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ABSTRACT

In cross-device federated learning (FL) with millions of mobile clients, only a
small subset of clients participate in training in every communication round, and
Federated Averaging (FedAvg) is the most popular algorithm in practice. Exist-
ing analyses of FedAvg usually assume the participating clients are independently
sampled in each round from a uniform distribution, which does not reflect real-
world scenarios. This paper introduces a theoretical framework that models client
participation in FL as a Markov chain to study optimization convergence when
clients have non-uniform and correlated participation across rounds. We apply
this framework to analyze a more practical pattern: every client must wait a min-
imum number of R rounds (minimum separation) before re-participating. We
theoretically prove and empirically observe that increasing minimum separation
reduces the bias induced by intrinsic non-uniformity of client availability in cross-
device FL systems. Furthermore, we develop an effective debiasing algorithm for
FedAvg that provably converges to the unbiased optimal solution under arbitrary
minimum separation and unknown client availability distribution.

1 INTRODUCTION

The massive amounts of data generated on edge devices such as cellphones or sensors offers an op-
portunity to train machine learning (ML) models for various applications. However, communication
and privacy constraints of edge devices preclude the transfer of raw data to the cloud. Federated
learning (FL) McMahan et al. (2017); Kairouz et al. (2019); Li et al. (2020a); Yang et al. (2019)
has emerged as a powerful framework to operate within these constraints by keeping decentralized
data on the edge devices and instead moving model training to the edge. Federated model training
operates in communication rounds. In each round, the current model is sent by the central server to
edge clients, which perform model updates using their own local data, and the resulting models are
then averaged by the central server. A typical cross-device FL framework consists of millions of in-
termittently connected edge clients, in each round only a small subset of them participate in training
Bonawitz et al. (2019). The subset of participating clients is affected by devices’ intrinsic properties
such as battery status and network connectivity, and also system induced constraints for efficiency
and privacy. In this paper, we seek understand the effect of such client participation patterns on
convergence of federated training.

The federated averaging (FedAvg) algorithm and its variants are widely used in practice Kairouz
et al. (2019); Wang et al. (2021); Hard et al. (2018); Xu et al. (2023), and the convergence has been
extensively analyzed in literature Li et al. (2020b); Woodworth et al. (2020); Wang et al. (2022);
Karimireddy et al. (2019); Wang & Joshi (2021); Wang et al. (2020). However, most works assume
uniform client participation which ensures that the model update applied to the global model is an
unbiased estimate of the model update in the full client participation setting. This enables con-
vergence results for the full-participation setting to be extended to the partial participation setting
resulting in an additional variance term appearing in the convergence bound Jhunjhunwala et al.
(2022); Karimireddy et al. (2019); Wang et al. (2020). A generalization of the uniform client partic-
ipation model is to consider that each client has an intrinsic availability probability pi that is either
known or unknown to the central server. The set of participating clients is chosen according to this
probability. Such non-uniform client participation introduces a bias in the model updates received
by the server, with more frequently participating clients dominating the average update. To counter
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the bias, the central server can normalize the updates by the corresponding availability probabilities
Wang & Ji (2022); Cho et al. (2022) or their estimates Wang & Ji (2023); Ribero et al. (2022). We
consider the setting of unknown client availability and analyze the convergence.

Both the uniform and non-uniform client participation models described above assume that client
participation follows a Bernoulli process that is independent across clients and rounds. This assump-
tion fails to capture practical settings where the client participation are correlated across rounds due
to memory or time-dependence constraints. In cross-device FL systems, a device can only be avail-
able for training when it is plugged in for charging, connected to unmetered network and not being
actively used by the owner Hard et al. (2018); Paulik et al. (2021); Huba et al. (2022). These cri-
terion, which typically occurs during the night of the devices’ local time, not only results in the
client availability probability for non-uniform client participation, but also correlated client partici-
pation of a periodic pattern due to user preference and time zone Kairouz et al. (2019); Eichner et al.
(2019); Zhu et al. (2021). More recently, a new criteria is introduced on devices in a FL system to
impose a minimum separation constraint on successive participation instances of a client McMahan
& Thakurta (2022); Xu et al. (2023). Specifically, once a client participates in training, it cannot
become available to participate for at least R more rounds (R specified by the central aggregating
server). The minimum separation is introduced to effectively combine differential privacy (DP) and
FL Kairouz et al. (2021); Choquette-Choo et al. (2023) as advanced privacy-preserving methods,
and quickly becomes the default criterion in many FL applications Xu et al. (2023); Xu & Zhang
(2024). The client participation across rounds are correlated under the minimum separation crite-
rion, and the extreme case of very large R will force cyclic client participation as studied in Cho
et al. (2023); Malinovsky et al. (2023). However, setting R to be the exact value for cyclic client
participation can be challenging and may cause system slowdown, and these recent work did not
study non-uniform client participation or the large spectrum of minimum separation R in practice.
Other existing convergence analyses of federated training with generalized client participation Wang
& Ji (2022); Rodio et al. (2023) do not fully explain the effect of such correlated client participation
patterns, calling for new theoretical advances. See Appendix A for more related work discussions.

In this paper we bridge the gap of algorithms in practical FL system and the theoretical guarantees
on their convergence with correlated client participation and unknown client availability. Our paper
makes the following key contributions:

1. To the best of our knowledge we are the first to analyze the convergence of FedAvg with a
minimum separation constraint on successive participation instances of each client, which
is a general setting widely used in practical FL systems. We show that such correlated
participation patterns can be captured by a Markov chain model.

2. We show that as the minimum separation R increases, the effective client participation
probabilities become more uniform and reduces the asymptotic bias in the solution attained
by the FedAvg algorithm.

3. We propose a debiased FedAvg algorithm that estimates the unknown client participation
probabilities and incorporates them in the local updates. We prove that this algorithm
achieves an unbiased solution that is consistent with the global FL objective under arbitrary
minimum separation R.

Notations: For any positive integer N , we denote [N ] = {1, . . . , N}. Let ‖ · ‖, ‖ · ‖1 and ‖ · ‖∞
denote l2-norm, l1-norm and l∞-norm, respectively. For an ordered sequence {i1, . . . , ik}, it is
represented by (i1, . . . , ik) and we use the same notation for a vector when the context causes no
confusion. Unless otherwise specified, E(·) means the total expectation taken on all randomness.
We use c to denote the vector where all entries are c. The d-dimensional Euclidean space is denoted
by Rd, and Rd+ is the space formed vectors where every entry is strictly positive.

2 PROBLEM FORMULATION

We consider the federated learning setting where N clients cooperate to minimize the following
global objective:

min
x

F (x) :=
1

N

N∑
i=1

fi(x) (1)
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where fi is the local objective function of client i. We aim to solve problem equation 1 in the fed-
erated learning setting, i.e., the system implements the some federated learning algorithm which
operates in rounds. In each round, a subset of the clients participate in training, and each of the
clients in the subset performs multiple local updates based on the local gradients and then commu-
nicates with the server.

Non-uniform and correlated client participation. In this paper, we consider the scenario where
each client requires some resting periods between participation and hence the participation pattern
is correlated over time. Specifically, once participating in the system, an client has to wait as least
R rounds until its next participation, where R is called the minimum separation. In other words,
suppose client i’s last participation is in round ti. It may join again at any round twith t ≥ ti+1+R
and not before then. Moreover, when a client is available to be sampled, instead of assuming uniform
sampling, we consider that each client is associated with some unknown strictly positive scalar
pi > 0 to characterize its intrinsic willingness to be sampled at every round. Without loss of
generality, we assume

∑N
i=1 pi = 1 and hence refer to pi as the availability probability of client

i. Therefore, the client participation pattern is as follows: at each communication round, client i is
sampled to participate in the training process with probability proportional to pi if it has waited for
R rounds after its last participation; otherwise client i cannot be sampled.

The above setting encompasses many of those in existing literature as special cases. For instance,
note that R = 0 means each client is sampled at every round with probability pi independently,
which is consistent with Wang & Ji (2023). And the cyclic participation corresponds to the case
R = N

B − 1 where B number of clients are sampled in each round Cho et al. (2023), assuming the
total number of clients in the FL populationN is divisible byB. We investigate the potential bias in-
troduced by the non-uniform and correlated client participation on federated algorithm performance
and propose debiasing scheme to mitigate it.

3 MARKOV CHAIN MODEL AND ITS PROPERTIES

In this section, we propose a Markov chain model to capture the correlated participation scenario
described above. Intuitively, the fact that every client cannot be sampled again within R rounds
motivates us to maintain a memory window with length R to track which clients have not waited for
R rounds. In other words, clients that are possible to be sampled in the current round only depend
on which clients appearing in the memory window. This calls for a Markov chain with R-memory,
also known as R-order Markov chain, defined as below.

Definition 1. Let {Xt}∞t=0 be a stochastic process where Xt ∈ X ,∀t ≥ 0. It is said to be an
R-order Markov chain if

P (Xt | Xt−1, Xt−2, . . . , X0) = P (Xt | Xt−1, . . . , Xt−R), ∀t ≥ R.

X is called the state space.

If R = 1 it reduces to conventional Markov chain; if R = 0, then the clients can be sampled at each
round with probability pi, independent of the history. In a conventional Markov chain (with R = 1)
with finite state space X , we can use the transition probability matrix P to represent the Markov
chain, where the (i, j)-th entry of P is [P ]i,j = P (Xt = j | Xt−1 = i), i.e., the probability of
transitioning from state i to state j.

Recall that each client i is associated with a strictly positive availability probability pi > 0,∀i ∈
[N ]. At each round t, the server samples a size-B subset of clients St, where |St| = B, with
probability for each client proportional to pi to join the training system. Note that only clients
that have waited for R rounds are available. In other words, set St is sampled with probability
proportional to

∑
i∈St

pi from all subsets of size B formed by the available clients. We assume
N = MB for some M > 0 and note that the minimum separation R ranges from 0 to M − 1,
where R = M − 1 corresponds to a cyclic participation pattern where subsets of clients participate
in training in a fixed order.1

1Any R > M − 1 would resulting in periods with insufficient available clients. We do not consider those
cases here.
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Denote X as the collection of all possible ordered subsets of [N ] with exactly B elements. Then,
|X | = σ(N,B) where σ(N,B) = N !

(N−B)! represents the total number of B-permutations of [N ].
Considering the stochastic process {Xt}∞t=0 where Xt ∈ X , the participation pattern in Section 2
can be precisely described by an R-order Markov chain defined in Definition 1. Formally,

P (Xt = I0 | Xt−1 = I1, Xt−2 = I2, . . . , X0 = It) = P (Xt = I0 | Xt−1 = I1, . . . , Xt−R = IR)
(2)

where each state Ik ∈ X represents which ordered subset of size B has been sampled at round
k. For example, suppose clients 1 to B are sampled during the current round. (1, 2, . . . , B) and
(2, 1, 3, . . . , B) are two different states, although the probability of these two states to appear is
the same. The reason we consider this ordered case is that it allows us to cleanly define the
probability of client i to be sampled (which is the marginal distribution of P (Xt)) by noting that
P (i to be sampled at round t) =

∑
i2,...,iB

P (Xt = (i, i2, . . . , iB)). Here we calculate the prob-
ability of client i appearing as the first element in the ordered set Xt. The probability of i being
sampled in any position would need an additional scaling factor of B. Since the scaling factor B
is the same for all clients and only the relative frequency across clients contribute towards any bias
effect, ignoring this factor of B would not affect the debiasing calculation.

The above high-order Markov chain equation 2 has some nice properties as summarized below. We
note that these properties can be easily derived following the definitions of Markov chains and the
proofs are presented in Appendix C . Also the insights are important for the proof of Theorem 2,
which is the reason we formally present them here.

