdf denotes the misalignment between the point
cloud and zero level-set, and Lcd the chamfer loss between
the current estimate and target point cloud.

In the ith iteration, we use the target embedding Ft1
se3 to

canonicalize the source point cloud Xt2 transformed by cur-
rent (Ri, ti) and compute Lreg. We directly optimize (R, t)
through back-propagation on SE(3) manifold using Torch-
Lie [44] for faster and more stable convergence [39, 57].
Our optimization iteratively aligns the source point cloud
to the zero level-set of the target point cloud, together with
minimization of point-wise misalignment. After optimiza-
tion, we refine the point cloud alignment using iterative
closest point [5] to obtain the final output. Furthermore, we
can classify static /dynamic objects in the scene by thresh-
olding their transformation distances.

3.4. Instance Reconstruction

After obtaining the matched and aligned point cloud
pairs {(Xt1 ,Xt2 ,R, t)i}Mi=0, we proceed to reconstructing
them (Fig. 1(c) bottom). We first down-sample the accumu-
lated point clouds using farthest point sampling (FPS) [46].
Next, we compute the new embedding F∗ from the down-
sampled point cloud. Finally, we query the SDF values of
a voxel grid with 643 resolution using F∗ and DeepSDF
decoder, as is shown in Eq. (4). Following the previous lit-
erature [28, 41, 48], we use Multi-resolution IsoSurface Ex-
traction (MISE) [36] to extract the zero level-set as object
reconstruction.

3.5. Joint Optimization for Accumulation

So far, we have discussed relocalization and reconstruction
between two temporal scans. To leverage observations from
multiple scans, we propose a joint optimization algorithm
to refine the registration and reconstruction (Fig. 2(c),(d))
and accumulate point clouds with increasing geometric ac-
curacy and completeness over time(Fig. 1(d)).

Initialization. Consider the matched and registered point
clouds {Xt}tKt=t1 and their associated equivariant and invari-
ant embeddings from VN-encoder. For each point cloud Xt,
we compute its Lsdf value and choose the one X∗ with the
best agreement between the point cloud and the zero level
set defined by its embeddings, as our initialization. Specif-
ically, we initialize F with the equivariant embedding F∗

eqv
and construct the pose graph G = {Tt}tKt=t1 . Here Tt

aligns Xt to X∗ and is computed by the previously intro-
duced registration method.

Optimization Objectives. We jointly optimize the shared
equivariant embedding F and pose graph G by minimiz-
ing Ljoint = Lsdf + Lz . Here Lsdf denotes the SDF error
of accumulated point clouds and Lz = ||F′ − F||2 is the
regularization term to constrain variations w.r.t. the initial
F. Similar to registration, the pose graph is optimized on
SE(3) manifold [44, 57] and the embedding is optimized
using Adam optimizer [27] for 200 iterations.

3.6. Implementation Details

We use the VN Transformer [2] and DeepSDF [41] as our
encoder and decoder, respectively. We implement MORE2

using PyTorch [42] and train it on a single NVIDIA A100
(80GB) GPU for 2 × 105 iterations with batch size = 64.
We decay the learning rate (0.0001) by 0.3 at 1.2 × 105,
1.5 × 105, and 1.8 × 105 iterations. For more details, we
refer the reader to the Supp.

4. Experiments
We evaluate MORE2 on its end-to-end performance on
the tasks of multi-object relocalization and reconstruc-
tion (Sec. 4.3), as well as on each of the three subtasks in-
dividually (Secs. 4.4 to 4.6). When evaluating end-to-end
performance, we input to each subsequent task the output
of the preceding one, thereby inheriting any accompanying
noise and errors. When evaluating on each task indepen-
dently, we provide as input the ground truth information,
i.e., we provide correct instance matches to the registra-
tion task and correct registration pairs to the reconstruction
task. We identify baseline methods per task and combine
the best-performing ones as the end-to-end baseline. We
investigate the impact of predicted instance segmentation
masks as input to MORE2 and the benefit of accumulation
in Sec. 5. For more analysis on design choices, see Supp.

4.1. Datasets

In our experiments, for both MORE2 and baselines, we
train on a synthetic dataset and test on both this and a real-
world dataset, evaluating the generalization ability of the
methods. We synthesize our own living scenes as there is
no available synthetic 3D dataset of indoor scenes that ex-
hibits long-term changes. All data will be made available.