Proposition 1. The R-th order Markov chain equation 2 maintains the following properties:

(1). The ordered sequence (I0, I1, . . . , IR) is non-repeated, meaning Il ∩ Ik = ∅,∀l 6= k.

(2). For any non-repeated (I0, . . . , IR),

P (Xt = I0 | Xt−1 = I1, . . . , Xt−R = IR) =
pI0∑

J∈Sc
I1:R

pJ
=: p(I1,...,IR)→I0 . (3)

Otherwise P (Xt = I0 | Xt−1 = I1, . . . , Xt−R = IR) = 0. Since Ik is a set with B unique
elements, we define pIk :=

∏
e∈Ik pe,∀Ik. ScI1:R is the collection containing all B-permutations of

[N ] \
⋃R
k=1 Ik.

(3). For t ≥ R−1, define Yt = (Xt, . . . , Xt−R+1) ∈ RR. Then {Yt}∞t=R−1 is a conventional Markov
chain with its cardinality of the state space being d(M,R), where d(M,R) =

∏R−1
k=0 σ(B(M −

k), B). Moreover its transition probability is

P (Yt = (I0,J1, . . . ,JR−1)|Yt−1 = (I1, . . . , IR)) =

{
p(I1,...,IR)→I0 , Jk = Ik, k ∈ [R− 1]

0 , otherwise
(4)

for any non-repeated (I0, . . . , IR).

(4). Define vector u(I1,...,IR) ∈ Rd(M,R) with (I0, I1, . . . , IR−1)-th entry as P (Yt =

(I0, I1, . . . , IR−1) | Yt−1 = (I1, . . . , IR)). Then, u(I1,...,IR) ∈ Rσ(B(M−R),B)
+ ⊂ Rd(M,R) and

u(I1,...,IR)[(I0, . . . , IR−1)] = pI0(
∑
J∈Sc

I1:R
pJ )−1 > 0,∀I0 ∈ ScI1:R .

(5). Denote v(J0,...,JR−1) ∈ Rd(M,R) with (J1,J2, . . . ,JR)-th entry as P (Yt = (J0, . . . ,JR−1) |
Yt−1 = (J1,J2, . . . ,JR)) Then, v(J1,...,JR) ∈ Rσ(B(M−R),B)

+ and v(J0,...,JR−1)[(J1, . . . ,JR)] =

pJ0
(
∑
J∈Sc

J1:R
pJ )−1 > 0 for any JR ∈ ScJ0:R−1

.

Properties (1),(2) essentially state that clients to be sampled in the current round cannot be those
who have not waited for R rounds, which establish the equivalence of our Markov-chain modeling
equation 2 and the participation pattern in Section 2. Property (3) means that we can augment our
state space by taking into consideration of the history with length R to formulate an equivalent
Markov chain {Yt}∞t=R with order 1. The last two properties explicitly shows what entries are for
each row and column of the transition probability matrix of the new Markov chain {Yt}∞t=R. Also
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since there are only σ(B(M − R), B) � d(M,R) non-zero entries in every row and column, the
transition matrix is sparse.

A main benefit of this Markov-chain modeling is that it allows us to look into the probability of each
client to be sampled as t goes on. Specifically, given any R, denote PR ∈ Rd(M,R)×d(M,R) as the
transition probability matrix of the Markov chain {Yt}∞t=R where its entry is given by equation 4.
Let φR(t) ∈ Rd(M,R) be the state distribution at round t of the Markov chain {Yt}∞t=R and ηR(t) ∈
RN be the distribution of clients to be sampled at round t. We have the following evolution of
distributions with respect to t:

ηR(t) = QTRφR(t), φR(t+ 1) = PTRφR(t) (5)

for any initial distribution ηR(0) and corresponding φR(0) such that ηR(0) = QTRφR(0), where
QR = QR,1QR,2 and QR,1 ∈ Rd(M,R)×σ(N,B) is defined by

[QR,1](I1,...,IR),J =

{
p(I1,...,IR)→J , {J , I1, . . . , IR} non-repeated

0 , otherwise.

and QR,2 ∈ Rσ(N,B)×N is defined by

[QR,2]J ,j =

{
1 , J = (j, ∗)
0 , otherwise,

where J = (j, ∗) denotes that the first entry of I is j. We are particularly interested in the distribu-
tion of ηR(t) as t→∞ because it helps us characterize the asymptotic performance of existing FL
algorithms. From classical Markov chain literature, we know that if a Markov chain is irreducible
and aperiodic (see formal definitions in Appendix B), it has a stationary distribution which is unique
and strictly positive. We denote ζR = limt→∞ φR(t) as the stationary distribution of Markov chain
PR and we have

ζTR = ζTRPR, π
T
R = ζTRQR. (6)

where πR ∈ RN is marginal stationary distribution of clients to be sampled, i.e., the i-th entry of πR
is given by πiR = limt→∞

∑
i2,...,iB

P (Xt = (i, i2, . . . , iB)) = limt→∞ ηR(t). On the other hand,
if the Markov chain is irreducible and peroidic, we let ζR be the Perron vector2, which is also strictly
positive. We now show our Markov chain is irreducibile and (a)periodic to justify the definitions of
ζR and πR in Lemma 1. The proof is in Appendix C.
Lemma 1. The Markov chain {Yt}∞t=R with transition matrix PR defined by equation 4 is irre-
ducible for all M ≥ 1 and 0 ≤ R ≤M − 1. Further, when R ≤M − 2, it is also aperiodic.

We provide an example to illustrate the intuition of our Markov-chain model above, considering the
case of N = 4, B = 1, R = 2, i.e., every round one client is sampled, then it has to wait for two
rounds. For instance, if client 1 and client 2 are consecutively selected in the first two rounds, in the
third round only client 3 or 4 can be selected with probabilities of p3/(p3 + p4) or p4/(p3 + p4)
respectively. Then, the state (2, 1) can only transition to (3, 2) or (4, 2), where the second index
is sampled before the first one as is in equation 2. Similarly, if we are currently at state (1, 4), the
previous state has to be (4, 3) or (4, 2). One can easily check that Proposition 1 holds. To see how
π is calculated, we take the first entry of πR as an example:

π1
R = ζ(2,3)p(2,3)→1+ζ(2,4)p(2,4)→1+ζ(3,2)p(3,2)→1+ζ(3,4)p(3,4)→1+ζ(4,2)p(4,2)→1+ζ(4,3)p(4,3)→1

by noting that the remaining p(i,j)→1 = 0, if i or j = 1.

The vectors in equation 6 characterize the final distribution according to which clients will be sam-
pled when the communication round t becomes infinitely large. In other words, each client i is
sampled with probability πiR given some fixed R. Although πM−1 is the uniform distribution no
matter what pi’s are (by observing that all clients follow a cyclic participation), we note that πR
for R < M − 1 does not necessarily follow the uniform distribution, because {p1, . . . , pN} are
arbitrary. This will be problematic in the sense that existing federated learning algorithms may no
longer guarantee convergence to the correct and optimal solution of equation 1 no matter how many
rounds of training are implemented. We call this phenomenon the asymptotic bias induced by πR.
We will characterize both empirically and theoretically this phenomenon in the next section.

2We say v is the Perron vector of the transition matrix P if vT = vTP , i.e., v is right eigenvector of P
corresponding to eigenvalue 1 and vT1 = 1.
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4 ASYMPTOTIC BIAS UNDER NON-UNIFORM CORRELATED PARTICIPATION

In this section, we utilize the Markov chain model in the previous section to analyze asymptotic bias
of existing federated learning algorithms caused by R < M − 2 and arbitrary pi’s. In particular,
we consider FedAvg with local gradient descent updates, i.e., at each round, a set St with |St| = B
clients are sampled and after being selected client i updates its model as

xit,0 = xt, x
i
t,k+1 = xit,k − α∇fi(xit,k), k = 0, . . . ,K − 1 (7)

where xt denotes the server’s model at round t and xit,k is the local model maintained by client i at
k-th iteration. The server then updates xt+1 = 1

B

∑
i∈St

xit,K . We next show in the following that
FedAvg may not converge to the desired optimal solutions of equation 1. Instead there may exist
some error neighborhood, i.e., the asymptotic bias, that is related to πR, even as t goes to infinity.
Before we formally deliver the result, two standard assumptions are needed.

Assumption 1. There exists G > 0 such that ‖∇fi(x)−∇F (x)‖2 ≤ G2,∀x and ∀i ∈ [N ].

Assumption 2. Each fi is L-smooth, i.e., ‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖,∀x, y and ∀i ∈ [N ].

Then we are ready to state the convergence of FedAvg under correlated client participation (see
Appendix F for the proof).

Theorem 1. Suppose Assumptions 1,2 hold and assume ‖∇F (x)‖ ≤ D, ∀x with some finiteD > 0.
Then for any T > 2τmix log τmix choosing α = Õ(1/(τmixK

√
T )), FedAvg with local updates

equation 7 generates the trajectory {xt}T−1
t=0 satisfying

E‖∇F (x̃T )‖2 ≤ Õ
(
τmix√
T

)
+O

(
1

T

)
+O

(∥∥πR − 1

N
1N
∥∥2

1

)
, (8)

for any 0 ≤ R < M − 1, where x̃T is drawn uniformly from x0, . . . , xT−1, Õ(·) hides logrithmic
factors, and τmix denotes the mixing time3of Markov chain equation 5. Moreover, the bias term
O
(∥∥πR − 1

N 1N
∥∥2

1

)
shown in equation 8 is unavoidable.

Theorem 1 implies that without any debiasing technique, FedAvg can only converge to a solution
with unavoidable asymptotic bias which is measured by the distance between πR (defined in equa-
tion 6) and the uniform distribution. Except forR = M−1, where πM−1 is the uniform distribution,
for R ≤ M − 2, there is generally some gap between πR and (1/N)1N , which shows that FedAvg
may fail to perform under correlated client participation. However, if πR is not too far away from the
uniform distribution, we expect FedAvg to converge to a solution reasonably close to the optimal so-
lution of equation 1. We next investigate what factors influence the distance from πR to the uniform
distribution. We find that one factor is the spread among pi’s. Stated by the following proposition,
if all pi’s are equal, no gap between πR and (1/N)1N exists (see Appendix D for the proof).

Proposition 2. Suppose p1 = p2 = · · · = pN = 1
N . Then for any 0 ≤ R ≤M − 1, πR = 1

N 1N .

When pi’s are not equal to each other, we turn to understand how R affect πR. In fact, we em-
pirically observe that πR approaches the uniform distribution as R increases. This key observation
is illustrated in Figure 1. We consider the case where N = 500, B = 1 and assign each client
a random pi > 0. We then calculate πR for each R ranging from 0 to N − 1 and measure its
distance from the uniform distribution. As shown in the figure, increasing R causes πR moving to-
wards the uniform distribution. One explanation for this observation is that when R becomes larger,
fewer clients are ready to be sampled in the current round, because many clients have not waited
for enough rounds and hence are not available. Rather than dictated by the availability probabil-
ity pi’s, which is the case for a small R and many available clients, here the sampling process is
mostly determined by the waiting requirement. In the extreme case, when R = M − 1, at each
round, only B clients are available, hence all clients are sampled with equal frequency. Another
point suggested by this observation is that we can choose a large minimum separation R in the
practical scenario to reduce the asymptotic bias for existing FL algorithms, even with unknown pi’s.

3Please refer to Appendix B for the formal definition of the mixing time.
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Algorithm 1 Debiasing FedAvg for correlated client participation

1: Input: initial point x0, stepsizes {α}, some τ > 0, λ0 = 0N , ti = 0,∀i ∈ [N ] for each client
2: for t = 0, 1, . . . , T do
3: A batch of clients St with size |St| = B is selected. The server sends current t and model xt

to clients in St.
4: for i ∈ St in parallel do
5: Each client sets ti ← ti + 1 and calculates λit = ti

(t+1)B and νit = 1
λi
tN

.
6: for k = 0, 1, . . . ,K − 1 do
7: Client i updates its local model by

xit,k+1 = xit,k − ανit∇fi(xit,k). (9)

8: end for
9: end for

10: The server updates its model xt+1 = 1
B

∑
i∈St

xit,K .
11: end for
12: Output: x̃T sampled uniformly from {xt}T−1

t=0

0 100 200 300 400 500
minimum separation R

10−3

10−2

no
rm

(π
R
 - 

un
if(

N)
)

Figure 1: Distance between πR and
the uniform distribution as R increases
(N = 500, B = 1)

The above empirical observation verifies the formal the-
orem that characterizes the debiasing effect of increasing
minimum separation R in Theorem 2. (see Appendix D
for the proof).
Theorem 2. Given a set of pi’s, with at least one ele-
ment pi 6= 1

N . Without loss of generality, let p1, . . . , pB
be the B smallest values among all pi’s. Define qB :=∑B
j=1 pj , then qB < 1/M . There exists a δ̄ > 0,

such that if any size-B batch of clients Bj picking from
[N ] \ [B], δj := |

∑
l∈Bj

pl − 1−qB
M−1 | ≤ δ̄, then πR

converges to a neighborhood of 1
N 1N characterized by

{π | ‖π − 1
N 1N‖1 = O(N−1)} as R ranging from 0 to

M − 1. When R = M − 1, πM−1 is the uniform distri-
bution supported on [N ].

Theorem 2 states that when the availability probabilities
pi’s of clients are not too far away from each other or when B is relatively large (i.e., δj’s are small
for all j), and when the total number of clientsN is large, πR approaches the uniform distribution as
R increases. It is worth noting that practically when the requirements in Theorem 2 are not strictly
satisfied, the effect of increasing R on πR can be still observed as shown in Figure 1.

5 DEBIASING FEDAVG AND ITS CONVERGENCE

As we discuss in the previous section, existing federated learning algorithms like FedAvg cannot
guarantee convergence to the correct optimal solution ifR ≤M−2 and pi’s are arbitrary. Although
we can reduce the asymptotic bias caused by πR by increasing R, it may still be problematic under
some particular circumstances. Clients have intermittent and non-uniform availability, and forcing
a large minimum separation R in practice may cause significant slowdown of the training in the FL
system due to the small number of available clients. The minimum separation R can be relatively
small and the pi’s can be very different from each other, which then suggests by Figure 1 and The-
orem 2, πR can be far from the uniform distribution, making the asymptotic bias non-negligible.
We next design a debiasing process that can be easily integrated into the existing federated learn-
ing algorithms to address asymptotic bias. Our proposed algorithm based on FedAvg is given by
Algorithm 1.

The main difference between our algorithm and vanilla FedAvg lies in the stage of local updates
(Lines 5 and 7). Specifically, we require each client to maintain an estimator of its corresponding
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component of πR, which is only updated when the client is sampled. This estimator is later used to
scale the gradient step during the local update. The estimator is designed by counting the times the
client has been sampled and then used to compute the running empirical frequency of the client’s
participation. Recall that πiR represents the frequency of client i to be selected when t is large enough
(i.e., when the Markov chain equation 5 becomes steady, meaning φR(∞) = ζR). If we reweigh the
local objective function fi by 1

πi
R

(corresponding to νit = 1
πi
RN

in equation 9), this weighting cancels
the asymptotic bias introduced by unbalanced sampling, which drives the trajectory of the server’s
models towards the correct solution of equation 1. If we know πiR for every client in prior, the
above-mentioned reweighting method provides us with unbiased solutions. Then, λit serves as a role
to iteratively approximate πiR round by round, which yields Algorithm 1. Also note that Algorithm
1 reduces to FedAvg if fixing λit = 1/N,∀i ∈ [N ]. This shows the advantage of our algorithm:
it is computationally cheap in the sense that each client only maintains two additional scalars (λit
and νit) and can be easily embedded with existing algorithms by just multiplying the learning rates
by νit . We note that other federated algorithms suffering from asymptotic bias due to non-uniform
sampling could also benefit from our debiasing technique based on simple counting.

However, formally characterizing the convergence of νit to 1
πi
RN

remains challenging due to the
samples of clients are not independent across different rounds. In particular, the clients sampled
in the current round may affect those in the future, which makes the conventional concentration
tools and law of large numbers not applicable. To address this challenge, we carefully analyze the
transition of the Markov chain equation 5 and its influences on the marginal distribution of clients
to be sampled to conclude that λit is an unbiased estimate of πiR asymptotically. Then, we further
leverage the fact that the Markov chain is irreducible as stated in Lemma 1 to show that λit is almost
surely strictly positive even t is infinite, concluding the convergence of νit to 1

πi
RN

, as summarized
in Lemma 2 (see Corollary 2 in Appendix G for the proof).

Lemma 2. Given λ0 = 0N , then νit ,∀i ∈ [N ] in Algorithm 1 satisfies

E‖ν̃t‖2∞ ≤ O
(τmix

t

)
for any t > 0, where ν̃it = νit − 1

πiN
and ν̃t = (ν̃1

t , . . . , ν̃
N
t ); τmix is the mixing time of Markov

chain equation 5 .

Based on the above, we can achieve the following convergence result of Algorithm 1 (see Appendix
G for the proof).

Theorem 3. Suppose Assumptions 1 and 2 hold. For any 0 ≤ R < M−1 and T > c†τmix log τmix
(with c† being some constant), choosing α = Õ(1/(τmixK

√
T )), the output of Algorithm 1 satisfies

E‖∇F (x̃T )‖2 = Õ
(
τmix√
T

)
+O

(
1

T

)
where x̃T is defined as that in Theorem 1; τmix is the mixing time of Markov chain equation 5 .

Comparing to Theorem 1, no bounded gradient assumption is needed to reach the convergence
of our algorithm. Unlike the result in Cho et al. (2023) where clients are forced to participate
in the system cyclically, our bound shown in Theorem 3 does not grow as the number of clients
increases. Particularly, for the bounds in Cho et al. (2023) to be non-vacuous, the total number of
communication round T should be proportional to the number of clients, which could be hard to
satisfy in practice especially when client number is super large. To prove Theorem 3 we critically
rely on the fact that the Markov chain equation 5 is aperiodic to make analysis go through. That is
to say our bound does not suit for R = M − 1, which is the limitation of our analysis. However,
since R = M − 1 is the cyclic case, where the Markov chain follows much nicer structure, one may
be able to get a better bound Cho et al. (2023).

We remark that our convergence result achieves nearly the same order of rate as Markov-sampling
SGD literature Beznosikov et al. (2024); Even (2023) (where rates of O(

√
τmix/

√
T + τmix/T )

are obtained). However, their analysis only suits for the first-order Markov chain and no debiasing
results are presented, while our results generalize to high-order Markov chain and guarantee ap-
proaching unbiased solutions. We note that utilizing variance-reduced techiques may accelerate the
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convergence rate for Markov-sampling SGD Even (2023). Then whether variance reduction can be
used in our problem to design faster algorithms would be an interesting future direction.

It is worth noting that although a uniform minimum separation R for all clients is placed throughout
the paper, we also allow each client maintains its own specific Ri,∀i ∈ [N ]. In this more general
case, we could still use the same modeling technique as in Section 3 where the order of the Markov
chain is chosen to be an upper bound of all Ri’s (e.g. maxiRi). Then Theorems 1 and 3 can
be obtained without any modification as the analysis stays valid for any irreducible and aperiodic
Markov chain. However, Theorem 2 becomes tricky in this case as our proof highly relies on nice
properities of the Markov chain summarized by Proposition 1 which now cease to hold. Therefore,
more advanced mathematical tools might be needed in order to obtain similar statements as Theorem
2 when clients have various Ri’s.

6 NUMERICAL RESULTS

In this section, we provide numerical experiments to illustrate our theoretical results. In particular,
we compare vanilla FedAvg with our proposed algorithm (Algorithm 1) under non-uniform and
correlated client participation described in Section 2. For simplicity, we partition the N clients into
M groups and exactly one group of clients are selected at each round to fully participate in the
system. Here we choose N = 100,M = 20. Since all clients in the same group participate in
the system together once being sampled, we only need to associate availability probabilities to each
group, where pi ∝ i−1.5, i ∈ [M ] is a long-tailed distribution.

Synthetic dataset. We test Vanilla FedAvg and Debiasing FedAvg (Algorithm 1) under a synthetic
dataset constructed following Sun & Wei (2022): for each client i, Ai ∈ Rni×d is the feature
matrix, where ni is the number of local samples and d is the feature dimension. Every entry of Ai
is generated by a Gaussian distribution N (0, (0.5i)−2). We then generate bi ∈ Rni , the labels of
client i, by first generating a reference point θi ∈ Rd, where θi ∼ N (µi, Id). And µi is drawn
from N (α, 1) with α ∼ N (0, 100). Then bi = Aiθi + εi with εi ∼ N (0, 0.25Ini

). We set
d = 20, ni = 100,∀i ∈ [N ]. And we define fi(x) = 1

ni

∑ni

j=1 log( 1
2 (〈Ai[j, :], x〉 + bi[j])

2 + 1)

where Ai[j, :] represents the j-th row of Ai and bi[j] is the j-th entry of bi. The outcomes are
shown in Figures 2a,2b, where Figure 2a shows that Vanilla FedAvg suffers from bias which can be
mitigated by increasing R, and Figure 2b shows that Debiasing FedAvg effectively reduces bias no
matter what value of R is set.

MNIST dataset. We also test our proposed algorithm under the MNIST dataset. Each client
maintains a three-layer fully-connected neural network for training. All learning rates are chosen to
be with the order of O(10−3). In Figure 3c, we compare Debiasing FedAvg with Vanilla FedAvg
and FedVARP Jhunjhunwala et al. (2022), and Debiasing FedAvg can effectively mitigate the bias
effect. Another interesting empirical observation is that increasing R can possible fasten the speed
of both Debiasing and Vanilla FedAvg (as shown by Figures 3a,3b). This is yet not characterized by
our theoretical demonstration. Here we conjecture that larger R corresponds to smaller mixing time
τmix and hence faster rate as the bounds in Theorems 1,3 scale with respect to τmix. We provide
more detailed and intuitive discussions in Appendix I.

7 LIMITATIONS

In this section we discuss the limitations of this paper. Our Markov-chain framework works for
that all clients share the same static minimum separationR and in the last paragraph of Section 5 we
further allow static client-specificRi’s. However, more practical scenarios call for even time-varying
R, which lies outside the scope this paper. In Theorem 2, we force the availability probabilities pi’s
not too far away from each other to make the theory hold, while this assumption is not required in
practice. Moreover, the convergence results (Theorems 1,3) do not enjoy speedup in the number of
clients as the classical FL literature when clients are uniformly sampled. We believe it is mainly
due to the non-uniformity and time-correlation of the client sampling process and more advanced
mathematical tools might be needed in order to show such speedup in the Markov setting.