FlyingShape. We synthesize the FlyingShape dataset us-
ing a ShapeNet [7] subset, containing 7 categories: chair, ta-
ble, sofa, pillow, bench, couch, and trash can. The training-
validation split follows ShapeNet [7]. We randomly sam-
ple objects from the subset’s test set and compose 100
unique 3D scenes from them as our test set. We assign ran-
dom poses to objects while ensuring they touch the scene’s
ground. To emulate long-term dynamics, we introduce ran-
dom changes to all object poses and sequentially generate
five temporal scans per scene. See Supp. for more details.
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𝑡1 𝑡2 𝑡3 Baseline Ours

Figure 3. End-to-end cumulative reconstruction with multiple scans. t1, t2, and t3 denote the same scene captured at three times. Point
clouds from t2 and t3 are accumulated to t1. Interestingly, chairs in t3 (top) are removed from the scene, but MORE2 is able to handle it.

Source Target Baseline Ours Ground Truth

Figure 4. Multi-object relocalization on 3RScan [62]. Instances, uniquely colored in source scan, are matched and registered to their
corresponding instances in target scan, as per ground truth. ↘ highlights differences between methods on registration and ↘ on matching.

3RScan [62]. 3RScan is a real-world dataset for bench-
marking object instance relocalization, consisting of 1428
RGB-D sequences of 478 indoor scenes that include res-
cans of them. It provides annotated instance segmentation,
associations, and transformations between temporal scans.
We use the validation set of 3RScan for evaluation3. To
evaluate our comprehensive tasks, we extend 3RScan to an
instance matching and reconstruction benchmark.

4.2. Evaluation Metrics

For instance matching, we get inspiration from the evalu-
ation of image feature matching [34, 51] and calculate the
instance-level matching recall, which measures the propor-
tion of correct matches.

We also calculate the scene-level matching recall and use
as thresholds 25%, 50%, 75%, and 100% to denote the min-
imum acceptable ratio of number of correct matches over
the total number of matches between two temporal scans.
As point cloud registration is a standardized task, we fol-

3The ground truth information of the 3RScan test set is hidden on a
private server that is no longer maintained.

low [17, 21, 47] and report registration recall (RR), me-
dian rotation error (MedRE), transformation error (RMSE),
and median Chamfer Distance (MedCD). The rotation er-
ror threshold for registration recall is 5◦ for FlyingShape,
and 10◦ for 3RScan due to its low accuracy in ground truth
annotations.

For instance reconstruction, we follow [36, 41, 43] and
report Chamfer Distance and volumetric IoU. Moreover, we
introduce signed distance function (SDF) recall to describe
the successful ratio of reconstruction at instance level.

End-to-end Metrics. To assess the end-to-end perfor-
mance on multi-object relocalization and reconstruction, we
propose two joint metrics, namely MR recall and MRR re-
call. MR stands for the end-to-end recall of relocalization

P(R1,M) = P(R1|M)P(M). (9)

Here M and R1 denote the event of an instance being cor-
rectly matched and registered, respectively. P(·) denotes
the probability of an event to happen. We pass the output
of instance matching to registration and calculate registra-
tion recall (RR) as MR recall, to include both the errors in

28019



FlyingShape 3RScan

Method MR Recall ↑ MRR Recall ↑ MR Recall ↑ MRR Recall ↑

Baseline† 67.32 54.30 44.02 30.77
Ours 74.39 62.00 49.07 40.74

Table 1. End-to-end performance. MR evaluates joint matching
and registration, while MRR measures all tasks.

Instance-level Scene-level Recall

Method Recall ↑ R@50%↑ R@75%↑ R@100%↑

MendNet [13] 83.69 96.75 68.25 60.75

VN-DGCNNcls [11] 61.37 73.50 32.25 27.75

VN-ONetrecon [11] 86.63 96.00 74.50 67.75

Ours 88.75 97.50 78.00 72.00

Table 2. Instance matching results on FlyingShape.