9
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(a) FedAvg under different R after conver-
gence (synthetic data)
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Figure 2: Experiments on synthetic dataset. (a) The training loss of Vanilla FedAvg (after conver-
gence) with different R is shown. Larger R leads to smaller bias. (b) Debiasing FedAvg is tested
under different values of R, where the red line represents Vanilla FedAvg when clients are sampled
under an oracle uniform distribution. The subfigure on the right shows that all curves reach unbiased
objective after convergence, indicating that the asymptotic bias is effectively canceled.
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(a) Debiasing FedAvg under dif-
ferent R (MNIST)
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(c) FedAvg, FedVARP, Debias-
ing FedAvg when R = 8
(MNIST)

Figure 3: Experiments on MNIST. (a) The convergence of our Debiasing FedAvg under different
client minimum separation R configurations. The red horizontal line is the convergence value of the
objective function by vanilla FedAvg when clients are sampled under an oracle uniform distribution.
Our Debiasing FedAvg converges to the unbiased objective with larger R converges faster. (b) For
Vanilla FedAvg, increasing R causes smaller bias. (c) When R = 8, Vanilla FedAvg, FedVARP and
Debiasing FedAvg are compared. Note that both Vanilla FedAvg and FedVARP are designed only
for uniform client sampling and hence are significantly affected by bias from client participation.

8 CONCLUSION

In this paper, we consider FL with non-uniform and correlated client participation, where every
client must wait as least R rounds (minimum separation) before participating again, and each client
has their own availability probability. A high-order Markov chain is introduced to model this prac-
tical scenario. Based on this Markov-chain modeling, we are able to study the convergence per-
formances of existing FL algorithms. Due to the effect of non-uniformity and time correlation, FL
algorithms can only converge with asymptotic bias, which can be reduced by increasing minimum
separationR as shown by our empirical and theoretical results. Finally, we propose a debiasing algo-
rithm for FedAvg that guarantee convergence to unbiased solutions given arbitrary non-uniformity
and minimum separation R.
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A RELATED WORK

Non-uniform & correlated client participation. There is a recent surge of efforts to investigate
FL with non-uniform client participation both from theoretical and empirical perspectives. Earlier
work presumes that clients are sampled by the server uniformly, which guarantees the global model
held by the server is an unbiased estimate as that in the full participation setting and hence allows
extension of convergence results for the full-participation setting to the partial-participation setting
Jhunjhunwala et al. (2022); Karimireddy et al. (2019); Yang et al. (2021); Bian et al. (2024). The
above-mentioned uniform participation is, however, far from the reality as clients may have their
intrinsic sampling probabilities pi’s that are non-uniform due to, for example, intermittent avail-
ability resulting from practical constraints. Recent works analyzed the convergence behaviors of
FL algorithms when such pi’s are known as a prior or controllable Wang & Ji (2022); Karimireddy
et al. (2019); Chen et al. (2020); Fraboni et al. (2021). However, pointed out by Bonawitz et al.
(2019); Wang et al. (2021), client participation pattern can highly depend on the underlying system
characteristics, which is thus hard to know or control. As characterized by Wang & Ji (2022); Xi-
ang et al. (2024), such unknown and non-uniform participation statistics causes a bias in the model
updates as more frequently participating clients dominate the average update. In order to mitigate
the effect of bias, Patel et al. (2022); Ribero et al. (2022); Wang & Ji (2023) introduced reweight-
ing mechanisms combined with dynamically estimating client participation distributions. Such idea
is also introduced in asynchronous distributed learning literature Ram et al. (2009). Most works
aiming at analyzing non-uniform participation, however, rely on the unrealistic assumption that ev-
ery client participates in the system independently, which fails to capture practical scenarios where
each client’s participation is influenced by others across roundsKairouz et al. (2019); Eichner et al.
(2019); Zhu et al. (2021). One interesting time-correlated participation pattern is that clients have to
wait for at least R (called minimum separation) rounds between consecutive participation McMa-
han & Thakurta (2022); Xu et al. (2023). In particular, imposing a minimum separation constraint
has been empirically shown to benefit privacy preservation in FL applications Kairouz et al. (2021);
Choquette-Choo et al. (2023); Xu et al. (2023); Xu & Zhang (2024). Instead, such time-correlated
participation has not been fully investigated theoretically. The only work that partially captures the
above case is Cho et al. (2023) where the clients are forced to follow a cyclic participation, which
is an extreme case of very large R. Therefore, in this paper we study convergence performances
of FL algorithms under non-uniform and correlated client participation, which provides theoretical
explanations for their empirical counterparts in practice.

Stochastic optimization with Markov-sampling. Another line of related works is stochastic
gradient-based optimization under Markov-sampling. Unlike classical stochastic optimization lit-
erature where i.i.d. samples are drawn during the training process Allen-Zhu & Hazan (2016);
Allen-Zhu (2017); Johnson & Zhang (2013); Defazio et al. (2014), many contexts, including TD-
learning and reinforcement learning (RL), require to optimize the objective function by utilizing
samples generated by a Markov chain Tsitsiklis & Van Roy (1996; 1999); Bhatnagar et al. (2007);
Sutton et al. (1999). Recently, the work Even (2023) provided convergence guarantees for SGD
under Markov-sampling when the objectives are convex, strongly convex and non-convex. Then
Beznosikov et al. (2024) further proposed an accelerated method and generalized the analysis to
variational inequalities. Both of them restrict on the first-order Markov chains. It has been shown by
literature that gradient-based methods converge to the optimal solution of the objective induced by
the stationary distribution of the underlying Markov chain Even (2023); Beznosikov et al. (2024).
This indicates that the final solution is biased if the stationary distribution is non-uniform and ex-
isting literature cannot deal with such bias problem. In contrast, in this paper our analysis suits
for higher-order Markov chains and the proposed algorithm enables the convergence to an unbiased
solution without any information and constraint on the Markov chain and stationary distribution.

B PRELIMINARIES OF MARKOV CHAINS

In this section, we summarize several notions and properties of the conventional Markov chain (i.e.,
first-order Markov chain). We only focus on finite Markov chains, meaning the state space is finite.
Note that for a finite Markov chain, we can use its transition matrix to uniquely represent it.
Definition 2. Given a finite Markov chain with transition matrix P , we say it is irreducible if its
induced graph is strongly connected, i.e., every state can be reached from every other state.

14
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Note that [P k]i,j is the probability transiting from state i to state j with exactly k steps, based on
which we introduce the definition of aperiodic and periodic Markov chains.

Definition 3. The period of state i is the greatest common divisor (g.c.d.) of the set {k ∈ N |
[P k]i,i > 0}. If every state has period 1 then the Markov chain is aperiodic, otherwise it is periodic.

In order words, the period of state i can be achieved by calculating the g.c.d. of the number of steps
starting from i and returning back. If the Markov chain is also irreducible, we have the following.

Lemma 3. If the Markov chain is irreducible, every state has the same period.

Next important result states the convergence of the Markov chain.

Lemma 4. Suppose a finite Markov chain with transition matrix P is irreducible and aperiodic.
Then, there exist some ρ ∈ (0, 1) and C > 0 such that

max
x
‖P k(x, ·)− π‖TV ≤ Cρk

where π is the unique, strictly positive stationary distribution; ‖ · ‖TV denotes the total variation.

Lemma 4 implies that starting from any initial distribution, the Markov chain converges to
the stationary distribution at linear rate. Without confusion, we denote dTV (P k,1πT ) =
maxx ‖P k(x, ·) − π‖TV . Note that dTV (P k,1πT ) = 1

2‖P
k − 1πT ‖∞. Then, we define the

mixing time of the chain.

Definition 4. Given any ε > 0, the mixing time tmix(ε) is defined as tmix(ε) := inf{l ≥ 1 |
dTV (P l,1πT ) ≤ ε}. Conventionally, we denote τmix = tmix(1/4).

Lemma 5. We have the following statements:

(1). dTV (P t+1,1πT ) ≤ dTV (P t,1πT ), ∀t ≥ 0.

(2). For k ≥ 2, tmix(2−k) ≤ (k − 1)τmix.

(3). Moreover,
T∑
k=0

dTV (P k,1πT ) ≤ c0τmix, ∀T ≥ 0

for some constant c0 > 0.

Proof. The first two claims are shown in Levin & Peres (2017). To see the third claim, we note that

T∑
k=0

dTV (P k,1πT ) ≤
∞∑
k=0

dTV (P k,1πT )

≤
τmix∑
l=0

dTV (P l,1πT ) +

∞∑
k=2

tmix(2−(k+1))∑
l=tmix(2−k)+1

dTV (P l,1πT )

≤ dTV (P,1πT )τmix +

∞∑
k=2

(tmix(2−(k+1))− tmix(2−k))2−k

≤ dTV (P,1πT )τmix +

∞∑
k=2

k2−kτmix

≤ dTV (P,1πT )τmix + 2τmix

which completes the proof with c0 = dTV (P,1πT ) + 2.

C PROOFS OF PROPOSITION 1 AND LEMMA 1

C.1 PROOF OF PROPOSITION 1
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Property (1) follows from equation 2, where by definition within R + 1 rounds, the clients cannot
participate in the system twice or more. Property (2) follows from the fact that every client is
sampled with probability proportional to its availability probability pi if it has waited for R rounds.
Property (3) then directly follows from the definition of the first-order Markov chain and Properties
(1), (2). Properties (4) and (5) are due to the observation that every row and column has exactly
σ(B(M −R), B) non-zero entries due to Property (3).

C.2 PROOF OF LEMMA 1

It is obvious that the Markov chain is irreducible in the sense that all ordered sequences (I1, . . . , IR)
can be observed due to every client has strictly positive probability to be selected. To see that it is
aperiodic for R ≤ M − 2, we only need to show that starting from the state (I1, . . . , IR) where
Ik = ((k−1)B+1, . . . , kB), k = 1, . . . , R, bothR+1 steps andR+2 steps can be possibly taken
such that the first return happens, which implies aperiodicity. This is because if a Markov chain is
irreducible, all the states have the same period by Lemma 3.

Then, we consider the following two constructed sequence. Let h1 =
(I1, . . . , IR, IR+1, I1, . . . , IR) for state IR+1 = (RB + 1, . . . , (R + 1)B), where the length
of h1 is 2R + 1. Denote h1[k] as the entry at the k-th position. We construct the sequence
{Yt, Yt+1, . . . , Yt+R} as Yt+k−1 = (h1[k mod (2R+ 1)], . . . , h1[(k+R−1) mod (2R+ 1)]), k =
1, . . . , 2R+ 1, i.e., starting from (I1, . . . , IR) exactly R+ 1 steps are taken to firstly return. Similar
to the definition of h1, let h2 = (I1, . . . , IR, IR+1, IR+2, I1, . . . , IR) with its length 2R + 2 and
state IR+2 = ((R + 1)B + 1, (R + 2)B). We then construct the sequence {Yt, . . . , Yt+R+1} as
Yt+k−1 = (h2[k mod (2R + 2)], . . . , h2[(k + R − 1) mod (2R + 2)]), k = 1, . . . , 2R + 2, which
then suggests exactly R+ 2 steps are required to return back to (I1, . . . , IR). Combining these two
cases leads to the Markov chain is aperiodic for any R ≤M − 2.

D PROOFS OF PROPOSITION 2 AND THEOREM 2

D.1 PROOF OF THEOREM 2

Let us first consider the case when B = 1 and given p1 > 0, pi = 1−p1
N−1 ,∀i = 2, . . . , N . Then,

for any 0 < R ≤ N − 1 and any (j0, . . . , jR−1), pick an arbitrary jR ∈ {j0, . . . , jR−1}c. By
denoting bR = b(PR[·, (j0, . . . , jR−1)]), bR+1 = b(PR+1[·, (j0, . . . , jR)]) (which are the column
sums for each column of PR and PR+1, respectively) and letting SR := {j0, . . . , jR−1}, SR+1 :=
{j0, . . . , jR} for notation simplicity. By observing that when πR is exactly the uniform distribution,
the sum of PR for each column is exactly one, we then tend to prove that the column sum of PR
asymptotically approaches one as R increases. We have four cases.

Case I: j0 = {1}. Then, for any 0 ≤ R ≤ N − 2, utilizing last two properties in Proposition 1,

bR+1 − bR = p1

∑
k∈Sc

R+1

(p1 +
∑

i∈Sc
R+1

pi − pk)−1 − p1

∑
k∈Sc

R

(p1 +
∑
i∈Sc

R

pi − pk)−1

= p1

∑
k∈Sc

R+1

(
p1 +

1− p1

N − 1
(N −R− 2)

)−1 − p1

∑
k∈Sc

R

(
p1 +

1− p1

N − 1
(N −R− 1)

)−1

= p1(N −R− 1)
(
p1 +

1− p1

N − 1
(N −R− 2)

)−1 − p1(N −R)
(
p1 +

1− p1

N − 1
(N −R− 1)

)−1

Let r = N −R− 1. We simply bR as

bR =
p1r

p1 + 1−p1
N−1 (r − 1)

=
p1(N − 1)

1− p1
+
p1

(
1− p1(N−1)

1−p1

)
p1 + 1−p1

N−1 (r − 1)

Then,

bR+1 − bR = p1

(
1− p1(N − 1)

1− p1

)( 1

p1 + 1−p1
N−1 (r − 1)

− 1

p1 + 1−p1
N−1 r

)

=
p1(1− p1)

N − 1

(
1− p1(N − 1)

1− p1

)(
p1 +

1− p1

N − 1
(r − 1)

)−1(
p1 +

1− p1

N − 1
r
)−1
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which is strictly positive for p1 < 1/N for all 0 ≤ R ≤ N − 2.

Case II: {1} ∈ ScR+1. Then, we obtain pj0 = 1−p1
N−1 and hence

bR/pj0 = (pj0 +
1− p1

N − 1
(N −R− 1))−1 + (N −R− 1)(p1 +

1− p1

N − 1
(N −R− 1))−1

=
N − 1

(1− p1)(r + 1)
+ r(p1 +

1− p1

N − 1
r)−1

=
N − 1

(1− p1)(r + 1)
+
N − 1

1− p1
− p1(N − 1)

1− p1

1

p1 + 1−p1
N−1 r

where we let r = N −R− 1. Then, denoting p̄ = 1−p1
N−1 and α = p1/p̄ yields

(bR+1 − bR)/pj0 =
1

p̄

1

r(r + 1)
− p1

p̄2(r + α− 1)(r + α)

=
(r + α)(r + α− 1)− αr(r + 1)

p̄r(r + 1)(r + α)(r + α− 1)

=
(1− α)r2 + (α− 1)r + α(α− 1)

p̄r(r + 1)(r + α)(r + α− 1)

=
(1− α)(r2 − r − α)

p̄r(r + 1)(r + α)(r + α− 1)
.

Note that when p1 < 1/N , α < 1, which indicates bR+1 − bR > 0,∀0 ≤ R ≤ N − 3 by observing
r2 − r − α ≥ 0. Moreover, note that bR > 1,∀R ≤ N − 2 in this case by

bR =
1

r + 1
+ 1− α

r + α
=

(1− α)r

(r + 1)(r + α)
+ 1 > 1

for α < 1. And a straightforward calculation gives bN−2 <
3
2 , which then indicates |bR − 1| <

1
2 ,∀R ≤ N − 1.

Case III: {1} ∈ ScR and {1} /∈ ScR+1. In this case, pj0 = 1−p1
N−1 = p̄. Then, a simple calculation

gives

(bR+1 − bR)/pj0 =
1

p̄

(α− 1)r

(r + 1)(r + α)
< 0

when p1 < 1/N .

Case IV: {1} /∈ ScR. Then, all the clients are available in both ScR and ScR+1 have availability
probability p̄. Then, it is obvious that bR = 1,∀0 ≤ R ≤ N − 1.

For Cases I, III and IV, we conclude that when p1 < 1/N and pi = 1−p1
N−1 , i = 2, . . . , N , |bR+1−1| <

|bR − 1|,∀0 ≤ R ≤ N − 2 by further noting that bN−1 = 1. By Case II, we then have all
|bR − 1| converges to [0, 0.5] as R increases. Observe bN−1 = 1 corresponds to the case that
ζN−1 is exactly the uniform distribution and so is πN−1. This indicates that πR converges to some
neighborhood of the uniform distribution 1

N 1N . In order to characterize this neighborhood, we
turn to carefully analyze Case II, i.e., |bR − 1| < 0.5. Noting that Case II corresponds to at most
1−R/N portion of columns in PR and so does πR, therefore the neighborhood is characterized by
{π | ‖π − 1

N 1N‖1 = O(1/N)}.

Next, in order to prove the statement, we perturb each pi = 1−p1
N−1 , i = 2, . . . , N by some scalar

εi such that
∑N
i=2 εi = 0. Note that bR+1 − bR is continuous in (ε2, . . . , εN ) and so is πR, which

then implies that there exists some positive ∆ > 0 such that bR+1 − bR preserves the original
properties as before the perturbation is added for all |εi| ≤ ∆. Therefore, we achieve the statement
that πR converges to the neighborhood {π | ‖π − 1

N 1N‖1 = O(1/N)} when B = 1. Obtaining
the statement for B > 1 follows the same technique by noting that we can always calculate the
equivalent p̃i for each batch with size B. Specifically, given a batch of clients, say Bi, then p̃i =∏
j∈Bi

pj/C with suitable normalization constant C and we can then obtain the convergence of πR
to a neighborhood of the uniform distribution by similar development.
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D.2 PROOF OF PROPOSITION 2

The proof of Proposition 2 is straightforward by observing that bR = 1,∀R when pi = 1/N,∀i ∈
[N ]. Then 1TPR = 1T ,∀R which indicates πR is always the uniform distribution.

E INTERMEDIATE LEMMAS

In this section, we present some useful intermediate results under the following generalized set-
ting: we consider a general global objective function defined as Fw(x) :=

∑N
i=1 wifi(x) where∑N

i=1 wi = 1 and wi ≥ 0,∀i ∈ [N ]. And we consider the following local update

xit,k+1 = xit,k − αqit∇fi(xit,k) (10)

where qit = wi

yit
for some positive sequence yit. Note that the above update equation 10 is a general-

ized version of equation 9 in Algorithm 1. Then we have the following useful lemmas when forcing
the update equation 10.
Lemma 6. Under Assumption 1, we have for any x

‖∇Fw(x)−∇F (x)‖ ≤ G
‖∇fi(x)−∇Fw(x)‖ ≤ 2G, ∀i ∈ [N ].

Proof. Note that Assumption 1 implies

‖∇Fw(x)−∇F (x)‖ = ‖
N∑
i=1

wi(∇fi(x)−∇F (x))‖

≤
N∑
i=1

wi‖∇fi(x)−∇F (x)‖

≤ G
N∑
i=1

wi = G.

Then, for any i ∈ [N ]

‖∇fi(x)−∇Fw(x)‖ ≤ ‖∇fi(x)−∇F (x)‖+ ‖∇Fw(x)−∇F (x)‖ ≤ 2G.

Lemma 7. Given any t and i, we have ‖xit,k − xt‖2 ≤ γ2L−2‖∇Fw(xt)‖2 + 4γ2L−2G2, ∀k =

0, . . . ,K, when α ≤ min
{

γ
8KL ,

γ
8KLqti

}
and γ ≤ 1/3.

Proof. During the t-th communication round, St and qit are fixed. Then, for any β > 0 and α ≤
min{ γβL ,

γ
βLqit
}, using Lemma 6 gives

‖xik+1 − xt‖2 ≤ (1 + β−1)‖xik − xt‖2 + (1 + β)(α)2(qit)
2‖∇fi(xik)‖2

≤ (1 + β−1)‖xik − xt‖2 + 3(1 + β)(α)2(qit)
2
(
‖∇fi(xik)−∇fi(xt)‖2

+ ‖∇fi(xt)−∇Fw(xt)‖2 + ‖∇Fw(xt)‖2
)

≤ (1 + β−1)‖xik − xt‖2 + 3(1 + β)(αqstt )2
(
L2‖xik − xt‖2 + 4G2 + ‖∇Fw(xt)‖2

)
≤ (1 + β−1)‖xik − xt‖2 +

3(1 + β)γ2

β2L2

(
L2‖xik − xt‖2 + 4G2 + ‖∇Fw(xt)‖2

)
= (1 + (1 + 3γ2)β−1 + 3γ2β−2)‖xik − xt‖2 +

3(1 + β)γ2

β2L2

(
4G2 + ‖∇Fw(xt)‖2

)
≤ exp

(
1 + 6γ2

β

)
‖xik − xt‖2 +

3(1 + β)γ2

β2L2

(
4G2 + ‖∇Fw(xt)‖2

)
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for any β ≥ 1. Unrolling the above gives for any k = 0, . . . ,K − 1

‖xik − xt‖2 ≤
K−1∑
k=0

exp

(
1 + 6γ2

β
k

)
3(1 + β)γ2

β2L2

(
G2 + ‖∇Fw(xt)‖2

)
which further indicates by choosing γ ≤ 1/3

‖xik − xt‖2 ≤
K−1∑
k=0

e2kβ−1 3(1 + β)γ2

β2L2

(
4G2 + ‖∇Fw(xt)‖2

)
=

1− e2K/β

1− e2/β
· 3(1 + β)γ2

β2L2

(
4G2 + ‖∇Fw(xt)‖2

)
≤ (e2K/β − 1)3γ2

L2

(
4G2 + ‖∇Fw(xt)‖2

)
≤ γ2

L2

(
4G2 + ‖∇Fw(xt)‖2

)
when choosing β = 8K.

Lemma 8. For any t ≥ τ , we have ‖xt−xt−τ‖2 ≤ 4γ2L−2τ2G2 +γ2L−2τ
∑t−1
l=t−τ ‖∇Fw(xl)‖2

when α ≤ min{ γ
8KLq ,

γ
8KLqit

} and γ ≤ 1/3.

Proof. Note that

‖xt+1 − xt‖2 = ‖ 1

|St|
∑
i∈St

xit,K − xt‖2

≤ 1

|St|
∑
i∈St

‖xit,K − xt‖2

≤ γ2

L2
(4G2 + ‖∇Fw(xt)‖2).

Then,

‖xt − xt−τ‖2 = ‖
t−1∑
l=t−τ

xl+1 − xl‖2

≤ τ
t−1∑
l=t−τ

‖xl+1 − xl‖2

≤ 4γ2

L2
τ2G2 +

γ2

L2
τ

t−1∑
l=t−τ

‖∇Fw(xl)‖2.

Lemma 9. For any l ∈ [t−τ, t] with t ≥ τ ≥ 1 and α ≤ min{ γ
8KLq ,

γ
8KLqit

} with γ ≤ min{ 1
2τ ,

1
3}

we have
max

t−τ≤l≤t
E‖∇Fw(xl)‖2 ≤ 4E‖∇Fw(xt−τ )‖2 + 16τ2γ2G2.

Proof. For any t− τ ≤ l ≤ t, we have
E‖∇Fw(xl)‖2 ≤ 2E‖∇Fw(xt−τ )‖2 + 2E‖∇Fw(xl)−∇Fw(xt−τ )‖2

≤ 2τγ2
t−1∑
l=t−τ

E‖∇Fw(xl)‖2 + 8τ2γ2G2 + 2E‖∇Fw(xt−τ )‖2

≤ 2τ2γ2 max
t−τ≤l≤t

E‖∇Fw(xl)‖2 + 8τ2γ2G2 + 2E‖∇Fw(xt−τ )‖2

≤ 1

2
max

t−τ≤l≤t
E‖∇Fw(xl)‖2 + 8τ2γ2G2 + 2E‖∇Fw(xt−τ )‖2
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where the second inequality follows Lemma 8 and we use γ ≤ 1/(2τ) in the last inequality. Finally,
taking the maximum over l on the left-hand side completes the proof.