Instance-level Recall ↑ Scene-level Recall ↑

Method Static Dynamic All R@25% R@50% R@75%

MendNet [13] 60.32 63.76 62.20 80.68 64.77 37.50

VN-DGCNNcls [11] 43.39 49.34 46.65 72.32 53.41 29.55

VN-ONetrecon [11] 56.08 72.05 64.83 86.36 71.59 44.32

Ours 60.32 87.50 71.77 87.50 78.41 50.00

Table 3. Instance matching results on 3RScan [62].

matching and registration. Similarly, MRR is formulated as

P(M,R1, R2) = P(R2|R1,M)P(R1|M)P(M), (10)

where R2 denotes the event of an instance being correctly
reconstructed. Here, we pass the predicted matches and the
resulting registration to the reconstruction task and use the
SDF recall as MRR. As such, the performance of all three
tasks is evaluated in a single metric.

We train our model and all the baselines on the training
set of the ShapeNet [69] subset, and evaluate on Flying-
Shape and 3RScan. In the following quantitative evalua-
tions, we highlight results being best and second-best .

4.3. End-to-end Performance

We combine the best-performing baseline methods in each
task as the end-to-end baseline (Baseline†), which com-
prises VN-ONet [11], GeoTransformer [47], and Con-
vONet [43]. As shown in Tab. 1, our method consistently
outperforms the baseline method across all metrics. No-
tably, there is a similar performance decrease for both meth-
ods when comparing numbers on FlyingShape to those on
3RScan, as anticipated due to the inherent domain gap.
Also, there is an increased gap between our method and the
baseline in end-to-end evaluation vs. the results on indi-
vidual tasks (Sec. 4.4 to 4.6), for both relocalization4 and

43RScan [62] provides a baseline for instance relocalization. We do not
compare with it because it takes as input TSDF patches, not point clouds,
and it is not reproducible due to missing codebase and inadequate details.

(3/7) (5/7)

(7/7)(4/7) 

Source Target Baseline Ours Ground Truth

x

x x

x
x

xx
x

x

Figure 5. Multi-object matching on 3RScan [62]. We repaint
the instances in the source scan using the same colors as those
of matched instances in the target scan. X denotes the wrongly
matched instances. Curves depict the associations of moving ob-
jects. (5/7) denoting 5 correct matches out of 7 pairs in the scene.

Dataset Method RR ↑ MedRE ↓ RMSE ↓ MedCD ↓

FlyingShape

RPMNet [71] 23.17 2.37 31.77 0.0249
FreeReg [77] 47.50 2.44 33.84 0.0760
GeoTransformer [47] 77.67 1.36 16.66 0.0271

Ours w/o optim 83.00 0.86 20.83 0.0171
Ours full 83.83 0.74 18.47 0.0168

3RScan [62]

RPMNet [71] 9.40 3.78 15.91 0.0248
FreeReg [77] 26.06 5.76 11.05 0.0082
GeoTransformer [47] 51.71 3.46 6.51 0.0141

Ours w/o optim 58.12 3.77 5.49 0.0032
Ours full 61.11 3.77 4.74 0.0030

Table 4. Point cloud registration results on both datasets.

reconstruction. This disparity is attributed to our unified
approach, utilizing a single network and representation that
retains shape and pose information. In contrast, the com-
bined baseline lacks coherence between tasks, employing
three distinct networks and representations. Qualitative re-
sults on 3RScan [62] are in Fig. 3 for end-to-end perfor-
mance (MRR) and in Fig. 4 for relocalization (MR).

4.4. Instance Matching

We compare MORE2 with three baselines, namely Mend-
Net [13], VN-ONet [11, 36], and VN-DGCNN [11, 64],
of which the first two are point cloud reconstruction net-
works, and the last is a point cloud classification network.
We present the results in Tab. 2 and Tab. 3 for Flying-
Shape and 3RScan, respectively. MORE2 outperforms the
baseline methods on all metrics. This can be attributed to
the representation power of its embeddings: the encoder
can output expressive global invariant features to handle
large pose variations, and the equivariant features model the
high-frequency details of the input point cloud. In Fig. 5,
we showcase that MORE2 can handle in-category object
matching by capturing minor geometric variations.

4.5. Point Cloud Registration

We compare MORE2 with three baselines: RPMNet [71],
which is a learning-based method that only targets object-
level registration; FreeReg [77], which uses equivariant em-
beddings to solve rotation; and GeoTransformer [47], which
is the state-of-the-art method on 3DMatch [75] and 3DLo-
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Figure 6. ECDF curves of registration results on 3RScan [62].