Lemma 10. Define Fw :=
∑N
i=1 wifi for

∑N
i=1 wi = 1, wi ≥ 0. Suppose Assumptions 1,2 hold.

Considering any sequence yit that satisfies
∑N
i=1 y

i
t = 1, yit ≥ a−1 > 0,∀i ∈ [N ], t ≥ 0 and

letting qit = wi

yit
,∀i ∈ [N ], then, given τ ≥ τmix log(1/δ) with 0 < δ < 1, for α ≤ γ

8āKL with

γ ≤ min{ 1
384τL ,

L
384τ ,

1
3}, we have ∀T > τ ,

1

T − τ

T−1∑
t=τ

E‖∇Fw(xt−τ )‖2 ≤ 32āL∆τ

γ(T − τ)
+

8

T − τ

T−1∑
t=τ

E
[
‖q̃t‖2∞‖∇Fw(xt−τ )‖2

]
+ 32āLG2

(
3γ + 6γτ2 +

2γ

L
+

3γ

16L2
+

γ2

16aL

)
+

32G2

T − τ

T−1∑
t=τ

E‖q̃t‖2∞ + 8c21δ
2G2

where ā = amaxi{wi}, q̃t = (q̃1
t , . . . , q̃

N
t ) with q̃it = qit − wi

πi
, and c1 is some constant. Moreover,

∆τ := E[Fw(xτ )−min
x
Fw(x)] ≤ γτ

2āL
G2 + E[Fw(x0)− F ∗w].

Proof. For notation simplicity, we drop subscript t for xit,k. Define qit = wi

yit
. Note that

xiK = xt −
K−1∑
k=0

αqit∇fi(xik)

xt+1 = xt −
1

B

∑
i∈St

K−1∑
k=0

αqit∇fi(xik)

where St denotes the subset of clients drawn in the t-th round. Due to the smoothness of every fi,
we have

E[Fw(xt+1)− Fw(xt)] ≤ E〈∇Fw(xt), xt+1 − xt〉+
L

2
E‖xt+1 − xt‖2.

Considering t ≥ τ for any τ ≥ 0,

E〈∇Fw(xt), xt+1 − xt〉 = −E〈∇Fw(xt),
1

B

∑
i∈St

K−1∑
k=0

αqit∇fi(xik)〉

= E〈∇Fw(xt−τ )−∇Fw(xt),
1

B

∑
i∈St

K−1∑
k=0

αqit∇fi(xik)〉︸ ︷︷ ︸
e1

+ E〈−∇Fw(xt−τ ),
1

B

∑
i∈St

K−1∑
k=0

αqit∇fi(xt−τ )〉︸ ︷︷ ︸
e2

+ E〈−∇Fw(xt−τ ),
1

B

∑
i∈St

K−1∑
k=0

αqit(∇fi(xik)−∇fi(xt))〉︸ ︷︷ ︸
e3

+ E〈−∇Fw(xt−τ ),
1

B

∑
i∈St

K−1∑
k=0

αqit(∇fi(xt)−∇fi(xt−τ ))〉︸ ︷︷ ︸
e4

.
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We first note that according to the conditions on yit, wi ≤ qit ≤ awi with some positive constant
a <∞ for every i ∈ [N ] and ∀t ≥ 0. Then by choosing α ≤ γ

8aKLwm
≤ min{ γ

8KL ,
γ

8KLmaxi{qit}
}

with γ ≤ 1/3 and wm = maxi wi.

e1 ≤
1

2
E‖∇Fw(xt)−∇F (xt−τ )‖2 +

1

2
E

∥∥∥∥∥ 1

B

∑
i∈St

K−1∑
k=0

αqit∇fi(xik)

∥∥∥∥∥
2

≤ L2

2
E‖xt − xt−τ‖2 + E

∥∥∥∥∥ 1

B

∑
i∈St

K−1∑
k=0

αqit(∇fi(xik)−∇fi(xt))

∥∥∥∥∥
2

+ E

∥∥∥∥∥ 1

B

∑
i∈St

K−1∑
k=0

αqit∇fi(xt)

∥∥∥∥∥
2

≤ L2

2
E‖xt − xt−τ‖2 +KE

[
1

B

∑
i∈St

K−1∑
k=0

(α)2L2(qit)
2‖xik − xt‖2

]

+ E

∥∥∥∥∥ 1

B

∑
i∈St

K−1∑
k=0

αqit∇fi(xt)

∥∥∥∥∥
2

≤ τγ2

2

t−1∑
l=t−τ

E‖∇Fw(xl)‖2 + 2τ2γ2G2 +
γ2

64L2
E‖∇Fw(xt)‖2 +

γ2G2

16L2

+
γ2

64L2
E

∥∥∥∥∥ 1

B

∑
i∈St

∇fi(xt)

∥∥∥∥∥
2

≤ τγ2

2

t−1∑
l=t−τ

E‖∇Fw(xl)‖2 +

(
2τ2 +

1

16L2
+

1

8BL2

)
γ2G2 +

3γ2

64L2
E‖∇F (xt)‖2

where we use Lemmas 7 and 8 in the fourth inequality; we use the fact E‖ 1
B

∑
i∈St
∇fi(xt)‖2 ≤

2E‖∇Fw(xt)‖2 + 8G2/B in the last inequality. Next we turn to bound e2. Note that

e2 = −αKE

[
E
(
〈∇Fw(xt−τ ),

1

B

∑
i∈St

qit∇fi(xt−τ )〉 | Ft−τ
)]

=
αK

2
E‖∇Fw(xt−τ )− E(

1

B

∑
i∈St

qit∇fi(xt−τ ) | Ft−τ )‖2 − αK

2
E‖∇Fw(xt−τ )‖2

− αK

2
E‖E(

1

B

∑
i∈St

qit∇fi(xt−τ ) | Ft−τ )‖2

≤ αK

2
E‖∇Fw(xt−τ )− E(

1

B

∑
i∈St

qit∇fi(xt−τ ) | Ft−τ )‖2 − αK

2
E‖∇Fw(xt−τ )‖2

≤ αKE‖∇Fw(xt−τ )− E(
1

B

∑
i∈St

qi∗∇fi(xt−τ ) | Ft−τ )‖2 − αK

2
E‖∇Fw(xt−τ )‖2

+ αKE

∥∥∥∥∥ 1

B

∑
i∈St

(qit − qi∗)∇fi(xt−τ )

∥∥∥∥∥
2

where qi∗ = wi

πi
andFt−τ is the filtration up to t−τ . Next, we provide the bound for E‖∇Fw(xt−τ )−

E( 1
B

∑
i∈St

qi∗∇fi(xt−τ ) | Ft−τ )‖2. Since we are focusing on the case for a particular R, without
causing confusion, we drop R for notation simplicity in the following analysis.

Denoting ψS := limt→∞ P (St = S), we have

πi =

∑
Ŝi
ψŜi∑N

i=1

∑
Ŝi
ψŜi

=

∑
Ŝi
ψŜi

B
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where Ŝi denotes any set with size B containing i. Then, for any vectors {vi}Ni=1, we have

∑
S∈S

∑
i∈S

ψS
πi
vi =

N∑
i=1

∑
Ŝi

ψŜi

πi
vi = B

N∑
i=1

vi.

where S is the collection of all sets with size B. Thus, by letting vi = wi∇fi(xt−τ ) in the above,
we obtain

E‖∇Fw(xt−τ )− E(
1

B

∑
i∈St

qi∗∇fi(xt−τ )|Ft−τ )‖2

= E‖∇Fw(xt−τ )− 1

B

∑
S∈S

∑
i∈S

P (St = S|Ft−τ )qi∗∇fi(xt−τ )‖2

= E

∥∥∥∥∥ 1

B

∑
S∈S

∑
i∈S

(P (St = S|Ft−τ )− ψS) qi∗∇fi(xt−τ )

∥∥∥∥∥
2

by noting qi∗ = wi/π
i. Moreover, P (St = ·) can be uniquely induced by φR(t) defined by equa-

tion 6 under proper linear transformations, which also indicates that P (St = · | Ft−τ ) = P (St =

· | St−τ ). Thus, Lemma 4 implies |P (St = S | Ft−τ ) − ψS | ≤ c1δπmin/
√
CBN for some c1 > 0,

∀S when τ ≥ τmix log(1/δ) with CBN =

(
N
B

)
. Then,

E

∥∥∥∥∥∇Fw(xt−τ )− E(
1

B

∑
i∈St

qi∗∇fi(xt−τ )|Ft−τ )

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

B

∑
S∈S

∑
i∈S

(P (St = S|Ft−τ )− ψS) qi∗∇fi(xt−τ )

∥∥∥∥∥
2

≤ 1

B
E

∑
i∈S

∥∥∥∥∥∑
S∈S

(P (St = S|Ft−τ )− φS)qi∗∇fi(xt−τ )

∥∥∥∥∥
2


≤ c21π2
minδ

2E

[
1

B

∑
i∈S

∥∥qi∗∇fi(xt−τ )
∥∥2

]
≤ c21δ2(E‖∇Fw(xt−τ )‖2 + 4G2)

where we use the fact that

‖∇fi(xt−τ )‖2 ≤ 2‖∇Fw(xt−τ )‖2 + 8G2.

Utilizing the following

E‖ 1

B

∑
i∈St

(qit − qi∗)∇fi(xt−τ )‖2 = E‖ 1

B

∑
i∈St

q̃it(∇fi(xt−τ )−∇F (xt−τ ) +∇F (xt−τ ))‖2

≤ 8G2E‖q̃t‖2∞ + 2E
[
‖q̃t‖2∞‖∇F (xt−τ )‖2

]
where we denote q̃it = qit − qi∗. Then we bound e2 as

e2 ≤
αK

2
(2c21δ

2 − 1)E‖∇F (xt−τ )‖2 + 2αKG2(δ2 + 4E‖q̃t‖2∞) + 2αKE
[
‖q̃t‖2∞‖∇F (xt−τ )‖2

]
.
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In order to bound e3, note that according to Lemma 7 for α ≤ γ
8KLa ≤

γ
8KLqit

e3 ≤ E

[
1

B

∑
i∈St

K−1∑
k=0

αqit‖∇F (xt−τ )‖
∥∥∇fi(xik)−∇fi(xt)

∥∥]

≤ E

[
1

B

∑
i∈St

K−1∑
k=0

(
(αqit)

2K

2
‖∇Fw(xt−τ )‖2 +

L2

2K
‖xik − xt‖2

)]

≤ E

[
1

B

∑
i∈St

K−1∑
k=0

(
γ2

128L2K
‖∇Fw(xt−τ )‖2 +

γ2

2K
(‖∇Fw(xt)‖2 + 4G2)

)]

≤ γ2

128L2
E‖∇Fw(xt−τ )‖2 +

γ2

2
E‖∇Fw(xt)‖2 + 2γ2G2.

Finally, based on Lemma 8, similarly we obtain

e4 ≤ E

[
1

B

∑
i∈St

K−1∑
k=0

αqit‖∇F (xt−τ )‖‖∇fi(xt)−∇fi(xt−τ )‖

]

≤ E

[
1

B

∑
i∈St

K−1∑
k=0

(
(αqit)

2K

2
‖∇F (xt−τ )‖2 +

L2

2K
‖xt − xt−τ‖2

)]

≤ γ2

128L2
E‖∇F (xt−τ )‖2 +

γ4τ

2
(

t−1∑
l=t−τ

E‖∇Fw(xl)‖2 + 4τG2).

Thus, denoting ā = amaxi{wi}

γ

16āL
E‖∇Fw(xt−τ )‖2 ≤ E[Fw(xt)− Fw(xt+1)] +

τγ2(1 + γ2)

2

t−1∑
l=t−τ

E‖∇Fw(xl)‖2

+

(
γ2

2
+
γ2

2L
+

3γ2

64L2

)
E‖∇Fw(xt)‖2 +

γ

aL
G2E‖q̃t‖2∞

+
γ

4āL
E
[
‖q̃t‖2∞‖∇Fw(xt−τ )‖2

]
+
γc21δ

2

4āL
G2

+ γ2G2

(
2 + 2τ2 + 2γ2τ2 +

2

L
+

3

16L2

)
+

(
γδ2

8āL
+

γ2

64L2

)
E‖∇Fw(xt−τ )‖2
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which implies that

γE‖∇Fw(xt−τ )‖2 ≤ 16āLE[Fw(xt)− Fw(xt+1)] +
16āLτγ2(1 + γ2)

2

t−1∑
l=t−τ

E‖∇Fw(xl)‖2

+ γ

(
16āLγ + 8āγ +

3āγ

4L

)
E‖∇Fw(xt)‖2 + 4γc21δ

2G2

+ 4γE
[
‖q̃t‖2∞‖∇Fw(xt−τ )‖2

]
+ 16γG2E‖q̃t‖2∞

+ 16āLγ2G2

(
2 + 2τ2 + 2γ2τ2 +

2

L
+

3

16L2

)
+ γ

(
2c21δ

2 +
āγ

4L

)
E‖∇Fw(xt−τ )‖2

≤ 16āLE[Fw(xt)− Fw(xt+1)] + γ

(
16āLγ + 8āγ +

3āγ

4L

)
E‖∇Fw(xt)‖2

+ γ
(

2c21δ
2 +

āγ

4L
+ 32āLτγ(1 + γ2)

)
E‖∇Fw(xt−τ )‖2

+ 4γE
[
‖q̃t‖2∞‖∇Fw(xt−τ )‖2

]
+ 16γG2E‖q̃t‖2∞ + 4γc21δ

2G2

+ 16āLγ2G2

(
2 + 2τ2 + 2γ2τ2 + 8τ4γ2(1 + γ2) +

2

L
+

3

16L2

)
where we make use of

t−1∑
l=t−τ

E‖∇Fw(xl)‖2 ≤ 4τE‖∇Fw(xt−τ )‖2 + 16τ3γ2G2

by Lemma 9. Under the following conditions

2c21δ
2 ≤ 1

6
,
āγ

4L
≤ 1

36
, γ ≤ min{ 1

2τ
,

1

384ā
},

64āLτγ ≤ 1

12
,

which implies 32aLτγ(1 + γ2) ≤ 1
6 and hence 2c21δ

2 + āγ
4L + 32āLτγ(1 + γ2) ≤ 1

2 , then we obtain

γE‖∇Fw(xt−τ )‖2 ≤ 32āLE[Fw(xt)− Fw(xt+1)] + 2γ

(
16āLγ + 8āγ +

3āγ

4L

)
E‖∇Fw(xt)‖2

+ 8γE
[
‖q̃t‖2∞‖∇Fw(xt−τ )‖2

]
+ 32γG2E‖q̃t‖2∞ + 8γc21δ

2G2

+ 32āLγ2G2

(
2 + 2τ2 + 2γ2τ2 + 8τ4γ2(1 + γ2) +

2

L
+

3

16L2

)
.

Summing over τ ≤ t ≤ T − 1 gives

γ

T−1∑
t=τ

E‖∇Fw(xt−τ )‖2 ≤ 32āL∆τ + 2γ

(
16āLγ + 8āγ +

3āγ

4L

) T−1∑
t=τ

E‖∇Fw(xt)‖2

+ 8γ

T−1∑
t=τ

E
[
‖q̃t‖2∞‖∇Fw(xt−τ )‖2

]
+ 32γG2

T−1∑
t=τ

E‖q̃t‖2∞

+ 32āLγ2G2

(
3 + 6τ2 +

2

L
+

3

16L2

)
(T − τ) + 8γc21δ

2G2(T − τ).

where ∆τ = E[Fw(xτ )− F ∗] and we use γ2τ2 ≤ 1/4. Again leveraging Lemma 9, we observe

T−1∑
t=τ

E‖∇Fw(xt)‖2 ≤ 4

T−1∑
t=τ

E‖∇Fw(xt−τ )‖2 + 16τ2γ2G2(T − τ)
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which thus renders

1

T − τ

T−1∑
t=τ

E‖∇Fw(xt−τ )‖2 ≤ 32āL∆τ

γ(T − τ)
+

8

T − τ

T−1∑
t=τ

E
[
‖q̃t‖2∞‖∇Fw(xt−τ )‖2

]
+ 32āLG2

(
3γ + 6γτ2 +

2γ

L
+

3γ

16L2
+

γ2

16aL

)
+ 8c21δ

2G2

+
32G2

T − τ

T−1∑
t=τ

E‖q̃t‖2∞

by noting that 16āLγ + 8aγ + 3āγ
4L ≤

1
16 .

In the following, we turn to bound ∆τ . Noting that

Fw(xt+1)− Fw(xt) ≤ −αK〈∇Fw(xt),
1

BK

∑
i∈St

K−1∑
k=0

∇fi(xik)〉+
α2L

2B2

∥∥∥∥∥∑
i∈St

K−1∑
k=0

∇fi(xik)

∥∥∥∥∥
2

≤ αK

2

∥∥∥∥∥ 1

BK

∑
i∈St

K−1∑
k=0

(∇fi(xik)−∇Fw(xt))

∥∥∥∥∥
2

− αK

2
‖∇Fw(xt)‖2

by α ≤ γ
8aLK ≤

1
2LK . Moreover, since∥∥∥∥∥ 1

BK

∑
i∈St

K−1∑
k=0

(∇fi(xik)−∇Fw(xt))

∥∥∥∥∥
2

≤ 2

BK

∑
i∈St

K∑
k=0

(L2‖xik − xt‖2 + 4G2)

≤ 2γ2‖∇Fw(xt)‖2 + 8G2

we conclude that

Fw(xt+1)− Fw(xt) ≤ −
αK

2
(1− 2γ2)‖∇Fw(xt)‖2 + 4αKG2 ≤ γ

2āL
G2

which implies
∆τ = E[Fw(xτ )− F ∗] ≤ γτ

2āL
G2 + Fw(x0)− F ∗w.

F CONVERGENCE ANALYSIS OF FEDAVG UNDER CORRELATED CLIENT
PARTICIPATION

In this section, we provide the convergence analysis of Vanilla FedAvg for correlated client partici-
pation. We first show FedAvg suffers from unavoidable bias (stated in Theorem 1), summarized by
the following proposition.
Proposition 3. There exists a problem case such that FedAvg converges with unavoidable asymptotic
bias.

Proof. We consider a problem case with N = 3, B = 1, R = 1. We set p1 = 0.25, p2 = 0.25, p3 =
0.5 and fi(x) = 1

2 (x − i)2, i = 1, 2, 3 and x ∈ R. In this case, we have the Markov chain induced
by the problem denoted by P ∈ R3×3. Letting π ∈ R3 be the stationary distribution of P , a
straightforward calculation gives π1 = π2 = 0.3, π3 = 0.4. Then we obtain the server’s update of
FedAvg given by

xt+1 = βxt + (1− β)it

where β = (1− α)K < 1 with α being the stepsize of local updates; it is the index of the sampled
client at round t which is a random variable. Taking the expectation on both sides yields

E[xt+1] = βE[xt] + (1− β)µTP tI

= βE[xt] + (1− β)(µTP t − πT )I + (1− β)πT I

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

where µ = (p1, p2, p3), and I = (1, 2, 3) is the vector formed by clients’ indices. Noting that the
third term vanishes as t → ∞ due to the convergence the Markov chain (shown by Lemma 4), we
conclude that limt→∞ E[xt] =

∑3
i=1 πii which is the minimizer of Fπ(x) :=

∑3
i=1 πifi(x) but

not F (x) = 1
3

∑3
i=1 fi(x). And |F ′(πT I)| = |IT (π − 1

313)|. Therefore, the bias in Theorem 1 is
unavoidable.

Then we show the convergence result of FedAvg.
Theorem 4. Suppose Assumptions 1,2 hold and assume ‖∇F (x)‖ ≤ D,∀x. Then, by choosing
α = O( γK ) and T ≥ 2τmix log τmix, the output x̃T generated by FedAvg satisfies

E‖∇F (x̃T )‖2 = O
(

∆0

γT

)
+O

(
τmix log TG2

T

)
+O

(
(γτ2

mix log2 T + γ2)G2
)

+O
(

(G2 +D2)‖π − 1

N
1N‖21

)
where ∆0 := E[F (x0)−minx F (x)] and τmix is the mixing time.

Proof. For FedAvg, we have yit = 1/N . Utilizing Lemma 10 and setting wi = 1
N , it yields

1

T − τ

T−τ−1∑
t=0

E‖∇F (xt)‖2 ≤
32L∆0

γ(T − τ)
+

8D2

T − τ

T−1∑
t=τ

E‖q̃t‖2∞ +
36G2

T − τ

T−1∑
t=τ

E‖q̃t‖2∞ +
16τG2

T − τ

+ 32LG2

(
3γ + 6γτ2 +

2γ

L
+

3γ

16L2
+

γ2

16L

)
+ 8c21δ

2G2.

Then noting that ‖q̃t‖2∞ ≤ π−2
min‖π − 1

N 1N‖21, we conclude

E‖∇F (x̃T )‖2 = O
(

∆0

γT

)
+O

(
τG2

T

)
+O

(
(γτ2 + γ2)G2

)
+O

(
(G2 +D2)‖π − 1

N
1N‖21

)
by setting δ = 1/

√
T . For the above to be true, we need T ≥ τ = τmix log T , which is actually

always satisfied for T ≥ 2τmix log τmix. To see this, we observe that if T ≤ τ2
mix, τmix log T ≤

2τmix log τmix; if T ≥ τ2
mix, τmix log T ≤

√
T log T ≤ T . This completes the proof.

The following corollary restates the convergence result of Theorem 1.
Corollary 1. Suppose all conditions in Theorem 4 hold. Then, choosing α = Õ(1/(Kτmix

√
T )),

the output x̃T of FedAvg satisfies

E‖∇F (x̃T )‖2 ≤ Õ
(
τmix√
T

)
+O

(
(D2 +G2)

∥∥πR − 1

N
1N
∥∥2

1

)
.

Proof. The proof is straightforward by simply plugging in γ = O(1/(τ
√
T )) and τ = τmix log T

to Theorem 4.

G CONVERGENCE ANALYSIS OF ALGORITHM 1

We first provide the following theorem showing that yit serves as a reasonable estimation of πi.
Theorem 5. For any real-valued function f ∈ RN and any initial distribution µ ∈ RN , we have
the following:

Eµ

(
1

T

T−1∑
t=0

f(Xt)− πTRf

)
=

1

T

T−1∑
t=0

µTQ†µ(P tR − 1ζTR)QRf

TEπR

(
1

T

T−1∑
t=0

f(Xt)− πTRf

)2

≤ fTΠR(I − 1Nπ
T
R)f + c0πmax‖f‖2∞Nτmix

TEµ

(
1

T

T−1∑
t=0

f(Xt)− πTRf

)2

≤ TEπR

(
1

T

T−1∑
t=0

f(Xt)− πTRf

)2

+ 3c0N
2‖g‖2∞τmix
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where Eµ(·) means the initial state X0 follows µ; ΠR = diag(πR[i]) and Q†µ is defined such that
µTQ†µ = ζµ and ζTµQR = µ; g = f − πTRf1N ; τmix is the mixing time of PR.