Dataset FlyingShape 3RScan

Method L1-Chamfer2 ↓ IoU ↑ SDF Rec.↑ L1-Chamfer1 ↓ SDF Rec. ↑

MendNet [13] 25.27 47.79 6.17 17.73 20.99

VN-ONet [11] 8.55 34.47 65.00 10.65 51.91

ConvONet [43] 6.64 36.99 80.67 7.61 64.89

Ours w/o optim 6.27 49.98 78.00 9.28 56.87

Ours full 6.11 66.73 83.33 6.16 64.12

Table 5. Instance reconstruction results. L1-Chamfer ×10−3.

Match [21] datasets. Results on FlyingShape and 3RScan
are in Tab. 4. [77] can only provide coarse registration
and does not work well under large partiality changes. In
contrast to [71] and [47], MORE2 does not rely on dis-
crete point-wise correspondences but represents the geom-
etry with continuous signed distance field and aligns the
point cloud with the field via optimization. Our analysis is
further corroborated by the highest Empirical Cumulative
Distribution Function (ECDF) curve of MORE2 in Fig. 6.

4.6. Instance Reconstruction

We compare MORE2 with MendNet [13], VN-ONet [11]
and ConvONet [43]; results are in Tab. 5. We report the
2-way chamfer on FlyingShape and only the 1-way cham-
fer on 3RScan as it only provides incomplete object meshes
(non-watertight). With joint optimization, our full method
surpasses the baselines on most metrics across the two
datasets. Without, it is on par with ConvONet on Flying-
Shape. This demonstrates the adaptation power of our op-
timization algorithm on noisy and randomly oriented point
clouds. In contrast to baseline methods that only perform
surface reconstruction, our pose graph G and shared em-
bedding F enable optimization message passing and fusion
between accumulated point clouds, improving both registra-
tion and reconstruction performance (c.f . Tab. 4 and Tab. 5).

5. Ablation Study
Predicted instance segmentation. Noisy and incomplete
instance segmentation masks from Mask3D [52] are pro-
vided to MORE2. Results in Tab. 6 across all tasks and
combinations, when compared to GT masks, show our
method outperforming the combined baseline. More im-
portantly, MR and MRR recall is substantially lower for the
baseline, despite a similar matching and registration recall

Method Ins. Seg. Mat. Rec. ↑ Reg. Rec. ↑ MR Rec. ↑ MRR Rec. ↑

Baseline†
GT

64.83 51.71 44.02 30.77
Ours 71.77 61.11 49.07 40.74

Baseline†
Mask3D [52]

43.43 47.74 27.86 20.89
Ours 45.76 51.27 40.14 33.80

Table 6. Results with Mask3D [52] on 3RScan [62].
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Figure 7. Ablation study on point cloud accumulation. The
change of point cloud coverage, rotation error and chamfer dis-
tance w.r.t the number of accumulated scans.

for both methods. Also, the drop of the baseline in MR and
MRR recall between GT and Mask3D [52] is ≈ 33%, vs
≈ 18% in ours. These findings demonstrate the efficacy of
MORE2’s shared representation across tasks and joint opti-
mization, even in noisy settings.

Benefit of accumulation. The results in Tab. 4 are com-
puted for pairs of point clouds, i.e., between two points
in time. Here, we experiment with increasing the number
of multi-temporal scans used for accumulation (c.f . Fig. 7)
and report the performance of registration (RE) and recon-
struction (CD) on FlyingShape, to showcase an increasing
geometric accuracy and completeness over time. We see
significant improvement on both metrics in the range of no
accumulation (one point cloud) to four point clouds, after
which the performance starts to saturate. The saturation is
explained when compared to the coverage ratio of accumu-
lated point cloud w.r.t. the complete shape. By the 4th scan,
completeness is close to 75%, hence any additional scan
will affect less registration and reconstruction.

6. Conclusion
We propose MORE2, a novel approach to parse long-term
dynamic scenes (living scenes) involving three consecutive
tasks. MORE2 solves the three tasks by flexible adaptation
of equivariant embeddings and a joint optimization that en-
ables multi-temporal accumulation. Our approach exhibits
superior performance across both synthetic and real-world
datasets. It empowers the cumulative comprehension of 3D
assets in the scene. Future research directions involve ad-
dressing challenges posed by the presence of elastic defor-
mations and multiple identical objects in the scene and com-
prehending large-scale spatiotemporal changes [56].
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