Proof. We firstly show the first equality. Note that

Eµ

(
1

T

T−1∑
t=0

f(Xt)− πTRf

)
=

1

T

T−1∑
k=0

(µTP kRQRf − ζTRQRf)

=
1

T

T−1∑
k=0

µT (P kR − 1ζTR)QRf

where we observe that µT1 = 1.

Then we turn to show the second inequality. By the definition, we have

TEπR

(
1

T

T−1∑
t=0

f(Xt)− πTRf

)2

= VarπR
(f(X0)) +

2

T

T−1∑
k=1

(T − k)CovπR
(f(X0), f(Xk)).

(11)

For any k, let ζk and πk be the distributions after the Markov chain evolves k steps. Then, we have
ζTk+1 = ζTk PR and πTk = ζTk QR. Defining Q̂k ∈ RN×d(M,R) as an inverse mapping from πk to
ζk, i.e., ζTk = πTk Q̂k, it is straightforward to verify that we can always pick a nonnegative Q̂k such
that Q̂k1 = 1N in the sense that the freedom of Q̂k is (N − 1)× d(M,R)−N when forcing both
ζTk = πTk Q̂k and Q̂k1 = 1N to hold. Moreover,

CovπR
(f(X0), f(Xk)) =

∑
i

πR[i]f(i)
∑
j

[Q̂kP
k
RQR]i,jf(j)−

∑
i,j

πR[i]πR[j]f(i)f(j)

= fTΠRQ̂kP
k
RQRf − fTΠR1Nπ

T
Rf

= fTΠRQ̂k(P kR − 1ζTR)QRf

where we utilize Q̂k1 = 1N . Further, ‖Q̂k‖∞ = 1,∀k ≥ 0 since Q̂k is nonnegative. Then,

CovπR
(f(X0), f(Xk)) ≤ πmax‖f‖2∞‖QR‖∞‖P kR − 1ζTR‖∞.

Substituting it into equation 11 yields

TEπR

(
1

T

T−1∑
t=0

f(Xt)− πTRf

)2

≤ VarπR
(f(X0)) + 2

∞∑
k=1

CovπR
(f(X0), f(Xk))

≤ VarπR
(f(X0)) + 2πmax‖f‖2∞‖QR‖∞

T∑
k=0

‖P kR − 1ζTR‖∞

≤ fTΠR(I − 1Nπ
T
R)f + c0πmax‖f‖2∞‖QR‖∞τmix

where we make use of Lemma 5. Finally noting that ‖QR‖∞ ≤ ‖QR,1‖∞‖QR,2‖∞ ≤ N completes
the proof of the second inequality.

To obtain the third inequality, defining g(i) = f(i)− πTRf we aim to bound

T

∣∣∣∣∣∣Eµ
(

1

T

T−1∑
k=0

g(Xk)

)2

− EπR

(
1

T

T−1∑
k=0

g(Xk)

)2
∣∣∣∣∣∣

≤

∣∣∣∣∣ 1

T

T−1∑
k=0

Eµg2(Xk)− EπR
g2(Xk)

∣∣∣∣∣+
2

T

T−1∑
k=0

T−1∑
l=k+1

∣∣Eµ(g(Xk)g(Xl))− EπR
(g(Xk)g(Xl))

∣∣.
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For notation simplicity, we drop the subscript R without confusion to get∣∣Eµ(g(Xk)g(Xl))− EπR
(g(Xk)g(Xl))

∣∣
=

∣∣∣∣∣∣
∑
i,j

µig(j)((Q̂kP
kQ)i,j − πj)

∑
r

((Q̂lP
l−kQ)j,r − πr)g(r)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i,j

µig(j)(Q̂k(P k − 1ζT )Q)i,j
∑
r

(Q̂l(P
l−k − 1ζT )Q)j,rg(r)

∣∣∣∣∣∣
≤ ‖g‖2∞N2‖P l − 1ζT ‖∞.

Thus, by Lemma 5,

T

∣∣∣∣∣∣Eµ
(

1

T

T−1∑
k=0

g(Xk)

)2

− EπR

(
1

T

T−1∑
k=0

g(Xk)

)2
∣∣∣∣∣∣

≤ 1

T

T−1∑
k=0

µTQ†µ(P k − 1ζT )Qg2 +
2

T
c0N

2‖g‖2∞
T−1∑
k=0

τmix

≤ 1

T

T−1∑
k=0

µTQ†µ(P k − 1ζT )Qg2 + 2c0N
2‖g‖2∞τmix

≤ 1

T
c0‖g‖2∞Nτmix + 2c0N

2‖g‖2∞τmix

≤ 3c0N
2‖g‖2∞τmix

where g2 denotes the elementwise square of g. Combining all the above completes the proof.

Then, the following corollary induced by Theorem 5 is exactly Lemma 2.

Corollary 2. Given initial λ0 = 0N and let νit = 1
λi
tN

as in Algorithm 1, we have

E‖ν̃t‖2∞ ≤ O
(τmix

t

)
where ν̃it = νit − 1

πiN
and ν̃t = (ν̃1

t , . . . , ν̃
N
t ).

Proof. By Theorem 5, setting f = ei for any i, we have

E(λit − πi)2 = O
(
N2τmix

t

)
(12)

Note that

E(ν̃it)
2 =

1

N2
E
(
λit − πi
λitπi

)2

=
1

N2
E

[(
λit − πi
λitπi

)2 ∣∣λit ≥ a
]
P (λit ≥ a)

+
1

N2
E

[(
λit − πi
λitπi

)2 ∣∣λit < a

]
P (λit < a) (13)

for any positive a. Moreover, due to the Markov chain in Section 3 is irreducible by Lemma 1, every
client will be visited infinitely as t goes to infinite, which then implies there always exists some
strictly positive constant a0 independent of t such that λit ≥ a0 > 0 almost surely for any i ∈ [N ].
Combining equation 12,equation 13 we conclude

E‖ν̃it‖2∞ = O
(τmix

t

)
.
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G.1 CONVERGENCE PROOF OF ALGORITHM 1

The following lemma is useful to derive the convergence proof of Algorithm 1.

Lemma 11. Supposing that the stochastic scalar sequence E[U1(t)2] ≤ u(t) with u being a mono-
tonically decreasing positive function w.r.t. t and assuming that U1(t) ≤ ū <∞ almost surely, then
given any δ, ε > 0, for all t ≥ inf{t0 | u(t0)/δ2 ≤ ε/ū2} and stochastic scalar sequence U2(t),

E
[
U1(t)2U2(t)

]
≤ (ε+ δ2)E[U2(t)].

Proof. For any δ > 0, we have for all t ≥ inf{t0 | u(t0)/δ2 ≤ ε/ū2}

E[U1(t)2U2(t)] = P (U1(t) > δ)E[U1(t)2U2(t) | U1(t) > δ] + P (U1(t) ≤ δ)E[U1(t)2U2(t) | U1(t) ≤ δ]
≤ P (U1(t) > δ)ū2E[U2(t)] + δ2E[U2(t)]

≤ (ε+ δ2)E[U2(t)]

where we use the Markov inequality in the last step, i.e.,

P (U1(t) > δ) ≤ P (U1(t)2 > δ2) ≤ u(t)

δ2
.

Then we are ready to provide the proof for Theorem 3.

Proof of Theorem 3: As discussed in the proof of Corollary 2, we know that there exists a positive
a−1 which lower bounds each λit for all t almost surely, implying that ν̃it ≤ 1

N (a+ π−1
min). Then for

any t > τ > c′τmix (with c′ being some constant), we have

E
[
‖ν̃t‖2∞‖∇F (xt−τ )‖2

]
≤ 1

16
E‖∇F (xt−τ )‖2

by Lemmas 2 and 11. Further Utilizing Lemma 10 with setting wi = 1
N , we obtain

1

T − τ

T−1∑
t=τ

E‖∇F (xt−τ )‖2 ≤ 64āL∆0

γ(T − τ)
+

64G2

T − τ

T−1∑
t=τ

E‖ν̃t‖2∞ +
32τG2

T − τ
+ 16c21δ

2G2

+ 64āLG2

(
3γ + 6γτ2 +

2γ

L
+

3γ

16L2
+

γ2

16aL

)
for τ ≥ τmix max{c′, log(1/δ)}. Similar to the proofs of Theorem 4, setting δ = 1/

√
T , with

T ≥ c†τmix log τmix for some constant c†, we finally conclude that

E‖∇F (x̃T )‖2 = Õ
(
τmix√
T

)
+O

(
1

T

)
by choosing γ = O(1/(τ

√
T )) with τ = Ω(τmix log T ) and by leveraging the fact that∑T−1

t=τ E‖ν̃t‖2∞ = O(τmix log T ) implied by Lemma 2. This completes the proof.

H ADDITIONAL EXPERIMENTS

In this section, we compare Vanilla FedAvg, Debiasing FedAvg (ours) and FedVARP under the
CIFAR10 dataset given the same participation pattern as in Section 6. Each client maintains a CNN
with three convolution layers. Learning rates for three algorithms are selected to be with the order of
O(10−3). In Figure 4, Debiasing FedAvg achieves the highest training accuracy due to its debiasing
nature as shown in Theorem 3, while Vanilla FedAvg and FedVARP suffer from bias. Moreover,
in Table 1, the training and test accuracies for different R are presented, where one can see that
Debiasing FedAvg achieves the best performance.
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(a) FedAvg, FedVARP, Debias-
ing FedAvg when R = 5 (CI-
FAR10)

(b) FedAvg, FedVARP, Debias-
ing FedAvg when R = 10 (CI-
FAR10)

(c) FedAvg, FedVARP, Debias-
ing FedAvg when R = 15 (CI-
FAR10)

Figure 4: Experiments on CIFAR10. The training accuracies of Vanilla FedAvg, Debiasing FedAvg
(ours) and FedVARP are compared given different values of R. The results show that Debiasing
FedAvg achieves the highest accuracy and outperforms the other two, since FedAvg and FedVARP
suffer from bias.

Algorithms R = 5 R = 10 R = 15
Train acc Test acc Train acc Test acc Train acc Test acc

FedAvg 74.9% 67.6% 75.3% 68.8% 75.6% 70.1%
FedVARP 76.7% 68.0% 77.5% 69.4% 79.5% 72.5%
Debiasing
FedAvg

79.3% 73.8% 81.5% 74.9% 82.9% 74.1%

Table 1: Training and test accuracies for different R under CIFAR10

I THE INFLUENCE OF R ON CONVERGENCE RATES

In this section, we discuss the effect of different values of R on the convergence rates of Debiasing
FedAvg and Vanilla FedAvg as observed empirically in Figure 3. We simulate the ”effective” client
sampling distribution (i.e., ηR(t)) as time evolves for different minimum separationR, where we set
N = 100, B = 1. The code for all experiments can be found through https://github.com/
Starrskyy/debias_fl. Figure 5 shows the total variation distance of the evolution of client
sampling distributions to their corresponding stationary πR’s. Clearly increasingR, the convergence
rate of ”effective” client sampling distribution to the stationary distribution also increases, implying
the decrease of mixing time τmix (see Appendix B for details). Combining this observation together
with Theorems 1 and 3 leads to that largerR implies faster convergence rate, which then consistently
explains the observation in Figure 3. However, the above explanation is only from an empirical
perspective. More rigorous explanations need theoretical advance in the convergence results to
reveal explicitly the relation between the rates and values of R.
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Figure 5: Convergence of client sampling distribution to πR for different R (N = 100, B = 1).
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